QMP: Use QERR_QMP_BAD_INPUT_OBJECT_MEMBER
[qemu.git] / hw / ptimer.c
blob4ddbc597e64a4f1fb905682d81f8a77db4c8b6cf
1 /*
2 * General purpose implementation of a simple periodic countdown timer.
4 * Copyright (c) 2007 CodeSourcery.
6 * This code is licenced under the GNU LGPL.
7 */
8 #include "hw.h"
9 #include "qemu-timer.h"
10 #include "host-utils.h"
12 struct ptimer_state
14 int enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */
15 uint64_t limit;
16 uint64_t delta;
17 uint32_t period_frac;
18 int64_t period;
19 int64_t last_event;
20 int64_t next_event;
21 QEMUBH *bh;
22 QEMUTimer *timer;
25 /* Use a bottom-half routine to avoid reentrancy issues. */
26 static void ptimer_trigger(ptimer_state *s)
28 if (s->bh) {
29 qemu_bh_schedule(s->bh);
33 static void ptimer_reload(ptimer_state *s)
35 if (s->delta == 0) {
36 ptimer_trigger(s);
37 s->delta = s->limit;
39 if (s->delta == 0 || s->period == 0) {
40 fprintf(stderr, "Timer with period zero, disabling\n");
41 s->enabled = 0;
42 return;
45 s->last_event = s->next_event;
46 s->next_event = s->last_event + s->delta * s->period;
47 if (s->period_frac) {
48 s->next_event += ((int64_t)s->period_frac * s->delta) >> 32;
50 qemu_mod_timer(s->timer, s->next_event);
53 static void ptimer_tick(void *opaque)
55 ptimer_state *s = (ptimer_state *)opaque;
56 ptimer_trigger(s);
57 s->delta = 0;
58 if (s->enabled == 2) {
59 s->enabled = 0;
60 } else {
61 ptimer_reload(s);
65 uint64_t ptimer_get_count(ptimer_state *s)
67 int64_t now;
68 uint64_t counter;
70 if (s->enabled) {
71 now = qemu_get_clock(vm_clock);
72 /* Figure out the current counter value. */
73 if (now - s->next_event > 0
74 || s->period == 0) {
75 /* Prevent timer underflowing if it should already have
76 triggered. */
77 counter = 0;
78 } else {
79 uint64_t rem;
80 uint64_t div;
81 int clz1, clz2;
82 int shift;
84 /* We need to divide time by period, where time is stored in
85 rem (64-bit integer) and period is stored in period/period_frac
86 (64.32 fixed point).
88 Doing full precision division is hard, so scale values and
89 do a 64-bit division. The result should be rounded down,
90 so that the rounding error never causes the timer to go
91 backwards.
94 rem = s->next_event - now;
95 div = s->period;
97 clz1 = clz64(rem);
98 clz2 = clz64(div);
99 shift = clz1 < clz2 ? clz1 : clz2;
101 rem <<= shift;
102 div <<= shift;
103 if (shift >= 32) {
104 div |= ((uint64_t)s->period_frac << (shift - 32));
105 } else {
106 if (shift != 0)
107 div |= (s->period_frac >> (32 - shift));
108 /* Look at remaining bits of period_frac and round div up if
109 necessary. */
110 if ((uint32_t)(s->period_frac << shift))
111 div += 1;
113 counter = rem / div;
115 } else {
116 counter = s->delta;
118 return counter;
121 void ptimer_set_count(ptimer_state *s, uint64_t count)
123 s->delta = count;
124 if (s->enabled) {
125 s->next_event = qemu_get_clock(vm_clock);
126 ptimer_reload(s);
130 void ptimer_run(ptimer_state *s, int oneshot)
132 if (s->enabled) {
133 return;
135 if (s->period == 0) {
136 fprintf(stderr, "Timer with period zero, disabling\n");
137 return;
139 s->enabled = oneshot ? 2 : 1;
140 s->next_event = qemu_get_clock(vm_clock);
141 ptimer_reload(s);
144 /* Pause a timer. Note that this may cause it to "lose" time, even if it
145 is immediately restarted. */
146 void ptimer_stop(ptimer_state *s)
148 if (!s->enabled)
149 return;
151 s->delta = ptimer_get_count(s);
152 qemu_del_timer(s->timer);
153 s->enabled = 0;
156 /* Set counter increment interval in nanoseconds. */
157 void ptimer_set_period(ptimer_state *s, int64_t period)
159 s->period = period;
160 s->period_frac = 0;
161 if (s->enabled) {
162 s->next_event = qemu_get_clock(vm_clock);
163 ptimer_reload(s);
167 /* Set counter frequency in Hz. */
168 void ptimer_set_freq(ptimer_state *s, uint32_t freq)
170 s->period = 1000000000ll / freq;
171 s->period_frac = (1000000000ll << 32) / freq;
172 if (s->enabled) {
173 s->next_event = qemu_get_clock(vm_clock);
174 ptimer_reload(s);
178 /* Set the initial countdown value. If reload is nonzero then also set
179 count = limit. */
180 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
182 s->limit = limit;
183 if (reload)
184 s->delta = limit;
185 if (s->enabled && reload) {
186 s->next_event = qemu_get_clock(vm_clock);
187 ptimer_reload(s);
191 void qemu_put_ptimer(QEMUFile *f, ptimer_state *s)
193 qemu_put_byte(f, s->enabled);
194 qemu_put_be64s(f, &s->limit);
195 qemu_put_be64s(f, &s->delta);
196 qemu_put_be32s(f, &s->period_frac);
197 qemu_put_sbe64s(f, &s->period);
198 qemu_put_sbe64s(f, &s->last_event);
199 qemu_put_sbe64s(f, &s->next_event);
200 qemu_put_timer(f, s->timer);
203 void qemu_get_ptimer(QEMUFile *f, ptimer_state *s)
205 s->enabled = qemu_get_byte(f);
206 qemu_get_be64s(f, &s->limit);
207 qemu_get_be64s(f, &s->delta);
208 qemu_get_be32s(f, &s->period_frac);
209 qemu_get_sbe64s(f, &s->period);
210 qemu_get_sbe64s(f, &s->last_event);
211 qemu_get_sbe64s(f, &s->next_event);
212 qemu_get_timer(f, s->timer);
215 static int get_ptimer(QEMUFile *f, void *pv, size_t size)
217 ptimer_state *v = pv;
219 qemu_get_ptimer(f, v);
220 return 0;
223 static void put_ptimer(QEMUFile *f, void *pv, size_t size)
225 ptimer_state *v = pv;
227 qemu_put_ptimer(f, v);
230 const VMStateInfo vmstate_info_ptimer = {
231 .name = "ptimer",
232 .get = get_ptimer,
233 .put = put_ptimer,
236 ptimer_state *ptimer_init(QEMUBH *bh)
238 ptimer_state *s;
240 s = (ptimer_state *)qemu_mallocz(sizeof(ptimer_state));
241 s->bh = bh;
242 s->timer = qemu_new_timer(vm_clock, ptimer_tick, s);
243 return s;