Merge remote-tracking branch 'remotes/jasowang/tags/net-pull-request' into staging
[qemu.git] / target / ppc / mmu-hash64.c
blobda8966ccf5c1b08c94db4affbcde5c9ffbf51f6e
1 /*
2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "qemu/error-report.h"
25 #include "qemu/qemu-print.h"
26 #include "sysemu/hw_accel.h"
27 #include "kvm_ppc.h"
28 #include "mmu-hash64.h"
29 #include "exec/log.h"
30 #include "hw/hw.h"
31 #include "mmu-book3s-v3.h"
33 /* #define DEBUG_SLB */
35 #ifdef DEBUG_SLB
36 # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
37 #else
38 # define LOG_SLB(...) do { } while (0)
39 #endif
42 * SLB handling
45 static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
47 CPUPPCState *env = &cpu->env;
48 uint64_t esid_256M, esid_1T;
49 int n;
51 LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
53 esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
54 esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
56 for (n = 0; n < cpu->hash64_opts->slb_size; n++) {
57 ppc_slb_t *slb = &env->slb[n];
59 LOG_SLB("%s: slot %d %016" PRIx64 " %016"
60 PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
62 * We check for 1T matches on all MMUs here - if the MMU
63 * doesn't have 1T segment support, we will have prevented 1T
64 * entries from being inserted in the slbmte code.
66 if (((slb->esid == esid_256M) &&
67 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
68 || ((slb->esid == esid_1T) &&
69 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
70 return slb;
74 return NULL;
77 void dump_slb(PowerPCCPU *cpu)
79 CPUPPCState *env = &cpu->env;
80 int i;
81 uint64_t slbe, slbv;
83 cpu_synchronize_state(CPU(cpu));
85 qemu_printf("SLB\tESID\t\t\tVSID\n");
86 for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
87 slbe = env->slb[i].esid;
88 slbv = env->slb[i].vsid;
89 if (slbe == 0 && slbv == 0) {
90 continue;
92 qemu_printf("%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
93 i, slbe, slbv);
97 void helper_slbia(CPUPPCState *env)
99 PowerPCCPU *cpu = env_archcpu(env);
100 int n;
102 /* XXX: Warning: slbia never invalidates the first segment */
103 for (n = 1; n < cpu->hash64_opts->slb_size; n++) {
104 ppc_slb_t *slb = &env->slb[n];
106 if (slb->esid & SLB_ESID_V) {
107 slb->esid &= ~SLB_ESID_V;
109 * XXX: given the fact that segment size is 256 MB or 1TB,
110 * and we still don't have a tlb_flush_mask(env, n, mask)
111 * in QEMU, we just invalidate all TLBs
113 env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
118 static void __helper_slbie(CPUPPCState *env, target_ulong addr,
119 target_ulong global)
121 PowerPCCPU *cpu = env_archcpu(env);
122 ppc_slb_t *slb;
124 slb = slb_lookup(cpu, addr);
125 if (!slb) {
126 return;
129 if (slb->esid & SLB_ESID_V) {
130 slb->esid &= ~SLB_ESID_V;
133 * XXX: given the fact that segment size is 256 MB or 1TB,
134 * and we still don't have a tlb_flush_mask(env, n, mask)
135 * in QEMU, we just invalidate all TLBs
137 env->tlb_need_flush |=
138 (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH);
142 void helper_slbie(CPUPPCState *env, target_ulong addr)
144 __helper_slbie(env, addr, false);
147 void helper_slbieg(CPUPPCState *env, target_ulong addr)
149 __helper_slbie(env, addr, true);
152 int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
153 target_ulong esid, target_ulong vsid)
155 CPUPPCState *env = &cpu->env;
156 ppc_slb_t *slb = &env->slb[slot];
157 const PPCHash64SegmentPageSizes *sps = NULL;
158 int i;
160 if (slot >= cpu->hash64_opts->slb_size) {
161 return -1; /* Bad slot number */
163 if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
164 return -1; /* Reserved bits set */
166 if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
167 return -1; /* Bad segment size */
169 if ((vsid & SLB_VSID_B) && !(ppc_hash64_has(cpu, PPC_HASH64_1TSEG))) {
170 return -1; /* 1T segment on MMU that doesn't support it */
173 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
174 const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i];
176 if (!sps1->page_shift) {
177 break;
180 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
181 sps = sps1;
182 break;
186 if (!sps) {
187 error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
188 " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
189 slot, esid, vsid);
190 return -1;
193 slb->esid = esid;
194 slb->vsid = vsid;
195 slb->sps = sps;
197 LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx
198 " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
199 slb->esid, slb->vsid);
201 return 0;
204 static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
205 target_ulong *rt)
207 CPUPPCState *env = &cpu->env;
208 int slot = rb & 0xfff;
209 ppc_slb_t *slb = &env->slb[slot];
211 if (slot >= cpu->hash64_opts->slb_size) {
212 return -1;
215 *rt = slb->esid;
216 return 0;
219 static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
220 target_ulong *rt)
222 CPUPPCState *env = &cpu->env;
223 int slot = rb & 0xfff;
224 ppc_slb_t *slb = &env->slb[slot];
226 if (slot >= cpu->hash64_opts->slb_size) {
227 return -1;
230 *rt = slb->vsid;
231 return 0;
234 static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
235 target_ulong *rt)
237 CPUPPCState *env = &cpu->env;
238 ppc_slb_t *slb;
240 if (!msr_is_64bit(env, env->msr)) {
241 rb &= 0xffffffff;
243 slb = slb_lookup(cpu, rb);
244 if (slb == NULL) {
245 *rt = (target_ulong)-1ul;
246 } else {
247 *rt = slb->vsid;
249 return 0;
252 void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
254 PowerPCCPU *cpu = env_archcpu(env);
256 if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
257 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
258 POWERPC_EXCP_INVAL, GETPC());
262 target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
264 PowerPCCPU *cpu = env_archcpu(env);
265 target_ulong rt = 0;
267 if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
268 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
269 POWERPC_EXCP_INVAL, GETPC());
271 return rt;
274 target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
276 PowerPCCPU *cpu = env_archcpu(env);
277 target_ulong rt = 0;
279 if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
280 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
281 POWERPC_EXCP_INVAL, GETPC());
283 return rt;
286 target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
288 PowerPCCPU *cpu = env_archcpu(env);
289 target_ulong rt = 0;
291 if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
292 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
293 POWERPC_EXCP_INVAL, GETPC());
295 return rt;
298 /* Check No-Execute or Guarded Storage */
299 static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu,
300 ppc_hash_pte64_t pte)
302 /* Exec permissions CANNOT take away read or write permissions */
303 return (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) ?
304 PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC;
307 /* Check Basic Storage Protection */
308 static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
309 ppc_slb_t *slb, ppc_hash_pte64_t pte)
311 CPUPPCState *env = &cpu->env;
312 unsigned pp, key;
314 * Some pp bit combinations have undefined behaviour, so default
315 * to no access in those cases
317 int prot = 0;
319 key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
320 : (slb->vsid & SLB_VSID_KS));
321 pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
323 if (key == 0) {
324 switch (pp) {
325 case 0x0:
326 case 0x1:
327 case 0x2:
328 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
329 break;
331 case 0x3:
332 case 0x6:
333 prot = PAGE_READ | PAGE_EXEC;
334 break;
336 } else {
337 switch (pp) {
338 case 0x0:
339 case 0x6:
340 break;
342 case 0x1:
343 case 0x3:
344 prot = PAGE_READ | PAGE_EXEC;
345 break;
347 case 0x2:
348 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
349 break;
353 return prot;
356 /* Check the instruction access permissions specified in the IAMR */
357 static int ppc_hash64_iamr_prot(PowerPCCPU *cpu, int key)
359 CPUPPCState *env = &cpu->env;
360 int iamr_bits = (env->spr[SPR_IAMR] >> 2 * (31 - key)) & 0x3;
363 * An instruction fetch is permitted if the IAMR bit is 0.
364 * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit
365 * can only take away EXEC permissions not READ or WRITE permissions.
366 * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since
367 * EXEC permissions are allowed.
369 return (iamr_bits & 0x1) ? PAGE_READ | PAGE_WRITE :
370 PAGE_READ | PAGE_WRITE | PAGE_EXEC;
373 static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
375 CPUPPCState *env = &cpu->env;
376 int key, amrbits;
377 int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
379 /* Only recent MMUs implement Virtual Page Class Key Protection */
380 if (!ppc_hash64_has(cpu, PPC_HASH64_AMR)) {
381 return prot;
384 key = HPTE64_R_KEY(pte.pte1);
385 amrbits = (env->spr[SPR_AMR] >> 2 * (31 - key)) & 0x3;
387 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
388 /* env->spr[SPR_AMR]); */
391 * A store is permitted if the AMR bit is 0. Remove write
392 * protection if it is set.
394 if (amrbits & 0x2) {
395 prot &= ~PAGE_WRITE;
398 * A load is permitted if the AMR bit is 0. Remove read
399 * protection if it is set.
401 if (amrbits & 0x1) {
402 prot &= ~PAGE_READ;
405 switch (env->mmu_model) {
407 * MMU version 2.07 and later support IAMR
408 * Check if the IAMR allows the instruction access - it will return
409 * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0
410 * if it does (and prot will be unchanged indicating execution support).
412 case POWERPC_MMU_2_07:
413 case POWERPC_MMU_3_00:
414 prot &= ppc_hash64_iamr_prot(cpu, key);
415 break;
416 default:
417 break;
420 return prot;
423 const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu,
424 hwaddr ptex, int n)
426 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
427 hwaddr base;
428 hwaddr plen = n * HASH_PTE_SIZE_64;
429 const ppc_hash_pte64_t *hptes;
431 if (cpu->vhyp) {
432 PPCVirtualHypervisorClass *vhc =
433 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
434 return vhc->map_hptes(cpu->vhyp, ptex, n);
436 base = ppc_hash64_hpt_base(cpu);
438 if (!base) {
439 return NULL;
442 hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false,
443 MEMTXATTRS_UNSPECIFIED);
444 if (plen < (n * HASH_PTE_SIZE_64)) {
445 hw_error("%s: Unable to map all requested HPTEs\n", __func__);
447 return hptes;
450 void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes,
451 hwaddr ptex, int n)
453 if (cpu->vhyp) {
454 PPCVirtualHypervisorClass *vhc =
455 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
456 vhc->unmap_hptes(cpu->vhyp, hptes, ptex, n);
457 return;
460 address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64,
461 false, n * HASH_PTE_SIZE_64);
464 static unsigned hpte_page_shift(const PPCHash64SegmentPageSizes *sps,
465 uint64_t pte0, uint64_t pte1)
467 int i;
469 if (!(pte0 & HPTE64_V_LARGE)) {
470 if (sps->page_shift != 12) {
471 /* 4kiB page in a non 4kiB segment */
472 return 0;
474 /* Normal 4kiB page */
475 return 12;
478 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
479 const PPCHash64PageSize *ps = &sps->enc[i];
480 uint64_t mask;
482 if (!ps->page_shift) {
483 break;
486 if (ps->page_shift == 12) {
487 /* L bit is set so this can't be a 4kiB page */
488 continue;
491 mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
493 if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
494 return ps->page_shift;
498 return 0; /* Bad page size encoding */
501 static void ppc64_v3_new_to_old_hpte(target_ulong *pte0, target_ulong *pte1)
503 /* Insert B into pte0 */
504 *pte0 = (*pte0 & HPTE64_V_COMMON_BITS) |
505 ((*pte1 & HPTE64_R_3_0_SSIZE_MASK) <<
506 (HPTE64_V_SSIZE_SHIFT - HPTE64_R_3_0_SSIZE_SHIFT));
508 /* Remove B from pte1 */
509 *pte1 = *pte1 & ~HPTE64_R_3_0_SSIZE_MASK;
513 static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
514 const PPCHash64SegmentPageSizes *sps,
515 target_ulong ptem,
516 ppc_hash_pte64_t *pte, unsigned *pshift)
518 int i;
519 const ppc_hash_pte64_t *pteg;
520 target_ulong pte0, pte1;
521 target_ulong ptex;
523 ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP;
524 pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
525 if (!pteg) {
526 return -1;
528 for (i = 0; i < HPTES_PER_GROUP; i++) {
529 pte0 = ppc_hash64_hpte0(cpu, pteg, i);
531 * pte0 contains the valid bit and must be read before pte1,
532 * otherwise we might see an old pte1 with a new valid bit and
533 * thus an inconsistent hpte value
535 smp_rmb();
536 pte1 = ppc_hash64_hpte1(cpu, pteg, i);
538 /* Convert format if necessary */
539 if (cpu->env.mmu_model == POWERPC_MMU_3_00 && !cpu->vhyp) {
540 ppc64_v3_new_to_old_hpte(&pte0, &pte1);
543 /* This compares V, B, H (secondary) and the AVPN */
544 if (HPTE64_V_COMPARE(pte0, ptem)) {
545 *pshift = hpte_page_shift(sps, pte0, pte1);
547 * If there is no match, ignore the PTE, it could simply
548 * be for a different segment size encoding and the
549 * architecture specifies we should not match. Linux will
550 * potentially leave behind PTEs for the wrong base page
551 * size when demoting segments.
553 if (*pshift == 0) {
554 continue;
557 * We don't do anything with pshift yet as qemu TLB only
558 * deals with 4K pages anyway
560 pte->pte0 = pte0;
561 pte->pte1 = pte1;
562 ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
563 return ptex + i;
566 ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
568 * We didn't find a valid entry.
570 return -1;
573 static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
574 ppc_slb_t *slb, target_ulong eaddr,
575 ppc_hash_pte64_t *pte, unsigned *pshift)
577 CPUPPCState *env = &cpu->env;
578 hwaddr hash, ptex;
579 uint64_t vsid, epnmask, epn, ptem;
580 const PPCHash64SegmentPageSizes *sps = slb->sps;
583 * The SLB store path should prevent any bad page size encodings
584 * getting in there, so:
586 assert(sps);
588 /* If ISL is set in LPCR we need to clamp the page size to 4K */
589 if (env->spr[SPR_LPCR] & LPCR_ISL) {
590 /* We assume that when using TCG, 4k is first entry of SPS */
591 sps = &cpu->hash64_opts->sps[0];
592 assert(sps->page_shift == 12);
595 epnmask = ~((1ULL << sps->page_shift) - 1);
597 if (slb->vsid & SLB_VSID_B) {
598 /* 1TB segment */
599 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
600 epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
601 hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
602 } else {
603 /* 256M segment */
604 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
605 epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
606 hash = vsid ^ (epn >> sps->page_shift);
608 ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
609 ptem |= HPTE64_V_VALID;
611 /* Page address translation */
612 qemu_log_mask(CPU_LOG_MMU,
613 "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
614 " hash " TARGET_FMT_plx "\n",
615 ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash);
617 /* Primary PTEG lookup */
618 qemu_log_mask(CPU_LOG_MMU,
619 "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
620 " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
621 " hash=" TARGET_FMT_plx "\n",
622 ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu),
623 vsid, ptem, hash);
624 ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
626 if (ptex == -1) {
627 /* Secondary PTEG lookup */
628 ptem |= HPTE64_V_SECONDARY;
629 qemu_log_mask(CPU_LOG_MMU,
630 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
631 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
632 " hash=" TARGET_FMT_plx "\n", ppc_hash64_hpt_base(cpu),
633 ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash);
635 ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
638 return ptex;
641 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
642 uint64_t pte0, uint64_t pte1)
644 int i;
646 if (!(pte0 & HPTE64_V_LARGE)) {
647 return 12;
651 * The encodings in env->sps need to be carefully chosen so that
652 * this gives an unambiguous result.
654 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
655 const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
656 unsigned shift;
658 if (!sps->page_shift) {
659 break;
662 shift = hpte_page_shift(sps, pte0, pte1);
663 if (shift) {
664 return shift;
668 return 0;
671 static void ppc_hash64_set_isi(CPUState *cs, uint64_t error_code)
673 CPUPPCState *env = &POWERPC_CPU(cs)->env;
674 bool vpm;
676 if (msr_ir) {
677 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
678 } else {
679 switch (env->mmu_model) {
680 case POWERPC_MMU_3_00:
681 /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
682 vpm = true;
683 break;
684 default:
685 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
686 break;
689 if (vpm && !msr_hv) {
690 cs->exception_index = POWERPC_EXCP_HISI;
691 } else {
692 cs->exception_index = POWERPC_EXCP_ISI;
694 env->error_code = error_code;
697 static void ppc_hash64_set_dsi(CPUState *cs, uint64_t dar, uint64_t dsisr)
699 CPUPPCState *env = &POWERPC_CPU(cs)->env;
700 bool vpm;
702 if (msr_dr) {
703 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
704 } else {
705 switch (env->mmu_model) {
706 case POWERPC_MMU_3_00:
707 /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
708 vpm = true;
709 break;
710 default:
711 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
712 break;
715 if (vpm && !msr_hv) {
716 cs->exception_index = POWERPC_EXCP_HDSI;
717 env->spr[SPR_HDAR] = dar;
718 env->spr[SPR_HDSISR] = dsisr;
719 } else {
720 cs->exception_index = POWERPC_EXCP_DSI;
721 env->spr[SPR_DAR] = dar;
722 env->spr[SPR_DSISR] = dsisr;
724 env->error_code = 0;
728 static void ppc_hash64_set_r(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1)
730 hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + 16;
732 if (cpu->vhyp) {
733 PPCVirtualHypervisorClass *vhc =
734 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
735 vhc->hpte_set_r(cpu->vhyp, ptex, pte1);
736 return;
738 base = ppc_hash64_hpt_base(cpu);
741 /* The HW performs a non-atomic byte update */
742 stb_phys(CPU(cpu)->as, base + offset, ((pte1 >> 8) & 0xff) | 0x01);
745 static void ppc_hash64_set_c(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1)
747 hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + 15;
749 if (cpu->vhyp) {
750 PPCVirtualHypervisorClass *vhc =
751 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
752 vhc->hpte_set_c(cpu->vhyp, ptex, pte1);
753 return;
755 base = ppc_hash64_hpt_base(cpu);
757 /* The HW performs a non-atomic byte update */
758 stb_phys(CPU(cpu)->as, base + offset, (pte1 & 0xff) | 0x80);
761 int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
762 int rwx, int mmu_idx)
764 CPUState *cs = CPU(cpu);
765 CPUPPCState *env = &cpu->env;
766 ppc_slb_t *slb;
767 unsigned apshift;
768 hwaddr ptex;
769 ppc_hash_pte64_t pte;
770 int exec_prot, pp_prot, amr_prot, prot;
771 const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
772 hwaddr raddr;
774 assert((rwx == 0) || (rwx == 1) || (rwx == 2));
777 * Note on LPCR usage: 970 uses HID4, but our special variant of
778 * store_spr copies relevant fields into env->spr[SPR_LPCR].
779 * Similarily we filter unimplemented bits when storing into LPCR
780 * depending on the MMU version. This code can thus just use the
781 * LPCR "as-is".
784 /* 1. Handle real mode accesses */
785 if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
787 * Translation is supposedly "off", but in real mode the top 4
788 * effective address bits are (mostly) ignored
790 raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
792 /* In HV mode, add HRMOR if top EA bit is clear */
793 if (msr_hv || !env->has_hv_mode) {
794 if (!(eaddr >> 63)) {
795 raddr |= env->spr[SPR_HRMOR];
797 } else {
798 /* Otherwise, check VPM for RMA vs VRMA */
799 if (env->spr[SPR_LPCR] & LPCR_VPM0) {
800 slb = &env->vrma_slb;
801 if (slb->sps) {
802 goto skip_slb_search;
804 /* Not much else to do here */
805 cs->exception_index = POWERPC_EXCP_MCHECK;
806 env->error_code = 0;
807 return 1;
808 } else if (raddr < env->rmls) {
809 /* RMA. Check bounds in RMLS */
810 raddr |= env->spr[SPR_RMOR];
811 } else {
812 /* The access failed, generate the approriate interrupt */
813 if (rwx == 2) {
814 ppc_hash64_set_isi(cs, SRR1_PROTFAULT);
815 } else {
816 int dsisr = DSISR_PROTFAULT;
817 if (rwx == 1) {
818 dsisr |= DSISR_ISSTORE;
820 ppc_hash64_set_dsi(cs, eaddr, dsisr);
822 return 1;
825 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
826 PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
827 TARGET_PAGE_SIZE);
828 return 0;
831 /* 2. Translation is on, so look up the SLB */
832 slb = slb_lookup(cpu, eaddr);
833 if (!slb) {
834 /* No entry found, check if in-memory segment tables are in use */
835 if (ppc64_use_proc_tbl(cpu)) {
836 /* TODO - Unsupported */
837 error_report("Segment Table Support Unimplemented");
838 exit(1);
840 /* Segment still not found, generate the appropriate interrupt */
841 if (rwx == 2) {
842 cs->exception_index = POWERPC_EXCP_ISEG;
843 env->error_code = 0;
844 } else {
845 cs->exception_index = POWERPC_EXCP_DSEG;
846 env->error_code = 0;
847 env->spr[SPR_DAR] = eaddr;
849 return 1;
852 skip_slb_search:
854 /* 3. Check for segment level no-execute violation */
855 if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
856 ppc_hash64_set_isi(cs, SRR1_NOEXEC_GUARD);
857 return 1;
860 /* 4. Locate the PTE in the hash table */
861 ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
862 if (ptex == -1) {
863 if (rwx == 2) {
864 ppc_hash64_set_isi(cs, SRR1_NOPTE);
865 } else {
866 int dsisr = DSISR_NOPTE;
867 if (rwx == 1) {
868 dsisr |= DSISR_ISSTORE;
870 ppc_hash64_set_dsi(cs, eaddr, dsisr);
872 return 1;
874 qemu_log_mask(CPU_LOG_MMU,
875 "found PTE at index %08" HWADDR_PRIx "\n", ptex);
877 /* 5. Check access permissions */
879 exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte);
880 pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
881 amr_prot = ppc_hash64_amr_prot(cpu, pte);
882 prot = exec_prot & pp_prot & amr_prot;
884 if ((need_prot[rwx] & ~prot) != 0) {
885 /* Access right violation */
886 qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
887 if (rwx == 2) {
888 int srr1 = 0;
889 if (PAGE_EXEC & ~exec_prot) {
890 srr1 |= SRR1_NOEXEC_GUARD; /* Access violates noexec or guard */
891 } else if (PAGE_EXEC & ~pp_prot) {
892 srr1 |= SRR1_PROTFAULT; /* Access violates access authority */
894 if (PAGE_EXEC & ~amr_prot) {
895 srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */
897 ppc_hash64_set_isi(cs, srr1);
898 } else {
899 int dsisr = 0;
900 if (need_prot[rwx] & ~pp_prot) {
901 dsisr |= DSISR_PROTFAULT;
903 if (rwx == 1) {
904 dsisr |= DSISR_ISSTORE;
906 if (need_prot[rwx] & ~amr_prot) {
907 dsisr |= DSISR_AMR;
909 ppc_hash64_set_dsi(cs, eaddr, dsisr);
911 return 1;
914 qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
916 /* 6. Update PTE referenced and changed bits if necessary */
918 if (!(pte.pte1 & HPTE64_R_R)) {
919 ppc_hash64_set_r(cpu, ptex, pte.pte1);
921 if (!(pte.pte1 & HPTE64_R_C)) {
922 if (rwx == 1) {
923 ppc_hash64_set_c(cpu, ptex, pte.pte1);
924 } else {
926 * Treat the page as read-only for now, so that a later write
927 * will pass through this function again to set the C bit
929 prot &= ~PAGE_WRITE;
933 /* 7. Determine the real address from the PTE */
935 raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
937 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
938 prot, mmu_idx, 1ULL << apshift);
940 return 0;
943 hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
945 CPUPPCState *env = &cpu->env;
946 ppc_slb_t *slb;
947 hwaddr ptex, raddr;
948 ppc_hash_pte64_t pte;
949 unsigned apshift;
951 /* Handle real mode */
952 if (msr_dr == 0) {
953 /* In real mode the top 4 effective address bits are ignored */
954 raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
956 /* In HV mode, add HRMOR if top EA bit is clear */
957 if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
958 return raddr | env->spr[SPR_HRMOR];
961 /* Otherwise, check VPM for RMA vs VRMA */
962 if (env->spr[SPR_LPCR] & LPCR_VPM0) {
963 slb = &env->vrma_slb;
964 if (!slb->sps) {
965 return -1;
967 } else if (raddr < env->rmls) {
968 /* RMA. Check bounds in RMLS */
969 return raddr | env->spr[SPR_RMOR];
970 } else {
971 return -1;
973 } else {
974 slb = slb_lookup(cpu, addr);
975 if (!slb) {
976 return -1;
980 ptex = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
981 if (ptex == -1) {
982 return -1;
985 return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
986 & TARGET_PAGE_MASK;
989 void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,
990 target_ulong pte0, target_ulong pte1)
993 * XXX: given the fact that there are too many segments to
994 * invalidate, and we still don't have a tlb_flush_mask(env, n,
995 * mask) in QEMU, we just invalidate all TLBs
997 cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
1000 static void ppc_hash64_update_rmls(PowerPCCPU *cpu)
1002 CPUPPCState *env = &cpu->env;
1003 uint64_t lpcr = env->spr[SPR_LPCR];
1006 * This is the full 4 bits encoding of POWER8. Previous
1007 * CPUs only support a subset of these but the filtering
1008 * is done when writing LPCR
1010 switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
1011 case 0x8: /* 32MB */
1012 env->rmls = 0x2000000ull;
1013 break;
1014 case 0x3: /* 64MB */
1015 env->rmls = 0x4000000ull;
1016 break;
1017 case 0x7: /* 128MB */
1018 env->rmls = 0x8000000ull;
1019 break;
1020 case 0x4: /* 256MB */
1021 env->rmls = 0x10000000ull;
1022 break;
1023 case 0x2: /* 1GB */
1024 env->rmls = 0x40000000ull;
1025 break;
1026 case 0x1: /* 16GB */
1027 env->rmls = 0x400000000ull;
1028 break;
1029 default:
1030 /* What to do here ??? */
1031 env->rmls = 0;
1035 static void ppc_hash64_update_vrma(PowerPCCPU *cpu)
1037 CPUPPCState *env = &cpu->env;
1038 const PPCHash64SegmentPageSizes *sps = NULL;
1039 target_ulong esid, vsid, lpcr;
1040 ppc_slb_t *slb = &env->vrma_slb;
1041 uint32_t vrmasd;
1042 int i;
1044 /* First clear it */
1045 slb->esid = slb->vsid = 0;
1046 slb->sps = NULL;
1048 /* Is VRMA enabled ? */
1049 lpcr = env->spr[SPR_LPCR];
1050 if (!(lpcr & LPCR_VPM0)) {
1051 return;
1055 * Make one up. Mostly ignore the ESID which will not be needed
1056 * for translation
1058 vsid = SLB_VSID_VRMA;
1059 vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
1060 vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
1061 esid = SLB_ESID_V;
1063 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
1064 const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i];
1066 if (!sps1->page_shift) {
1067 break;
1070 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
1071 sps = sps1;
1072 break;
1076 if (!sps) {
1077 error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
1078 " vsid 0x"TARGET_FMT_lx, esid, vsid);
1079 return;
1082 slb->vsid = vsid;
1083 slb->esid = esid;
1084 slb->sps = sps;
1087 void ppc_store_lpcr(PowerPCCPU *cpu, target_ulong val)
1089 CPUPPCState *env = &cpu->env;
1090 uint64_t lpcr = 0;
1092 /* Filter out bits */
1093 switch (env->mmu_model) {
1094 case POWERPC_MMU_64B: /* 970 */
1095 if (val & 0x40) {
1096 lpcr |= LPCR_LPES0;
1098 if (val & 0x8000000000000000ull) {
1099 lpcr |= LPCR_LPES1;
1101 if (val & 0x20) {
1102 lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
1104 if (val & 0x4000000000000000ull) {
1105 lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
1107 if (val & 0x2000000000000000ull) {
1108 lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
1110 env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;
1113 * XXX We could also write LPID from HID4 here
1114 * but since we don't tag any translation on it
1115 * it doesn't actually matter
1117 * XXX For proper emulation of 970 we also need
1118 * to dig HRMOR out of HID5
1120 break;
1121 case POWERPC_MMU_2_03: /* P5p */
1122 lpcr = val & (LPCR_RMLS | LPCR_ILE |
1123 LPCR_LPES0 | LPCR_LPES1 |
1124 LPCR_RMI | LPCR_HDICE);
1125 break;
1126 case POWERPC_MMU_2_06: /* P7 */
1127 lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
1128 LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1129 LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
1130 LPCR_MER | LPCR_TC |
1131 LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
1132 break;
1133 case POWERPC_MMU_2_07: /* P8 */
1134 lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
1135 LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1136 LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
1137 LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
1138 LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
1139 break;
1140 case POWERPC_MMU_3_00: /* P9 */
1141 lpcr = val & (LPCR_VPM1 | LPCR_ISL | LPCR_KBV | LPCR_DPFD |
1142 (LPCR_PECE_U_MASK & LPCR_HVEE) | LPCR_ILE | LPCR_AIL |
1143 LPCR_UPRT | LPCR_EVIRT | LPCR_ONL | LPCR_HR | LPCR_LD |
1144 (LPCR_PECE_L_MASK & (LPCR_PDEE | LPCR_HDEE | LPCR_EEE |
1145 LPCR_DEE | LPCR_OEE)) | LPCR_MER | LPCR_GTSE | LPCR_TC |
1146 LPCR_HEIC | LPCR_LPES0 | LPCR_HVICE | LPCR_HDICE);
1148 * If we have a virtual hypervisor, we need to bring back RMLS. It
1149 * doesn't exist on an actual P9 but that's all we know how to
1150 * configure with softmmu at the moment
1152 if (cpu->vhyp) {
1153 lpcr |= (val & LPCR_RMLS);
1155 break;
1156 default:
1159 env->spr[SPR_LPCR] = lpcr;
1160 ppc_hash64_update_rmls(cpu);
1161 ppc_hash64_update_vrma(cpu);
1164 void helper_store_lpcr(CPUPPCState *env, target_ulong val)
1166 PowerPCCPU *cpu = env_archcpu(env);
1168 ppc_store_lpcr(cpu, val);
1171 void ppc_hash64_init(PowerPCCPU *cpu)
1173 CPUPPCState *env = &cpu->env;
1174 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1176 if (!pcc->hash64_opts) {
1177 assert(!(env->mmu_model & POWERPC_MMU_64));
1178 return;
1181 cpu->hash64_opts = g_memdup(pcc->hash64_opts, sizeof(*cpu->hash64_opts));
1184 void ppc_hash64_finalize(PowerPCCPU *cpu)
1186 g_free(cpu->hash64_opts);
1189 const PPCHash64Options ppc_hash64_opts_basic = {
1190 .flags = 0,
1191 .slb_size = 64,
1192 .sps = {
1193 { .page_shift = 12, /* 4K */
1194 .slb_enc = 0,
1195 .enc = { { .page_shift = 12, .pte_enc = 0 } }
1197 { .page_shift = 24, /* 16M */
1198 .slb_enc = 0x100,
1199 .enc = { { .page_shift = 24, .pte_enc = 0 } }
1204 const PPCHash64Options ppc_hash64_opts_POWER7 = {
1205 .flags = PPC_HASH64_1TSEG | PPC_HASH64_AMR | PPC_HASH64_CI_LARGEPAGE,
1206 .slb_size = 32,
1207 .sps = {
1209 .page_shift = 12, /* 4K */
1210 .slb_enc = 0,
1211 .enc = { { .page_shift = 12, .pte_enc = 0 },
1212 { .page_shift = 16, .pte_enc = 0x7 },
1213 { .page_shift = 24, .pte_enc = 0x38 }, },
1216 .page_shift = 16, /* 64K */
1217 .slb_enc = SLB_VSID_64K,
1218 .enc = { { .page_shift = 16, .pte_enc = 0x1 },
1219 { .page_shift = 24, .pte_enc = 0x8 }, },
1222 .page_shift = 24, /* 16M */
1223 .slb_enc = SLB_VSID_16M,
1224 .enc = { { .page_shift = 24, .pte_enc = 0 }, },
1227 .page_shift = 34, /* 16G */
1228 .slb_enc = SLB_VSID_16G,
1229 .enc = { { .page_shift = 34, .pte_enc = 0x3 }, },
1234 void ppc_hash64_filter_pagesizes(PowerPCCPU *cpu,
1235 bool (*cb)(void *, uint32_t, uint32_t),
1236 void *opaque)
1238 PPCHash64Options *opts = cpu->hash64_opts;
1239 int i;
1240 int n = 0;
1241 bool ci_largepage = false;
1243 assert(opts);
1245 n = 0;
1246 for (i = 0; i < ARRAY_SIZE(opts->sps); i++) {
1247 PPCHash64SegmentPageSizes *sps = &opts->sps[i];
1248 int j;
1249 int m = 0;
1251 assert(n <= i);
1253 if (!sps->page_shift) {
1254 break;
1257 for (j = 0; j < ARRAY_SIZE(sps->enc); j++) {
1258 PPCHash64PageSize *ps = &sps->enc[j];
1260 assert(m <= j);
1261 if (!ps->page_shift) {
1262 break;
1265 if (cb(opaque, sps->page_shift, ps->page_shift)) {
1266 if (ps->page_shift >= 16) {
1267 ci_largepage = true;
1269 sps->enc[m++] = *ps;
1273 /* Clear rest of the row */
1274 for (j = m; j < ARRAY_SIZE(sps->enc); j++) {
1275 memset(&sps->enc[j], 0, sizeof(sps->enc[j]));
1278 if (m) {
1279 n++;
1283 /* Clear the rest of the table */
1284 for (i = n; i < ARRAY_SIZE(opts->sps); i++) {
1285 memset(&opts->sps[i], 0, sizeof(opts->sps[i]));
1288 if (!ci_largepage) {
1289 opts->flags &= ~PPC_HASH64_CI_LARGEPAGE;