4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #define NO_CPU_IO_DEFS
29 #include "disas/disas.h"
30 #include "exec/exec-all.h"
32 #if defined(CONFIG_USER_ONLY)
34 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
35 #include <sys/param.h>
36 #if __FreeBSD_version >= 700104
37 #define HAVE_KINFO_GETVMMAP
38 #define sigqueue sigqueue_freebsd /* avoid redefinition */
40 #include <machine/profile.h>
49 #include "exec/address-spaces.h"
52 #include "exec/cputlb.h"
53 #include "exec/tb-hash.h"
54 #include "translate-all.h"
55 #include "qemu/bitmap.h"
56 #include "qemu/timer.h"
59 //#define DEBUG_TB_INVALIDATE
61 /* make various TB consistency checks */
62 //#define DEBUG_TB_CHECK
64 #if !defined(CONFIG_USER_ONLY)
65 /* TB consistency checks only implemented for usermode emulation. */
69 #define SMC_BITMAP_USE_THRESHOLD 10
71 typedef struct PageDesc
{
72 /* list of TBs intersecting this ram page */
73 TranslationBlock
*first_tb
;
75 /* in order to optimize self modifying code, we count the number
76 of lookups we do to a given page to use a bitmap */
77 unsigned int code_write_count
;
78 unsigned long *code_bitmap
;
84 /* In system mode we want L1_MAP to be based on ram offsets,
85 while in user mode we want it to be based on virtual addresses. */
86 #if !defined(CONFIG_USER_ONLY)
87 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
88 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
90 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
93 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
96 /* Size of the L2 (and L3, etc) page tables. */
98 #define V_L2_SIZE (1 << V_L2_BITS)
100 uintptr_t qemu_host_page_size
;
101 intptr_t qemu_host_page_mask
;
104 * L1 Mapping properties
106 static int v_l1_size
;
107 static int v_l1_shift
;
108 static int v_l2_levels
;
110 /* The bottom level has pointers to PageDesc, and is indexed by
111 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
113 #define V_L1_MIN_BITS 4
114 #define V_L1_MAX_BITS (V_L2_BITS + 3)
115 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
117 static void *l1_map
[V_L1_MAX_SIZE
];
119 /* code generation context */
123 /* translation block context */
124 #ifdef CONFIG_USER_ONLY
125 __thread
int have_tb_lock
;
128 static void page_table_config_init(void)
132 assert(TARGET_PAGE_BITS
);
133 /* The bits remaining after N lower levels of page tables. */
134 v_l1_bits
= (L1_MAP_ADDR_SPACE_BITS
- TARGET_PAGE_BITS
) % V_L2_BITS
;
135 if (v_l1_bits
< V_L1_MIN_BITS
) {
136 v_l1_bits
+= V_L2_BITS
;
139 v_l1_size
= 1 << v_l1_bits
;
140 v_l1_shift
= L1_MAP_ADDR_SPACE_BITS
- TARGET_PAGE_BITS
- v_l1_bits
;
141 v_l2_levels
= v_l1_shift
/ V_L2_BITS
- 1;
143 assert(v_l1_bits
<= V_L1_MAX_BITS
);
144 assert(v_l1_shift
% V_L2_BITS
== 0);
145 assert(v_l2_levels
>= 0);
150 #ifdef CONFIG_USER_ONLY
151 assert(!have_tb_lock
);
152 qemu_mutex_lock(&tcg_ctx
.tb_ctx
.tb_lock
);
159 #ifdef CONFIG_USER_ONLY
160 assert(have_tb_lock
);
162 qemu_mutex_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
166 void tb_lock_reset(void)
168 #ifdef CONFIG_USER_ONLY
170 qemu_mutex_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
176 static TranslationBlock
*tb_find_pc(uintptr_t tc_ptr
);
178 void cpu_gen_init(void)
180 tcg_context_init(&tcg_ctx
);
183 /* Encode VAL as a signed leb128 sequence at P.
184 Return P incremented past the encoded value. */
185 static uint8_t *encode_sleb128(uint8_t *p
, target_long val
)
192 more
= !((val
== 0 && (byte
& 0x40) == 0)
193 || (val
== -1 && (byte
& 0x40) != 0));
203 /* Decode a signed leb128 sequence at *PP; increment *PP past the
204 decoded value. Return the decoded value. */
205 static target_long
decode_sleb128(uint8_t **pp
)
213 val
|= (target_ulong
)(byte
& 0x7f) << shift
;
215 } while (byte
& 0x80);
216 if (shift
< TARGET_LONG_BITS
&& (byte
& 0x40)) {
217 val
|= -(target_ulong
)1 << shift
;
224 /* Encode the data collected about the instructions while compiling TB.
225 Place the data at BLOCK, and return the number of bytes consumed.
227 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
228 which come from the target's insn_start data, followed by a uintptr_t
229 which comes from the host pc of the end of the code implementing the insn.
231 Each line of the table is encoded as sleb128 deltas from the previous
232 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
233 That is, the first column is seeded with the guest pc, the last column
234 with the host pc, and the middle columns with zeros. */
236 static int encode_search(TranslationBlock
*tb
, uint8_t *block
)
238 uint8_t *highwater
= tcg_ctx
.code_gen_highwater
;
242 tb
->tc_search
= block
;
244 for (i
= 0, n
= tb
->icount
; i
< n
; ++i
) {
247 for (j
= 0; j
< TARGET_INSN_START_WORDS
; ++j
) {
249 prev
= (j
== 0 ? tb
->pc
: 0);
251 prev
= tcg_ctx
.gen_insn_data
[i
- 1][j
];
253 p
= encode_sleb128(p
, tcg_ctx
.gen_insn_data
[i
][j
] - prev
);
255 prev
= (i
== 0 ? 0 : tcg_ctx
.gen_insn_end_off
[i
- 1]);
256 p
= encode_sleb128(p
, tcg_ctx
.gen_insn_end_off
[i
] - prev
);
258 /* Test for (pending) buffer overflow. The assumption is that any
259 one row beginning below the high water mark cannot overrun
260 the buffer completely. Thus we can test for overflow after
261 encoding a row without having to check during encoding. */
262 if (unlikely(p
> highwater
)) {
270 /* The cpu state corresponding to 'searched_pc' is restored. */
271 static int cpu_restore_state_from_tb(CPUState
*cpu
, TranslationBlock
*tb
,
272 uintptr_t searched_pc
)
274 target_ulong data
[TARGET_INSN_START_WORDS
] = { tb
->pc
};
275 uintptr_t host_pc
= (uintptr_t)tb
->tc_ptr
;
276 CPUArchState
*env
= cpu
->env_ptr
;
277 uint8_t *p
= tb
->tc_search
;
278 int i
, j
, num_insns
= tb
->icount
;
279 #ifdef CONFIG_PROFILER
280 int64_t ti
= profile_getclock();
283 searched_pc
-= GETPC_ADJ
;
285 if (searched_pc
< host_pc
) {
289 /* Reconstruct the stored insn data while looking for the point at
290 which the end of the insn exceeds the searched_pc. */
291 for (i
= 0; i
< num_insns
; ++i
) {
292 for (j
= 0; j
< TARGET_INSN_START_WORDS
; ++j
) {
293 data
[j
] += decode_sleb128(&p
);
295 host_pc
+= decode_sleb128(&p
);
296 if (host_pc
> searched_pc
) {
303 if (tb
->cflags
& CF_USE_ICOUNT
) {
305 /* Reset the cycle counter to the start of the block. */
306 cpu
->icount_decr
.u16
.low
+= num_insns
;
307 /* Clear the IO flag. */
310 cpu
->icount_decr
.u16
.low
-= i
;
311 restore_state_to_opc(env
, tb
, data
);
313 #ifdef CONFIG_PROFILER
314 tcg_ctx
.restore_time
+= profile_getclock() - ti
;
315 tcg_ctx
.restore_count
++;
320 bool cpu_restore_state(CPUState
*cpu
, uintptr_t retaddr
)
322 TranslationBlock
*tb
;
324 tb
= tb_find_pc(retaddr
);
326 cpu_restore_state_from_tb(cpu
, tb
, retaddr
);
327 if (tb
->cflags
& CF_NOCACHE
) {
328 /* one-shot translation, invalidate it immediately */
329 tb_phys_invalidate(tb
, -1);
337 void page_size_init(void)
339 /* NOTE: we can always suppose that qemu_host_page_size >=
341 qemu_real_host_page_size
= getpagesize();
342 qemu_real_host_page_mask
= -(intptr_t)qemu_real_host_page_size
;
343 if (qemu_host_page_size
== 0) {
344 qemu_host_page_size
= qemu_real_host_page_size
;
346 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
347 qemu_host_page_size
= TARGET_PAGE_SIZE
;
349 qemu_host_page_mask
= -(intptr_t)qemu_host_page_size
;
352 static void page_init(void)
355 page_table_config_init();
357 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
359 #ifdef HAVE_KINFO_GETVMMAP
360 struct kinfo_vmentry
*freep
;
363 freep
= kinfo_getvmmap(getpid(), &cnt
);
366 for (i
= 0; i
< cnt
; i
++) {
367 unsigned long startaddr
, endaddr
;
369 startaddr
= freep
[i
].kve_start
;
370 endaddr
= freep
[i
].kve_end
;
371 if (h2g_valid(startaddr
)) {
372 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
374 if (h2g_valid(endaddr
)) {
375 endaddr
= h2g(endaddr
);
376 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
378 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
380 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
391 last_brk
= (unsigned long)sbrk(0);
393 f
= fopen("/compat/linux/proc/self/maps", "r");
398 unsigned long startaddr
, endaddr
;
401 n
= fscanf(f
, "%lx-%lx %*[^\n]\n", &startaddr
, &endaddr
);
403 if (n
== 2 && h2g_valid(startaddr
)) {
404 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
406 if (h2g_valid(endaddr
)) {
407 endaddr
= h2g(endaddr
);
411 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
424 * Called with mmap_lock held for user-mode emulation.
426 static PageDesc
*page_find_alloc(tb_page_addr_t index
, int alloc
)
432 /* Level 1. Always allocated. */
433 lp
= l1_map
+ ((index
>> v_l1_shift
) & (v_l1_size
- 1));
436 for (i
= v_l2_levels
; i
> 0; i
--) {
437 void **p
= atomic_rcu_read(lp
);
443 p
= g_new0(void *, V_L2_SIZE
);
444 atomic_rcu_set(lp
, p
);
447 lp
= p
+ ((index
>> (i
* V_L2_BITS
)) & (V_L2_SIZE
- 1));
450 pd
= atomic_rcu_read(lp
);
455 pd
= g_new0(PageDesc
, V_L2_SIZE
);
456 atomic_rcu_set(lp
, pd
);
459 return pd
+ (index
& (V_L2_SIZE
- 1));
462 static inline PageDesc
*page_find(tb_page_addr_t index
)
464 return page_find_alloc(index
, 0);
467 #if defined(CONFIG_USER_ONLY)
468 /* Currently it is not recommended to allocate big chunks of data in
469 user mode. It will change when a dedicated libc will be used. */
470 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
471 region in which the guest needs to run. Revisit this. */
472 #define USE_STATIC_CODE_GEN_BUFFER
475 /* Minimum size of the code gen buffer. This number is randomly chosen,
476 but not so small that we can't have a fair number of TB's live. */
477 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
479 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
480 indicated, this is constrained by the range of direct branches on the
481 host cpu, as used by the TCG implementation of goto_tb. */
482 #if defined(__x86_64__)
483 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
484 #elif defined(__sparc__)
485 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
486 #elif defined(__powerpc64__)
487 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
488 #elif defined(__powerpc__)
489 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
490 #elif defined(__aarch64__)
491 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
492 #elif defined(__arm__)
493 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
494 #elif defined(__s390x__)
495 /* We have a +- 4GB range on the branches; leave some slop. */
496 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
497 #elif defined(__mips__)
498 /* We have a 256MB branch region, but leave room to make sure the
499 main executable is also within that region. */
500 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
502 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
505 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
507 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
508 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
509 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
511 static inline size_t size_code_gen_buffer(size_t tb_size
)
513 /* Size the buffer. */
515 #ifdef USE_STATIC_CODE_GEN_BUFFER
516 tb_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
518 /* ??? Needs adjustments. */
519 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
520 static buffer, we could size this on RESERVED_VA, on the text
521 segment size of the executable, or continue to use the default. */
522 tb_size
= (unsigned long)(ram_size
/ 4);
525 if (tb_size
< MIN_CODE_GEN_BUFFER_SIZE
) {
526 tb_size
= MIN_CODE_GEN_BUFFER_SIZE
;
528 if (tb_size
> MAX_CODE_GEN_BUFFER_SIZE
) {
529 tb_size
= MAX_CODE_GEN_BUFFER_SIZE
;
535 /* In order to use J and JAL within the code_gen_buffer, we require
536 that the buffer not cross a 256MB boundary. */
537 static inline bool cross_256mb(void *addr
, size_t size
)
539 return ((uintptr_t)addr
^ ((uintptr_t)addr
+ size
)) & ~0x0ffffffful
;
542 /* We weren't able to allocate a buffer without crossing that boundary,
543 so make do with the larger portion of the buffer that doesn't cross.
544 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
545 static inline void *split_cross_256mb(void *buf1
, size_t size1
)
547 void *buf2
= (void *)(((uintptr_t)buf1
+ size1
) & ~0x0ffffffful
);
548 size_t size2
= buf1
+ size1
- buf2
;
556 tcg_ctx
.code_gen_buffer_size
= size1
;
561 #ifdef USE_STATIC_CODE_GEN_BUFFER
562 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
]
563 __attribute__((aligned(CODE_GEN_ALIGN
)));
566 static inline void do_protect(void *addr
, long size
, int prot
)
569 VirtualProtect(addr
, size
, prot
, &old_protect
);
572 static inline void map_exec(void *addr
, long size
)
574 do_protect(addr
, size
, PAGE_EXECUTE_READWRITE
);
577 static inline void map_none(void *addr
, long size
)
579 do_protect(addr
, size
, PAGE_NOACCESS
);
582 static inline void do_protect(void *addr
, long size
, int prot
)
584 uintptr_t start
, end
;
586 start
= (uintptr_t)addr
;
587 start
&= qemu_real_host_page_mask
;
589 end
= (uintptr_t)addr
+ size
;
590 end
= ROUND_UP(end
, qemu_real_host_page_size
);
592 mprotect((void *)start
, end
- start
, prot
);
595 static inline void map_exec(void *addr
, long size
)
597 do_protect(addr
, size
, PROT_READ
| PROT_WRITE
| PROT_EXEC
);
600 static inline void map_none(void *addr
, long size
)
602 do_protect(addr
, size
, PROT_NONE
);
606 static inline void *alloc_code_gen_buffer(void)
608 void *buf
= static_code_gen_buffer
;
609 size_t full_size
, size
;
611 /* The size of the buffer, rounded down to end on a page boundary. */
612 full_size
= (((uintptr_t)buf
+ sizeof(static_code_gen_buffer
))
613 & qemu_real_host_page_mask
) - (uintptr_t)buf
;
615 /* Reserve a guard page. */
616 size
= full_size
- qemu_real_host_page_size
;
618 /* Honor a command-line option limiting the size of the buffer. */
619 if (size
> tcg_ctx
.code_gen_buffer_size
) {
620 size
= (((uintptr_t)buf
+ tcg_ctx
.code_gen_buffer_size
)
621 & qemu_real_host_page_mask
) - (uintptr_t)buf
;
623 tcg_ctx
.code_gen_buffer_size
= size
;
626 if (cross_256mb(buf
, size
)) {
627 buf
= split_cross_256mb(buf
, size
);
628 size
= tcg_ctx
.code_gen_buffer_size
;
633 map_none(buf
+ size
, qemu_real_host_page_size
);
634 qemu_madvise(buf
, size
, QEMU_MADV_HUGEPAGE
);
638 #elif defined(_WIN32)
639 static inline void *alloc_code_gen_buffer(void)
641 size_t size
= tcg_ctx
.code_gen_buffer_size
;
644 /* Perform the allocation in two steps, so that the guard page
645 is reserved but uncommitted. */
646 buf1
= VirtualAlloc(NULL
, size
+ qemu_real_host_page_size
,
647 MEM_RESERVE
, PAGE_NOACCESS
);
649 buf2
= VirtualAlloc(buf1
, size
, MEM_COMMIT
, PAGE_EXECUTE_READWRITE
);
650 assert(buf1
== buf2
);
656 static inline void *alloc_code_gen_buffer(void)
658 int flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
660 size_t size
= tcg_ctx
.code_gen_buffer_size
;
663 /* Constrain the position of the buffer based on the host cpu.
664 Note that these addresses are chosen in concert with the
665 addresses assigned in the relevant linker script file. */
666 # if defined(__PIE__) || defined(__PIC__)
667 /* Don't bother setting a preferred location if we're building
668 a position-independent executable. We're more likely to get
669 an address near the main executable if we let the kernel
670 choose the address. */
671 # elif defined(__x86_64__) && defined(MAP_32BIT)
672 /* Force the memory down into low memory with the executable.
673 Leave the choice of exact location with the kernel. */
675 /* Cannot expect to map more than 800MB in low memory. */
676 if (size
> 800u * 1024 * 1024) {
677 tcg_ctx
.code_gen_buffer_size
= size
= 800u * 1024 * 1024;
679 # elif defined(__sparc__)
680 start
= 0x40000000ul
;
681 # elif defined(__s390x__)
682 start
= 0x90000000ul
;
683 # elif defined(__mips__)
684 # if _MIPS_SIM == _ABI64
685 start
= 0x128000000ul
;
687 start
= 0x08000000ul
;
691 buf
= mmap((void *)start
, size
+ qemu_real_host_page_size
,
692 PROT_NONE
, flags
, -1, 0);
693 if (buf
== MAP_FAILED
) {
698 if (cross_256mb(buf
, size
)) {
699 /* Try again, with the original still mapped, to avoid re-acquiring
700 that 256mb crossing. This time don't specify an address. */
702 void *buf2
= mmap(NULL
, size
+ qemu_real_host_page_size
,
703 PROT_NONE
, flags
, -1, 0);
704 switch (buf2
!= MAP_FAILED
) {
706 if (!cross_256mb(buf2
, size
)) {
707 /* Success! Use the new buffer. */
708 munmap(buf
, size
+ qemu_real_host_page_size
);
711 /* Failure. Work with what we had. */
712 munmap(buf2
, size
+ qemu_real_host_page_size
);
715 /* Split the original buffer. Free the smaller half. */
716 buf2
= split_cross_256mb(buf
, size
);
717 size2
= tcg_ctx
.code_gen_buffer_size
;
719 munmap(buf
+ size2
+ qemu_real_host_page_size
, size
- size2
);
721 munmap(buf
, size
- size2
);
730 /* Make the final buffer accessible. The guard page at the end
731 will remain inaccessible with PROT_NONE. */
732 mprotect(buf
, size
, PROT_WRITE
| PROT_READ
| PROT_EXEC
);
734 /* Request large pages for the buffer. */
735 qemu_madvise(buf
, size
, QEMU_MADV_HUGEPAGE
);
739 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
741 static inline void code_gen_alloc(size_t tb_size
)
743 tcg_ctx
.code_gen_buffer_size
= size_code_gen_buffer(tb_size
);
744 tcg_ctx
.code_gen_buffer
= alloc_code_gen_buffer();
745 if (tcg_ctx
.code_gen_buffer
== NULL
) {
746 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
750 /* Estimate a good size for the number of TBs we can support. We
751 still haven't deducted the prologue from the buffer size here,
752 but that's minimal and won't affect the estimate much. */
753 tcg_ctx
.code_gen_max_blocks
754 = tcg_ctx
.code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
755 tcg_ctx
.tb_ctx
.tbs
= g_new(TranslationBlock
, tcg_ctx
.code_gen_max_blocks
);
757 qemu_mutex_init(&tcg_ctx
.tb_ctx
.tb_lock
);
760 static void tb_htable_init(void)
762 unsigned int mode
= QHT_MODE_AUTO_RESIZE
;
764 qht_init(&tcg_ctx
.tb_ctx
.htable
, CODE_GEN_HTABLE_SIZE
, mode
);
767 /* Must be called before using the QEMU cpus. 'tb_size' is the size
768 (in bytes) allocated to the translation buffer. Zero means default
770 void tcg_exec_init(unsigned long tb_size
)
775 code_gen_alloc(tb_size
);
776 #if defined(CONFIG_SOFTMMU)
777 /* There's no guest base to take into account, so go ahead and
778 initialize the prologue now. */
779 tcg_prologue_init(&tcg_ctx
);
783 bool tcg_enabled(void)
785 return tcg_ctx
.code_gen_buffer
!= NULL
;
788 /* Allocate a new translation block. Flush the translation buffer if
789 too many translation blocks or too much generated code. */
790 static TranslationBlock
*tb_alloc(target_ulong pc
)
792 TranslationBlock
*tb
;
794 if (tcg_ctx
.tb_ctx
.nb_tbs
>= tcg_ctx
.code_gen_max_blocks
) {
797 tb
= &tcg_ctx
.tb_ctx
.tbs
[tcg_ctx
.tb_ctx
.nb_tbs
++];
804 void tb_free(TranslationBlock
*tb
)
806 /* In practice this is mostly used for single use temporary TB
807 Ignore the hard cases and just back up if this TB happens to
808 be the last one generated. */
809 if (tcg_ctx
.tb_ctx
.nb_tbs
> 0 &&
810 tb
== &tcg_ctx
.tb_ctx
.tbs
[tcg_ctx
.tb_ctx
.nb_tbs
- 1]) {
811 tcg_ctx
.code_gen_ptr
= tb
->tc_ptr
;
812 tcg_ctx
.tb_ctx
.nb_tbs
--;
816 static inline void invalidate_page_bitmap(PageDesc
*p
)
818 #ifdef CONFIG_SOFTMMU
819 g_free(p
->code_bitmap
);
820 p
->code_bitmap
= NULL
;
821 p
->code_write_count
= 0;
825 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
826 static void page_flush_tb_1(int level
, void **lp
)
836 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
837 pd
[i
].first_tb
= NULL
;
838 invalidate_page_bitmap(pd
+ i
);
843 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
844 page_flush_tb_1(level
- 1, pp
+ i
);
849 static void page_flush_tb(void)
851 int i
, l1_sz
= v_l1_size
;
853 for (i
= 0; i
< l1_sz
; i
++) {
854 page_flush_tb_1(v_l2_levels
, l1_map
+ i
);
858 /* flush all the translation blocks */
859 static void do_tb_flush(CPUState
*cpu
, void *data
)
861 unsigned tb_flush_req
= (unsigned) (uintptr_t) data
;
865 /* If it's already been done on request of another CPU,
868 if (tcg_ctx
.tb_ctx
.tb_flush_count
!= tb_flush_req
) {
872 #if defined(DEBUG_FLUSH)
873 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
874 (unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
),
875 tcg_ctx
.tb_ctx
.nb_tbs
, tcg_ctx
.tb_ctx
.nb_tbs
> 0 ?
876 ((unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
)) /
877 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
879 if ((unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
)
880 > tcg_ctx
.code_gen_buffer_size
) {
881 cpu_abort(cpu
, "Internal error: code buffer overflow\n");
887 for (i
= 0; i
< TB_JMP_CACHE_SIZE
; ++i
) {
888 atomic_set(&cpu
->tb_jmp_cache
[i
], NULL
);
892 tcg_ctx
.tb_ctx
.nb_tbs
= 0;
893 qht_reset_size(&tcg_ctx
.tb_ctx
.htable
, CODE_GEN_HTABLE_SIZE
);
896 tcg_ctx
.code_gen_ptr
= tcg_ctx
.code_gen_buffer
;
897 /* XXX: flush processor icache at this point if cache flush is
899 atomic_mb_set(&tcg_ctx
.tb_ctx
.tb_flush_count
,
900 tcg_ctx
.tb_ctx
.tb_flush_count
+ 1);
906 void tb_flush(CPUState
*cpu
)
909 uintptr_t tb_flush_req
= atomic_mb_read(&tcg_ctx
.tb_ctx
.tb_flush_count
);
910 async_safe_run_on_cpu(cpu
, do_tb_flush
, (void *) tb_flush_req
);
914 #ifdef DEBUG_TB_CHECK
917 do_tb_invalidate_check(struct qht
*ht
, void *p
, uint32_t hash
, void *userp
)
919 TranslationBlock
*tb
= p
;
920 target_ulong addr
= *(target_ulong
*)userp
;
922 if (!(addr
+ TARGET_PAGE_SIZE
<= tb
->pc
|| addr
>= tb
->pc
+ tb
->size
)) {
923 printf("ERROR invalidate: address=" TARGET_FMT_lx
924 " PC=%08lx size=%04x\n", addr
, (long)tb
->pc
, tb
->size
);
928 static void tb_invalidate_check(target_ulong address
)
930 address
&= TARGET_PAGE_MASK
;
931 qht_iter(&tcg_ctx
.tb_ctx
.htable
, do_tb_invalidate_check
, &address
);
935 do_tb_page_check(struct qht
*ht
, void *p
, uint32_t hash
, void *userp
)
937 TranslationBlock
*tb
= p
;
940 flags1
= page_get_flags(tb
->pc
);
941 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
942 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
943 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
944 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
948 /* verify that all the pages have correct rights for code */
949 static void tb_page_check(void)
951 qht_iter(&tcg_ctx
.tb_ctx
.htable
, do_tb_page_check
, NULL
);
956 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
958 TranslationBlock
*tb1
;
963 n1
= (uintptr_t)tb1
& 3;
964 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
966 *ptb
= tb1
->page_next
[n1
];
969 ptb
= &tb1
->page_next
[n1
];
973 /* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
974 static inline void tb_remove_from_jmp_list(TranslationBlock
*tb
, int n
)
976 TranslationBlock
*tb1
;
980 ptb
= &tb
->jmp_list_next
[n
];
982 /* find tb(n) in circular list */
986 tb1
= (TranslationBlock
*)(ntb
& ~3);
987 if (n1
== n
&& tb1
== tb
) {
991 ptb
= &tb1
->jmp_list_first
;
993 ptb
= &tb1
->jmp_list_next
[n1
];
996 /* now we can suppress tb(n) from the list */
997 *ptb
= tb
->jmp_list_next
[n
];
999 tb
->jmp_list_next
[n
] = (uintptr_t)NULL
;
1003 /* reset the jump entry 'n' of a TB so that it is not chained to
1005 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
1007 uintptr_t addr
= (uintptr_t)(tb
->tc_ptr
+ tb
->jmp_reset_offset
[n
]);
1008 tb_set_jmp_target(tb
, n
, addr
);
1011 /* remove any jumps to the TB */
1012 static inline void tb_jmp_unlink(TranslationBlock
*tb
)
1014 TranslationBlock
*tb1
;
1015 uintptr_t *ptb
, ntb
;
1018 ptb
= &tb
->jmp_list_first
;
1022 tb1
= (TranslationBlock
*)(ntb
& ~3);
1026 tb_reset_jump(tb1
, n1
);
1027 *ptb
= tb1
->jmp_list_next
[n1
];
1028 tb1
->jmp_list_next
[n1
] = (uintptr_t)NULL
;
1032 /* invalidate one TB */
1033 void tb_phys_invalidate(TranslationBlock
*tb
, tb_page_addr_t page_addr
)
1038 tb_page_addr_t phys_pc
;
1040 atomic_set(&tb
->invalid
, true);
1042 /* remove the TB from the hash list */
1043 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1044 h
= tb_hash_func(phys_pc
, tb
->pc
, tb
->flags
);
1045 qht_remove(&tcg_ctx
.tb_ctx
.htable
, tb
, h
);
1047 /* remove the TB from the page list */
1048 if (tb
->page_addr
[0] != page_addr
) {
1049 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
1050 tb_page_remove(&p
->first_tb
, tb
);
1051 invalidate_page_bitmap(p
);
1053 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
1054 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
1055 tb_page_remove(&p
->first_tb
, tb
);
1056 invalidate_page_bitmap(p
);
1059 /* remove the TB from the hash list */
1060 h
= tb_jmp_cache_hash_func(tb
->pc
);
1062 if (atomic_read(&cpu
->tb_jmp_cache
[h
]) == tb
) {
1063 atomic_set(&cpu
->tb_jmp_cache
[h
], NULL
);
1067 /* suppress this TB from the two jump lists */
1068 tb_remove_from_jmp_list(tb
, 0);
1069 tb_remove_from_jmp_list(tb
, 1);
1071 /* suppress any remaining jumps to this TB */
1074 tcg_ctx
.tb_ctx
.tb_phys_invalidate_count
++;
1077 #ifdef CONFIG_SOFTMMU
1078 static void build_page_bitmap(PageDesc
*p
)
1080 int n
, tb_start
, tb_end
;
1081 TranslationBlock
*tb
;
1083 p
->code_bitmap
= bitmap_new(TARGET_PAGE_SIZE
);
1086 while (tb
!= NULL
) {
1087 n
= (uintptr_t)tb
& 3;
1088 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1089 /* NOTE: this is subtle as a TB may span two physical pages */
1091 /* NOTE: tb_end may be after the end of the page, but
1092 it is not a problem */
1093 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
1094 tb_end
= tb_start
+ tb
->size
;
1095 if (tb_end
> TARGET_PAGE_SIZE
) {
1096 tb_end
= TARGET_PAGE_SIZE
;
1100 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1102 bitmap_set(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
1103 tb
= tb
->page_next
[n
];
1108 /* add the tb in the target page and protect it if necessary
1110 * Called with mmap_lock held for user-mode emulation.
1112 static inline void tb_alloc_page(TranslationBlock
*tb
,
1113 unsigned int n
, tb_page_addr_t page_addr
)
1116 #ifndef CONFIG_USER_ONLY
1117 bool page_already_protected
;
1120 tb
->page_addr
[n
] = page_addr
;
1121 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
, 1);
1122 tb
->page_next
[n
] = p
->first_tb
;
1123 #ifndef CONFIG_USER_ONLY
1124 page_already_protected
= p
->first_tb
!= NULL
;
1126 p
->first_tb
= (TranslationBlock
*)((uintptr_t)tb
| n
);
1127 invalidate_page_bitmap(p
);
1129 #if defined(CONFIG_USER_ONLY)
1130 if (p
->flags
& PAGE_WRITE
) {
1135 /* force the host page as non writable (writes will have a
1136 page fault + mprotect overhead) */
1137 page_addr
&= qemu_host_page_mask
;
1139 for (addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1140 addr
+= TARGET_PAGE_SIZE
) {
1142 p2
= page_find(addr
>> TARGET_PAGE_BITS
);
1147 p2
->flags
&= ~PAGE_WRITE
;
1149 mprotect(g2h(page_addr
), qemu_host_page_size
,
1150 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1151 #ifdef DEBUG_TB_INVALIDATE
1152 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1157 /* if some code is already present, then the pages are already
1158 protected. So we handle the case where only the first TB is
1159 allocated in a physical page */
1160 if (!page_already_protected
) {
1161 tlb_protect_code(page_addr
);
1166 /* add a new TB and link it to the physical page tables. phys_page2 is
1167 * (-1) to indicate that only one page contains the TB.
1169 * Called with mmap_lock held for user-mode emulation.
1171 static void tb_link_page(TranslationBlock
*tb
, tb_page_addr_t phys_pc
,
1172 tb_page_addr_t phys_page2
)
1176 /* add in the page list */
1177 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1178 if (phys_page2
!= -1) {
1179 tb_alloc_page(tb
, 1, phys_page2
);
1181 tb
->page_addr
[1] = -1;
1184 /* add in the hash table */
1185 h
= tb_hash_func(phys_pc
, tb
->pc
, tb
->flags
);
1186 qht_insert(&tcg_ctx
.tb_ctx
.htable
, tb
, h
);
1188 #ifdef DEBUG_TB_CHECK
1193 /* Called with mmap_lock held for user mode emulation. */
1194 TranslationBlock
*tb_gen_code(CPUState
*cpu
,
1195 target_ulong pc
, target_ulong cs_base
,
1196 uint32_t flags
, int cflags
)
1198 CPUArchState
*env
= cpu
->env_ptr
;
1199 TranslationBlock
*tb
;
1200 tb_page_addr_t phys_pc
, phys_page2
;
1201 target_ulong virt_page2
;
1202 tcg_insn_unit
*gen_code_buf
;
1203 int gen_code_size
, search_size
;
1204 #ifdef CONFIG_PROFILER
1208 phys_pc
= get_page_addr_code(env
, pc
);
1209 if (use_icount
&& !(cflags
& CF_IGNORE_ICOUNT
)) {
1210 cflags
|= CF_USE_ICOUNT
;
1214 if (unlikely(!tb
)) {
1216 /* flush must be done */
1222 gen_code_buf
= tcg_ctx
.code_gen_ptr
;
1223 tb
->tc_ptr
= gen_code_buf
;
1224 tb
->cs_base
= cs_base
;
1226 tb
->cflags
= cflags
;
1228 #ifdef CONFIG_PROFILER
1229 tcg_ctx
.tb_count1
++; /* includes aborted translations because of
1231 ti
= profile_getclock();
1234 tcg_func_start(&tcg_ctx
);
1236 tcg_ctx
.cpu
= ENV_GET_CPU(env
);
1237 gen_intermediate_code(env
, tb
);
1240 trace_translate_block(tb
, tb
->pc
, tb
->tc_ptr
);
1242 /* generate machine code */
1243 tb
->jmp_reset_offset
[0] = TB_JMP_RESET_OFFSET_INVALID
;
1244 tb
->jmp_reset_offset
[1] = TB_JMP_RESET_OFFSET_INVALID
;
1245 tcg_ctx
.tb_jmp_reset_offset
= tb
->jmp_reset_offset
;
1246 #ifdef USE_DIRECT_JUMP
1247 tcg_ctx
.tb_jmp_insn_offset
= tb
->jmp_insn_offset
;
1248 tcg_ctx
.tb_jmp_target_addr
= NULL
;
1250 tcg_ctx
.tb_jmp_insn_offset
= NULL
;
1251 tcg_ctx
.tb_jmp_target_addr
= tb
->jmp_target_addr
;
1254 #ifdef CONFIG_PROFILER
1256 tcg_ctx
.interm_time
+= profile_getclock() - ti
;
1257 tcg_ctx
.code_time
-= profile_getclock();
1260 /* ??? Overflow could be handled better here. In particular, we
1261 don't need to re-do gen_intermediate_code, nor should we re-do
1262 the tcg optimization currently hidden inside tcg_gen_code. All
1263 that should be required is to flush the TBs, allocate a new TB,
1264 re-initialize it per above, and re-do the actual code generation. */
1265 gen_code_size
= tcg_gen_code(&tcg_ctx
, tb
);
1266 if (unlikely(gen_code_size
< 0)) {
1267 goto buffer_overflow
;
1269 search_size
= encode_search(tb
, (void *)gen_code_buf
+ gen_code_size
);
1270 if (unlikely(search_size
< 0)) {
1271 goto buffer_overflow
;
1274 #ifdef CONFIG_PROFILER
1275 tcg_ctx
.code_time
+= profile_getclock();
1276 tcg_ctx
.code_in_len
+= tb
->size
;
1277 tcg_ctx
.code_out_len
+= gen_code_size
;
1278 tcg_ctx
.search_out_len
+= search_size
;
1282 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM
) &&
1283 qemu_log_in_addr_range(tb
->pc
)) {
1284 qemu_log("OUT: [size=%d]\n", gen_code_size
);
1285 log_disas(tb
->tc_ptr
, gen_code_size
);
1291 tcg_ctx
.code_gen_ptr
= (void *)
1292 ROUND_UP((uintptr_t)gen_code_buf
+ gen_code_size
+ search_size
,
1295 /* init jump list */
1296 assert(((uintptr_t)tb
& 3) == 0);
1297 tb
->jmp_list_first
= (uintptr_t)tb
| 2;
1298 tb
->jmp_list_next
[0] = (uintptr_t)NULL
;
1299 tb
->jmp_list_next
[1] = (uintptr_t)NULL
;
1301 /* init original jump addresses wich has been set during tcg_gen_code() */
1302 if (tb
->jmp_reset_offset
[0] != TB_JMP_RESET_OFFSET_INVALID
) {
1303 tb_reset_jump(tb
, 0);
1305 if (tb
->jmp_reset_offset
[1] != TB_JMP_RESET_OFFSET_INVALID
) {
1306 tb_reset_jump(tb
, 1);
1309 /* check next page if needed */
1310 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
1312 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
1313 phys_page2
= get_page_addr_code(env
, virt_page2
);
1315 /* As long as consistency of the TB stuff is provided by tb_lock in user
1316 * mode and is implicit in single-threaded softmmu emulation, no explicit
1317 * memory barrier is required before tb_link_page() makes the TB visible
1318 * through the physical hash table and physical page list.
1320 tb_link_page(tb
, phys_pc
, phys_page2
);
1325 * Invalidate all TBs which intersect with the target physical address range
1326 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1327 * 'is_cpu_write_access' should be true if called from a real cpu write
1328 * access: the virtual CPU will exit the current TB if code is modified inside
1331 * Called with mmap_lock held for user-mode emulation
1333 void tb_invalidate_phys_range(tb_page_addr_t start
, tb_page_addr_t end
)
1335 while (start
< end
) {
1336 tb_invalidate_phys_page_range(start
, end
, 0);
1337 start
&= TARGET_PAGE_MASK
;
1338 start
+= TARGET_PAGE_SIZE
;
1343 * Invalidate all TBs which intersect with the target physical address range
1344 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1345 * 'is_cpu_write_access' should be true if called from a real cpu write
1346 * access: the virtual CPU will exit the current TB if code is modified inside
1349 * Called with mmap_lock held for user-mode emulation
1351 void tb_invalidate_phys_page_range(tb_page_addr_t start
, tb_page_addr_t end
,
1352 int is_cpu_write_access
)
1354 TranslationBlock
*tb
, *tb_next
;
1355 #if defined(TARGET_HAS_PRECISE_SMC)
1356 CPUState
*cpu
= current_cpu
;
1357 CPUArchState
*env
= NULL
;
1359 tb_page_addr_t tb_start
, tb_end
;
1362 #ifdef TARGET_HAS_PRECISE_SMC
1363 int current_tb_not_found
= is_cpu_write_access
;
1364 TranslationBlock
*current_tb
= NULL
;
1365 int current_tb_modified
= 0;
1366 target_ulong current_pc
= 0;
1367 target_ulong current_cs_base
= 0;
1368 uint32_t current_flags
= 0;
1369 #endif /* TARGET_HAS_PRECISE_SMC */
1371 p
= page_find(start
>> TARGET_PAGE_BITS
);
1375 #if defined(TARGET_HAS_PRECISE_SMC)
1381 /* we remove all the TBs in the range [start, end[ */
1382 /* XXX: see if in some cases it could be faster to invalidate all
1385 while (tb
!= NULL
) {
1386 n
= (uintptr_t)tb
& 3;
1387 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1388 tb_next
= tb
->page_next
[n
];
1389 /* NOTE: this is subtle as a TB may span two physical pages */
1391 /* NOTE: tb_end may be after the end of the page, but
1392 it is not a problem */
1393 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1394 tb_end
= tb_start
+ tb
->size
;
1396 tb_start
= tb
->page_addr
[1];
1397 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1399 if (!(tb_end
<= start
|| tb_start
>= end
)) {
1400 #ifdef TARGET_HAS_PRECISE_SMC
1401 if (current_tb_not_found
) {
1402 current_tb_not_found
= 0;
1404 if (cpu
->mem_io_pc
) {
1405 /* now we have a real cpu fault */
1406 current_tb
= tb_find_pc(cpu
->mem_io_pc
);
1409 if (current_tb
== tb
&&
1410 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1411 /* If we are modifying the current TB, we must stop
1412 its execution. We could be more precise by checking
1413 that the modification is after the current PC, but it
1414 would require a specialized function to partially
1415 restore the CPU state */
1417 current_tb_modified
= 1;
1418 cpu_restore_state_from_tb(cpu
, current_tb
, cpu
->mem_io_pc
);
1419 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1422 #endif /* TARGET_HAS_PRECISE_SMC */
1423 tb_phys_invalidate(tb
, -1);
1427 #if !defined(CONFIG_USER_ONLY)
1428 /* if no code remaining, no need to continue to use slow writes */
1430 invalidate_page_bitmap(p
);
1431 tlb_unprotect_code(start
);
1434 #ifdef TARGET_HAS_PRECISE_SMC
1435 if (current_tb_modified
) {
1436 /* we generate a block containing just the instruction
1437 modifying the memory. It will ensure that it cannot modify
1439 tb_gen_code(cpu
, current_pc
, current_cs_base
, current_flags
, 1);
1440 cpu_loop_exit_noexc(cpu
);
1445 #ifdef CONFIG_SOFTMMU
1446 /* len must be <= 8 and start must be a multiple of len */
1447 void tb_invalidate_phys_page_fast(tb_page_addr_t start
, int len
)
1453 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1454 cpu_single_env
->mem_io_vaddr
, len
,
1455 cpu_single_env
->eip
,
1456 cpu_single_env
->eip
+
1457 (intptr_t)cpu_single_env
->segs
[R_CS
].base
);
1460 p
= page_find(start
>> TARGET_PAGE_BITS
);
1464 if (!p
->code_bitmap
&&
1465 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
) {
1466 /* build code bitmap */
1467 build_page_bitmap(p
);
1469 if (p
->code_bitmap
) {
1473 nr
= start
& ~TARGET_PAGE_MASK
;
1474 b
= p
->code_bitmap
[BIT_WORD(nr
)] >> (nr
& (BITS_PER_LONG
- 1));
1475 if (b
& ((1 << len
) - 1)) {
1480 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1484 /* Called with mmap_lock held. If pc is not 0 then it indicates the
1485 * host PC of the faulting store instruction that caused this invalidate.
1486 * Returns true if the caller needs to abort execution of the current
1487 * TB (because it was modified by this store and the guest CPU has
1488 * precise-SMC semantics).
1490 static bool tb_invalidate_phys_page(tb_page_addr_t addr
, uintptr_t pc
)
1492 TranslationBlock
*tb
;
1495 #ifdef TARGET_HAS_PRECISE_SMC
1496 TranslationBlock
*current_tb
= NULL
;
1497 CPUState
*cpu
= current_cpu
;
1498 CPUArchState
*env
= NULL
;
1499 int current_tb_modified
= 0;
1500 target_ulong current_pc
= 0;
1501 target_ulong current_cs_base
= 0;
1502 uint32_t current_flags
= 0;
1505 addr
&= TARGET_PAGE_MASK
;
1506 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1511 #ifdef TARGET_HAS_PRECISE_SMC
1512 if (tb
&& pc
!= 0) {
1513 current_tb
= tb_find_pc(pc
);
1519 while (tb
!= NULL
) {
1520 n
= (uintptr_t)tb
& 3;
1521 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1522 #ifdef TARGET_HAS_PRECISE_SMC
1523 if (current_tb
== tb
&&
1524 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1525 /* If we are modifying the current TB, we must stop
1526 its execution. We could be more precise by checking
1527 that the modification is after the current PC, but it
1528 would require a specialized function to partially
1529 restore the CPU state */
1531 current_tb_modified
= 1;
1532 cpu_restore_state_from_tb(cpu
, current_tb
, pc
);
1533 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1536 #endif /* TARGET_HAS_PRECISE_SMC */
1537 tb_phys_invalidate(tb
, addr
);
1538 tb
= tb
->page_next
[n
];
1541 #ifdef TARGET_HAS_PRECISE_SMC
1542 if (current_tb_modified
) {
1543 /* we generate a block containing just the instruction
1544 modifying the memory. It will ensure that it cannot modify
1546 tb_gen_code(cpu
, current_pc
, current_cs_base
, current_flags
, 1);
1554 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1555 tb[1].tc_ptr. Return NULL if not found */
1556 static TranslationBlock
*tb_find_pc(uintptr_t tc_ptr
)
1558 int m_min
, m_max
, m
;
1560 TranslationBlock
*tb
;
1562 if (tcg_ctx
.tb_ctx
.nb_tbs
<= 0) {
1565 if (tc_ptr
< (uintptr_t)tcg_ctx
.code_gen_buffer
||
1566 tc_ptr
>= (uintptr_t)tcg_ctx
.code_gen_ptr
) {
1569 /* binary search (cf Knuth) */
1571 m_max
= tcg_ctx
.tb_ctx
.nb_tbs
- 1;
1572 while (m_min
<= m_max
) {
1573 m
= (m_min
+ m_max
) >> 1;
1574 tb
= &tcg_ctx
.tb_ctx
.tbs
[m
];
1575 v
= (uintptr_t)tb
->tc_ptr
;
1578 } else if (tc_ptr
< v
) {
1584 return &tcg_ctx
.tb_ctx
.tbs
[m_max
];
1587 #if !defined(CONFIG_USER_ONLY)
1588 void tb_invalidate_phys_addr(AddressSpace
*as
, hwaddr addr
)
1590 ram_addr_t ram_addr
;
1595 mr
= address_space_translate(as
, addr
, &addr
, &l
, false);
1596 if (!(memory_region_is_ram(mr
)
1597 || memory_region_is_romd(mr
))) {
1601 ram_addr
= memory_region_get_ram_addr(mr
) + addr
;
1602 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1605 #endif /* !defined(CONFIG_USER_ONLY) */
1607 void tb_check_watchpoint(CPUState
*cpu
)
1609 TranslationBlock
*tb
;
1611 tb
= tb_find_pc(cpu
->mem_io_pc
);
1613 /* We can use retranslation to find the PC. */
1614 cpu_restore_state_from_tb(cpu
, tb
, cpu
->mem_io_pc
);
1615 tb_phys_invalidate(tb
, -1);
1617 /* The exception probably happened in a helper. The CPU state should
1618 have been saved before calling it. Fetch the PC from there. */
1619 CPUArchState
*env
= cpu
->env_ptr
;
1620 target_ulong pc
, cs_base
;
1621 tb_page_addr_t addr
;
1624 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
1625 addr
= get_page_addr_code(env
, pc
);
1626 tb_invalidate_phys_range(addr
, addr
+ 1);
1630 #ifndef CONFIG_USER_ONLY
1631 /* in deterministic execution mode, instructions doing device I/Os
1632 must be at the end of the TB */
1633 void cpu_io_recompile(CPUState
*cpu
, uintptr_t retaddr
)
1635 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1636 CPUArchState
*env
= cpu
->env_ptr
;
1638 TranslationBlock
*tb
;
1640 target_ulong pc
, cs_base
;
1643 tb
= tb_find_pc(retaddr
);
1645 cpu_abort(cpu
, "cpu_io_recompile: could not find TB for pc=%p",
1648 n
= cpu
->icount_decr
.u16
.low
+ tb
->icount
;
1649 cpu_restore_state_from_tb(cpu
, tb
, retaddr
);
1650 /* Calculate how many instructions had been executed before the fault
1652 n
= n
- cpu
->icount_decr
.u16
.low
;
1653 /* Generate a new TB ending on the I/O insn. */
1655 /* On MIPS and SH, delay slot instructions can only be restarted if
1656 they were already the first instruction in the TB. If this is not
1657 the first instruction in a TB then re-execute the preceding
1659 #if defined(TARGET_MIPS)
1660 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
1661 env
->active_tc
.PC
-= (env
->hflags
& MIPS_HFLAG_B16
? 2 : 4);
1662 cpu
->icount_decr
.u16
.low
++;
1663 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
1665 #elif defined(TARGET_SH4)
1666 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
1669 cpu
->icount_decr
.u16
.low
++;
1670 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
1673 /* This should never happen. */
1674 if (n
> CF_COUNT_MASK
) {
1675 cpu_abort(cpu
, "TB too big during recompile");
1678 cflags
= n
| CF_LAST_IO
;
1680 cs_base
= tb
->cs_base
;
1682 tb_phys_invalidate(tb
, -1);
1683 if (tb
->cflags
& CF_NOCACHE
) {
1685 /* Invalidate original TB if this TB was generated in
1686 * cpu_exec_nocache() */
1687 tb_phys_invalidate(tb
->orig_tb
, -1);
1691 /* FIXME: In theory this could raise an exception. In practice
1692 we have already translated the block once so it's probably ok. */
1693 tb_gen_code(cpu
, pc
, cs_base
, flags
, cflags
);
1694 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1695 the first in the TB) then we end up generating a whole new TB and
1696 repeating the fault, which is horribly inefficient.
1697 Better would be to execute just this insn uncached, or generate a
1699 cpu_loop_exit_noexc(cpu
);
1702 void tb_flush_jmp_cache(CPUState
*cpu
, target_ulong addr
)
1706 /* Discard jump cache entries for any tb which might potentially
1707 overlap the flushed page. */
1708 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1709 memset(&cpu
->tb_jmp_cache
[i
], 0,
1710 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1712 i
= tb_jmp_cache_hash_page(addr
);
1713 memset(&cpu
->tb_jmp_cache
[i
], 0,
1714 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1717 static void print_qht_statistics(FILE *f
, fprintf_function cpu_fprintf
,
1718 struct qht_stats hst
)
1720 uint32_t hgram_opts
;
1724 if (!hst
.head_buckets
) {
1727 cpu_fprintf(f
, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
1728 hst
.used_head_buckets
, hst
.head_buckets
,
1729 (double)hst
.used_head_buckets
/ hst
.head_buckets
* 100);
1731 hgram_opts
= QDIST_PR_BORDER
| QDIST_PR_LABELS
;
1732 hgram_opts
|= QDIST_PR_100X
| QDIST_PR_PERCENT
;
1733 if (qdist_xmax(&hst
.occupancy
) - qdist_xmin(&hst
.occupancy
) == 1) {
1734 hgram_opts
|= QDIST_PR_NODECIMAL
;
1736 hgram
= qdist_pr(&hst
.occupancy
, 10, hgram_opts
);
1737 cpu_fprintf(f
, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
1738 qdist_avg(&hst
.occupancy
) * 100, hgram
);
1741 hgram_opts
= QDIST_PR_BORDER
| QDIST_PR_LABELS
;
1742 hgram_bins
= qdist_xmax(&hst
.chain
) - qdist_xmin(&hst
.chain
);
1743 if (hgram_bins
> 10) {
1747 hgram_opts
|= QDIST_PR_NODECIMAL
| QDIST_PR_NOBINRANGE
;
1749 hgram
= qdist_pr(&hst
.chain
, hgram_bins
, hgram_opts
);
1750 cpu_fprintf(f
, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
1751 qdist_avg(&hst
.chain
), hgram
);
1755 void dump_exec_info(FILE *f
, fprintf_function cpu_fprintf
)
1757 int i
, target_code_size
, max_target_code_size
;
1758 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
1759 TranslationBlock
*tb
;
1760 struct qht_stats hst
;
1762 target_code_size
= 0;
1763 max_target_code_size
= 0;
1765 direct_jmp_count
= 0;
1766 direct_jmp2_count
= 0;
1767 for (i
= 0; i
< tcg_ctx
.tb_ctx
.nb_tbs
; i
++) {
1768 tb
= &tcg_ctx
.tb_ctx
.tbs
[i
];
1769 target_code_size
+= tb
->size
;
1770 if (tb
->size
> max_target_code_size
) {
1771 max_target_code_size
= tb
->size
;
1773 if (tb
->page_addr
[1] != -1) {
1776 if (tb
->jmp_reset_offset
[0] != TB_JMP_RESET_OFFSET_INVALID
) {
1778 if (tb
->jmp_reset_offset
[1] != TB_JMP_RESET_OFFSET_INVALID
) {
1779 direct_jmp2_count
++;
1783 /* XXX: avoid using doubles ? */
1784 cpu_fprintf(f
, "Translation buffer state:\n");
1785 cpu_fprintf(f
, "gen code size %td/%zd\n",
1786 tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
,
1787 tcg_ctx
.code_gen_highwater
- tcg_ctx
.code_gen_buffer
);
1788 cpu_fprintf(f
, "TB count %d/%d\n",
1789 tcg_ctx
.tb_ctx
.nb_tbs
, tcg_ctx
.code_gen_max_blocks
);
1790 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
1791 tcg_ctx
.tb_ctx
.nb_tbs
? target_code_size
/
1792 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1793 max_target_code_size
);
1794 cpu_fprintf(f
, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1795 tcg_ctx
.tb_ctx
.nb_tbs
? (tcg_ctx
.code_gen_ptr
-
1796 tcg_ctx
.code_gen_buffer
) /
1797 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1798 target_code_size
? (double) (tcg_ctx
.code_gen_ptr
-
1799 tcg_ctx
.code_gen_buffer
) /
1800 target_code_size
: 0);
1801 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n", cross_page
,
1802 tcg_ctx
.tb_ctx
.nb_tbs
? (cross_page
* 100) /
1803 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
1804 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1806 tcg_ctx
.tb_ctx
.nb_tbs
? (direct_jmp_count
* 100) /
1807 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1809 tcg_ctx
.tb_ctx
.nb_tbs
? (direct_jmp2_count
* 100) /
1810 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
1812 qht_statistics_init(&tcg_ctx
.tb_ctx
.htable
, &hst
);
1813 print_qht_statistics(f
, cpu_fprintf
, hst
);
1814 qht_statistics_destroy(&hst
);
1816 cpu_fprintf(f
, "\nStatistics:\n");
1817 cpu_fprintf(f
, "TB flush count %u\n",
1818 atomic_read(&tcg_ctx
.tb_ctx
.tb_flush_count
));
1819 cpu_fprintf(f
, "TB invalidate count %d\n",
1820 tcg_ctx
.tb_ctx
.tb_phys_invalidate_count
);
1821 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
1822 tcg_dump_info(f
, cpu_fprintf
);
1825 void dump_opcount_info(FILE *f
, fprintf_function cpu_fprintf
)
1827 tcg_dump_op_count(f
, cpu_fprintf
);
1830 #else /* CONFIG_USER_ONLY */
1832 void cpu_interrupt(CPUState
*cpu
, int mask
)
1834 cpu
->interrupt_request
|= mask
;
1835 cpu
->tcg_exit_req
= 1;
1839 * Walks guest process memory "regions" one by one
1840 * and calls callback function 'fn' for each region.
1842 struct walk_memory_regions_data
{
1843 walk_memory_regions_fn fn
;
1849 static int walk_memory_regions_end(struct walk_memory_regions_data
*data
,
1850 target_ulong end
, int new_prot
)
1852 if (data
->start
!= -1u) {
1853 int rc
= data
->fn(data
->priv
, data
->start
, end
, data
->prot
);
1859 data
->start
= (new_prot
? end
: -1u);
1860 data
->prot
= new_prot
;
1865 static int walk_memory_regions_1(struct walk_memory_regions_data
*data
,
1866 target_ulong base
, int level
, void **lp
)
1872 return walk_memory_regions_end(data
, base
, 0);
1878 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
1879 int prot
= pd
[i
].flags
;
1881 pa
= base
| (i
<< TARGET_PAGE_BITS
);
1882 if (prot
!= data
->prot
) {
1883 rc
= walk_memory_regions_end(data
, pa
, prot
);
1892 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
1893 pa
= base
| ((target_ulong
)i
<<
1894 (TARGET_PAGE_BITS
+ V_L2_BITS
* level
));
1895 rc
= walk_memory_regions_1(data
, pa
, level
- 1, pp
+ i
);
1905 int walk_memory_regions(void *priv
, walk_memory_regions_fn fn
)
1907 struct walk_memory_regions_data data
;
1908 uintptr_t i
, l1_sz
= v_l1_size
;
1915 for (i
= 0; i
< l1_sz
; i
++) {
1916 target_ulong base
= i
<< (v_l1_shift
+ TARGET_PAGE_BITS
);
1917 int rc
= walk_memory_regions_1(&data
, base
, v_l2_levels
, l1_map
+ i
);
1923 return walk_memory_regions_end(&data
, 0, 0);
1926 static int dump_region(void *priv
, target_ulong start
,
1927 target_ulong end
, unsigned long prot
)
1929 FILE *f
= (FILE *)priv
;
1931 (void) fprintf(f
, TARGET_FMT_lx
"-"TARGET_FMT_lx
1932 " "TARGET_FMT_lx
" %c%c%c\n",
1933 start
, end
, end
- start
,
1934 ((prot
& PAGE_READ
) ? 'r' : '-'),
1935 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
1936 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
1941 /* dump memory mappings */
1942 void page_dump(FILE *f
)
1944 const int length
= sizeof(target_ulong
) * 2;
1945 (void) fprintf(f
, "%-*s %-*s %-*s %s\n",
1946 length
, "start", length
, "end", length
, "size", "prot");
1947 walk_memory_regions(f
, dump_region
);
1950 int page_get_flags(target_ulong address
)
1954 p
= page_find(address
>> TARGET_PAGE_BITS
);
1961 /* Modify the flags of a page and invalidate the code if necessary.
1962 The flag PAGE_WRITE_ORG is positioned automatically depending
1963 on PAGE_WRITE. The mmap_lock should already be held. */
1964 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
1966 target_ulong addr
, len
;
1968 /* This function should never be called with addresses outside the
1969 guest address space. If this assert fires, it probably indicates
1970 a missing call to h2g_valid. */
1971 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1972 assert(end
< ((target_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
1974 assert(start
< end
);
1976 start
= start
& TARGET_PAGE_MASK
;
1977 end
= TARGET_PAGE_ALIGN(end
);
1979 if (flags
& PAGE_WRITE
) {
1980 flags
|= PAGE_WRITE_ORG
;
1983 for (addr
= start
, len
= end
- start
;
1985 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
1986 PageDesc
*p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
1988 /* If the write protection bit is set, then we invalidate
1990 if (!(p
->flags
& PAGE_WRITE
) &&
1991 (flags
& PAGE_WRITE
) &&
1993 tb_invalidate_phys_page(addr
, 0);
1999 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2005 /* This function should never be called with addresses outside the
2006 guest address space. If this assert fires, it probably indicates
2007 a missing call to h2g_valid. */
2008 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2009 assert(start
< ((target_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2015 if (start
+ len
- 1 < start
) {
2016 /* We've wrapped around. */
2020 /* must do before we loose bits in the next step */
2021 end
= TARGET_PAGE_ALIGN(start
+ len
);
2022 start
= start
& TARGET_PAGE_MASK
;
2024 for (addr
= start
, len
= end
- start
;
2026 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2027 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2031 if (!(p
->flags
& PAGE_VALID
)) {
2035 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
)) {
2038 if (flags
& PAGE_WRITE
) {
2039 if (!(p
->flags
& PAGE_WRITE_ORG
)) {
2042 /* unprotect the page if it was put read-only because it
2043 contains translated code */
2044 if (!(p
->flags
& PAGE_WRITE
)) {
2045 if (!page_unprotect(addr
, 0)) {
2054 /* called from signal handler: invalidate the code and unprotect the
2055 * page. Return 0 if the fault was not handled, 1 if it was handled,
2056 * and 2 if it was handled but the caller must cause the TB to be
2057 * immediately exited. (We can only return 2 if the 'pc' argument is
2060 int page_unprotect(target_ulong address
, uintptr_t pc
)
2063 bool current_tb_invalidated
;
2065 target_ulong host_start
, host_end
, addr
;
2067 /* Technically this isn't safe inside a signal handler. However we
2068 know this only ever happens in a synchronous SEGV handler, so in
2069 practice it seems to be ok. */
2072 p
= page_find(address
>> TARGET_PAGE_BITS
);
2078 /* if the page was really writable, then we change its
2079 protection back to writable */
2080 if ((p
->flags
& PAGE_WRITE_ORG
) && !(p
->flags
& PAGE_WRITE
)) {
2081 host_start
= address
& qemu_host_page_mask
;
2082 host_end
= host_start
+ qemu_host_page_size
;
2085 current_tb_invalidated
= false;
2086 for (addr
= host_start
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2087 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2088 p
->flags
|= PAGE_WRITE
;
2091 /* and since the content will be modified, we must invalidate
2092 the corresponding translated code. */
2093 current_tb_invalidated
|= tb_invalidate_phys_page(addr
, pc
);
2094 #ifdef DEBUG_TB_CHECK
2095 tb_invalidate_check(addr
);
2098 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2102 /* If current TB was invalidated return to main loop */
2103 return current_tb_invalidated
? 2 : 1;
2108 #endif /* CONFIG_USER_ONLY */