seabios: update to latest git
[qemu.git] / cpu-exec.c
blob34eaedca04997abc944a2ccd9874d6685d8ae90b
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "kvm.h"
24 #include "qemu-barrier.h"
26 #if !defined(CONFIG_SOFTMMU)
27 #undef EAX
28 #undef ECX
29 #undef EDX
30 #undef EBX
31 #undef ESP
32 #undef EBP
33 #undef ESI
34 #undef EDI
35 #undef EIP
36 #include <signal.h>
37 #ifdef __linux__
38 #include <sys/ucontext.h>
39 #endif
40 #endif
42 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
43 // Work around ugly bugs in glibc that mangle global register contents
44 #undef env
45 #define env cpu_single_env
46 #endif
48 int tb_invalidated_flag;
50 //#define CONFIG_DEBUG_EXEC
51 //#define DEBUG_SIGNAL
53 int qemu_cpu_has_work(CPUState *env)
55 return cpu_has_work(env);
58 void cpu_loop_exit(void)
60 env->current_tb = NULL;
61 longjmp(env->jmp_env, 1);
64 /* exit the current TB from a signal handler. The host registers are
65 restored in a state compatible with the CPU emulator
67 void cpu_resume_from_signal(CPUState *env1, void *puc)
69 #if !defined(CONFIG_SOFTMMU)
70 #ifdef __linux__
71 struct ucontext *uc = puc;
72 #elif defined(__OpenBSD__)
73 struct sigcontext *uc = puc;
74 #endif
75 #endif
77 env = env1;
79 /* XXX: restore cpu registers saved in host registers */
81 #if !defined(CONFIG_SOFTMMU)
82 if (puc) {
83 /* XXX: use siglongjmp ? */
84 #ifdef __linux__
85 #ifdef __ia64
86 sigprocmask(SIG_SETMASK, (sigset_t *)&uc->uc_sigmask, NULL);
87 #else
88 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
89 #endif
90 #elif defined(__OpenBSD__)
91 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
92 #endif
94 #endif
95 env->exception_index = -1;
96 longjmp(env->jmp_env, 1);
99 /* Execute the code without caching the generated code. An interpreter
100 could be used if available. */
101 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
103 unsigned long next_tb;
104 TranslationBlock *tb;
106 /* Should never happen.
107 We only end up here when an existing TB is too long. */
108 if (max_cycles > CF_COUNT_MASK)
109 max_cycles = CF_COUNT_MASK;
111 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
112 max_cycles);
113 env->current_tb = tb;
114 /* execute the generated code */
115 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
116 env->current_tb = NULL;
118 if ((next_tb & 3) == 2) {
119 /* Restore PC. This may happen if async event occurs before
120 the TB starts executing. */
121 cpu_pc_from_tb(env, tb);
123 tb_phys_invalidate(tb, -1);
124 tb_free(tb);
127 static TranslationBlock *tb_find_slow(target_ulong pc,
128 target_ulong cs_base,
129 uint64_t flags)
131 TranslationBlock *tb, **ptb1;
132 unsigned int h;
133 tb_page_addr_t phys_pc, phys_page1, phys_page2;
134 target_ulong virt_page2;
136 tb_invalidated_flag = 0;
138 /* find translated block using physical mappings */
139 phys_pc = get_page_addr_code(env, pc);
140 phys_page1 = phys_pc & TARGET_PAGE_MASK;
141 phys_page2 = -1;
142 h = tb_phys_hash_func(phys_pc);
143 ptb1 = &tb_phys_hash[h];
144 for(;;) {
145 tb = *ptb1;
146 if (!tb)
147 goto not_found;
148 if (tb->pc == pc &&
149 tb->page_addr[0] == phys_page1 &&
150 tb->cs_base == cs_base &&
151 tb->flags == flags) {
152 /* check next page if needed */
153 if (tb->page_addr[1] != -1) {
154 virt_page2 = (pc & TARGET_PAGE_MASK) +
155 TARGET_PAGE_SIZE;
156 phys_page2 = get_page_addr_code(env, virt_page2);
157 if (tb->page_addr[1] == phys_page2)
158 goto found;
159 } else {
160 goto found;
163 ptb1 = &tb->phys_hash_next;
165 not_found:
166 /* if no translated code available, then translate it now */
167 tb = tb_gen_code(env, pc, cs_base, flags, 0);
169 found:
170 /* Move the last found TB to the head of the list */
171 if (likely(*ptb1)) {
172 *ptb1 = tb->phys_hash_next;
173 tb->phys_hash_next = tb_phys_hash[h];
174 tb_phys_hash[h] = tb;
176 /* we add the TB in the virtual pc hash table */
177 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
178 return tb;
181 static inline TranslationBlock *tb_find_fast(void)
183 TranslationBlock *tb;
184 target_ulong cs_base, pc;
185 int flags;
187 /* we record a subset of the CPU state. It will
188 always be the same before a given translated block
189 is executed. */
190 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
191 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
192 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
193 tb->flags != flags)) {
194 tb = tb_find_slow(pc, cs_base, flags);
196 return tb;
199 /* main execution loop */
201 volatile sig_atomic_t exit_request;
203 int cpu_exec(CPUState *env1)
205 volatile host_reg_t saved_env_reg;
206 int ret, interrupt_request;
207 TranslationBlock *tb;
208 uint8_t *tc_ptr;
209 unsigned long next_tb;
211 if (env1->halted) {
212 if (!cpu_has_work(env1)) {
213 return EXCP_HALTED;
216 env1->halted = 0;
219 cpu_single_env = env1;
221 /* the access to env below is actually saving the global register's
222 value, so that files not including target-xyz/exec.h are free to
223 use it. */
224 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg) != sizeof (env));
225 saved_env_reg = (host_reg_t) env;
226 barrier();
227 env = env1;
229 if (unlikely(exit_request)) {
230 env->exit_request = 1;
233 #if defined(TARGET_I386)
234 /* put eflags in CPU temporary format */
235 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
236 DF = 1 - (2 * ((env->eflags >> 10) & 1));
237 CC_OP = CC_OP_EFLAGS;
238 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
239 #elif defined(TARGET_SPARC)
240 #elif defined(TARGET_M68K)
241 env->cc_op = CC_OP_FLAGS;
242 env->cc_dest = env->sr & 0xf;
243 env->cc_x = (env->sr >> 4) & 1;
244 #elif defined(TARGET_ALPHA)
245 #elif defined(TARGET_ARM)
246 #elif defined(TARGET_PPC)
247 #elif defined(TARGET_LM32)
248 #elif defined(TARGET_MICROBLAZE)
249 #elif defined(TARGET_MIPS)
250 #elif defined(TARGET_SH4)
251 #elif defined(TARGET_CRIS)
252 #elif defined(TARGET_S390X)
253 /* XXXXX */
254 #else
255 #error unsupported target CPU
256 #endif
257 env->exception_index = -1;
259 /* prepare setjmp context for exception handling */
260 for(;;) {
261 if (setjmp(env->jmp_env) == 0) {
262 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
263 #undef env
264 env = cpu_single_env;
265 #define env cpu_single_env
266 #endif
267 /* if an exception is pending, we execute it here */
268 if (env->exception_index >= 0) {
269 if (env->exception_index >= EXCP_INTERRUPT) {
270 /* exit request from the cpu execution loop */
271 ret = env->exception_index;
272 break;
273 } else {
274 #if defined(CONFIG_USER_ONLY)
275 /* if user mode only, we simulate a fake exception
276 which will be handled outside the cpu execution
277 loop */
278 #if defined(TARGET_I386)
279 do_interrupt_user(env->exception_index,
280 env->exception_is_int,
281 env->error_code,
282 env->exception_next_eip);
283 /* successfully delivered */
284 env->old_exception = -1;
285 #endif
286 ret = env->exception_index;
287 break;
288 #else
289 #if defined(TARGET_I386)
290 /* simulate a real cpu exception. On i386, it can
291 trigger new exceptions, but we do not handle
292 double or triple faults yet. */
293 do_interrupt(env->exception_index,
294 env->exception_is_int,
295 env->error_code,
296 env->exception_next_eip, 0);
297 /* successfully delivered */
298 env->old_exception = -1;
299 #elif defined(TARGET_PPC)
300 do_interrupt(env);
301 #elif defined(TARGET_LM32)
302 do_interrupt(env);
303 #elif defined(TARGET_MICROBLAZE)
304 do_interrupt(env);
305 #elif defined(TARGET_MIPS)
306 do_interrupt(env);
307 #elif defined(TARGET_SPARC)
308 do_interrupt(env);
309 #elif defined(TARGET_ARM)
310 do_interrupt(env);
311 #elif defined(TARGET_SH4)
312 do_interrupt(env);
313 #elif defined(TARGET_ALPHA)
314 do_interrupt(env);
315 #elif defined(TARGET_CRIS)
316 do_interrupt(env);
317 #elif defined(TARGET_M68K)
318 do_interrupt(0);
319 #endif
320 env->exception_index = -1;
321 #endif
325 next_tb = 0; /* force lookup of first TB */
326 for(;;) {
327 interrupt_request = env->interrupt_request;
328 if (unlikely(interrupt_request)) {
329 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
330 /* Mask out external interrupts for this step. */
331 interrupt_request &= ~(CPU_INTERRUPT_HARD |
332 CPU_INTERRUPT_FIQ |
333 CPU_INTERRUPT_SMI |
334 CPU_INTERRUPT_NMI);
336 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
337 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
338 env->exception_index = EXCP_DEBUG;
339 cpu_loop_exit();
341 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
342 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
343 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32)
344 if (interrupt_request & CPU_INTERRUPT_HALT) {
345 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
346 env->halted = 1;
347 env->exception_index = EXCP_HLT;
348 cpu_loop_exit();
350 #endif
351 #if defined(TARGET_I386)
352 if (interrupt_request & CPU_INTERRUPT_INIT) {
353 svm_check_intercept(SVM_EXIT_INIT);
354 do_cpu_init(env);
355 env->exception_index = EXCP_HALTED;
356 cpu_loop_exit();
357 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
358 do_cpu_sipi(env);
359 } else if (env->hflags2 & HF2_GIF_MASK) {
360 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
361 !(env->hflags & HF_SMM_MASK)) {
362 svm_check_intercept(SVM_EXIT_SMI);
363 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
364 do_smm_enter();
365 next_tb = 0;
366 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
367 !(env->hflags2 & HF2_NMI_MASK)) {
368 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
369 env->hflags2 |= HF2_NMI_MASK;
370 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
371 next_tb = 0;
372 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
373 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
374 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
375 next_tb = 0;
376 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
377 (((env->hflags2 & HF2_VINTR_MASK) &&
378 (env->hflags2 & HF2_HIF_MASK)) ||
379 (!(env->hflags2 & HF2_VINTR_MASK) &&
380 (env->eflags & IF_MASK &&
381 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
382 int intno;
383 svm_check_intercept(SVM_EXIT_INTR);
384 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
385 intno = cpu_get_pic_interrupt(env);
386 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
387 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
388 #undef env
389 env = cpu_single_env;
390 #define env cpu_single_env
391 #endif
392 do_interrupt(intno, 0, 0, 0, 1);
393 /* ensure that no TB jump will be modified as
394 the program flow was changed */
395 next_tb = 0;
396 #if !defined(CONFIG_USER_ONLY)
397 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
398 (env->eflags & IF_MASK) &&
399 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
400 int intno;
401 /* FIXME: this should respect TPR */
402 svm_check_intercept(SVM_EXIT_VINTR);
403 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
404 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
405 do_interrupt(intno, 0, 0, 0, 1);
406 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
407 next_tb = 0;
408 #endif
411 #elif defined(TARGET_PPC)
412 #if 0
413 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
414 cpu_reset(env);
416 #endif
417 if (interrupt_request & CPU_INTERRUPT_HARD) {
418 ppc_hw_interrupt(env);
419 if (env->pending_interrupts == 0)
420 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
421 next_tb = 0;
423 #elif defined(TARGET_LM32)
424 if ((interrupt_request & CPU_INTERRUPT_HARD)
425 && (env->ie & IE_IE)) {
426 env->exception_index = EXCP_IRQ;
427 do_interrupt(env);
428 next_tb = 0;
430 #elif defined(TARGET_MICROBLAZE)
431 if ((interrupt_request & CPU_INTERRUPT_HARD)
432 && (env->sregs[SR_MSR] & MSR_IE)
433 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
434 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
435 env->exception_index = EXCP_IRQ;
436 do_interrupt(env);
437 next_tb = 0;
439 #elif defined(TARGET_MIPS)
440 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
441 cpu_mips_hw_interrupts_pending(env)) {
442 /* Raise it */
443 env->exception_index = EXCP_EXT_INTERRUPT;
444 env->error_code = 0;
445 do_interrupt(env);
446 next_tb = 0;
448 #elif defined(TARGET_SPARC)
449 if (interrupt_request & CPU_INTERRUPT_HARD) {
450 if (cpu_interrupts_enabled(env) &&
451 env->interrupt_index > 0) {
452 int pil = env->interrupt_index & 0xf;
453 int type = env->interrupt_index & 0xf0;
455 if (((type == TT_EXTINT) &&
456 cpu_pil_allowed(env, pil)) ||
457 type != TT_EXTINT) {
458 env->exception_index = env->interrupt_index;
459 do_interrupt(env);
460 next_tb = 0;
463 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
464 //do_interrupt(0, 0, 0, 0, 0);
465 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
467 #elif defined(TARGET_ARM)
468 if (interrupt_request & CPU_INTERRUPT_FIQ
469 && !(env->uncached_cpsr & CPSR_F)) {
470 env->exception_index = EXCP_FIQ;
471 do_interrupt(env);
472 next_tb = 0;
474 /* ARMv7-M interrupt return works by loading a magic value
475 into the PC. On real hardware the load causes the
476 return to occur. The qemu implementation performs the
477 jump normally, then does the exception return when the
478 CPU tries to execute code at the magic address.
479 This will cause the magic PC value to be pushed to
480 the stack if an interrupt occured at the wrong time.
481 We avoid this by disabling interrupts when
482 pc contains a magic address. */
483 if (interrupt_request & CPU_INTERRUPT_HARD
484 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
485 || !(env->uncached_cpsr & CPSR_I))) {
486 env->exception_index = EXCP_IRQ;
487 do_interrupt(env);
488 next_tb = 0;
490 #elif defined(TARGET_SH4)
491 if (interrupt_request & CPU_INTERRUPT_HARD) {
492 do_interrupt(env);
493 next_tb = 0;
495 #elif defined(TARGET_ALPHA)
496 if (interrupt_request & CPU_INTERRUPT_HARD) {
497 do_interrupt(env);
498 next_tb = 0;
500 #elif defined(TARGET_CRIS)
501 if (interrupt_request & CPU_INTERRUPT_HARD
502 && (env->pregs[PR_CCS] & I_FLAG)
503 && !env->locked_irq) {
504 env->exception_index = EXCP_IRQ;
505 do_interrupt(env);
506 next_tb = 0;
508 if (interrupt_request & CPU_INTERRUPT_NMI
509 && (env->pregs[PR_CCS] & M_FLAG)) {
510 env->exception_index = EXCP_NMI;
511 do_interrupt(env);
512 next_tb = 0;
514 #elif defined(TARGET_M68K)
515 if (interrupt_request & CPU_INTERRUPT_HARD
516 && ((env->sr & SR_I) >> SR_I_SHIFT)
517 < env->pending_level) {
518 /* Real hardware gets the interrupt vector via an
519 IACK cycle at this point. Current emulated
520 hardware doesn't rely on this, so we
521 provide/save the vector when the interrupt is
522 first signalled. */
523 env->exception_index = env->pending_vector;
524 do_interrupt(1);
525 next_tb = 0;
527 #endif
528 /* Don't use the cached interupt_request value,
529 do_interrupt may have updated the EXITTB flag. */
530 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
531 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
532 /* ensure that no TB jump will be modified as
533 the program flow was changed */
534 next_tb = 0;
537 if (unlikely(env->exit_request)) {
538 env->exit_request = 0;
539 env->exception_index = EXCP_INTERRUPT;
540 cpu_loop_exit();
542 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
543 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
544 /* restore flags in standard format */
545 #if defined(TARGET_I386)
546 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
547 log_cpu_state(env, X86_DUMP_CCOP);
548 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
549 #elif defined(TARGET_M68K)
550 cpu_m68k_flush_flags(env, env->cc_op);
551 env->cc_op = CC_OP_FLAGS;
552 env->sr = (env->sr & 0xffe0)
553 | env->cc_dest | (env->cc_x << 4);
554 log_cpu_state(env, 0);
555 #else
556 log_cpu_state(env, 0);
557 #endif
559 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
560 spin_lock(&tb_lock);
561 tb = tb_find_fast();
562 /* Note: we do it here to avoid a gcc bug on Mac OS X when
563 doing it in tb_find_slow */
564 if (tb_invalidated_flag) {
565 /* as some TB could have been invalidated because
566 of memory exceptions while generating the code, we
567 must recompute the hash index here */
568 next_tb = 0;
569 tb_invalidated_flag = 0;
571 #ifdef CONFIG_DEBUG_EXEC
572 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
573 (long)tb->tc_ptr, tb->pc,
574 lookup_symbol(tb->pc));
575 #endif
576 /* see if we can patch the calling TB. When the TB
577 spans two pages, we cannot safely do a direct
578 jump. */
579 if (next_tb != 0 && tb->page_addr[1] == -1) {
580 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
582 spin_unlock(&tb_lock);
584 /* cpu_interrupt might be called while translating the
585 TB, but before it is linked into a potentially
586 infinite loop and becomes env->current_tb. Avoid
587 starting execution if there is a pending interrupt. */
588 env->current_tb = tb;
589 barrier();
590 if (likely(!env->exit_request)) {
591 tc_ptr = tb->tc_ptr;
592 /* execute the generated code */
593 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
594 #undef env
595 env = cpu_single_env;
596 #define env cpu_single_env
597 #endif
598 next_tb = tcg_qemu_tb_exec(tc_ptr);
599 if ((next_tb & 3) == 2) {
600 /* Instruction counter expired. */
601 int insns_left;
602 tb = (TranslationBlock *)(long)(next_tb & ~3);
603 /* Restore PC. */
604 cpu_pc_from_tb(env, tb);
605 insns_left = env->icount_decr.u32;
606 if (env->icount_extra && insns_left >= 0) {
607 /* Refill decrementer and continue execution. */
608 env->icount_extra += insns_left;
609 if (env->icount_extra > 0xffff) {
610 insns_left = 0xffff;
611 } else {
612 insns_left = env->icount_extra;
614 env->icount_extra -= insns_left;
615 env->icount_decr.u16.low = insns_left;
616 } else {
617 if (insns_left > 0) {
618 /* Execute remaining instructions. */
619 cpu_exec_nocache(insns_left, tb);
621 env->exception_index = EXCP_INTERRUPT;
622 next_tb = 0;
623 cpu_loop_exit();
627 env->current_tb = NULL;
628 /* reset soft MMU for next block (it can currently
629 only be set by a memory fault) */
630 } /* for(;;) */
632 } /* for(;;) */
635 #if defined(TARGET_I386)
636 /* restore flags in standard format */
637 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
638 #elif defined(TARGET_ARM)
639 /* XXX: Save/restore host fpu exception state?. */
640 #elif defined(TARGET_SPARC)
641 #elif defined(TARGET_PPC)
642 #elif defined(TARGET_LM32)
643 #elif defined(TARGET_M68K)
644 cpu_m68k_flush_flags(env, env->cc_op);
645 env->cc_op = CC_OP_FLAGS;
646 env->sr = (env->sr & 0xffe0)
647 | env->cc_dest | (env->cc_x << 4);
648 #elif defined(TARGET_MICROBLAZE)
649 #elif defined(TARGET_MIPS)
650 #elif defined(TARGET_SH4)
651 #elif defined(TARGET_ALPHA)
652 #elif defined(TARGET_CRIS)
653 #elif defined(TARGET_S390X)
654 /* XXXXX */
655 #else
656 #error unsupported target CPU
657 #endif
659 /* restore global registers */
660 barrier();
661 env = (void *) saved_env_reg;
663 /* fail safe : never use cpu_single_env outside cpu_exec() */
664 cpu_single_env = NULL;
665 return ret;
668 /* must only be called from the generated code as an exception can be
669 generated */
670 void tb_invalidate_page_range(target_ulong start, target_ulong end)
672 /* XXX: cannot enable it yet because it yields to MMU exception
673 where NIP != read address on PowerPC */
674 #if 0
675 target_ulong phys_addr;
676 phys_addr = get_phys_addr_code(env, start);
677 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
678 #endif
681 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
683 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
685 CPUX86State *saved_env;
687 saved_env = env;
688 env = s;
689 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
690 selector &= 0xffff;
691 cpu_x86_load_seg_cache(env, seg_reg, selector,
692 (selector << 4), 0xffff, 0);
693 } else {
694 helper_load_seg(seg_reg, selector);
696 env = saved_env;
699 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
701 CPUX86State *saved_env;
703 saved_env = env;
704 env = s;
706 helper_fsave(ptr, data32);
708 env = saved_env;
711 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
713 CPUX86State *saved_env;
715 saved_env = env;
716 env = s;
718 helper_frstor(ptr, data32);
720 env = saved_env;
723 #endif /* TARGET_I386 */
725 #if !defined(CONFIG_SOFTMMU)
727 #if defined(TARGET_I386)
728 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
729 #else
730 #define EXCEPTION_ACTION cpu_loop_exit()
731 #endif
733 /* 'pc' is the host PC at which the exception was raised. 'address' is
734 the effective address of the memory exception. 'is_write' is 1 if a
735 write caused the exception and otherwise 0'. 'old_set' is the
736 signal set which should be restored */
737 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
738 int is_write, sigset_t *old_set,
739 void *puc)
741 TranslationBlock *tb;
742 int ret;
744 if (cpu_single_env)
745 env = cpu_single_env; /* XXX: find a correct solution for multithread */
746 #if defined(DEBUG_SIGNAL)
747 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
748 pc, address, is_write, *(unsigned long *)old_set);
749 #endif
750 /* XXX: locking issue */
751 if (is_write && page_unprotect(h2g(address), pc, puc)) {
752 return 1;
755 /* see if it is an MMU fault */
756 ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
757 if (ret < 0)
758 return 0; /* not an MMU fault */
759 if (ret == 0)
760 return 1; /* the MMU fault was handled without causing real CPU fault */
761 /* now we have a real cpu fault */
762 tb = tb_find_pc(pc);
763 if (tb) {
764 /* the PC is inside the translated code. It means that we have
765 a virtual CPU fault */
766 cpu_restore_state(tb, env, pc, puc);
769 /* we restore the process signal mask as the sigreturn should
770 do it (XXX: use sigsetjmp) */
771 sigprocmask(SIG_SETMASK, old_set, NULL);
772 EXCEPTION_ACTION;
774 /* never comes here */
775 return 1;
778 #if defined(__i386__)
780 #if defined(__APPLE__)
781 # include <sys/ucontext.h>
783 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
784 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
785 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
786 # define MASK_sig(context) ((context)->uc_sigmask)
787 #elif defined (__NetBSD__)
788 # include <ucontext.h>
790 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
791 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
792 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
793 # define MASK_sig(context) ((context)->uc_sigmask)
794 #elif defined (__FreeBSD__) || defined(__DragonFly__)
795 # include <ucontext.h>
797 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
798 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
799 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
800 # define MASK_sig(context) ((context)->uc_sigmask)
801 #elif defined(__OpenBSD__)
802 # define EIP_sig(context) ((context)->sc_eip)
803 # define TRAP_sig(context) ((context)->sc_trapno)
804 # define ERROR_sig(context) ((context)->sc_err)
805 # define MASK_sig(context) ((context)->sc_mask)
806 #else
807 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
808 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
809 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
810 # define MASK_sig(context) ((context)->uc_sigmask)
811 #endif
813 int cpu_signal_handler(int host_signum, void *pinfo,
814 void *puc)
816 siginfo_t *info = pinfo;
817 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
818 ucontext_t *uc = puc;
819 #elif defined(__OpenBSD__)
820 struct sigcontext *uc = puc;
821 #else
822 struct ucontext *uc = puc;
823 #endif
824 unsigned long pc;
825 int trapno;
827 #ifndef REG_EIP
828 /* for glibc 2.1 */
829 #define REG_EIP EIP
830 #define REG_ERR ERR
831 #define REG_TRAPNO TRAPNO
832 #endif
833 pc = EIP_sig(uc);
834 trapno = TRAP_sig(uc);
835 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
836 trapno == 0xe ?
837 (ERROR_sig(uc) >> 1) & 1 : 0,
838 &MASK_sig(uc), puc);
841 #elif defined(__x86_64__)
843 #ifdef __NetBSD__
844 #define PC_sig(context) _UC_MACHINE_PC(context)
845 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
846 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
847 #define MASK_sig(context) ((context)->uc_sigmask)
848 #elif defined(__OpenBSD__)
849 #define PC_sig(context) ((context)->sc_rip)
850 #define TRAP_sig(context) ((context)->sc_trapno)
851 #define ERROR_sig(context) ((context)->sc_err)
852 #define MASK_sig(context) ((context)->sc_mask)
853 #elif defined (__FreeBSD__) || defined(__DragonFly__)
854 #include <ucontext.h>
856 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
857 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
858 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
859 #define MASK_sig(context) ((context)->uc_sigmask)
860 #else
861 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
862 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
863 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
864 #define MASK_sig(context) ((context)->uc_sigmask)
865 #endif
867 int cpu_signal_handler(int host_signum, void *pinfo,
868 void *puc)
870 siginfo_t *info = pinfo;
871 unsigned long pc;
872 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
873 ucontext_t *uc = puc;
874 #elif defined(__OpenBSD__)
875 struct sigcontext *uc = puc;
876 #else
877 struct ucontext *uc = puc;
878 #endif
880 pc = PC_sig(uc);
881 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
882 TRAP_sig(uc) == 0xe ?
883 (ERROR_sig(uc) >> 1) & 1 : 0,
884 &MASK_sig(uc), puc);
887 #elif defined(_ARCH_PPC)
889 /***********************************************************************
890 * signal context platform-specific definitions
891 * From Wine
893 #ifdef linux
894 /* All Registers access - only for local access */
895 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
896 /* Gpr Registers access */
897 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
898 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
899 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
900 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
901 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
902 # define LR_sig(context) REG_sig(link, context) /* Link register */
903 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
904 /* Float Registers access */
905 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
906 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
907 /* Exception Registers access */
908 # define DAR_sig(context) REG_sig(dar, context)
909 # define DSISR_sig(context) REG_sig(dsisr, context)
910 # define TRAP_sig(context) REG_sig(trap, context)
911 #endif /* linux */
913 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
914 #include <ucontext.h>
915 # define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
916 # define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
917 # define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
918 # define XER_sig(context) ((context)->uc_mcontext.mc_xer)
919 # define LR_sig(context) ((context)->uc_mcontext.mc_lr)
920 # define CR_sig(context) ((context)->uc_mcontext.mc_cr)
921 /* Exception Registers access */
922 # define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
923 # define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
924 # define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
925 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
927 #ifdef __APPLE__
928 # include <sys/ucontext.h>
929 typedef struct ucontext SIGCONTEXT;
930 /* All Registers access - only for local access */
931 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
932 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
933 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
934 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
935 /* Gpr Registers access */
936 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
937 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
938 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
939 # define CTR_sig(context) REG_sig(ctr, context)
940 # define XER_sig(context) REG_sig(xer, context) /* Link register */
941 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
942 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
943 /* Float Registers access */
944 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
945 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
946 /* Exception Registers access */
947 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
948 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
949 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
950 #endif /* __APPLE__ */
952 int cpu_signal_handler(int host_signum, void *pinfo,
953 void *puc)
955 siginfo_t *info = pinfo;
956 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
957 ucontext_t *uc = puc;
958 #else
959 struct ucontext *uc = puc;
960 #endif
961 unsigned long pc;
962 int is_write;
964 pc = IAR_sig(uc);
965 is_write = 0;
966 #if 0
967 /* ppc 4xx case */
968 if (DSISR_sig(uc) & 0x00800000)
969 is_write = 1;
970 #else
971 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
972 is_write = 1;
973 #endif
974 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
975 is_write, &uc->uc_sigmask, puc);
978 #elif defined(__alpha__)
980 int cpu_signal_handler(int host_signum, void *pinfo,
981 void *puc)
983 siginfo_t *info = pinfo;
984 struct ucontext *uc = puc;
985 uint32_t *pc = uc->uc_mcontext.sc_pc;
986 uint32_t insn = *pc;
987 int is_write = 0;
989 /* XXX: need kernel patch to get write flag faster */
990 switch (insn >> 26) {
991 case 0x0d: // stw
992 case 0x0e: // stb
993 case 0x0f: // stq_u
994 case 0x24: // stf
995 case 0x25: // stg
996 case 0x26: // sts
997 case 0x27: // stt
998 case 0x2c: // stl
999 case 0x2d: // stq
1000 case 0x2e: // stl_c
1001 case 0x2f: // stq_c
1002 is_write = 1;
1005 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1006 is_write, &uc->uc_sigmask, puc);
1008 #elif defined(__sparc__)
1010 int cpu_signal_handler(int host_signum, void *pinfo,
1011 void *puc)
1013 siginfo_t *info = pinfo;
1014 int is_write;
1015 uint32_t insn;
1016 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1017 uint32_t *regs = (uint32_t *)(info + 1);
1018 void *sigmask = (regs + 20);
1019 /* XXX: is there a standard glibc define ? */
1020 unsigned long pc = regs[1];
1021 #else
1022 #ifdef __linux__
1023 struct sigcontext *sc = puc;
1024 unsigned long pc = sc->sigc_regs.tpc;
1025 void *sigmask = (void *)sc->sigc_mask;
1026 #elif defined(__OpenBSD__)
1027 struct sigcontext *uc = puc;
1028 unsigned long pc = uc->sc_pc;
1029 void *sigmask = (void *)(long)uc->sc_mask;
1030 #endif
1031 #endif
1033 /* XXX: need kernel patch to get write flag faster */
1034 is_write = 0;
1035 insn = *(uint32_t *)pc;
1036 if ((insn >> 30) == 3) {
1037 switch((insn >> 19) & 0x3f) {
1038 case 0x05: // stb
1039 case 0x15: // stba
1040 case 0x06: // sth
1041 case 0x16: // stha
1042 case 0x04: // st
1043 case 0x14: // sta
1044 case 0x07: // std
1045 case 0x17: // stda
1046 case 0x0e: // stx
1047 case 0x1e: // stxa
1048 case 0x24: // stf
1049 case 0x34: // stfa
1050 case 0x27: // stdf
1051 case 0x37: // stdfa
1052 case 0x26: // stqf
1053 case 0x36: // stqfa
1054 case 0x25: // stfsr
1055 case 0x3c: // casa
1056 case 0x3e: // casxa
1057 is_write = 1;
1058 break;
1061 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1062 is_write, sigmask, NULL);
1065 #elif defined(__arm__)
1067 int cpu_signal_handler(int host_signum, void *pinfo,
1068 void *puc)
1070 siginfo_t *info = pinfo;
1071 struct ucontext *uc = puc;
1072 unsigned long pc;
1073 int is_write;
1075 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1076 pc = uc->uc_mcontext.gregs[R15];
1077 #else
1078 pc = uc->uc_mcontext.arm_pc;
1079 #endif
1080 /* XXX: compute is_write */
1081 is_write = 0;
1082 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1083 is_write,
1084 &uc->uc_sigmask, puc);
1087 #elif defined(__mc68000)
1089 int cpu_signal_handler(int host_signum, void *pinfo,
1090 void *puc)
1092 siginfo_t *info = pinfo;
1093 struct ucontext *uc = puc;
1094 unsigned long pc;
1095 int is_write;
1097 pc = uc->uc_mcontext.gregs[16];
1098 /* XXX: compute is_write */
1099 is_write = 0;
1100 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1101 is_write,
1102 &uc->uc_sigmask, puc);
1105 #elif defined(__ia64)
1107 #ifndef __ISR_VALID
1108 /* This ought to be in <bits/siginfo.h>... */
1109 # define __ISR_VALID 1
1110 #endif
1112 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1114 siginfo_t *info = pinfo;
1115 struct ucontext *uc = puc;
1116 unsigned long ip;
1117 int is_write = 0;
1119 ip = uc->uc_mcontext.sc_ip;
1120 switch (host_signum) {
1121 case SIGILL:
1122 case SIGFPE:
1123 case SIGSEGV:
1124 case SIGBUS:
1125 case SIGTRAP:
1126 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1127 /* ISR.W (write-access) is bit 33: */
1128 is_write = (info->si_isr >> 33) & 1;
1129 break;
1131 default:
1132 break;
1134 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1135 is_write,
1136 (sigset_t *)&uc->uc_sigmask, puc);
1139 #elif defined(__s390__)
1141 int cpu_signal_handler(int host_signum, void *pinfo,
1142 void *puc)
1144 siginfo_t *info = pinfo;
1145 struct ucontext *uc = puc;
1146 unsigned long pc;
1147 uint16_t *pinsn;
1148 int is_write = 0;
1150 pc = uc->uc_mcontext.psw.addr;
1152 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
1153 of the normal 2 arguments. The 3rd argument contains the "int_code"
1154 from the hardware which does in fact contain the is_write value.
1155 The rt signal handler, as far as I can tell, does not give this value
1156 at all. Not that we could get to it from here even if it were. */
1157 /* ??? This is not even close to complete, since it ignores all
1158 of the read-modify-write instructions. */
1159 pinsn = (uint16_t *)pc;
1160 switch (pinsn[0] >> 8) {
1161 case 0x50: /* ST */
1162 case 0x42: /* STC */
1163 case 0x40: /* STH */
1164 is_write = 1;
1165 break;
1166 case 0xc4: /* RIL format insns */
1167 switch (pinsn[0] & 0xf) {
1168 case 0xf: /* STRL */
1169 case 0xb: /* STGRL */
1170 case 0x7: /* STHRL */
1171 is_write = 1;
1173 break;
1174 case 0xe3: /* RXY format insns */
1175 switch (pinsn[2] & 0xff) {
1176 case 0x50: /* STY */
1177 case 0x24: /* STG */
1178 case 0x72: /* STCY */
1179 case 0x70: /* STHY */
1180 case 0x8e: /* STPQ */
1181 case 0x3f: /* STRVH */
1182 case 0x3e: /* STRV */
1183 case 0x2f: /* STRVG */
1184 is_write = 1;
1186 break;
1188 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1189 is_write, &uc->uc_sigmask, puc);
1192 #elif defined(__mips__)
1194 int cpu_signal_handler(int host_signum, void *pinfo,
1195 void *puc)
1197 siginfo_t *info = pinfo;
1198 struct ucontext *uc = puc;
1199 greg_t pc = uc->uc_mcontext.pc;
1200 int is_write;
1202 /* XXX: compute is_write */
1203 is_write = 0;
1204 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1205 is_write, &uc->uc_sigmask, puc);
1208 #elif defined(__hppa__)
1210 int cpu_signal_handler(int host_signum, void *pinfo,
1211 void *puc)
1213 struct siginfo *info = pinfo;
1214 struct ucontext *uc = puc;
1215 unsigned long pc = uc->uc_mcontext.sc_iaoq[0];
1216 uint32_t insn = *(uint32_t *)pc;
1217 int is_write = 0;
1219 /* XXX: need kernel patch to get write flag faster. */
1220 switch (insn >> 26) {
1221 case 0x1a: /* STW */
1222 case 0x19: /* STH */
1223 case 0x18: /* STB */
1224 case 0x1b: /* STWM */
1225 is_write = 1;
1226 break;
1228 case 0x09: /* CSTWX, FSTWX, FSTWS */
1229 case 0x0b: /* CSTDX, FSTDX, FSTDS */
1230 /* Distinguish from coprocessor load ... */
1231 is_write = (insn >> 9) & 1;
1232 break;
1234 case 0x03:
1235 switch ((insn >> 6) & 15) {
1236 case 0xa: /* STWS */
1237 case 0x9: /* STHS */
1238 case 0x8: /* STBS */
1239 case 0xe: /* STWAS */
1240 case 0xc: /* STBYS */
1241 is_write = 1;
1243 break;
1246 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1247 is_write, &uc->uc_sigmask, puc);
1250 #else
1252 #error host CPU specific signal handler needed
1254 #endif
1256 #endif /* !defined(CONFIG_SOFTMMU) */