4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
33 #include "qmp-commands.h"
35 #include "qemu-thread.h"
38 #include "main-loop.h"
47 #include <sys/prctl.h>
50 #define PR_MCE_KILL 33
53 #ifndef PR_MCE_KILL_SET
54 #define PR_MCE_KILL_SET 1
57 #ifndef PR_MCE_KILL_EARLY
58 #define PR_MCE_KILL_EARLY 1
61 #endif /* CONFIG_LINUX */
63 static CPUArchState
*next_cpu
;
65 static bool cpu_thread_is_idle(CPUArchState
*env
)
67 if (env
->stop
|| env
->queued_work_first
) {
70 if (env
->stopped
|| !runstate_is_running()) {
73 if (!env
->halted
|| qemu_cpu_has_work(env
) ||
74 kvm_async_interrupts_enabled()) {
80 static bool all_cpu_threads_idle(void)
84 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
85 if (!cpu_thread_is_idle(env
)) {
92 /***********************************************************/
93 /* guest cycle counter */
95 /* Conversion factor from emulated instructions to virtual clock ticks. */
96 static int icount_time_shift
;
97 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
98 #define MAX_ICOUNT_SHIFT 10
99 /* Compensate for varying guest execution speed. */
100 static int64_t qemu_icount_bias
;
101 static QEMUTimer
*icount_rt_timer
;
102 static QEMUTimer
*icount_vm_timer
;
103 static QEMUTimer
*icount_warp_timer
;
104 static int64_t vm_clock_warp_start
;
105 static int64_t qemu_icount
;
107 typedef struct TimersState
{
108 int64_t cpu_ticks_prev
;
109 int64_t cpu_ticks_offset
;
110 int64_t cpu_clock_offset
;
111 int32_t cpu_ticks_enabled
;
115 TimersState timers_state
;
117 /* Return the virtual CPU time, based on the instruction counter. */
118 int64_t cpu_get_icount(void)
121 CPUArchState
*env
= cpu_single_env
;
123 icount
= qemu_icount
;
125 if (!can_do_io(env
)) {
126 fprintf(stderr
, "Bad clock read\n");
128 icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
130 return qemu_icount_bias
+ (icount
<< icount_time_shift
);
133 /* return the host CPU cycle counter and handle stop/restart */
134 int64_t cpu_get_ticks(void)
137 return cpu_get_icount();
139 if (!timers_state
.cpu_ticks_enabled
) {
140 return timers_state
.cpu_ticks_offset
;
143 ticks
= cpu_get_real_ticks();
144 if (timers_state
.cpu_ticks_prev
> ticks
) {
145 /* Note: non increasing ticks may happen if the host uses
147 timers_state
.cpu_ticks_offset
+= timers_state
.cpu_ticks_prev
- ticks
;
149 timers_state
.cpu_ticks_prev
= ticks
;
150 return ticks
+ timers_state
.cpu_ticks_offset
;
154 /* return the host CPU monotonic timer and handle stop/restart */
155 int64_t cpu_get_clock(void)
158 if (!timers_state
.cpu_ticks_enabled
) {
159 return timers_state
.cpu_clock_offset
;
162 return ti
+ timers_state
.cpu_clock_offset
;
166 /* enable cpu_get_ticks() */
167 void cpu_enable_ticks(void)
169 if (!timers_state
.cpu_ticks_enabled
) {
170 timers_state
.cpu_ticks_offset
-= cpu_get_real_ticks();
171 timers_state
.cpu_clock_offset
-= get_clock();
172 timers_state
.cpu_ticks_enabled
= 1;
176 /* disable cpu_get_ticks() : the clock is stopped. You must not call
177 cpu_get_ticks() after that. */
178 void cpu_disable_ticks(void)
180 if (timers_state
.cpu_ticks_enabled
) {
181 timers_state
.cpu_ticks_offset
= cpu_get_ticks();
182 timers_state
.cpu_clock_offset
= cpu_get_clock();
183 timers_state
.cpu_ticks_enabled
= 0;
187 /* Correlation between real and virtual time is always going to be
188 fairly approximate, so ignore small variation.
189 When the guest is idle real and virtual time will be aligned in
191 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
193 static void icount_adjust(void)
198 static int64_t last_delta
;
199 /* If the VM is not running, then do nothing. */
200 if (!runstate_is_running()) {
203 cur_time
= cpu_get_clock();
204 cur_icount
= qemu_get_clock_ns(vm_clock
);
205 delta
= cur_icount
- cur_time
;
206 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
208 && last_delta
+ ICOUNT_WOBBLE
< delta
* 2
209 && icount_time_shift
> 0) {
210 /* The guest is getting too far ahead. Slow time down. */
214 && last_delta
- ICOUNT_WOBBLE
> delta
* 2
215 && icount_time_shift
< MAX_ICOUNT_SHIFT
) {
216 /* The guest is getting too far behind. Speed time up. */
220 qemu_icount_bias
= cur_icount
- (qemu_icount
<< icount_time_shift
);
223 static void icount_adjust_rt(void *opaque
)
225 qemu_mod_timer(icount_rt_timer
,
226 qemu_get_clock_ms(rt_clock
) + 1000);
230 static void icount_adjust_vm(void *opaque
)
232 qemu_mod_timer(icount_vm_timer
,
233 qemu_get_clock_ns(vm_clock
) + get_ticks_per_sec() / 10);
237 static int64_t qemu_icount_round(int64_t count
)
239 return (count
+ (1 << icount_time_shift
) - 1) >> icount_time_shift
;
242 static void icount_warp_rt(void *opaque
)
244 if (vm_clock_warp_start
== -1) {
248 if (runstate_is_running()) {
249 int64_t clock
= qemu_get_clock_ns(rt_clock
);
250 int64_t warp_delta
= clock
- vm_clock_warp_start
;
251 if (use_icount
== 1) {
252 qemu_icount_bias
+= warp_delta
;
255 * In adaptive mode, do not let the vm_clock run too
256 * far ahead of real time.
258 int64_t cur_time
= cpu_get_clock();
259 int64_t cur_icount
= qemu_get_clock_ns(vm_clock
);
260 int64_t delta
= cur_time
- cur_icount
;
261 qemu_icount_bias
+= MIN(warp_delta
, delta
);
263 if (qemu_clock_expired(vm_clock
)) {
267 vm_clock_warp_start
= -1;
270 void qtest_clock_warp(int64_t dest
)
272 int64_t clock
= qemu_get_clock_ns(vm_clock
);
273 assert(qtest_enabled());
274 while (clock
< dest
) {
275 int64_t deadline
= qemu_clock_deadline(vm_clock
);
276 int64_t warp
= MIN(dest
- clock
, deadline
);
277 qemu_icount_bias
+= warp
;
278 qemu_run_timers(vm_clock
);
279 clock
= qemu_get_clock_ns(vm_clock
);
284 void qemu_clock_warp(QEMUClock
*clock
)
289 * There are too many global variables to make the "warp" behavior
290 * applicable to other clocks. But a clock argument removes the
291 * need for if statements all over the place.
293 if (clock
!= vm_clock
|| !use_icount
) {
298 * If the CPUs have been sleeping, advance the vm_clock timer now. This
299 * ensures that the deadline for the timer is computed correctly below.
300 * This also makes sure that the insn counter is synchronized before the
301 * CPU starts running, in case the CPU is woken by an event other than
302 * the earliest vm_clock timer.
304 icount_warp_rt(NULL
);
305 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock
)) {
306 qemu_del_timer(icount_warp_timer
);
310 if (qtest_enabled()) {
311 /* When testing, qtest commands advance icount. */
315 vm_clock_warp_start
= qemu_get_clock_ns(rt_clock
);
316 deadline
= qemu_clock_deadline(vm_clock
);
319 * Ensure the vm_clock proceeds even when the virtual CPU goes to
320 * sleep. Otherwise, the CPU might be waiting for a future timer
321 * interrupt to wake it up, but the interrupt never comes because
322 * the vCPU isn't running any insns and thus doesn't advance the
325 * An extreme solution for this problem would be to never let VCPUs
326 * sleep in icount mode if there is a pending vm_clock timer; rather
327 * time could just advance to the next vm_clock event. Instead, we
328 * do stop VCPUs and only advance vm_clock after some "real" time,
329 * (related to the time left until the next event) has passed. This
330 * rt_clock timer will do this. This avoids that the warps are too
331 * visible externally---for example, you will not be sending network
332 * packets continuously instead of every 100ms.
334 qemu_mod_timer(icount_warp_timer
, vm_clock_warp_start
+ deadline
);
340 static const VMStateDescription vmstate_timers
= {
343 .minimum_version_id
= 1,
344 .minimum_version_id_old
= 1,
345 .fields
= (VMStateField
[]) {
346 VMSTATE_INT64(cpu_ticks_offset
, TimersState
),
347 VMSTATE_INT64(dummy
, TimersState
),
348 VMSTATE_INT64_V(cpu_clock_offset
, TimersState
, 2),
349 VMSTATE_END_OF_LIST()
353 void configure_icount(const char *option
)
355 vmstate_register(NULL
, 0, &vmstate_timers
, &timers_state
);
360 icount_warp_timer
= qemu_new_timer_ns(rt_clock
, icount_warp_rt
, NULL
);
361 if (strcmp(option
, "auto") != 0) {
362 icount_time_shift
= strtol(option
, NULL
, 0);
369 /* 125MIPS seems a reasonable initial guess at the guest speed.
370 It will be corrected fairly quickly anyway. */
371 icount_time_shift
= 3;
373 /* Have both realtime and virtual time triggers for speed adjustment.
374 The realtime trigger catches emulated time passing too slowly,
375 the virtual time trigger catches emulated time passing too fast.
376 Realtime triggers occur even when idle, so use them less frequently
378 icount_rt_timer
= qemu_new_timer_ms(rt_clock
, icount_adjust_rt
, NULL
);
379 qemu_mod_timer(icount_rt_timer
,
380 qemu_get_clock_ms(rt_clock
) + 1000);
381 icount_vm_timer
= qemu_new_timer_ns(vm_clock
, icount_adjust_vm
, NULL
);
382 qemu_mod_timer(icount_vm_timer
,
383 qemu_get_clock_ns(vm_clock
) + get_ticks_per_sec() / 10);
386 /***********************************************************/
387 void hw_error(const char *fmt
, ...)
393 fprintf(stderr
, "qemu: hardware error: ");
394 vfprintf(stderr
, fmt
, ap
);
395 fprintf(stderr
, "\n");
396 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
397 fprintf(stderr
, "CPU #%d:\n", env
->cpu_index
);
399 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
);
401 cpu_dump_state(env
, stderr
, fprintf
, 0);
408 void cpu_synchronize_all_states(void)
412 for (cpu
= first_cpu
; cpu
; cpu
= cpu
->next_cpu
) {
413 cpu_synchronize_state(cpu
);
417 void cpu_synchronize_all_post_reset(void)
421 for (cpu
= first_cpu
; cpu
; cpu
= cpu
->next_cpu
) {
422 cpu_synchronize_post_reset(cpu
);
426 void cpu_synchronize_all_post_init(void)
430 for (cpu
= first_cpu
; cpu
; cpu
= cpu
->next_cpu
) {
431 cpu_synchronize_post_init(cpu
);
435 int cpu_is_stopped(CPUArchState
*env
)
437 return !runstate_is_running() || env
->stopped
;
440 static void do_vm_stop(RunState state
)
442 if (runstate_is_running()) {
446 vm_state_notify(0, state
);
449 monitor_protocol_event(QEVENT_STOP
, NULL
);
453 static int cpu_can_run(CPUArchState
*env
)
458 if (env
->stopped
|| !runstate_is_running()) {
464 static void cpu_handle_guest_debug(CPUArchState
*env
)
466 gdb_set_stop_cpu(env
);
467 qemu_system_debug_request();
471 static void cpu_signal(int sig
)
473 if (cpu_single_env
) {
474 cpu_exit(cpu_single_env
);
480 static void sigbus_reraise(void)
483 struct sigaction action
;
485 memset(&action
, 0, sizeof(action
));
486 action
.sa_handler
= SIG_DFL
;
487 if (!sigaction(SIGBUS
, &action
, NULL
)) {
490 sigaddset(&set
, SIGBUS
);
491 sigprocmask(SIG_UNBLOCK
, &set
, NULL
);
493 perror("Failed to re-raise SIGBUS!\n");
497 static void sigbus_handler(int n
, struct qemu_signalfd_siginfo
*siginfo
,
500 if (kvm_on_sigbus(siginfo
->ssi_code
,
501 (void *)(intptr_t)siginfo
->ssi_addr
)) {
506 static void qemu_init_sigbus(void)
508 struct sigaction action
;
510 memset(&action
, 0, sizeof(action
));
511 action
.sa_flags
= SA_SIGINFO
;
512 action
.sa_sigaction
= (void (*)(int, siginfo_t
*, void*))sigbus_handler
;
513 sigaction(SIGBUS
, &action
, NULL
);
515 prctl(PR_MCE_KILL
, PR_MCE_KILL_SET
, PR_MCE_KILL_EARLY
, 0, 0);
518 static void qemu_kvm_eat_signals(CPUArchState
*env
)
520 struct timespec ts
= { 0, 0 };
526 sigemptyset(&waitset
);
527 sigaddset(&waitset
, SIG_IPI
);
528 sigaddset(&waitset
, SIGBUS
);
531 r
= sigtimedwait(&waitset
, &siginfo
, &ts
);
532 if (r
== -1 && !(errno
== EAGAIN
|| errno
== EINTR
)) {
533 perror("sigtimedwait");
539 if (kvm_on_sigbus_vcpu(env
, siginfo
.si_code
, siginfo
.si_addr
)) {
547 r
= sigpending(&chkset
);
549 perror("sigpending");
552 } while (sigismember(&chkset
, SIG_IPI
) || sigismember(&chkset
, SIGBUS
));
555 #else /* !CONFIG_LINUX */
557 static void qemu_init_sigbus(void)
561 static void qemu_kvm_eat_signals(CPUArchState
*env
)
564 #endif /* !CONFIG_LINUX */
567 static void dummy_signal(int sig
)
571 static void qemu_kvm_init_cpu_signals(CPUArchState
*env
)
575 struct sigaction sigact
;
577 memset(&sigact
, 0, sizeof(sigact
));
578 sigact
.sa_handler
= dummy_signal
;
579 sigaction(SIG_IPI
, &sigact
, NULL
);
581 pthread_sigmask(SIG_BLOCK
, NULL
, &set
);
582 sigdelset(&set
, SIG_IPI
);
583 sigdelset(&set
, SIGBUS
);
584 r
= kvm_set_signal_mask(env
, &set
);
586 fprintf(stderr
, "kvm_set_signal_mask: %s\n", strerror(-r
));
591 static void qemu_tcg_init_cpu_signals(void)
594 struct sigaction sigact
;
596 memset(&sigact
, 0, sizeof(sigact
));
597 sigact
.sa_handler
= cpu_signal
;
598 sigaction(SIG_IPI
, &sigact
, NULL
);
601 sigaddset(&set
, SIG_IPI
);
602 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
606 static void qemu_kvm_init_cpu_signals(CPUArchState
*env
)
611 static void qemu_tcg_init_cpu_signals(void)
616 QemuMutex qemu_global_mutex
;
617 static QemuCond qemu_io_proceeded_cond
;
618 static bool iothread_requesting_mutex
;
620 static QemuThread io_thread
;
622 static QemuThread
*tcg_cpu_thread
;
623 static QemuCond
*tcg_halt_cond
;
626 static QemuCond qemu_cpu_cond
;
628 static QemuCond qemu_pause_cond
;
629 static QemuCond qemu_work_cond
;
631 void qemu_init_cpu_loop(void)
634 qemu_cond_init(&qemu_cpu_cond
);
635 qemu_cond_init(&qemu_pause_cond
);
636 qemu_cond_init(&qemu_work_cond
);
637 qemu_cond_init(&qemu_io_proceeded_cond
);
638 qemu_mutex_init(&qemu_global_mutex
);
640 qemu_thread_get_self(&io_thread
);
643 void run_on_cpu(CPUArchState
*env
, void (*func
)(void *data
), void *data
)
645 struct qemu_work_item wi
;
647 if (qemu_cpu_is_self(env
)) {
654 if (!env
->queued_work_first
) {
655 env
->queued_work_first
= &wi
;
657 env
->queued_work_last
->next
= &wi
;
659 env
->queued_work_last
= &wi
;
665 CPUArchState
*self_env
= cpu_single_env
;
667 qemu_cond_wait(&qemu_work_cond
, &qemu_global_mutex
);
668 cpu_single_env
= self_env
;
672 static void flush_queued_work(CPUArchState
*env
)
674 struct qemu_work_item
*wi
;
676 if (!env
->queued_work_first
) {
680 while ((wi
= env
->queued_work_first
)) {
681 env
->queued_work_first
= wi
->next
;
685 env
->queued_work_last
= NULL
;
686 qemu_cond_broadcast(&qemu_work_cond
);
689 static void qemu_wait_io_event_common(CPUArchState
*env
)
691 CPUState
*cpu
= ENV_GET_CPU(env
);
696 qemu_cond_signal(&qemu_pause_cond
);
698 flush_queued_work(env
);
699 cpu
->thread_kicked
= false;
702 static void qemu_tcg_wait_io_event(void)
706 while (all_cpu_threads_idle()) {
707 /* Start accounting real time to the virtual clock if the CPUs
709 qemu_clock_warp(vm_clock
);
710 qemu_cond_wait(tcg_halt_cond
, &qemu_global_mutex
);
713 while (iothread_requesting_mutex
) {
714 qemu_cond_wait(&qemu_io_proceeded_cond
, &qemu_global_mutex
);
717 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
718 qemu_wait_io_event_common(env
);
722 static void qemu_kvm_wait_io_event(CPUArchState
*env
)
724 while (cpu_thread_is_idle(env
)) {
725 qemu_cond_wait(env
->halt_cond
, &qemu_global_mutex
);
728 qemu_kvm_eat_signals(env
);
729 qemu_wait_io_event_common(env
);
732 static void *qemu_kvm_cpu_thread_fn(void *arg
)
734 CPUArchState
*env
= arg
;
735 CPUState
*cpu
= ENV_GET_CPU(env
);
738 qemu_mutex_lock(&qemu_global_mutex
);
739 qemu_thread_get_self(cpu
->thread
);
740 env
->thread_id
= qemu_get_thread_id();
741 cpu_single_env
= env
;
743 r
= kvm_init_vcpu(env
);
745 fprintf(stderr
, "kvm_init_vcpu failed: %s\n", strerror(-r
));
749 qemu_kvm_init_cpu_signals(env
);
751 /* signal CPU creation */
753 qemu_cond_signal(&qemu_cpu_cond
);
756 if (cpu_can_run(env
)) {
757 r
= kvm_cpu_exec(env
);
758 if (r
== EXCP_DEBUG
) {
759 cpu_handle_guest_debug(env
);
762 qemu_kvm_wait_io_event(env
);
768 static void *qemu_dummy_cpu_thread_fn(void *arg
)
771 fprintf(stderr
, "qtest is not supported under Windows\n");
774 CPUArchState
*env
= arg
;
775 CPUState
*cpu
= ENV_GET_CPU(env
);
779 qemu_mutex_lock_iothread();
780 qemu_thread_get_self(cpu
->thread
);
781 env
->thread_id
= qemu_get_thread_id();
783 sigemptyset(&waitset
);
784 sigaddset(&waitset
, SIG_IPI
);
786 /* signal CPU creation */
788 qemu_cond_signal(&qemu_cpu_cond
);
790 cpu_single_env
= env
;
792 cpu_single_env
= NULL
;
793 qemu_mutex_unlock_iothread();
796 r
= sigwait(&waitset
, &sig
);
797 } while (r
== -1 && (errno
== EAGAIN
|| errno
== EINTR
));
802 qemu_mutex_lock_iothread();
803 cpu_single_env
= env
;
804 qemu_wait_io_event_common(env
);
811 static void tcg_exec_all(void);
813 static void *qemu_tcg_cpu_thread_fn(void *arg
)
815 CPUArchState
*env
= arg
;
816 CPUState
*cpu
= ENV_GET_CPU(env
);
818 qemu_tcg_init_cpu_signals();
819 qemu_thread_get_self(cpu
->thread
);
821 /* signal CPU creation */
822 qemu_mutex_lock(&qemu_global_mutex
);
823 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
824 env
->thread_id
= qemu_get_thread_id();
827 qemu_cond_signal(&qemu_cpu_cond
);
829 /* wait for initial kick-off after machine start */
830 while (first_cpu
->stopped
) {
831 qemu_cond_wait(tcg_halt_cond
, &qemu_global_mutex
);
833 /* process any pending work */
834 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
835 qemu_wait_io_event_common(env
);
841 if (use_icount
&& qemu_clock_deadline(vm_clock
) <= 0) {
844 qemu_tcg_wait_io_event();
850 static void qemu_cpu_kick_thread(CPUArchState
*env
)
852 CPUState
*cpu
= ENV_GET_CPU(env
);
856 err
= pthread_kill(cpu
->thread
->thread
, SIG_IPI
);
858 fprintf(stderr
, "qemu:%s: %s", __func__
, strerror(err
));
862 if (!qemu_cpu_is_self(env
)) {
863 SuspendThread(cpu
->hThread
);
865 ResumeThread(cpu
->hThread
);
870 void qemu_cpu_kick(void *_env
)
872 CPUArchState
*env
= _env
;
873 CPUState
*cpu
= ENV_GET_CPU(env
);
875 qemu_cond_broadcast(env
->halt_cond
);
876 if (!tcg_enabled() && !cpu
->thread_kicked
) {
877 qemu_cpu_kick_thread(env
);
878 cpu
->thread_kicked
= true;
882 void qemu_cpu_kick_self(void)
885 assert(cpu_single_env
);
886 CPUState
*cpu_single_cpu
= ENV_GET_CPU(cpu_single_env
);
888 if (!cpu_single_cpu
->thread_kicked
) {
889 qemu_cpu_kick_thread(cpu_single_env
);
890 cpu_single_cpu
->thread_kicked
= true;
897 int qemu_cpu_is_self(void *_env
)
899 CPUArchState
*env
= _env
;
900 CPUState
*cpu
= ENV_GET_CPU(env
);
902 return qemu_thread_is_self(cpu
->thread
);
905 void qemu_mutex_lock_iothread(void)
907 if (!tcg_enabled()) {
908 qemu_mutex_lock(&qemu_global_mutex
);
910 iothread_requesting_mutex
= true;
911 if (qemu_mutex_trylock(&qemu_global_mutex
)) {
912 qemu_cpu_kick_thread(first_cpu
);
913 qemu_mutex_lock(&qemu_global_mutex
);
915 iothread_requesting_mutex
= false;
916 qemu_cond_broadcast(&qemu_io_proceeded_cond
);
920 void qemu_mutex_unlock_iothread(void)
922 qemu_mutex_unlock(&qemu_global_mutex
);
925 static int all_vcpus_paused(void)
927 CPUArchState
*penv
= first_cpu
;
930 if (!penv
->stopped
) {
933 penv
= penv
->next_cpu
;
939 void pause_all_vcpus(void)
941 CPUArchState
*penv
= first_cpu
;
943 qemu_clock_enable(vm_clock
, false);
947 penv
= penv
->next_cpu
;
950 if (!qemu_thread_is_self(&io_thread
)) {
952 if (!kvm_enabled()) {
956 penv
= penv
->next_cpu
;
962 while (!all_vcpus_paused()) {
963 qemu_cond_wait(&qemu_pause_cond
, &qemu_global_mutex
);
967 penv
= penv
->next_cpu
;
972 void resume_all_vcpus(void)
974 CPUArchState
*penv
= first_cpu
;
976 qemu_clock_enable(vm_clock
, true);
981 penv
= penv
->next_cpu
;
985 static void qemu_tcg_init_vcpu(void *_env
)
987 CPUArchState
*env
= _env
;
988 CPUState
*cpu
= ENV_GET_CPU(env
);
990 /* share a single thread for all cpus with TCG */
991 if (!tcg_cpu_thread
) {
992 cpu
->thread
= g_malloc0(sizeof(QemuThread
));
993 env
->halt_cond
= g_malloc0(sizeof(QemuCond
));
994 qemu_cond_init(env
->halt_cond
);
995 tcg_halt_cond
= env
->halt_cond
;
996 qemu_thread_create(cpu
->thread
, qemu_tcg_cpu_thread_fn
, env
,
997 QEMU_THREAD_JOINABLE
);
999 cpu
->hThread
= qemu_thread_get_handle(cpu
->thread
);
1001 while (env
->created
== 0) {
1002 qemu_cond_wait(&qemu_cpu_cond
, &qemu_global_mutex
);
1004 tcg_cpu_thread
= cpu
->thread
;
1006 cpu
->thread
= tcg_cpu_thread
;
1007 env
->halt_cond
= tcg_halt_cond
;
1011 static void qemu_kvm_start_vcpu(CPUArchState
*env
)
1013 CPUState
*cpu
= ENV_GET_CPU(env
);
1015 cpu
->thread
= g_malloc0(sizeof(QemuThread
));
1016 env
->halt_cond
= g_malloc0(sizeof(QemuCond
));
1017 qemu_cond_init(env
->halt_cond
);
1018 qemu_thread_create(cpu
->thread
, qemu_kvm_cpu_thread_fn
, env
,
1019 QEMU_THREAD_JOINABLE
);
1020 while (env
->created
== 0) {
1021 qemu_cond_wait(&qemu_cpu_cond
, &qemu_global_mutex
);
1025 static void qemu_dummy_start_vcpu(CPUArchState
*env
)
1027 CPUState
*cpu
= ENV_GET_CPU(env
);
1029 cpu
->thread
= g_malloc0(sizeof(QemuThread
));
1030 env
->halt_cond
= g_malloc0(sizeof(QemuCond
));
1031 qemu_cond_init(env
->halt_cond
);
1032 qemu_thread_create(cpu
->thread
, qemu_dummy_cpu_thread_fn
, env
,
1033 QEMU_THREAD_JOINABLE
);
1034 while (env
->created
== 0) {
1035 qemu_cond_wait(&qemu_cpu_cond
, &qemu_global_mutex
);
1039 void qemu_init_vcpu(void *_env
)
1041 CPUArchState
*env
= _env
;
1043 env
->nr_cores
= smp_cores
;
1044 env
->nr_threads
= smp_threads
;
1046 if (kvm_enabled()) {
1047 qemu_kvm_start_vcpu(env
);
1048 } else if (tcg_enabled()) {
1049 qemu_tcg_init_vcpu(env
);
1051 qemu_dummy_start_vcpu(env
);
1055 void cpu_stop_current(void)
1057 if (cpu_single_env
) {
1058 cpu_single_env
->stop
= 0;
1059 cpu_single_env
->stopped
= 1;
1060 cpu_exit(cpu_single_env
);
1061 qemu_cond_signal(&qemu_pause_cond
);
1065 void vm_stop(RunState state
)
1067 if (!qemu_thread_is_self(&io_thread
)) {
1068 qemu_system_vmstop_request(state
);
1070 * FIXME: should not return to device code in case
1071 * vm_stop() has been requested.
1079 /* does a state transition even if the VM is already stopped,
1080 current state is forgotten forever */
1081 void vm_stop_force_state(RunState state
)
1083 if (runstate_is_running()) {
1086 runstate_set(state
);
1090 static int tcg_cpu_exec(CPUArchState
*env
)
1093 #ifdef CONFIG_PROFILER
1097 #ifdef CONFIG_PROFILER
1098 ti
= profile_getclock();
1103 qemu_icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
1104 env
->icount_decr
.u16
.low
= 0;
1105 env
->icount_extra
= 0;
1106 count
= qemu_icount_round(qemu_clock_deadline(vm_clock
));
1107 qemu_icount
+= count
;
1108 decr
= (count
> 0xffff) ? 0xffff : count
;
1110 env
->icount_decr
.u16
.low
= decr
;
1111 env
->icount_extra
= count
;
1113 ret
= cpu_exec(env
);
1114 #ifdef CONFIG_PROFILER
1115 qemu_time
+= profile_getclock() - ti
;
1118 /* Fold pending instructions back into the
1119 instruction counter, and clear the interrupt flag. */
1120 qemu_icount
-= (env
->icount_decr
.u16
.low
1121 + env
->icount_extra
);
1122 env
->icount_decr
.u32
= 0;
1123 env
->icount_extra
= 0;
1128 static void tcg_exec_all(void)
1132 /* Account partial waits to the vm_clock. */
1133 qemu_clock_warp(vm_clock
);
1135 if (next_cpu
== NULL
) {
1136 next_cpu
= first_cpu
;
1138 for (; next_cpu
!= NULL
&& !exit_request
; next_cpu
= next_cpu
->next_cpu
) {
1139 CPUArchState
*env
= next_cpu
;
1141 qemu_clock_enable(vm_clock
,
1142 (env
->singlestep_enabled
& SSTEP_NOTIMER
) == 0);
1144 if (cpu_can_run(env
)) {
1145 r
= tcg_cpu_exec(env
);
1146 if (r
== EXCP_DEBUG
) {
1147 cpu_handle_guest_debug(env
);
1150 } else if (env
->stop
|| env
->stopped
) {
1157 void set_numa_modes(void)
1162 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1163 for (i
= 0; i
< nb_numa_nodes
; i
++) {
1164 if (test_bit(env
->cpu_index
, node_cpumask
[i
])) {
1171 void set_cpu_log(const char *optarg
)
1174 const CPULogItem
*item
;
1176 mask
= cpu_str_to_log_mask(optarg
);
1178 printf("Log items (comma separated):\n");
1179 for (item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1180 printf("%-10s %s\n", item
->name
, item
->help
);
1187 void set_cpu_log_filename(const char *optarg
)
1189 cpu_set_log_filename(optarg
);
1192 void list_cpus(FILE *f
, fprintf_function cpu_fprintf
, const char *optarg
)
1194 /* XXX: implement xxx_cpu_list for targets that still miss it */
1195 #if defined(cpu_list)
1196 cpu_list(f
, cpu_fprintf
);
1200 CpuInfoList
*qmp_query_cpus(Error
**errp
)
1202 CpuInfoList
*head
= NULL
, *cur_item
= NULL
;
1205 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1208 cpu_synchronize_state(env
);
1210 info
= g_malloc0(sizeof(*info
));
1211 info
->value
= g_malloc0(sizeof(*info
->value
));
1212 info
->value
->CPU
= env
->cpu_index
;
1213 info
->value
->current
= (env
== first_cpu
);
1214 info
->value
->halted
= env
->halted
;
1215 info
->value
->thread_id
= env
->thread_id
;
1216 #if defined(TARGET_I386)
1217 info
->value
->has_pc
= true;
1218 info
->value
->pc
= env
->eip
+ env
->segs
[R_CS
].base
;
1219 #elif defined(TARGET_PPC)
1220 info
->value
->has_nip
= true;
1221 info
->value
->nip
= env
->nip
;
1222 #elif defined(TARGET_SPARC)
1223 info
->value
->has_pc
= true;
1224 info
->value
->pc
= env
->pc
;
1225 info
->value
->has_npc
= true;
1226 info
->value
->npc
= env
->npc
;
1227 #elif defined(TARGET_MIPS)
1228 info
->value
->has_PC
= true;
1229 info
->value
->PC
= env
->active_tc
.PC
;
1232 /* XXX: waiting for the qapi to support GSList */
1234 head
= cur_item
= info
;
1236 cur_item
->next
= info
;
1244 void qmp_memsave(int64_t addr
, int64_t size
, const char *filename
,
1245 bool has_cpu
, int64_t cpu_index
, Error
**errp
)
1256 for (env
= first_cpu
; env
; env
= env
->next_cpu
) {
1257 if (cpu_index
== env
->cpu_index
) {
1263 error_set(errp
, QERR_INVALID_PARAMETER_VALUE
, "cpu-index",
1268 f
= fopen(filename
, "wb");
1270 error_set(errp
, QERR_OPEN_FILE_FAILED
, filename
);
1278 cpu_memory_rw_debug(env
, addr
, buf
, l
, 0);
1279 if (fwrite(buf
, 1, l
, f
) != l
) {
1280 error_set(errp
, QERR_IO_ERROR
);
1291 void qmp_pmemsave(int64_t addr
, int64_t size
, const char *filename
,
1298 f
= fopen(filename
, "wb");
1300 error_set(errp
, QERR_OPEN_FILE_FAILED
, filename
);
1308 cpu_physical_memory_rw(addr
, buf
, l
, 0);
1309 if (fwrite(buf
, 1, l
, f
) != l
) {
1310 error_set(errp
, QERR_IO_ERROR
);
1321 void qmp_inject_nmi(Error
**errp
)
1323 #if defined(TARGET_I386)
1326 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1327 if (!env
->apic_state
) {
1328 cpu_interrupt(env
, CPU_INTERRUPT_NMI
);
1330 apic_deliver_nmi(env
->apic_state
);
1334 error_set(errp
, QERR_UNSUPPORTED
);