target-arm: Add TLBI_VAE2{IS}
[qemu.git] / target-arm / helper.c
blob7214d99b39321fad321cb4cd69b9d6340bfeef73
1 #include "cpu.h"
2 #include "internals.h"
3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
11 #include "arm_ldst.h"
12 #include <zlib.h> /* For crc32 */
14 #ifndef CONFIG_USER_ONLY
15 static inline int get_phys_addr(CPUARMState *env, target_ulong address,
16 int access_type, ARMMMUIdx mmu_idx,
17 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
18 target_ulong *page_size);
20 /* Definitions for the PMCCNTR and PMCR registers */
21 #define PMCRD 0x8
22 #define PMCRC 0x4
23 #define PMCRE 0x1
24 #endif
26 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
28 int nregs;
30 /* VFP data registers are always little-endian. */
31 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
32 if (reg < nregs) {
33 stfq_le_p(buf, env->vfp.regs[reg]);
34 return 8;
36 if (arm_feature(env, ARM_FEATURE_NEON)) {
37 /* Aliases for Q regs. */
38 nregs += 16;
39 if (reg < nregs) {
40 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
41 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
42 return 16;
45 switch (reg - nregs) {
46 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
47 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
48 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
50 return 0;
53 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
55 int nregs;
57 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
58 if (reg < nregs) {
59 env->vfp.regs[reg] = ldfq_le_p(buf);
60 return 8;
62 if (arm_feature(env, ARM_FEATURE_NEON)) {
63 nregs += 16;
64 if (reg < nregs) {
65 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
66 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
67 return 16;
70 switch (reg - nregs) {
71 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
72 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
73 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
75 return 0;
78 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
80 switch (reg) {
81 case 0 ... 31:
82 /* 128 bit FP register */
83 stfq_le_p(buf, env->vfp.regs[reg * 2]);
84 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
85 return 16;
86 case 32:
87 /* FPSR */
88 stl_p(buf, vfp_get_fpsr(env));
89 return 4;
90 case 33:
91 /* FPCR */
92 stl_p(buf, vfp_get_fpcr(env));
93 return 4;
94 default:
95 return 0;
99 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
101 switch (reg) {
102 case 0 ... 31:
103 /* 128 bit FP register */
104 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
105 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
106 return 16;
107 case 32:
108 /* FPSR */
109 vfp_set_fpsr(env, ldl_p(buf));
110 return 4;
111 case 33:
112 /* FPCR */
113 vfp_set_fpcr(env, ldl_p(buf));
114 return 4;
115 default:
116 return 0;
120 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
122 assert(ri->fieldoffset);
123 if (cpreg_field_is_64bit(ri)) {
124 return CPREG_FIELD64(env, ri);
125 } else {
126 return CPREG_FIELD32(env, ri);
130 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
131 uint64_t value)
133 assert(ri->fieldoffset);
134 if (cpreg_field_is_64bit(ri)) {
135 CPREG_FIELD64(env, ri) = value;
136 } else {
137 CPREG_FIELD32(env, ri) = value;
141 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
143 return (char *)env + ri->fieldoffset;
146 static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
148 /* Raw read of a coprocessor register (as needed for migration, etc). */
149 if (ri->type & ARM_CP_CONST) {
150 return ri->resetvalue;
151 } else if (ri->raw_readfn) {
152 return ri->raw_readfn(env, ri);
153 } else if (ri->readfn) {
154 return ri->readfn(env, ri);
155 } else {
156 return raw_read(env, ri);
160 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
161 uint64_t v)
163 /* Raw write of a coprocessor register (as needed for migration, etc).
164 * Note that constant registers are treated as write-ignored; the
165 * caller should check for success by whether a readback gives the
166 * value written.
168 if (ri->type & ARM_CP_CONST) {
169 return;
170 } else if (ri->raw_writefn) {
171 ri->raw_writefn(env, ri, v);
172 } else if (ri->writefn) {
173 ri->writefn(env, ri, v);
174 } else {
175 raw_write(env, ri, v);
179 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
181 /* Return true if the regdef would cause an assertion if you called
182 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
183 * program bug for it not to have the NO_RAW flag).
184 * NB that returning false here doesn't necessarily mean that calling
185 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
186 * read/write access functions which are safe for raw use" from "has
187 * read/write access functions which have side effects but has forgotten
188 * to provide raw access functions".
189 * The tests here line up with the conditions in read/write_raw_cp_reg()
190 * and assertions in raw_read()/raw_write().
192 if ((ri->type & ARM_CP_CONST) ||
193 ri->fieldoffset ||
194 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
195 return false;
197 return true;
200 bool write_cpustate_to_list(ARMCPU *cpu)
202 /* Write the coprocessor state from cpu->env to the (index,value) list. */
203 int i;
204 bool ok = true;
206 for (i = 0; i < cpu->cpreg_array_len; i++) {
207 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
208 const ARMCPRegInfo *ri;
210 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
211 if (!ri) {
212 ok = false;
213 continue;
215 if (ri->type & ARM_CP_NO_RAW) {
216 continue;
218 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
220 return ok;
223 bool write_list_to_cpustate(ARMCPU *cpu)
225 int i;
226 bool ok = true;
228 for (i = 0; i < cpu->cpreg_array_len; i++) {
229 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
230 uint64_t v = cpu->cpreg_values[i];
231 const ARMCPRegInfo *ri;
233 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
234 if (!ri) {
235 ok = false;
236 continue;
238 if (ri->type & ARM_CP_NO_RAW) {
239 continue;
241 /* Write value and confirm it reads back as written
242 * (to catch read-only registers and partially read-only
243 * registers where the incoming migration value doesn't match)
245 write_raw_cp_reg(&cpu->env, ri, v);
246 if (read_raw_cp_reg(&cpu->env, ri) != v) {
247 ok = false;
250 return ok;
253 static void add_cpreg_to_list(gpointer key, gpointer opaque)
255 ARMCPU *cpu = opaque;
256 uint64_t regidx;
257 const ARMCPRegInfo *ri;
259 regidx = *(uint32_t *)key;
260 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
262 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
263 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
264 /* The value array need not be initialized at this point */
265 cpu->cpreg_array_len++;
269 static void count_cpreg(gpointer key, gpointer opaque)
271 ARMCPU *cpu = opaque;
272 uint64_t regidx;
273 const ARMCPRegInfo *ri;
275 regidx = *(uint32_t *)key;
276 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
278 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
279 cpu->cpreg_array_len++;
283 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
285 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
286 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
288 if (aidx > bidx) {
289 return 1;
291 if (aidx < bidx) {
292 return -1;
294 return 0;
297 static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
299 GList **plist = udata;
301 *plist = g_list_prepend(*plist, key);
304 void init_cpreg_list(ARMCPU *cpu)
306 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
307 * Note that we require cpreg_tuples[] to be sorted by key ID.
309 GList *keys = NULL;
310 int arraylen;
312 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
314 keys = g_list_sort(keys, cpreg_key_compare);
316 cpu->cpreg_array_len = 0;
318 g_list_foreach(keys, count_cpreg, cpu);
320 arraylen = cpu->cpreg_array_len;
321 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
322 cpu->cpreg_values = g_new(uint64_t, arraylen);
323 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
324 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
325 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
326 cpu->cpreg_array_len = 0;
328 g_list_foreach(keys, add_cpreg_to_list, cpu);
330 assert(cpu->cpreg_array_len == arraylen);
332 g_list_free(keys);
335 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
337 ARMCPU *cpu = arm_env_get_cpu(env);
339 raw_write(env, ri, value);
340 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
343 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
345 ARMCPU *cpu = arm_env_get_cpu(env);
347 if (raw_read(env, ri) != value) {
348 /* Unlike real hardware the qemu TLB uses virtual addresses,
349 * not modified virtual addresses, so this causes a TLB flush.
351 tlb_flush(CPU(cpu), 1);
352 raw_write(env, ri, value);
356 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
357 uint64_t value)
359 ARMCPU *cpu = arm_env_get_cpu(env);
361 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
362 && !extended_addresses_enabled(env)) {
363 /* For VMSA (when not using the LPAE long descriptor page table
364 * format) this register includes the ASID, so do a TLB flush.
365 * For PMSA it is purely a process ID and no action is needed.
367 tlb_flush(CPU(cpu), 1);
369 raw_write(env, ri, value);
372 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
373 uint64_t value)
375 /* Invalidate all (TLBIALL) */
376 ARMCPU *cpu = arm_env_get_cpu(env);
378 tlb_flush(CPU(cpu), 1);
381 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
382 uint64_t value)
384 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
385 ARMCPU *cpu = arm_env_get_cpu(env);
387 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
390 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
391 uint64_t value)
393 /* Invalidate by ASID (TLBIASID) */
394 ARMCPU *cpu = arm_env_get_cpu(env);
396 tlb_flush(CPU(cpu), value == 0);
399 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
400 uint64_t value)
402 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
403 ARMCPU *cpu = arm_env_get_cpu(env);
405 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
408 /* IS variants of TLB operations must affect all cores */
409 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
410 uint64_t value)
412 CPUState *other_cs;
414 CPU_FOREACH(other_cs) {
415 tlb_flush(other_cs, 1);
419 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
420 uint64_t value)
422 CPUState *other_cs;
424 CPU_FOREACH(other_cs) {
425 tlb_flush(other_cs, value == 0);
429 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
430 uint64_t value)
432 CPUState *other_cs;
434 CPU_FOREACH(other_cs) {
435 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
439 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
440 uint64_t value)
442 CPUState *other_cs;
444 CPU_FOREACH(other_cs) {
445 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
449 static const ARMCPRegInfo cp_reginfo[] = {
450 /* Define the secure and non-secure FCSE identifier CP registers
451 * separately because there is no secure bank in V8 (no _EL3). This allows
452 * the secure register to be properly reset and migrated. There is also no
453 * v8 EL1 version of the register so the non-secure instance stands alone.
455 { .name = "FCSEIDR(NS)",
456 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
457 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
458 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
459 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
460 { .name = "FCSEIDR(S)",
461 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
462 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
463 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
464 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
465 /* Define the secure and non-secure context identifier CP registers
466 * separately because there is no secure bank in V8 (no _EL3). This allows
467 * the secure register to be properly reset and migrated. In the
468 * non-secure case, the 32-bit register will have reset and migration
469 * disabled during registration as it is handled by the 64-bit instance.
471 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
472 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
473 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
474 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
475 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
476 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
477 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
478 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
479 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
480 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
481 REGINFO_SENTINEL
484 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
485 /* NB: Some of these registers exist in v8 but with more precise
486 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
488 /* MMU Domain access control / MPU write buffer control */
489 { .name = "DACR",
490 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
491 .access = PL1_RW, .resetvalue = 0,
492 .writefn = dacr_write, .raw_writefn = raw_write,
493 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
494 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
495 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
496 * For v6 and v5, these mappings are overly broad.
498 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
499 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
500 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
501 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
502 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
503 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
504 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
505 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
506 /* Cache maintenance ops; some of this space may be overridden later. */
507 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
508 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
509 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
510 REGINFO_SENTINEL
513 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
514 /* Not all pre-v6 cores implemented this WFI, so this is slightly
515 * over-broad.
517 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
518 .access = PL1_W, .type = ARM_CP_WFI },
519 REGINFO_SENTINEL
522 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
523 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
524 * is UNPREDICTABLE; we choose to NOP as most implementations do).
526 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
527 .access = PL1_W, .type = ARM_CP_WFI },
528 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
529 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
530 * OMAPCP will override this space.
532 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
533 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
534 .resetvalue = 0 },
535 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
536 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
537 .resetvalue = 0 },
538 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
539 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
540 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
541 .resetvalue = 0 },
542 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
543 * implementing it as RAZ means the "debug architecture version" bits
544 * will read as a reserved value, which should cause Linux to not try
545 * to use the debug hardware.
547 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
548 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
549 /* MMU TLB control. Note that the wildcarding means we cover not just
550 * the unified TLB ops but also the dside/iside/inner-shareable variants.
552 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
553 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
554 .type = ARM_CP_NO_RAW },
555 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
556 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
557 .type = ARM_CP_NO_RAW },
558 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
559 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
560 .type = ARM_CP_NO_RAW },
561 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
562 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
563 .type = ARM_CP_NO_RAW },
564 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
565 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
566 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
567 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
568 REGINFO_SENTINEL
571 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
572 uint64_t value)
574 uint32_t mask = 0;
576 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
577 if (!arm_feature(env, ARM_FEATURE_V8)) {
578 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
579 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
580 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
582 if (arm_feature(env, ARM_FEATURE_VFP)) {
583 /* VFP coprocessor: cp10 & cp11 [23:20] */
584 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
586 if (!arm_feature(env, ARM_FEATURE_NEON)) {
587 /* ASEDIS [31] bit is RAO/WI */
588 value |= (1 << 31);
591 /* VFPv3 and upwards with NEON implement 32 double precision
592 * registers (D0-D31).
594 if (!arm_feature(env, ARM_FEATURE_NEON) ||
595 !arm_feature(env, ARM_FEATURE_VFP3)) {
596 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
597 value |= (1 << 30);
600 value &= mask;
602 env->cp15.cpacr_el1 = value;
605 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri)
607 if (arm_feature(env, ARM_FEATURE_V8)) {
608 /* Check if CPACR accesses are to be trapped to EL2 */
609 if (arm_current_el(env) == 1 &&
610 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
611 return CP_ACCESS_TRAP_EL2;
612 /* Check if CPACR accesses are to be trapped to EL3 */
613 } else if (arm_current_el(env) < 3 &&
614 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
615 return CP_ACCESS_TRAP_EL3;
619 return CP_ACCESS_OK;
622 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri)
624 /* Check if CPTR accesses are set to trap to EL3 */
625 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
626 return CP_ACCESS_TRAP_EL3;
629 return CP_ACCESS_OK;
632 static const ARMCPRegInfo v6_cp_reginfo[] = {
633 /* prefetch by MVA in v6, NOP in v7 */
634 { .name = "MVA_prefetch",
635 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
636 .access = PL1_W, .type = ARM_CP_NOP },
637 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
638 .access = PL0_W, .type = ARM_CP_NOP },
639 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
640 .access = PL0_W, .type = ARM_CP_NOP },
641 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
642 .access = PL0_W, .type = ARM_CP_NOP },
643 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
644 .access = PL1_RW,
645 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
646 offsetof(CPUARMState, cp15.ifar_ns) },
647 .resetvalue = 0, },
648 /* Watchpoint Fault Address Register : should actually only be present
649 * for 1136, 1176, 11MPCore.
651 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
652 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
653 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
654 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
655 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
656 .resetvalue = 0, .writefn = cpacr_write },
657 REGINFO_SENTINEL
660 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
662 /* Performance monitor registers user accessibility is controlled
663 * by PMUSERENR.
665 if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
666 return CP_ACCESS_TRAP;
668 return CP_ACCESS_OK;
671 #ifndef CONFIG_USER_ONLY
673 static inline bool arm_ccnt_enabled(CPUARMState *env)
675 /* This does not support checking PMCCFILTR_EL0 register */
677 if (!(env->cp15.c9_pmcr & PMCRE)) {
678 return false;
681 return true;
684 void pmccntr_sync(CPUARMState *env)
686 uint64_t temp_ticks;
688 temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
689 get_ticks_per_sec(), 1000000);
691 if (env->cp15.c9_pmcr & PMCRD) {
692 /* Increment once every 64 processor clock cycles */
693 temp_ticks /= 64;
696 if (arm_ccnt_enabled(env)) {
697 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
701 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
702 uint64_t value)
704 pmccntr_sync(env);
706 if (value & PMCRC) {
707 /* The counter has been reset */
708 env->cp15.c15_ccnt = 0;
711 /* only the DP, X, D and E bits are writable */
712 env->cp15.c9_pmcr &= ~0x39;
713 env->cp15.c9_pmcr |= (value & 0x39);
715 pmccntr_sync(env);
718 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
720 uint64_t total_ticks;
722 if (!arm_ccnt_enabled(env)) {
723 /* Counter is disabled, do not change value */
724 return env->cp15.c15_ccnt;
727 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
728 get_ticks_per_sec(), 1000000);
730 if (env->cp15.c9_pmcr & PMCRD) {
731 /* Increment once every 64 processor clock cycles */
732 total_ticks /= 64;
734 return total_ticks - env->cp15.c15_ccnt;
737 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
738 uint64_t value)
740 uint64_t total_ticks;
742 if (!arm_ccnt_enabled(env)) {
743 /* Counter is disabled, set the absolute value */
744 env->cp15.c15_ccnt = value;
745 return;
748 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
749 get_ticks_per_sec(), 1000000);
751 if (env->cp15.c9_pmcr & PMCRD) {
752 /* Increment once every 64 processor clock cycles */
753 total_ticks /= 64;
755 env->cp15.c15_ccnt = total_ticks - value;
758 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
759 uint64_t value)
761 uint64_t cur_val = pmccntr_read(env, NULL);
763 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
766 #else /* CONFIG_USER_ONLY */
768 void pmccntr_sync(CPUARMState *env)
772 #endif
774 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
775 uint64_t value)
777 pmccntr_sync(env);
778 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
779 pmccntr_sync(env);
782 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
783 uint64_t value)
785 value &= (1 << 31);
786 env->cp15.c9_pmcnten |= value;
789 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
790 uint64_t value)
792 value &= (1 << 31);
793 env->cp15.c9_pmcnten &= ~value;
796 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
797 uint64_t value)
799 env->cp15.c9_pmovsr &= ~value;
802 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
803 uint64_t value)
805 env->cp15.c9_pmxevtyper = value & 0xff;
808 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
809 uint64_t value)
811 env->cp15.c9_pmuserenr = value & 1;
814 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
815 uint64_t value)
817 /* We have no event counters so only the C bit can be changed */
818 value &= (1 << 31);
819 env->cp15.c9_pminten |= value;
822 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
823 uint64_t value)
825 value &= (1 << 31);
826 env->cp15.c9_pminten &= ~value;
829 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
830 uint64_t value)
832 /* Note that even though the AArch64 view of this register has bits
833 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
834 * architectural requirements for bits which are RES0 only in some
835 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
836 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
838 raw_write(env, ri, value & ~0x1FULL);
841 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
843 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
844 * For bits that vary between AArch32/64, code needs to check the
845 * current execution mode before directly using the feature bit.
847 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
849 if (!arm_feature(env, ARM_FEATURE_EL2)) {
850 valid_mask &= ~SCR_HCE;
852 /* On ARMv7, SMD (or SCD as it is called in v7) is only
853 * supported if EL2 exists. The bit is UNK/SBZP when
854 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
855 * when EL2 is unavailable.
856 * On ARMv8, this bit is always available.
858 if (arm_feature(env, ARM_FEATURE_V7) &&
859 !arm_feature(env, ARM_FEATURE_V8)) {
860 valid_mask &= ~SCR_SMD;
864 /* Clear all-context RES0 bits. */
865 value &= valid_mask;
866 raw_write(env, ri, value);
869 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
871 ARMCPU *cpu = arm_env_get_cpu(env);
873 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
874 * bank
876 uint32_t index = A32_BANKED_REG_GET(env, csselr,
877 ri->secure & ARM_CP_SECSTATE_S);
879 return cpu->ccsidr[index];
882 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
883 uint64_t value)
885 raw_write(env, ri, value & 0xf);
888 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
890 CPUState *cs = ENV_GET_CPU(env);
891 uint64_t ret = 0;
893 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
894 ret |= CPSR_I;
896 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
897 ret |= CPSR_F;
899 /* External aborts are not possible in QEMU so A bit is always clear */
900 return ret;
903 static const ARMCPRegInfo v7_cp_reginfo[] = {
904 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
905 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
906 .access = PL1_W, .type = ARM_CP_NOP },
907 /* Performance monitors are implementation defined in v7,
908 * but with an ARM recommended set of registers, which we
909 * follow (although we don't actually implement any counters)
911 * Performance registers fall into three categories:
912 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
913 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
914 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
915 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
916 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
918 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
919 .access = PL0_RW, .type = ARM_CP_ALIAS,
920 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
921 .writefn = pmcntenset_write,
922 .accessfn = pmreg_access,
923 .raw_writefn = raw_write },
924 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
925 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
926 .access = PL0_RW, .accessfn = pmreg_access,
927 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
928 .writefn = pmcntenset_write, .raw_writefn = raw_write },
929 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
930 .access = PL0_RW,
931 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
932 .accessfn = pmreg_access,
933 .writefn = pmcntenclr_write,
934 .type = ARM_CP_ALIAS },
935 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
936 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
937 .access = PL0_RW, .accessfn = pmreg_access,
938 .type = ARM_CP_ALIAS,
939 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
940 .writefn = pmcntenclr_write },
941 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
942 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
943 .accessfn = pmreg_access,
944 .writefn = pmovsr_write,
945 .raw_writefn = raw_write },
946 /* Unimplemented so WI. */
947 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
948 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
949 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
950 * We choose to RAZ/WI.
952 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
953 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
954 .accessfn = pmreg_access },
955 #ifndef CONFIG_USER_ONLY
956 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
957 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
958 .readfn = pmccntr_read, .writefn = pmccntr_write32,
959 .accessfn = pmreg_access },
960 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
961 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
962 .access = PL0_RW, .accessfn = pmreg_access,
963 .type = ARM_CP_IO,
964 .readfn = pmccntr_read, .writefn = pmccntr_write, },
965 #endif
966 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
967 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
968 .writefn = pmccfiltr_write,
969 .access = PL0_RW, .accessfn = pmreg_access,
970 .type = ARM_CP_IO,
971 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
972 .resetvalue = 0, },
973 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
974 .access = PL0_RW,
975 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
976 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
977 .raw_writefn = raw_write },
978 /* Unimplemented, RAZ/WI. */
979 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
980 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
981 .accessfn = pmreg_access },
982 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
983 .access = PL0_R | PL1_RW,
984 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
985 .resetvalue = 0,
986 .writefn = pmuserenr_write, .raw_writefn = raw_write },
987 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
988 .access = PL1_RW,
989 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
990 .resetvalue = 0,
991 .writefn = pmintenset_write, .raw_writefn = raw_write },
992 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
993 .access = PL1_RW, .type = ARM_CP_ALIAS,
994 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
995 .resetvalue = 0, .writefn = pmintenclr_write, },
996 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
997 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
998 .access = PL1_RW, .writefn = vbar_write,
999 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
1000 offsetof(CPUARMState, cp15.vbar_ns) },
1001 .resetvalue = 0 },
1002 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1003 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1004 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1005 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1006 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1007 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1008 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1009 offsetof(CPUARMState, cp15.csselr_ns) } },
1010 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1011 * just RAZ for all cores:
1013 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1014 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1015 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1016 /* Auxiliary fault status registers: these also are IMPDEF, and we
1017 * choose to RAZ/WI for all cores.
1019 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1020 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1021 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1022 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1023 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1024 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1025 /* MAIR can just read-as-written because we don't implement caches
1026 * and so don't need to care about memory attributes.
1028 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1029 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1030 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1031 .resetvalue = 0 },
1032 /* For non-long-descriptor page tables these are PRRR and NMRR;
1033 * regardless they still act as reads-as-written for QEMU.
1035 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1036 * allows them to assign the correct fieldoffset based on the endianness
1037 * handled in the field definitions.
1039 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1040 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1041 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1042 offsetof(CPUARMState, cp15.mair0_ns) },
1043 .resetfn = arm_cp_reset_ignore },
1044 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1045 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1046 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1047 offsetof(CPUARMState, cp15.mair1_ns) },
1048 .resetfn = arm_cp_reset_ignore },
1049 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1050 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1051 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1052 /* 32 bit ITLB invalidates */
1053 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1054 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1055 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1056 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1057 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1058 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1059 /* 32 bit DTLB invalidates */
1060 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1061 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1062 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1063 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1064 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1065 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1066 /* 32 bit TLB invalidates */
1067 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1068 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1069 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1070 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1071 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1072 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1073 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1074 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1075 REGINFO_SENTINEL
1078 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1079 /* 32 bit TLB invalidates, Inner Shareable */
1080 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1081 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1082 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1083 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1084 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1085 .type = ARM_CP_NO_RAW, .access = PL1_W,
1086 .writefn = tlbiasid_is_write },
1087 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1088 .type = ARM_CP_NO_RAW, .access = PL1_W,
1089 .writefn = tlbimvaa_is_write },
1090 REGINFO_SENTINEL
1093 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1094 uint64_t value)
1096 value &= 1;
1097 env->teecr = value;
1100 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
1102 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1103 return CP_ACCESS_TRAP;
1105 return CP_ACCESS_OK;
1108 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1109 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1110 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1111 .resetvalue = 0,
1112 .writefn = teecr_write },
1113 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1114 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1115 .accessfn = teehbr_access, .resetvalue = 0 },
1116 REGINFO_SENTINEL
1119 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1120 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1121 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1122 .access = PL0_RW,
1123 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1124 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1125 .access = PL0_RW,
1126 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1127 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1128 .resetfn = arm_cp_reset_ignore },
1129 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1130 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1131 .access = PL0_R|PL1_W,
1132 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1133 .resetvalue = 0},
1134 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1135 .access = PL0_R|PL1_W,
1136 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1137 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1138 .resetfn = arm_cp_reset_ignore },
1139 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1140 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1141 .access = PL1_RW,
1142 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1143 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1144 .access = PL1_RW,
1145 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1146 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1147 .resetvalue = 0 },
1148 REGINFO_SENTINEL
1151 #ifndef CONFIG_USER_ONLY
1153 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
1155 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1156 if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
1157 return CP_ACCESS_TRAP;
1159 return CP_ACCESS_OK;
1162 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
1164 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1165 if (arm_current_el(env) == 0 &&
1166 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1167 return CP_ACCESS_TRAP;
1169 return CP_ACCESS_OK;
1172 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
1174 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1175 * EL0[PV]TEN is zero.
1177 if (arm_current_el(env) == 0 &&
1178 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1179 return CP_ACCESS_TRAP;
1181 return CP_ACCESS_OK;
1184 static CPAccessResult gt_pct_access(CPUARMState *env,
1185 const ARMCPRegInfo *ri)
1187 return gt_counter_access(env, GTIMER_PHYS);
1190 static CPAccessResult gt_vct_access(CPUARMState *env,
1191 const ARMCPRegInfo *ri)
1193 return gt_counter_access(env, GTIMER_VIRT);
1196 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1198 return gt_timer_access(env, GTIMER_PHYS);
1201 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1203 return gt_timer_access(env, GTIMER_VIRT);
1206 static uint64_t gt_get_countervalue(CPUARMState *env)
1208 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1211 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1213 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1215 if (gt->ctl & 1) {
1216 /* Timer enabled: calculate and set current ISTATUS, irq, and
1217 * reset timer to when ISTATUS next has to change
1219 uint64_t count = gt_get_countervalue(&cpu->env);
1220 /* Note that this must be unsigned 64 bit arithmetic: */
1221 int istatus = count >= gt->cval;
1222 uint64_t nexttick;
1224 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1225 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1226 (istatus && !(gt->ctl & 2)));
1227 if (istatus) {
1228 /* Next transition is when count rolls back over to zero */
1229 nexttick = UINT64_MAX;
1230 } else {
1231 /* Next transition is when we hit cval */
1232 nexttick = gt->cval;
1234 /* Note that the desired next expiry time might be beyond the
1235 * signed-64-bit range of a QEMUTimer -- in this case we just
1236 * set the timer for as far in the future as possible. When the
1237 * timer expires we will reset the timer for any remaining period.
1239 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1240 nexttick = INT64_MAX / GTIMER_SCALE;
1242 timer_mod(cpu->gt_timer[timeridx], nexttick);
1243 } else {
1244 /* Timer disabled: ISTATUS and timer output always clear */
1245 gt->ctl &= ~4;
1246 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1247 timer_del(cpu->gt_timer[timeridx]);
1251 static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1253 ARMCPU *cpu = arm_env_get_cpu(env);
1254 int timeridx = ri->opc1 & 1;
1256 timer_del(cpu->gt_timer[timeridx]);
1259 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1261 return gt_get_countervalue(env);
1264 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1265 uint64_t value)
1267 int timeridx = ri->opc1 & 1;
1269 env->cp15.c14_timer[timeridx].cval = value;
1270 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1273 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1275 int timeridx = ri->crm & 1;
1277 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1278 gt_get_countervalue(env));
1281 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1282 uint64_t value)
1284 int timeridx = ri->crm & 1;
1286 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
1287 sextract64(value, 0, 32);
1288 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1291 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1292 uint64_t value)
1294 ARMCPU *cpu = arm_env_get_cpu(env);
1295 int timeridx = ri->crm & 1;
1296 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1298 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1299 if ((oldval ^ value) & 1) {
1300 /* Enable toggled */
1301 gt_recalc_timer(cpu, timeridx);
1302 } else if ((oldval ^ value) & 2) {
1303 /* IMASK toggled: don't need to recalculate,
1304 * just set the interrupt line based on ISTATUS
1306 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1307 (oldval & 4) && !(value & 2));
1311 void arm_gt_ptimer_cb(void *opaque)
1313 ARMCPU *cpu = opaque;
1315 gt_recalc_timer(cpu, GTIMER_PHYS);
1318 void arm_gt_vtimer_cb(void *opaque)
1320 ARMCPU *cpu = opaque;
1322 gt_recalc_timer(cpu, GTIMER_VIRT);
1325 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1326 /* Note that CNTFRQ is purely reads-as-written for the benefit
1327 * of software; writing it doesn't actually change the timer frequency.
1328 * Our reset value matches the fixed frequency we implement the timer at.
1330 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1331 .type = ARM_CP_ALIAS,
1332 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1333 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1334 .resetfn = arm_cp_reset_ignore,
1336 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1337 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1338 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1339 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1340 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1342 /* overall control: mostly access permissions */
1343 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1344 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1345 .access = PL1_RW,
1346 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1347 .resetvalue = 0,
1349 /* per-timer control */
1350 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1351 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1352 .accessfn = gt_ptimer_access,
1353 .fieldoffset = offsetoflow32(CPUARMState,
1354 cp15.c14_timer[GTIMER_PHYS].ctl),
1355 .resetfn = arm_cp_reset_ignore,
1356 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1358 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1359 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1360 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1361 .accessfn = gt_ptimer_access,
1362 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1363 .resetvalue = 0,
1364 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1366 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1367 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1368 .accessfn = gt_vtimer_access,
1369 .fieldoffset = offsetoflow32(CPUARMState,
1370 cp15.c14_timer[GTIMER_VIRT].ctl),
1371 .resetfn = arm_cp_reset_ignore,
1372 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1374 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1375 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1376 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1377 .accessfn = gt_vtimer_access,
1378 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1379 .resetvalue = 0,
1380 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1382 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1383 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1384 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1385 .accessfn = gt_ptimer_access,
1386 .readfn = gt_tval_read, .writefn = gt_tval_write,
1388 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1389 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1390 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1391 .accessfn = gt_ptimer_access,
1392 .readfn = gt_tval_read, .writefn = gt_tval_write,
1394 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1395 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1396 .accessfn = gt_vtimer_access,
1397 .readfn = gt_tval_read, .writefn = gt_tval_write,
1399 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1400 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1401 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1402 .accessfn = gt_vtimer_access,
1403 .readfn = gt_tval_read, .writefn = gt_tval_write,
1405 /* The counter itself */
1406 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1407 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1408 .accessfn = gt_pct_access,
1409 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1411 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1412 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1413 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1414 .accessfn = gt_pct_access,
1415 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1417 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1418 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1419 .accessfn = gt_vct_access,
1420 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1422 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1423 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1424 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1425 .accessfn = gt_vct_access,
1426 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1428 /* Comparison value, indicating when the timer goes off */
1429 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1430 .access = PL1_RW | PL0_R,
1431 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1432 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1433 .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
1434 .writefn = gt_cval_write, .raw_writefn = raw_write,
1436 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1437 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1438 .access = PL1_RW | PL0_R,
1439 .type = ARM_CP_IO,
1440 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1441 .resetvalue = 0, .accessfn = gt_ptimer_access,
1442 .writefn = gt_cval_write, .raw_writefn = raw_write,
1444 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1445 .access = PL1_RW | PL0_R,
1446 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1447 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1448 .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
1449 .writefn = gt_cval_write, .raw_writefn = raw_write,
1451 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1452 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1453 .access = PL1_RW | PL0_R,
1454 .type = ARM_CP_IO,
1455 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1456 .resetvalue = 0, .accessfn = gt_vtimer_access,
1457 .writefn = gt_cval_write, .raw_writefn = raw_write,
1459 REGINFO_SENTINEL
1462 #else
1463 /* In user-mode none of the generic timer registers are accessible,
1464 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1465 * so instead just don't register any of them.
1467 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1468 REGINFO_SENTINEL
1471 #endif
1473 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1475 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1476 raw_write(env, ri, value);
1477 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1478 raw_write(env, ri, value & 0xfffff6ff);
1479 } else {
1480 raw_write(env, ri, value & 0xfffff1ff);
1484 #ifndef CONFIG_USER_ONLY
1485 /* get_phys_addr() isn't present for user-mode-only targets */
1487 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1489 if (ri->opc2 & 4) {
1490 /* Other states are only available with TrustZone; in
1491 * a non-TZ implementation these registers don't exist
1492 * at all, which is an Uncategorized trap. This underdecoding
1493 * is safe because the reginfo is NO_RAW.
1495 return CP_ACCESS_TRAP_UNCATEGORIZED;
1497 return CP_ACCESS_OK;
1500 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
1501 int access_type, ARMMMUIdx mmu_idx)
1503 hwaddr phys_addr;
1504 target_ulong page_size;
1505 int prot;
1506 int ret;
1507 uint64_t par64;
1508 MemTxAttrs attrs = {};
1510 ret = get_phys_addr(env, value, access_type, mmu_idx,
1511 &phys_addr, &attrs, &prot, &page_size);
1512 if (extended_addresses_enabled(env)) {
1513 /* ret is a DFSR/IFSR value for the long descriptor
1514 * translation table format, but with WnR always clear.
1515 * Convert it to a 64-bit PAR.
1517 par64 = (1 << 11); /* LPAE bit always set */
1518 if (ret == 0) {
1519 par64 |= phys_addr & ~0xfffULL;
1520 if (!attrs.secure) {
1521 par64 |= (1 << 9); /* NS */
1523 /* We don't set the ATTR or SH fields in the PAR. */
1524 } else {
1525 par64 |= 1; /* F */
1526 par64 |= (ret & 0x3f) << 1; /* FS */
1527 /* Note that S2WLK and FSTAGE are always zero, because we don't
1528 * implement virtualization and therefore there can't be a stage 2
1529 * fault.
1532 } else {
1533 /* ret is a DFSR/IFSR value for the short descriptor
1534 * translation table format (with WnR always clear).
1535 * Convert it to a 32-bit PAR.
1537 if (ret == 0) {
1538 /* We do not set any attribute bits in the PAR */
1539 if (page_size == (1 << 24)
1540 && arm_feature(env, ARM_FEATURE_V7)) {
1541 par64 = (phys_addr & 0xff000000) | (1 << 1);
1542 } else {
1543 par64 = phys_addr & 0xfffff000;
1545 if (!attrs.secure) {
1546 par64 |= (1 << 9); /* NS */
1548 } else {
1549 par64 = ((ret & (1 << 10)) >> 5) | ((ret & (1 << 12)) >> 6) |
1550 ((ret & 0xf) << 1) | 1;
1553 return par64;
1556 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1558 int access_type = ri->opc2 & 1;
1559 uint64_t par64;
1560 ARMMMUIdx mmu_idx;
1561 int el = arm_current_el(env);
1562 bool secure = arm_is_secure_below_el3(env);
1564 switch (ri->opc2 & 6) {
1565 case 0:
1566 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1567 switch (el) {
1568 case 3:
1569 mmu_idx = ARMMMUIdx_S1E3;
1570 break;
1571 case 2:
1572 mmu_idx = ARMMMUIdx_S1NSE1;
1573 break;
1574 case 1:
1575 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1576 break;
1577 default:
1578 g_assert_not_reached();
1580 break;
1581 case 2:
1582 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1583 switch (el) {
1584 case 3:
1585 mmu_idx = ARMMMUIdx_S1SE0;
1586 break;
1587 case 2:
1588 mmu_idx = ARMMMUIdx_S1NSE0;
1589 break;
1590 case 1:
1591 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1592 break;
1593 default:
1594 g_assert_not_reached();
1596 break;
1597 case 4:
1598 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1599 mmu_idx = ARMMMUIdx_S12NSE1;
1600 break;
1601 case 6:
1602 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1603 mmu_idx = ARMMMUIdx_S12NSE0;
1604 break;
1605 default:
1606 g_assert_not_reached();
1609 par64 = do_ats_write(env, value, access_type, mmu_idx);
1611 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1614 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
1615 uint64_t value)
1617 int access_type = ri->opc2 & 1;
1618 ARMMMUIdx mmu_idx;
1619 int secure = arm_is_secure_below_el3(env);
1621 switch (ri->opc2 & 6) {
1622 case 0:
1623 switch (ri->opc1) {
1624 case 0: /* AT S1E1R, AT S1E1W */
1625 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1626 break;
1627 case 4: /* AT S1E2R, AT S1E2W */
1628 mmu_idx = ARMMMUIdx_S1E2;
1629 break;
1630 case 6: /* AT S1E3R, AT S1E3W */
1631 mmu_idx = ARMMMUIdx_S1E3;
1632 break;
1633 default:
1634 g_assert_not_reached();
1636 break;
1637 case 2: /* AT S1E0R, AT S1E0W */
1638 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1639 break;
1640 case 4: /* AT S12E1R, AT S12E1W */
1641 mmu_idx = ARMMMUIdx_S12NSE1;
1642 break;
1643 case 6: /* AT S12E0R, AT S12E0W */
1644 mmu_idx = ARMMMUIdx_S12NSE0;
1645 break;
1646 default:
1647 g_assert_not_reached();
1650 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
1652 #endif
1654 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1655 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1656 .access = PL1_RW, .resetvalue = 0,
1657 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
1658 offsetoflow32(CPUARMState, cp15.par_ns) },
1659 .writefn = par_write },
1660 #ifndef CONFIG_USER_ONLY
1661 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1662 .access = PL1_W, .accessfn = ats_access,
1663 .writefn = ats_write, .type = ARM_CP_NO_RAW },
1664 #endif
1665 REGINFO_SENTINEL
1668 /* Return basic MPU access permission bits. */
1669 static uint32_t simple_mpu_ap_bits(uint32_t val)
1671 uint32_t ret;
1672 uint32_t mask;
1673 int i;
1674 ret = 0;
1675 mask = 3;
1676 for (i = 0; i < 16; i += 2) {
1677 ret |= (val >> i) & mask;
1678 mask <<= 2;
1680 return ret;
1683 /* Pad basic MPU access permission bits to extended format. */
1684 static uint32_t extended_mpu_ap_bits(uint32_t val)
1686 uint32_t ret;
1687 uint32_t mask;
1688 int i;
1689 ret = 0;
1690 mask = 3;
1691 for (i = 0; i < 16; i += 2) {
1692 ret |= (val & mask) << i;
1693 mask <<= 2;
1695 return ret;
1698 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1699 uint64_t value)
1701 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
1704 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1706 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
1709 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1710 uint64_t value)
1712 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
1715 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1717 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
1720 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1721 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1722 .access = PL1_RW, .type = ARM_CP_ALIAS,
1723 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1724 .resetvalue = 0,
1725 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1726 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1727 .access = PL1_RW, .type = ARM_CP_ALIAS,
1728 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1729 .resetvalue = 0,
1730 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1731 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1732 .access = PL1_RW,
1733 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1734 .resetvalue = 0, },
1735 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1736 .access = PL1_RW,
1737 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1738 .resetvalue = 0, },
1739 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1740 .access = PL1_RW,
1741 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1742 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1743 .access = PL1_RW,
1744 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1745 /* Protection region base and size registers */
1746 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
1747 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1748 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
1749 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
1750 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1751 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
1752 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
1753 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1754 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
1755 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
1756 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1757 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
1758 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
1759 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1760 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
1761 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
1762 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1763 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
1764 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
1765 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1766 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
1767 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
1768 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1769 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1770 REGINFO_SENTINEL
1773 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1774 uint64_t value)
1776 TCR *tcr = raw_ptr(env, ri);
1777 int maskshift = extract32(value, 0, 3);
1779 if (!arm_feature(env, ARM_FEATURE_V8)) {
1780 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
1781 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
1782 * using Long-desciptor translation table format */
1783 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1784 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
1785 /* In an implementation that includes the Security Extensions
1786 * TTBCR has additional fields PD0 [4] and PD1 [5] for
1787 * Short-descriptor translation table format.
1789 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
1790 } else {
1791 value &= TTBCR_N;
1795 /* Update the masks corresponding to the the TCR bank being written
1796 * Note that we always calculate mask and base_mask, but
1797 * they are only used for short-descriptor tables (ie if EAE is 0);
1798 * for long-descriptor tables the TCR fields are used differently
1799 * and the mask and base_mask values are meaningless.
1801 tcr->raw_tcr = value;
1802 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1803 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
1806 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807 uint64_t value)
1809 ARMCPU *cpu = arm_env_get_cpu(env);
1811 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1812 /* With LPAE the TTBCR could result in a change of ASID
1813 * via the TTBCR.A1 bit, so do a TLB flush.
1815 tlb_flush(CPU(cpu), 1);
1817 vmsa_ttbcr_raw_write(env, ri, value);
1820 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1822 TCR *tcr = raw_ptr(env, ri);
1824 /* Reset both the TCR as well as the masks corresponding to the bank of
1825 * the TCR being reset.
1827 tcr->raw_tcr = 0;
1828 tcr->mask = 0;
1829 tcr->base_mask = 0xffffc000u;
1832 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1833 uint64_t value)
1835 ARMCPU *cpu = arm_env_get_cpu(env);
1836 TCR *tcr = raw_ptr(env, ri);
1838 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1839 tlb_flush(CPU(cpu), 1);
1840 tcr->raw_tcr = value;
1843 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1844 uint64_t value)
1846 /* 64 bit accesses to the TTBRs can change the ASID and so we
1847 * must flush the TLB.
1849 if (cpreg_field_is_64bit(ri)) {
1850 ARMCPU *cpu = arm_env_get_cpu(env);
1852 tlb_flush(CPU(cpu), 1);
1854 raw_write(env, ri, value);
1857 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1858 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1859 .access = PL1_RW, .type = ARM_CP_ALIAS,
1860 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
1861 offsetoflow32(CPUARMState, cp15.dfsr_ns) },
1862 .resetfn = arm_cp_reset_ignore, },
1863 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1864 .access = PL1_RW, .resetvalue = 0,
1865 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
1866 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
1867 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
1868 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
1869 .access = PL1_RW,
1870 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
1871 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
1872 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
1873 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
1874 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
1875 offsetof(CPUARMState, cp15.ttbr0_ns) } },
1876 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
1877 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
1878 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
1879 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
1880 offsetof(CPUARMState, cp15.ttbr1_ns) } },
1881 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
1882 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1883 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
1884 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
1885 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
1886 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1887 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
1888 .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
1889 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
1890 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
1891 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
1892 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1893 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
1894 .resetvalue = 0, },
1895 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
1896 .access = PL1_RW, .resetvalue = 0,
1897 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
1898 offsetof(CPUARMState, cp15.dfar_ns) } },
1899 REGINFO_SENTINEL
1902 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1903 uint64_t value)
1905 env->cp15.c15_ticonfig = value & 0xe7;
1906 /* The OS_TYPE bit in this register changes the reported CPUID! */
1907 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1908 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1911 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1912 uint64_t value)
1914 env->cp15.c15_threadid = value & 0xffff;
1917 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1918 uint64_t value)
1920 /* Wait-for-interrupt (deprecated) */
1921 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1924 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1925 uint64_t value)
1927 /* On OMAP there are registers indicating the max/min index of dcache lines
1928 * containing a dirty line; cache flush operations have to reset these.
1930 env->cp15.c15_i_max = 0x000;
1931 env->cp15.c15_i_min = 0xff0;
1934 static const ARMCPRegInfo omap_cp_reginfo[] = {
1935 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1936 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1937 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
1938 .resetvalue = 0, },
1939 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1940 .access = PL1_RW, .type = ARM_CP_NOP },
1941 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1942 .access = PL1_RW,
1943 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1944 .writefn = omap_ticonfig_write },
1945 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1946 .access = PL1_RW,
1947 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1948 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1949 .access = PL1_RW, .resetvalue = 0xff0,
1950 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1951 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1952 .access = PL1_RW,
1953 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1954 .writefn = omap_threadid_write },
1955 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1956 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1957 .type = ARM_CP_NO_RAW,
1958 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1959 /* TODO: Peripheral port remap register:
1960 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1961 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1962 * when MMU is off.
1964 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1965 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1966 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
1967 .writefn = omap_cachemaint_write },
1968 { .name = "C9", .cp = 15, .crn = 9,
1969 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1970 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1971 REGINFO_SENTINEL
1974 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1975 uint64_t value)
1977 env->cp15.c15_cpar = value & 0x3fff;
1980 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1981 { .name = "XSCALE_CPAR",
1982 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1983 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1984 .writefn = xscale_cpar_write, },
1985 { .name = "XSCALE_AUXCR",
1986 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1987 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1988 .resetvalue = 0, },
1989 /* XScale specific cache-lockdown: since we have no cache we NOP these
1990 * and hope the guest does not really rely on cache behaviour.
1992 { .name = "XSCALE_LOCK_ICACHE_LINE",
1993 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1994 .access = PL1_W, .type = ARM_CP_NOP },
1995 { .name = "XSCALE_UNLOCK_ICACHE",
1996 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1997 .access = PL1_W, .type = ARM_CP_NOP },
1998 { .name = "XSCALE_DCACHE_LOCK",
1999 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2000 .access = PL1_RW, .type = ARM_CP_NOP },
2001 { .name = "XSCALE_UNLOCK_DCACHE",
2002 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2003 .access = PL1_W, .type = ARM_CP_NOP },
2004 REGINFO_SENTINEL
2007 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2008 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2009 * implementation of this implementation-defined space.
2010 * Ideally this should eventually disappear in favour of actually
2011 * implementing the correct behaviour for all cores.
2013 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2014 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2015 .access = PL1_RW,
2016 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2017 .resetvalue = 0 },
2018 REGINFO_SENTINEL
2021 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2022 /* Cache status: RAZ because we have no cache so it's always clean */
2023 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2024 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2025 .resetvalue = 0 },
2026 REGINFO_SENTINEL
2029 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2030 /* We never have a a block transfer operation in progress */
2031 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2032 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2033 .resetvalue = 0 },
2034 /* The cache ops themselves: these all NOP for QEMU */
2035 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2036 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2037 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2038 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2039 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2040 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2041 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2042 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2043 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2044 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2045 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2046 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2047 REGINFO_SENTINEL
2050 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2051 /* The cache test-and-clean instructions always return (1 << 30)
2052 * to indicate that there are no dirty cache lines.
2054 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2055 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2056 .resetvalue = (1 << 30) },
2057 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2058 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2059 .resetvalue = (1 << 30) },
2060 REGINFO_SENTINEL
2063 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2064 /* Ignore ReadBuffer accesses */
2065 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2066 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2067 .access = PL1_RW, .resetvalue = 0,
2068 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2069 REGINFO_SENTINEL
2072 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2074 CPUState *cs = CPU(arm_env_get_cpu(env));
2075 uint32_t mpidr = cs->cpu_index;
2076 /* We don't support setting cluster ID ([8..11]) (known as Aff1
2077 * in later ARM ARM versions), or any of the higher affinity level fields,
2078 * so these bits always RAZ.
2080 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2081 mpidr |= (1U << 31);
2082 /* Cores which are uniprocessor (non-coherent)
2083 * but still implement the MP extensions set
2084 * bit 30. (For instance, A9UP.) However we do
2085 * not currently model any of those cores.
2088 return mpidr;
2091 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2092 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2093 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2094 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2095 REGINFO_SENTINEL
2098 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2099 /* NOP AMAIR0/1 */
2100 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2101 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2102 .access = PL1_RW, .type = ARM_CP_CONST,
2103 .resetvalue = 0 },
2104 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2105 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2106 .access = PL1_RW, .type = ARM_CP_CONST,
2107 .resetvalue = 0 },
2108 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2109 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2110 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2111 offsetof(CPUARMState, cp15.par_ns)} },
2112 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2113 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2114 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2115 offsetof(CPUARMState, cp15.ttbr0_ns) },
2116 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
2117 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2118 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2119 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2120 offsetof(CPUARMState, cp15.ttbr1_ns) },
2121 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
2122 REGINFO_SENTINEL
2125 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2127 return vfp_get_fpcr(env);
2130 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2131 uint64_t value)
2133 vfp_set_fpcr(env, value);
2136 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2138 return vfp_get_fpsr(env);
2141 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2142 uint64_t value)
2144 vfp_set_fpsr(env, value);
2147 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
2149 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2150 return CP_ACCESS_TRAP;
2152 return CP_ACCESS_OK;
2155 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2156 uint64_t value)
2158 env->daif = value & PSTATE_DAIF;
2161 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2162 const ARMCPRegInfo *ri)
2164 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2165 * SCTLR_EL1.UCI is set.
2167 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2168 return CP_ACCESS_TRAP;
2170 return CP_ACCESS_OK;
2173 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2174 * Page D4-1736 (DDI0487A.b)
2177 static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
2178 uint64_t value)
2180 /* Invalidate by VA (AArch64 version) */
2181 ARMCPU *cpu = arm_env_get_cpu(env);
2182 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2184 tlb_flush_page(CPU(cpu), pageaddr);
2187 static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
2188 uint64_t value)
2190 /* Invalidate by VA, all ASIDs (AArch64 version) */
2191 ARMCPU *cpu = arm_env_get_cpu(env);
2192 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2194 tlb_flush_page(CPU(cpu), pageaddr);
2197 static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2198 uint64_t value)
2200 /* Invalidate by ASID (AArch64 version) */
2201 ARMCPU *cpu = arm_env_get_cpu(env);
2202 int asid = extract64(value, 48, 16);
2203 tlb_flush(CPU(cpu), asid == 0);
2206 static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2207 uint64_t value)
2209 CPUState *other_cs;
2210 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2212 CPU_FOREACH(other_cs) {
2213 tlb_flush_page(other_cs, pageaddr);
2217 static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2218 uint64_t value)
2220 CPUState *other_cs;
2221 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2223 CPU_FOREACH(other_cs) {
2224 tlb_flush_page(other_cs, pageaddr);
2228 static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2229 uint64_t value)
2231 CPUState *other_cs;
2232 int asid = extract64(value, 48, 16);
2234 CPU_FOREACH(other_cs) {
2235 tlb_flush(other_cs, asid == 0);
2239 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
2241 /* We don't implement EL2, so the only control on DC ZVA is the
2242 * bit in the SCTLR which can prohibit access for EL0.
2244 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
2245 return CP_ACCESS_TRAP;
2247 return CP_ACCESS_OK;
2250 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
2252 ARMCPU *cpu = arm_env_get_cpu(env);
2253 int dzp_bit = 1 << 4;
2255 /* DZP indicates whether DC ZVA access is allowed */
2256 if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
2257 dzp_bit = 0;
2259 return cpu->dcz_blocksize | dzp_bit;
2262 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2264 if (!(env->pstate & PSTATE_SP)) {
2265 /* Access to SP_EL0 is undefined if it's being used as
2266 * the stack pointer.
2268 return CP_ACCESS_TRAP_UNCATEGORIZED;
2270 return CP_ACCESS_OK;
2273 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
2275 return env->pstate & PSTATE_SP;
2278 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
2280 update_spsel(env, val);
2283 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2284 uint64_t value)
2286 ARMCPU *cpu = arm_env_get_cpu(env);
2288 if (raw_read(env, ri) == value) {
2289 /* Skip the TLB flush if nothing actually changed; Linux likes
2290 * to do a lot of pointless SCTLR writes.
2292 return;
2295 raw_write(env, ri, value);
2296 /* ??? Lots of these bits are not implemented. */
2297 /* This may enable/disable the MMU, so do a TLB flush. */
2298 tlb_flush(CPU(cpu), 1);
2301 static const ARMCPRegInfo v8_cp_reginfo[] = {
2302 /* Minimal set of EL0-visible registers. This will need to be expanded
2303 * significantly for system emulation of AArch64 CPUs.
2305 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
2306 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
2307 .access = PL0_RW, .type = ARM_CP_NZCV },
2308 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
2309 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
2310 .type = ARM_CP_NO_RAW,
2311 .access = PL0_RW, .accessfn = aa64_daif_access,
2312 .fieldoffset = offsetof(CPUARMState, daif),
2313 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
2314 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
2315 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
2316 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
2317 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
2318 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
2319 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
2320 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
2321 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
2322 .access = PL0_R, .type = ARM_CP_NO_RAW,
2323 .readfn = aa64_dczid_read },
2324 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
2325 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
2326 .access = PL0_W, .type = ARM_CP_DC_ZVA,
2327 #ifndef CONFIG_USER_ONLY
2328 /* Avoid overhead of an access check that always passes in user-mode */
2329 .accessfn = aa64_zva_access,
2330 #endif
2332 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
2333 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
2334 .access = PL1_R, .type = ARM_CP_CURRENTEL },
2335 /* Cache ops: all NOPs since we don't emulate caches */
2336 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
2337 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2338 .access = PL1_W, .type = ARM_CP_NOP },
2339 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
2340 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2341 .access = PL1_W, .type = ARM_CP_NOP },
2342 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
2343 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
2344 .access = PL0_W, .type = ARM_CP_NOP,
2345 .accessfn = aa64_cacheop_access },
2346 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
2347 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2348 .access = PL1_W, .type = ARM_CP_NOP },
2349 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
2350 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2351 .access = PL1_W, .type = ARM_CP_NOP },
2352 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
2353 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
2354 .access = PL0_W, .type = ARM_CP_NOP,
2355 .accessfn = aa64_cacheop_access },
2356 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
2357 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2358 .access = PL1_W, .type = ARM_CP_NOP },
2359 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
2360 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
2361 .access = PL0_W, .type = ARM_CP_NOP,
2362 .accessfn = aa64_cacheop_access },
2363 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
2364 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
2365 .access = PL0_W, .type = ARM_CP_NOP,
2366 .accessfn = aa64_cacheop_access },
2367 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
2368 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2369 .access = PL1_W, .type = ARM_CP_NOP },
2370 /* TLBI operations */
2371 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
2372 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
2373 .access = PL2_W, .type = ARM_CP_NO_RAW,
2374 .writefn = tlbiall_write },
2375 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
2376 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
2377 .access = PL2_W, .type = ARM_CP_NO_RAW,
2378 .writefn = tlbiall_write },
2379 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
2380 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2381 .access = PL1_W, .type = ARM_CP_NO_RAW,
2382 .writefn = tlbiall_is_write },
2383 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
2384 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2385 .access = PL1_W, .type = ARM_CP_NO_RAW,
2386 .writefn = tlbi_aa64_va_is_write },
2387 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
2388 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2389 .access = PL1_W, .type = ARM_CP_NO_RAW,
2390 .writefn = tlbi_aa64_asid_is_write },
2391 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
2392 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2393 .access = PL1_W, .type = ARM_CP_NO_RAW,
2394 .writefn = tlbi_aa64_vaa_is_write },
2395 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
2396 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2397 .access = PL1_W, .type = ARM_CP_NO_RAW,
2398 .writefn = tlbi_aa64_va_is_write },
2399 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
2400 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2401 .access = PL1_W, .type = ARM_CP_NO_RAW,
2402 .writefn = tlbi_aa64_vaa_is_write },
2403 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
2404 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2405 .access = PL1_W, .type = ARM_CP_NO_RAW,
2406 .writefn = tlbiall_write },
2407 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
2408 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2409 .access = PL1_W, .type = ARM_CP_NO_RAW,
2410 .writefn = tlbi_aa64_va_write },
2411 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
2412 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2413 .access = PL1_W, .type = ARM_CP_NO_RAW,
2414 .writefn = tlbi_aa64_asid_write },
2415 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
2416 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2417 .access = PL1_W, .type = ARM_CP_NO_RAW,
2418 .writefn = tlbi_aa64_vaa_write },
2419 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
2420 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2421 .access = PL1_W, .type = ARM_CP_NO_RAW,
2422 .writefn = tlbi_aa64_va_write },
2423 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
2424 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2425 .access = PL1_W, .type = ARM_CP_NO_RAW,
2426 .writefn = tlbi_aa64_vaa_write },
2427 #ifndef CONFIG_USER_ONLY
2428 /* 64 bit address translation operations */
2429 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
2430 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
2431 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2432 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
2433 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
2434 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2435 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
2436 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
2437 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2438 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
2439 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
2440 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2441 #endif
2442 /* TLB invalidate last level of translation table walk */
2443 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2444 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2445 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2446 .type = ARM_CP_NO_RAW, .access = PL1_W,
2447 .writefn = tlbimvaa_is_write },
2448 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2449 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2450 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2451 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2452 /* 32 bit cache operations */
2453 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2454 .type = ARM_CP_NOP, .access = PL1_W },
2455 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
2456 .type = ARM_CP_NOP, .access = PL1_W },
2457 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2458 .type = ARM_CP_NOP, .access = PL1_W },
2459 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
2460 .type = ARM_CP_NOP, .access = PL1_W },
2461 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
2462 .type = ARM_CP_NOP, .access = PL1_W },
2463 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
2464 .type = ARM_CP_NOP, .access = PL1_W },
2465 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2466 .type = ARM_CP_NOP, .access = PL1_W },
2467 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2468 .type = ARM_CP_NOP, .access = PL1_W },
2469 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
2470 .type = ARM_CP_NOP, .access = PL1_W },
2471 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2472 .type = ARM_CP_NOP, .access = PL1_W },
2473 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
2474 .type = ARM_CP_NOP, .access = PL1_W },
2475 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
2476 .type = ARM_CP_NOP, .access = PL1_W },
2477 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2478 .type = ARM_CP_NOP, .access = PL1_W },
2479 /* MMU Domain access control / MPU write buffer control */
2480 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
2481 .access = PL1_RW, .resetvalue = 0,
2482 .writefn = dacr_write, .raw_writefn = raw_write,
2483 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
2484 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
2485 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
2486 .type = ARM_CP_ALIAS,
2487 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
2488 .access = PL1_RW,
2489 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
2490 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
2491 .type = ARM_CP_ALIAS,
2492 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
2493 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) },
2494 /* We rely on the access checks not allowing the guest to write to the
2495 * state field when SPSel indicates that it's being used as the stack
2496 * pointer.
2498 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
2499 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
2500 .access = PL1_RW, .accessfn = sp_el0_access,
2501 .type = ARM_CP_ALIAS,
2502 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
2503 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
2504 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
2505 .access = PL2_RW, .type = ARM_CP_ALIAS,
2506 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
2507 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
2508 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
2509 .type = ARM_CP_NO_RAW,
2510 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
2511 REGINFO_SENTINEL
2514 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
2515 static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo[] = {
2516 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2517 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2518 .access = PL2_RW,
2519 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
2520 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
2521 .type = ARM_CP_NO_RAW,
2522 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
2523 .access = PL2_RW,
2524 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
2525 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
2526 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
2527 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2528 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
2529 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
2530 .access = PL2_RW, .type = ARM_CP_CONST,
2531 .resetvalue = 0 },
2532 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
2533 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
2534 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2535 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
2536 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
2537 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2538 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
2539 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
2540 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2541 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
2542 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
2543 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2544 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
2545 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
2546 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2547 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
2548 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
2549 .resetvalue = 0 },
2550 REGINFO_SENTINEL
2553 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2555 ARMCPU *cpu = arm_env_get_cpu(env);
2556 uint64_t valid_mask = HCR_MASK;
2558 if (arm_feature(env, ARM_FEATURE_EL3)) {
2559 valid_mask &= ~HCR_HCD;
2560 } else {
2561 valid_mask &= ~HCR_TSC;
2564 /* Clear RES0 bits. */
2565 value &= valid_mask;
2567 /* These bits change the MMU setup:
2568 * HCR_VM enables stage 2 translation
2569 * HCR_PTW forbids certain page-table setups
2570 * HCR_DC Disables stage1 and enables stage2 translation
2572 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
2573 tlb_flush(CPU(cpu), 1);
2575 raw_write(env, ri, value);
2578 static const ARMCPRegInfo v8_el2_cp_reginfo[] = {
2579 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
2580 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
2581 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
2582 .writefn = hcr_write },
2583 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
2584 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
2585 .access = PL2_RW, .resetvalue = 0,
2586 .writefn = dacr_write, .raw_writefn = raw_write,
2587 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
2588 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
2589 .type = ARM_CP_ALIAS,
2590 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
2591 .access = PL2_RW,
2592 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
2593 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
2594 .type = ARM_CP_ALIAS,
2595 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
2596 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
2597 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
2598 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
2599 .access = PL2_RW, .resetvalue = 0,
2600 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
2601 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
2602 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
2603 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
2604 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
2605 .type = ARM_CP_ALIAS,
2606 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
2607 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
2608 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2609 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2610 .access = PL2_RW, .writefn = vbar_write,
2611 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
2612 .resetvalue = 0 },
2613 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
2614 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
2615 .access = PL3_RW, .type = ARM_CP_ALIAS,
2616 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
2617 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
2618 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
2619 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
2620 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
2621 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
2622 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
2623 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
2624 .resetvalue = 0 },
2625 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
2626 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
2627 .access = PL2_RW, .type = ARM_CP_ALIAS,
2628 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
2629 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
2630 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
2631 .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
2632 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2633 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
2634 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
2635 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
2636 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
2637 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
2638 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
2639 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
2640 .access = PL2_RW, .resetvalue = 0,
2641 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
2642 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
2643 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
2644 .access = PL2_RW, .resetvalue = 0,
2645 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
2646 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
2647 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2648 .resetvalue = 0,
2649 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
2650 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
2651 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
2652 .type = ARM_CP_NO_RAW, .access = PL2_W,
2653 .writefn = tlbiall_write },
2654 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
2655 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
2656 .type = ARM_CP_NO_RAW, .access = PL2_W,
2657 .writefn = tlbi_aa64_vaa_write },
2658 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
2659 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
2660 .type = ARM_CP_NO_RAW, .access = PL2_W,
2661 .writefn = tlbi_aa64_vaa_write },
2662 REGINFO_SENTINEL
2665 static const ARMCPRegInfo el3_cp_reginfo[] = {
2666 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
2667 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
2668 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
2669 .resetvalue = 0, .writefn = scr_write },
2670 { .name = "SCR", .type = ARM_CP_ALIAS,
2671 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
2672 .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
2673 .resetfn = arm_cp_reset_ignore, .writefn = scr_write },
2674 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
2675 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
2676 .access = PL3_RW, .resetvalue = 0,
2677 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
2678 { .name = "SDER",
2679 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
2680 .access = PL3_RW, .resetvalue = 0,
2681 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
2682 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
2683 { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
2684 .access = PL3_W | PL1_R, .resetvalue = 0,
2685 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
2686 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
2687 .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
2688 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
2689 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
2690 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
2691 .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
2692 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
2693 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
2694 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
2695 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2696 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
2697 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
2698 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
2699 .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
2700 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2701 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
2702 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
2703 .type = ARM_CP_ALIAS,
2704 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
2705 .access = PL3_RW,
2706 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
2707 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
2708 .type = ARM_CP_ALIAS,
2709 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
2710 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
2711 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
2712 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
2713 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
2714 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
2715 .type = ARM_CP_ALIAS,
2716 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
2717 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
2718 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
2719 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
2720 .access = PL3_RW, .writefn = vbar_write,
2721 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
2722 .resetvalue = 0 },
2723 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
2724 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
2725 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
2726 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
2727 REGINFO_SENTINEL
2730 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2732 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
2733 * but the AArch32 CTR has its own reginfo struct)
2735 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
2736 return CP_ACCESS_TRAP;
2738 return CP_ACCESS_OK;
2741 static const ARMCPRegInfo debug_cp_reginfo[] = {
2742 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
2743 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
2744 * unlike DBGDRAR it is never accessible from EL0.
2745 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
2746 * accessor.
2748 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2749 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2750 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
2751 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
2752 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2753 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2754 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2755 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
2756 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
2757 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
2758 .access = PL1_RW,
2759 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
2760 .resetvalue = 0 },
2761 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
2762 * We don't implement the configurable EL0 access.
2764 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
2765 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
2766 .type = ARM_CP_ALIAS,
2767 .access = PL1_R,
2768 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
2769 .resetfn = arm_cp_reset_ignore },
2770 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2771 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
2772 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
2773 .access = PL1_W, .type = ARM_CP_NOP },
2774 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
2775 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
2776 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
2777 .access = PL1_RW, .type = ARM_CP_NOP },
2778 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
2779 * implement vector catch debug events yet.
2781 { .name = "DBGVCR",
2782 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
2783 .access = PL1_RW, .type = ARM_CP_NOP },
2784 REGINFO_SENTINEL
2787 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
2788 /* 64 bit access versions of the (dummy) debug registers */
2789 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
2790 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
2791 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
2792 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
2793 REGINFO_SENTINEL
2796 void hw_watchpoint_update(ARMCPU *cpu, int n)
2798 CPUARMState *env = &cpu->env;
2799 vaddr len = 0;
2800 vaddr wvr = env->cp15.dbgwvr[n];
2801 uint64_t wcr = env->cp15.dbgwcr[n];
2802 int mask;
2803 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
2805 if (env->cpu_watchpoint[n]) {
2806 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
2807 env->cpu_watchpoint[n] = NULL;
2810 if (!extract64(wcr, 0, 1)) {
2811 /* E bit clear : watchpoint disabled */
2812 return;
2815 switch (extract64(wcr, 3, 2)) {
2816 case 0:
2817 /* LSC 00 is reserved and must behave as if the wp is disabled */
2818 return;
2819 case 1:
2820 flags |= BP_MEM_READ;
2821 break;
2822 case 2:
2823 flags |= BP_MEM_WRITE;
2824 break;
2825 case 3:
2826 flags |= BP_MEM_ACCESS;
2827 break;
2830 /* Attempts to use both MASK and BAS fields simultaneously are
2831 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
2832 * thus generating a watchpoint for every byte in the masked region.
2834 mask = extract64(wcr, 24, 4);
2835 if (mask == 1 || mask == 2) {
2836 /* Reserved values of MASK; we must act as if the mask value was
2837 * some non-reserved value, or as if the watchpoint were disabled.
2838 * We choose the latter.
2840 return;
2841 } else if (mask) {
2842 /* Watchpoint covers an aligned area up to 2GB in size */
2843 len = 1ULL << mask;
2844 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
2845 * whether the watchpoint fires when the unmasked bits match; we opt
2846 * to generate the exceptions.
2848 wvr &= ~(len - 1);
2849 } else {
2850 /* Watchpoint covers bytes defined by the byte address select bits */
2851 int bas = extract64(wcr, 5, 8);
2852 int basstart;
2854 if (bas == 0) {
2855 /* This must act as if the watchpoint is disabled */
2856 return;
2859 if (extract64(wvr, 2, 1)) {
2860 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
2861 * ignored, and BAS[3:0] define which bytes to watch.
2863 bas &= 0xf;
2865 /* The BAS bits are supposed to be programmed to indicate a contiguous
2866 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
2867 * we fire for each byte in the word/doubleword addressed by the WVR.
2868 * We choose to ignore any non-zero bits after the first range of 1s.
2870 basstart = ctz32(bas);
2871 len = cto32(bas >> basstart);
2872 wvr += basstart;
2875 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
2876 &env->cpu_watchpoint[n]);
2879 void hw_watchpoint_update_all(ARMCPU *cpu)
2881 int i;
2882 CPUARMState *env = &cpu->env;
2884 /* Completely clear out existing QEMU watchpoints and our array, to
2885 * avoid possible stale entries following migration load.
2887 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
2888 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
2890 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
2891 hw_watchpoint_update(cpu, i);
2895 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2896 uint64_t value)
2898 ARMCPU *cpu = arm_env_get_cpu(env);
2899 int i = ri->crm;
2901 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
2902 * register reads and behaves as if values written are sign extended.
2903 * Bits [1:0] are RES0.
2905 value = sextract64(value, 0, 49) & ~3ULL;
2907 raw_write(env, ri, value);
2908 hw_watchpoint_update(cpu, i);
2911 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2912 uint64_t value)
2914 ARMCPU *cpu = arm_env_get_cpu(env);
2915 int i = ri->crm;
2917 raw_write(env, ri, value);
2918 hw_watchpoint_update(cpu, i);
2921 void hw_breakpoint_update(ARMCPU *cpu, int n)
2923 CPUARMState *env = &cpu->env;
2924 uint64_t bvr = env->cp15.dbgbvr[n];
2925 uint64_t bcr = env->cp15.dbgbcr[n];
2926 vaddr addr;
2927 int bt;
2928 int flags = BP_CPU;
2930 if (env->cpu_breakpoint[n]) {
2931 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
2932 env->cpu_breakpoint[n] = NULL;
2935 if (!extract64(bcr, 0, 1)) {
2936 /* E bit clear : watchpoint disabled */
2937 return;
2940 bt = extract64(bcr, 20, 4);
2942 switch (bt) {
2943 case 4: /* unlinked address mismatch (reserved if AArch64) */
2944 case 5: /* linked address mismatch (reserved if AArch64) */
2945 qemu_log_mask(LOG_UNIMP,
2946 "arm: address mismatch breakpoint types not implemented");
2947 return;
2948 case 0: /* unlinked address match */
2949 case 1: /* linked address match */
2951 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
2952 * we behave as if the register was sign extended. Bits [1:0] are
2953 * RES0. The BAS field is used to allow setting breakpoints on 16
2954 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
2955 * a bp will fire if the addresses covered by the bp and the addresses
2956 * covered by the insn overlap but the insn doesn't start at the
2957 * start of the bp address range. We choose to require the insn and
2958 * the bp to have the same address. The constraints on writing to
2959 * BAS enforced in dbgbcr_write mean we have only four cases:
2960 * 0b0000 => no breakpoint
2961 * 0b0011 => breakpoint on addr
2962 * 0b1100 => breakpoint on addr + 2
2963 * 0b1111 => breakpoint on addr
2964 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
2966 int bas = extract64(bcr, 5, 4);
2967 addr = sextract64(bvr, 0, 49) & ~3ULL;
2968 if (bas == 0) {
2969 return;
2971 if (bas == 0xc) {
2972 addr += 2;
2974 break;
2976 case 2: /* unlinked context ID match */
2977 case 8: /* unlinked VMID match (reserved if no EL2) */
2978 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
2979 qemu_log_mask(LOG_UNIMP,
2980 "arm: unlinked context breakpoint types not implemented");
2981 return;
2982 case 9: /* linked VMID match (reserved if no EL2) */
2983 case 11: /* linked context ID and VMID match (reserved if no EL2) */
2984 case 3: /* linked context ID match */
2985 default:
2986 /* We must generate no events for Linked context matches (unless
2987 * they are linked to by some other bp/wp, which is handled in
2988 * updates for the linking bp/wp). We choose to also generate no events
2989 * for reserved values.
2991 return;
2994 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
2997 void hw_breakpoint_update_all(ARMCPU *cpu)
2999 int i;
3000 CPUARMState *env = &cpu->env;
3002 /* Completely clear out existing QEMU breakpoints and our array, to
3003 * avoid possible stale entries following migration load.
3005 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
3006 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
3008 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
3009 hw_breakpoint_update(cpu, i);
3013 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3014 uint64_t value)
3016 ARMCPU *cpu = arm_env_get_cpu(env);
3017 int i = ri->crm;
3019 raw_write(env, ri, value);
3020 hw_breakpoint_update(cpu, i);
3023 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024 uint64_t value)
3026 ARMCPU *cpu = arm_env_get_cpu(env);
3027 int i = ri->crm;
3029 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
3030 * copy of BAS[0].
3032 value = deposit64(value, 6, 1, extract64(value, 5, 1));
3033 value = deposit64(value, 8, 1, extract64(value, 7, 1));
3035 raw_write(env, ri, value);
3036 hw_breakpoint_update(cpu, i);
3039 static void define_debug_regs(ARMCPU *cpu)
3041 /* Define v7 and v8 architectural debug registers.
3042 * These are just dummy implementations for now.
3044 int i;
3045 int wrps, brps, ctx_cmps;
3046 ARMCPRegInfo dbgdidr = {
3047 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
3048 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
3051 /* Note that all these register fields hold "number of Xs minus 1". */
3052 brps = extract32(cpu->dbgdidr, 24, 4);
3053 wrps = extract32(cpu->dbgdidr, 28, 4);
3054 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
3056 assert(ctx_cmps <= brps);
3058 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
3059 * of the debug registers such as number of breakpoints;
3060 * check that if they both exist then they agree.
3062 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
3063 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
3064 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3065 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
3068 define_one_arm_cp_reg(cpu, &dbgdidr);
3069 define_arm_cp_regs(cpu, debug_cp_reginfo);
3071 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
3072 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
3075 for (i = 0; i < brps + 1; i++) {
3076 ARMCPRegInfo dbgregs[] = {
3077 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
3078 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
3079 .access = PL1_RW,
3080 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
3081 .writefn = dbgbvr_write, .raw_writefn = raw_write
3083 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
3084 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
3085 .access = PL1_RW,
3086 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
3087 .writefn = dbgbcr_write, .raw_writefn = raw_write
3089 REGINFO_SENTINEL
3091 define_arm_cp_regs(cpu, dbgregs);
3094 for (i = 0; i < wrps + 1; i++) {
3095 ARMCPRegInfo dbgregs[] = {
3096 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
3097 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
3098 .access = PL1_RW,
3099 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
3100 .writefn = dbgwvr_write, .raw_writefn = raw_write
3102 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
3103 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
3104 .access = PL1_RW,
3105 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
3106 .writefn = dbgwcr_write, .raw_writefn = raw_write
3108 REGINFO_SENTINEL
3110 define_arm_cp_regs(cpu, dbgregs);
3114 void register_cp_regs_for_features(ARMCPU *cpu)
3116 /* Register all the coprocessor registers based on feature bits */
3117 CPUARMState *env = &cpu->env;
3118 if (arm_feature(env, ARM_FEATURE_M)) {
3119 /* M profile has no coprocessor registers */
3120 return;
3123 define_arm_cp_regs(cpu, cp_reginfo);
3124 if (!arm_feature(env, ARM_FEATURE_V8)) {
3125 /* Must go early as it is full of wildcards that may be
3126 * overridden by later definitions.
3128 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
3131 if (arm_feature(env, ARM_FEATURE_V6)) {
3132 /* The ID registers all have impdef reset values */
3133 ARMCPRegInfo v6_idregs[] = {
3134 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
3135 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3136 .access = PL1_R, .type = ARM_CP_CONST,
3137 .resetvalue = cpu->id_pfr0 },
3138 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
3139 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
3140 .access = PL1_R, .type = ARM_CP_CONST,
3141 .resetvalue = cpu->id_pfr1 },
3142 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
3143 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
3144 .access = PL1_R, .type = ARM_CP_CONST,
3145 .resetvalue = cpu->id_dfr0 },
3146 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
3147 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
3148 .access = PL1_R, .type = ARM_CP_CONST,
3149 .resetvalue = cpu->id_afr0 },
3150 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
3151 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
3152 .access = PL1_R, .type = ARM_CP_CONST,
3153 .resetvalue = cpu->id_mmfr0 },
3154 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
3155 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
3156 .access = PL1_R, .type = ARM_CP_CONST,
3157 .resetvalue = cpu->id_mmfr1 },
3158 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
3159 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
3160 .access = PL1_R, .type = ARM_CP_CONST,
3161 .resetvalue = cpu->id_mmfr2 },
3162 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
3163 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
3164 .access = PL1_R, .type = ARM_CP_CONST,
3165 .resetvalue = cpu->id_mmfr3 },
3166 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
3167 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
3168 .access = PL1_R, .type = ARM_CP_CONST,
3169 .resetvalue = cpu->id_isar0 },
3170 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
3171 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
3172 .access = PL1_R, .type = ARM_CP_CONST,
3173 .resetvalue = cpu->id_isar1 },
3174 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
3175 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3176 .access = PL1_R, .type = ARM_CP_CONST,
3177 .resetvalue = cpu->id_isar2 },
3178 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
3179 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
3180 .access = PL1_R, .type = ARM_CP_CONST,
3181 .resetvalue = cpu->id_isar3 },
3182 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
3183 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
3184 .access = PL1_R, .type = ARM_CP_CONST,
3185 .resetvalue = cpu->id_isar4 },
3186 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
3187 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
3188 .access = PL1_R, .type = ARM_CP_CONST,
3189 .resetvalue = cpu->id_isar5 },
3190 /* 6..7 are as yet unallocated and must RAZ */
3191 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
3192 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
3193 .resetvalue = 0 },
3194 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
3195 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
3196 .resetvalue = 0 },
3197 REGINFO_SENTINEL
3199 define_arm_cp_regs(cpu, v6_idregs);
3200 define_arm_cp_regs(cpu, v6_cp_reginfo);
3201 } else {
3202 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
3204 if (arm_feature(env, ARM_FEATURE_V6K)) {
3205 define_arm_cp_regs(cpu, v6k_cp_reginfo);
3207 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3208 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
3210 if (arm_feature(env, ARM_FEATURE_V7)) {
3211 /* v7 performance monitor control register: same implementor
3212 * field as main ID register, and we implement only the cycle
3213 * count register.
3215 #ifndef CONFIG_USER_ONLY
3216 ARMCPRegInfo pmcr = {
3217 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
3218 .access = PL0_RW,
3219 .type = ARM_CP_IO | ARM_CP_ALIAS,
3220 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
3221 .accessfn = pmreg_access, .writefn = pmcr_write,
3222 .raw_writefn = raw_write,
3224 ARMCPRegInfo pmcr64 = {
3225 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
3226 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
3227 .access = PL0_RW, .accessfn = pmreg_access,
3228 .type = ARM_CP_IO,
3229 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
3230 .resetvalue = cpu->midr & 0xff000000,
3231 .writefn = pmcr_write, .raw_writefn = raw_write,
3233 define_one_arm_cp_reg(cpu, &pmcr);
3234 define_one_arm_cp_reg(cpu, &pmcr64);
3235 #endif
3236 ARMCPRegInfo clidr = {
3237 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
3238 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
3239 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
3241 define_one_arm_cp_reg(cpu, &clidr);
3242 define_arm_cp_regs(cpu, v7_cp_reginfo);
3243 define_debug_regs(cpu);
3244 } else {
3245 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
3247 if (arm_feature(env, ARM_FEATURE_V8)) {
3248 /* AArch64 ID registers, which all have impdef reset values */
3249 ARMCPRegInfo v8_idregs[] = {
3250 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
3251 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
3252 .access = PL1_R, .type = ARM_CP_CONST,
3253 .resetvalue = cpu->id_aa64pfr0 },
3254 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
3255 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
3256 .access = PL1_R, .type = ARM_CP_CONST,
3257 .resetvalue = cpu->id_aa64pfr1},
3258 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
3259 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
3260 .access = PL1_R, .type = ARM_CP_CONST,
3261 /* We mask out the PMUVer field, because we don't currently
3262 * implement the PMU. Not advertising it prevents the guest
3263 * from trying to use it and getting UNDEFs on registers we
3264 * don't implement.
3266 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
3267 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
3268 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
3269 .access = PL1_R, .type = ARM_CP_CONST,
3270 .resetvalue = cpu->id_aa64dfr1 },
3271 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
3272 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
3273 .access = PL1_R, .type = ARM_CP_CONST,
3274 .resetvalue = cpu->id_aa64afr0 },
3275 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
3276 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
3277 .access = PL1_R, .type = ARM_CP_CONST,
3278 .resetvalue = cpu->id_aa64afr1 },
3279 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
3280 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
3281 .access = PL1_R, .type = ARM_CP_CONST,
3282 .resetvalue = cpu->id_aa64isar0 },
3283 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
3284 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
3285 .access = PL1_R, .type = ARM_CP_CONST,
3286 .resetvalue = cpu->id_aa64isar1 },
3287 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
3288 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
3289 .access = PL1_R, .type = ARM_CP_CONST,
3290 .resetvalue = cpu->id_aa64mmfr0 },
3291 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
3292 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
3293 .access = PL1_R, .type = ARM_CP_CONST,
3294 .resetvalue = cpu->id_aa64mmfr1 },
3295 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
3296 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
3297 .access = PL1_R, .type = ARM_CP_CONST,
3298 .resetvalue = cpu->mvfr0 },
3299 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
3300 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
3301 .access = PL1_R, .type = ARM_CP_CONST,
3302 .resetvalue = cpu->mvfr1 },
3303 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
3304 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
3305 .access = PL1_R, .type = ARM_CP_CONST,
3306 .resetvalue = cpu->mvfr2 },
3307 REGINFO_SENTINEL
3309 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
3310 if (!arm_feature(env, ARM_FEATURE_EL3) &&
3311 !arm_feature(env, ARM_FEATURE_EL2)) {
3312 ARMCPRegInfo rvbar = {
3313 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
3314 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3315 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
3317 define_one_arm_cp_reg(cpu, &rvbar);
3319 define_arm_cp_regs(cpu, v8_idregs);
3320 define_arm_cp_regs(cpu, v8_cp_reginfo);
3322 if (arm_feature(env, ARM_FEATURE_EL2)) {
3323 define_arm_cp_regs(cpu, v8_el2_cp_reginfo);
3324 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
3325 if (!arm_feature(env, ARM_FEATURE_EL3)) {
3326 ARMCPRegInfo rvbar = {
3327 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
3328 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
3329 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
3331 define_one_arm_cp_reg(cpu, &rvbar);
3333 } else {
3334 /* If EL2 is missing but higher ELs are enabled, we need to
3335 * register the no_el2 reginfos.
3337 if (arm_feature(env, ARM_FEATURE_EL3)) {
3338 define_arm_cp_regs(cpu, v8_el3_no_el2_cp_reginfo);
3341 if (arm_feature(env, ARM_FEATURE_EL3)) {
3342 define_arm_cp_regs(cpu, el3_cp_reginfo);
3343 ARMCPRegInfo rvbar = {
3344 .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
3345 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
3346 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
3348 define_one_arm_cp_reg(cpu, &rvbar);
3350 if (arm_feature(env, ARM_FEATURE_MPU)) {
3351 /* These are the MPU registers prior to PMSAv6. Any new
3352 * PMSA core later than the ARM946 will require that we
3353 * implement the PMSAv6 or PMSAv7 registers, which are
3354 * completely different.
3356 assert(!arm_feature(env, ARM_FEATURE_V6));
3357 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
3358 } else {
3359 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
3361 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
3362 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
3364 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
3365 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
3367 if (arm_feature(env, ARM_FEATURE_VAPA)) {
3368 define_arm_cp_regs(cpu, vapa_cp_reginfo);
3370 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
3371 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
3373 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
3374 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
3376 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
3377 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
3379 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
3380 define_arm_cp_regs(cpu, omap_cp_reginfo);
3382 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
3383 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
3385 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3386 define_arm_cp_regs(cpu, xscale_cp_reginfo);
3388 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
3389 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
3391 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3392 define_arm_cp_regs(cpu, lpae_cp_reginfo);
3394 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
3395 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
3396 * be read-only (ie write causes UNDEF exception).
3399 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
3400 /* Pre-v8 MIDR space.
3401 * Note that the MIDR isn't a simple constant register because
3402 * of the TI925 behaviour where writes to another register can
3403 * cause the MIDR value to change.
3405 * Unimplemented registers in the c15 0 0 0 space default to
3406 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
3407 * and friends override accordingly.
3409 { .name = "MIDR",
3410 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
3411 .access = PL1_R, .resetvalue = cpu->midr,
3412 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
3413 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
3414 .type = ARM_CP_OVERRIDE },
3415 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
3416 { .name = "DUMMY",
3417 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
3418 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3419 { .name = "DUMMY",
3420 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
3421 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3422 { .name = "DUMMY",
3423 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
3424 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3425 { .name = "DUMMY",
3426 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
3427 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3428 { .name = "DUMMY",
3429 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
3430 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3431 REGINFO_SENTINEL
3433 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
3434 /* v8 MIDR -- the wildcard isn't necessary, and nor is the
3435 * variable-MIDR TI925 behaviour. Instead we have a single
3436 * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
3438 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
3439 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
3440 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
3441 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
3442 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
3443 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
3444 REGINFO_SENTINEL
3446 ARMCPRegInfo id_cp_reginfo[] = {
3447 /* These are common to v8 and pre-v8 */
3448 { .name = "CTR",
3449 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
3450 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
3451 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
3452 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
3453 .access = PL0_R, .accessfn = ctr_el0_access,
3454 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
3455 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
3456 { .name = "TCMTR",
3457 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
3458 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3459 { .name = "TLBTR",
3460 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
3461 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3462 REGINFO_SENTINEL
3464 ARMCPRegInfo crn0_wi_reginfo = {
3465 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
3466 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
3467 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
3469 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
3470 arm_feature(env, ARM_FEATURE_STRONGARM)) {
3471 ARMCPRegInfo *r;
3472 /* Register the blanket "writes ignored" value first to cover the
3473 * whole space. Then update the specific ID registers to allow write
3474 * access, so that they ignore writes rather than causing them to
3475 * UNDEF.
3477 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
3478 for (r = id_pre_v8_midr_cp_reginfo;
3479 r->type != ARM_CP_SENTINEL; r++) {
3480 r->access = PL1_RW;
3482 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
3483 r->access = PL1_RW;
3486 if (arm_feature(env, ARM_FEATURE_V8)) {
3487 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
3488 } else {
3489 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
3491 define_arm_cp_regs(cpu, id_cp_reginfo);
3494 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
3495 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
3498 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
3499 ARMCPRegInfo auxcr = {
3500 .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
3501 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
3502 .access = PL1_RW, .type = ARM_CP_CONST,
3503 .resetvalue = cpu->reset_auxcr
3505 define_one_arm_cp_reg(cpu, &auxcr);
3508 if (arm_feature(env, ARM_FEATURE_CBAR)) {
3509 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
3510 /* 32 bit view is [31:18] 0...0 [43:32]. */
3511 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
3512 | extract64(cpu->reset_cbar, 32, 12);
3513 ARMCPRegInfo cbar_reginfo[] = {
3514 { .name = "CBAR",
3515 .type = ARM_CP_CONST,
3516 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
3517 .access = PL1_R, .resetvalue = cpu->reset_cbar },
3518 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
3519 .type = ARM_CP_CONST,
3520 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
3521 .access = PL1_R, .resetvalue = cbar32 },
3522 REGINFO_SENTINEL
3524 /* We don't implement a r/w 64 bit CBAR currently */
3525 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
3526 define_arm_cp_regs(cpu, cbar_reginfo);
3527 } else {
3528 ARMCPRegInfo cbar = {
3529 .name = "CBAR",
3530 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
3531 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
3532 .fieldoffset = offsetof(CPUARMState,
3533 cp15.c15_config_base_address)
3535 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
3536 cbar.access = PL1_R;
3537 cbar.fieldoffset = 0;
3538 cbar.type = ARM_CP_CONST;
3540 define_one_arm_cp_reg(cpu, &cbar);
3544 /* Generic registers whose values depend on the implementation */
3546 ARMCPRegInfo sctlr = {
3547 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
3548 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
3549 .access = PL1_RW,
3550 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
3551 offsetof(CPUARMState, cp15.sctlr_ns) },
3552 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
3553 .raw_writefn = raw_write,
3555 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3556 /* Normally we would always end the TB on an SCTLR write, but Linux
3557 * arch/arm/mach-pxa/sleep.S expects two instructions following
3558 * an MMU enable to execute from cache. Imitate this behaviour.
3560 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
3562 define_one_arm_cp_reg(cpu, &sctlr);
3566 ARMCPU *cpu_arm_init(const char *cpu_model)
3568 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
3571 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
3573 CPUState *cs = CPU(cpu);
3574 CPUARMState *env = &cpu->env;
3576 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
3577 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
3578 aarch64_fpu_gdb_set_reg,
3579 34, "aarch64-fpu.xml", 0);
3580 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
3581 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
3582 51, "arm-neon.xml", 0);
3583 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
3584 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
3585 35, "arm-vfp3.xml", 0);
3586 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
3587 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
3588 19, "arm-vfp.xml", 0);
3592 /* Sort alphabetically by type name, except for "any". */
3593 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
3595 ObjectClass *class_a = (ObjectClass *)a;
3596 ObjectClass *class_b = (ObjectClass *)b;
3597 const char *name_a, *name_b;
3599 name_a = object_class_get_name(class_a);
3600 name_b = object_class_get_name(class_b);
3601 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
3602 return 1;
3603 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
3604 return -1;
3605 } else {
3606 return strcmp(name_a, name_b);
3610 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
3612 ObjectClass *oc = data;
3613 CPUListState *s = user_data;
3614 const char *typename;
3615 char *name;
3617 typename = object_class_get_name(oc);
3618 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
3619 (*s->cpu_fprintf)(s->file, " %s\n",
3620 name);
3621 g_free(name);
3624 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
3626 CPUListState s = {
3627 .file = f,
3628 .cpu_fprintf = cpu_fprintf,
3630 GSList *list;
3632 list = object_class_get_list(TYPE_ARM_CPU, false);
3633 list = g_slist_sort(list, arm_cpu_list_compare);
3634 (*cpu_fprintf)(f, "Available CPUs:\n");
3635 g_slist_foreach(list, arm_cpu_list_entry, &s);
3636 g_slist_free(list);
3637 #ifdef CONFIG_KVM
3638 /* The 'host' CPU type is dynamically registered only if KVM is
3639 * enabled, so we have to special-case it here:
3641 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
3642 #endif
3645 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
3647 ObjectClass *oc = data;
3648 CpuDefinitionInfoList **cpu_list = user_data;
3649 CpuDefinitionInfoList *entry;
3650 CpuDefinitionInfo *info;
3651 const char *typename;
3653 typename = object_class_get_name(oc);
3654 info = g_malloc0(sizeof(*info));
3655 info->name = g_strndup(typename,
3656 strlen(typename) - strlen("-" TYPE_ARM_CPU));
3658 entry = g_malloc0(sizeof(*entry));
3659 entry->value = info;
3660 entry->next = *cpu_list;
3661 *cpu_list = entry;
3664 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
3666 CpuDefinitionInfoList *cpu_list = NULL;
3667 GSList *list;
3669 list = object_class_get_list(TYPE_ARM_CPU, false);
3670 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
3671 g_slist_free(list);
3673 return cpu_list;
3676 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
3677 void *opaque, int state, int secstate,
3678 int crm, int opc1, int opc2)
3680 /* Private utility function for define_one_arm_cp_reg_with_opaque():
3681 * add a single reginfo struct to the hash table.
3683 uint32_t *key = g_new(uint32_t, 1);
3684 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
3685 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3686 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
3688 /* Reset the secure state to the specific incoming state. This is
3689 * necessary as the register may have been defined with both states.
3691 r2->secure = secstate;
3693 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
3694 /* Register is banked (using both entries in array).
3695 * Overwriting fieldoffset as the array is only used to define
3696 * banked registers but later only fieldoffset is used.
3698 r2->fieldoffset = r->bank_fieldoffsets[ns];
3701 if (state == ARM_CP_STATE_AA32) {
3702 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
3703 /* If the register is banked then we don't need to migrate or
3704 * reset the 32-bit instance in certain cases:
3706 * 1) If the register has both 32-bit and 64-bit instances then we
3707 * can count on the 64-bit instance taking care of the
3708 * non-secure bank.
3709 * 2) If ARMv8 is enabled then we can count on a 64-bit version
3710 * taking care of the secure bank. This requires that separate
3711 * 32 and 64-bit definitions are provided.
3713 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
3714 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
3715 r2->type |= ARM_CP_ALIAS;
3716 r2->resetfn = arm_cp_reset_ignore;
3718 } else if ((secstate != r->secure) && !ns) {
3719 /* The register is not banked so we only want to allow migration of
3720 * the non-secure instance.
3722 r2->type |= ARM_CP_ALIAS;
3723 r2->resetfn = arm_cp_reset_ignore;
3726 if (r->state == ARM_CP_STATE_BOTH) {
3727 /* We assume it is a cp15 register if the .cp field is left unset.
3729 if (r2->cp == 0) {
3730 r2->cp = 15;
3733 #ifdef HOST_WORDS_BIGENDIAN
3734 if (r2->fieldoffset) {
3735 r2->fieldoffset += sizeof(uint32_t);
3737 #endif
3740 if (state == ARM_CP_STATE_AA64) {
3741 /* To allow abbreviation of ARMCPRegInfo
3742 * definitions, we treat cp == 0 as equivalent to
3743 * the value for "standard guest-visible sysreg".
3744 * STATE_BOTH definitions are also always "standard
3745 * sysreg" in their AArch64 view (the .cp value may
3746 * be non-zero for the benefit of the AArch32 view).
3748 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
3749 r2->cp = CP_REG_ARM64_SYSREG_CP;
3751 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
3752 r2->opc0, opc1, opc2);
3753 } else {
3754 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
3756 if (opaque) {
3757 r2->opaque = opaque;
3759 /* reginfo passed to helpers is correct for the actual access,
3760 * and is never ARM_CP_STATE_BOTH:
3762 r2->state = state;
3763 /* Make sure reginfo passed to helpers for wildcarded regs
3764 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
3766 r2->crm = crm;
3767 r2->opc1 = opc1;
3768 r2->opc2 = opc2;
3769 /* By convention, for wildcarded registers only the first
3770 * entry is used for migration; the others are marked as
3771 * ALIAS so we don't try to transfer the register
3772 * multiple times. Special registers (ie NOP/WFI) are
3773 * never migratable and not even raw-accessible.
3775 if ((r->type & ARM_CP_SPECIAL)) {
3776 r2->type |= ARM_CP_NO_RAW;
3778 if (((r->crm == CP_ANY) && crm != 0) ||
3779 ((r->opc1 == CP_ANY) && opc1 != 0) ||
3780 ((r->opc2 == CP_ANY) && opc2 != 0)) {
3781 r2->type |= ARM_CP_ALIAS;
3784 /* Check that raw accesses are either forbidden or handled. Note that
3785 * we can't assert this earlier because the setup of fieldoffset for
3786 * banked registers has to be done first.
3788 if (!(r2->type & ARM_CP_NO_RAW)) {
3789 assert(!raw_accessors_invalid(r2));
3792 /* Overriding of an existing definition must be explicitly
3793 * requested.
3795 if (!(r->type & ARM_CP_OVERRIDE)) {
3796 ARMCPRegInfo *oldreg;
3797 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
3798 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
3799 fprintf(stderr, "Register redefined: cp=%d %d bit "
3800 "crn=%d crm=%d opc1=%d opc2=%d, "
3801 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
3802 r2->crn, r2->crm, r2->opc1, r2->opc2,
3803 oldreg->name, r2->name);
3804 g_assert_not_reached();
3807 g_hash_table_insert(cpu->cp_regs, key, r2);
3811 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
3812 const ARMCPRegInfo *r, void *opaque)
3814 /* Define implementations of coprocessor registers.
3815 * We store these in a hashtable because typically
3816 * there are less than 150 registers in a space which
3817 * is 16*16*16*8*8 = 262144 in size.
3818 * Wildcarding is supported for the crm, opc1 and opc2 fields.
3819 * If a register is defined twice then the second definition is
3820 * used, so this can be used to define some generic registers and
3821 * then override them with implementation specific variations.
3822 * At least one of the original and the second definition should
3823 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
3824 * against accidental use.
3826 * The state field defines whether the register is to be
3827 * visible in the AArch32 or AArch64 execution state. If the
3828 * state is set to ARM_CP_STATE_BOTH then we synthesise a
3829 * reginfo structure for the AArch32 view, which sees the lower
3830 * 32 bits of the 64 bit register.
3832 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
3833 * be wildcarded. AArch64 registers are always considered to be 64
3834 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
3835 * the register, if any.
3837 int crm, opc1, opc2, state;
3838 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
3839 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
3840 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
3841 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
3842 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
3843 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
3844 /* 64 bit registers have only CRm and Opc1 fields */
3845 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
3846 /* op0 only exists in the AArch64 encodings */
3847 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
3848 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
3849 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
3850 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
3851 * encodes a minimum access level for the register. We roll this
3852 * runtime check into our general permission check code, so check
3853 * here that the reginfo's specified permissions are strict enough
3854 * to encompass the generic architectural permission check.
3856 if (r->state != ARM_CP_STATE_AA32) {
3857 int mask = 0;
3858 switch (r->opc1) {
3859 case 0: case 1: case 2:
3860 /* min_EL EL1 */
3861 mask = PL1_RW;
3862 break;
3863 case 3:
3864 /* min_EL EL0 */
3865 mask = PL0_RW;
3866 break;
3867 case 4:
3868 /* min_EL EL2 */
3869 mask = PL2_RW;
3870 break;
3871 case 5:
3872 /* unallocated encoding, so not possible */
3873 assert(false);
3874 break;
3875 case 6:
3876 /* min_EL EL3 */
3877 mask = PL3_RW;
3878 break;
3879 case 7:
3880 /* min_EL EL1, secure mode only (we don't check the latter) */
3881 mask = PL1_RW;
3882 break;
3883 default:
3884 /* broken reginfo with out-of-range opc1 */
3885 assert(false);
3886 break;
3888 /* assert our permissions are not too lax (stricter is fine) */
3889 assert((r->access & ~mask) == 0);
3892 /* Check that the register definition has enough info to handle
3893 * reads and writes if they are permitted.
3895 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
3896 if (r->access & PL3_R) {
3897 assert((r->fieldoffset ||
3898 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
3899 r->readfn);
3901 if (r->access & PL3_W) {
3902 assert((r->fieldoffset ||
3903 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
3904 r->writefn);
3907 /* Bad type field probably means missing sentinel at end of reg list */
3908 assert(cptype_valid(r->type));
3909 for (crm = crmmin; crm <= crmmax; crm++) {
3910 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
3911 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
3912 for (state = ARM_CP_STATE_AA32;
3913 state <= ARM_CP_STATE_AA64; state++) {
3914 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
3915 continue;
3917 if (state == ARM_CP_STATE_AA32) {
3918 /* Under AArch32 CP registers can be common
3919 * (same for secure and non-secure world) or banked.
3921 switch (r->secure) {
3922 case ARM_CP_SECSTATE_S:
3923 case ARM_CP_SECSTATE_NS:
3924 add_cpreg_to_hashtable(cpu, r, opaque, state,
3925 r->secure, crm, opc1, opc2);
3926 break;
3927 default:
3928 add_cpreg_to_hashtable(cpu, r, opaque, state,
3929 ARM_CP_SECSTATE_S,
3930 crm, opc1, opc2);
3931 add_cpreg_to_hashtable(cpu, r, opaque, state,
3932 ARM_CP_SECSTATE_NS,
3933 crm, opc1, opc2);
3934 break;
3936 } else {
3937 /* AArch64 registers get mapped to non-secure instance
3938 * of AArch32 */
3939 add_cpreg_to_hashtable(cpu, r, opaque, state,
3940 ARM_CP_SECSTATE_NS,
3941 crm, opc1, opc2);
3949 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
3950 const ARMCPRegInfo *regs, void *opaque)
3952 /* Define a whole list of registers */
3953 const ARMCPRegInfo *r;
3954 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
3955 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
3959 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
3961 return g_hash_table_lookup(cpregs, &encoded_cp);
3964 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
3965 uint64_t value)
3967 /* Helper coprocessor write function for write-ignore registers */
3970 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
3972 /* Helper coprocessor write function for read-as-zero registers */
3973 return 0;
3976 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
3978 /* Helper coprocessor reset function for do-nothing-on-reset registers */
3981 static int bad_mode_switch(CPUARMState *env, int mode)
3983 /* Return true if it is not valid for us to switch to
3984 * this CPU mode (ie all the UNPREDICTABLE cases in
3985 * the ARM ARM CPSRWriteByInstr pseudocode).
3987 switch (mode) {
3988 case ARM_CPU_MODE_USR:
3989 case ARM_CPU_MODE_SYS:
3990 case ARM_CPU_MODE_SVC:
3991 case ARM_CPU_MODE_ABT:
3992 case ARM_CPU_MODE_UND:
3993 case ARM_CPU_MODE_IRQ:
3994 case ARM_CPU_MODE_FIQ:
3995 return 0;
3996 case ARM_CPU_MODE_MON:
3997 return !arm_is_secure(env);
3998 default:
3999 return 1;
4003 uint32_t cpsr_read(CPUARMState *env)
4005 int ZF;
4006 ZF = (env->ZF == 0);
4007 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
4008 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
4009 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
4010 | ((env->condexec_bits & 0xfc) << 8)
4011 | (env->GE << 16) | (env->daif & CPSR_AIF);
4014 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
4016 uint32_t changed_daif;
4018 if (mask & CPSR_NZCV) {
4019 env->ZF = (~val) & CPSR_Z;
4020 env->NF = val;
4021 env->CF = (val >> 29) & 1;
4022 env->VF = (val << 3) & 0x80000000;
4024 if (mask & CPSR_Q)
4025 env->QF = ((val & CPSR_Q) != 0);
4026 if (mask & CPSR_T)
4027 env->thumb = ((val & CPSR_T) != 0);
4028 if (mask & CPSR_IT_0_1) {
4029 env->condexec_bits &= ~3;
4030 env->condexec_bits |= (val >> 25) & 3;
4032 if (mask & CPSR_IT_2_7) {
4033 env->condexec_bits &= 3;
4034 env->condexec_bits |= (val >> 8) & 0xfc;
4036 if (mask & CPSR_GE) {
4037 env->GE = (val >> 16) & 0xf;
4040 /* In a V7 implementation that includes the security extensions but does
4041 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
4042 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
4043 * bits respectively.
4045 * In a V8 implementation, it is permitted for privileged software to
4046 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
4048 if (!arm_feature(env, ARM_FEATURE_V8) &&
4049 arm_feature(env, ARM_FEATURE_EL3) &&
4050 !arm_feature(env, ARM_FEATURE_EL2) &&
4051 !arm_is_secure(env)) {
4053 changed_daif = (env->daif ^ val) & mask;
4055 if (changed_daif & CPSR_A) {
4056 /* Check to see if we are allowed to change the masking of async
4057 * abort exceptions from a non-secure state.
4059 if (!(env->cp15.scr_el3 & SCR_AW)) {
4060 qemu_log_mask(LOG_GUEST_ERROR,
4061 "Ignoring attempt to switch CPSR_A flag from "
4062 "non-secure world with SCR.AW bit clear\n");
4063 mask &= ~CPSR_A;
4067 if (changed_daif & CPSR_F) {
4068 /* Check to see if we are allowed to change the masking of FIQ
4069 * exceptions from a non-secure state.
4071 if (!(env->cp15.scr_el3 & SCR_FW)) {
4072 qemu_log_mask(LOG_GUEST_ERROR,
4073 "Ignoring attempt to switch CPSR_F flag from "
4074 "non-secure world with SCR.FW bit clear\n");
4075 mask &= ~CPSR_F;
4078 /* Check whether non-maskable FIQ (NMFI) support is enabled.
4079 * If this bit is set software is not allowed to mask
4080 * FIQs, but is allowed to set CPSR_F to 0.
4082 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
4083 (val & CPSR_F)) {
4084 qemu_log_mask(LOG_GUEST_ERROR,
4085 "Ignoring attempt to enable CPSR_F flag "
4086 "(non-maskable FIQ [NMFI] support enabled)\n");
4087 mask &= ~CPSR_F;
4092 env->daif &= ~(CPSR_AIF & mask);
4093 env->daif |= val & CPSR_AIF & mask;
4095 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
4096 if (bad_mode_switch(env, val & CPSR_M)) {
4097 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
4098 * We choose to ignore the attempt and leave the CPSR M field
4099 * untouched.
4101 mask &= ~CPSR_M;
4102 } else {
4103 switch_mode(env, val & CPSR_M);
4106 mask &= ~CACHED_CPSR_BITS;
4107 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
4110 /* Sign/zero extend */
4111 uint32_t HELPER(sxtb16)(uint32_t x)
4113 uint32_t res;
4114 res = (uint16_t)(int8_t)x;
4115 res |= (uint32_t)(int8_t)(x >> 16) << 16;
4116 return res;
4119 uint32_t HELPER(uxtb16)(uint32_t x)
4121 uint32_t res;
4122 res = (uint16_t)(uint8_t)x;
4123 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
4124 return res;
4127 uint32_t HELPER(clz)(uint32_t x)
4129 return clz32(x);
4132 int32_t HELPER(sdiv)(int32_t num, int32_t den)
4134 if (den == 0)
4135 return 0;
4136 if (num == INT_MIN && den == -1)
4137 return INT_MIN;
4138 return num / den;
4141 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
4143 if (den == 0)
4144 return 0;
4145 return num / den;
4148 uint32_t HELPER(rbit)(uint32_t x)
4150 x = ((x & 0xff000000) >> 24)
4151 | ((x & 0x00ff0000) >> 8)
4152 | ((x & 0x0000ff00) << 8)
4153 | ((x & 0x000000ff) << 24);
4154 x = ((x & 0xf0f0f0f0) >> 4)
4155 | ((x & 0x0f0f0f0f) << 4);
4156 x = ((x & 0x88888888) >> 3)
4157 | ((x & 0x44444444) >> 1)
4158 | ((x & 0x22222222) << 1)
4159 | ((x & 0x11111111) << 3);
4160 return x;
4163 #if defined(CONFIG_USER_ONLY)
4165 /* These should probably raise undefined insn exceptions. */
4166 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
4168 ARMCPU *cpu = arm_env_get_cpu(env);
4170 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
4173 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
4175 ARMCPU *cpu = arm_env_get_cpu(env);
4177 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
4178 return 0;
4181 void switch_mode(CPUARMState *env, int mode)
4183 ARMCPU *cpu = arm_env_get_cpu(env);
4185 if (mode != ARM_CPU_MODE_USR) {
4186 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
4190 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
4192 ARMCPU *cpu = arm_env_get_cpu(env);
4194 cpu_abort(CPU(cpu), "banked r13 write\n");
4197 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
4199 ARMCPU *cpu = arm_env_get_cpu(env);
4201 cpu_abort(CPU(cpu), "banked r13 read\n");
4202 return 0;
4205 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
4206 uint32_t cur_el, bool secure)
4208 return 1;
4211 void aarch64_sync_64_to_32(CPUARMState *env)
4213 g_assert_not_reached();
4216 #else
4218 /* Map CPU modes onto saved register banks. */
4219 int bank_number(int mode)
4221 switch (mode) {
4222 case ARM_CPU_MODE_USR:
4223 case ARM_CPU_MODE_SYS:
4224 return 0;
4225 case ARM_CPU_MODE_SVC:
4226 return 1;
4227 case ARM_CPU_MODE_ABT:
4228 return 2;
4229 case ARM_CPU_MODE_UND:
4230 return 3;
4231 case ARM_CPU_MODE_IRQ:
4232 return 4;
4233 case ARM_CPU_MODE_FIQ:
4234 return 5;
4235 case ARM_CPU_MODE_HYP:
4236 return 6;
4237 case ARM_CPU_MODE_MON:
4238 return 7;
4240 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
4243 void switch_mode(CPUARMState *env, int mode)
4245 int old_mode;
4246 int i;
4248 old_mode = env->uncached_cpsr & CPSR_M;
4249 if (mode == old_mode)
4250 return;
4252 if (old_mode == ARM_CPU_MODE_FIQ) {
4253 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
4254 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
4255 } else if (mode == ARM_CPU_MODE_FIQ) {
4256 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
4257 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
4260 i = bank_number(old_mode);
4261 env->banked_r13[i] = env->regs[13];
4262 env->banked_r14[i] = env->regs[14];
4263 env->banked_spsr[i] = env->spsr;
4265 i = bank_number(mode);
4266 env->regs[13] = env->banked_r13[i];
4267 env->regs[14] = env->banked_r14[i];
4268 env->spsr = env->banked_spsr[i];
4271 /* Physical Interrupt Target EL Lookup Table
4273 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
4275 * The below multi-dimensional table is used for looking up the target
4276 * exception level given numerous condition criteria. Specifically, the
4277 * target EL is based on SCR and HCR routing controls as well as the
4278 * currently executing EL and secure state.
4280 * Dimensions:
4281 * target_el_table[2][2][2][2][2][4]
4282 * | | | | | +--- Current EL
4283 * | | | | +------ Non-secure(0)/Secure(1)
4284 * | | | +--------- HCR mask override
4285 * | | +------------ SCR exec state control
4286 * | +--------------- SCR mask override
4287 * +------------------ 32-bit(0)/64-bit(1) EL3
4289 * The table values are as such:
4290 * 0-3 = EL0-EL3
4291 * -1 = Cannot occur
4293 * The ARM ARM target EL table includes entries indicating that an "exception
4294 * is not taken". The two cases where this is applicable are:
4295 * 1) An exception is taken from EL3 but the SCR does not have the exception
4296 * routed to EL3.
4297 * 2) An exception is taken from EL2 but the HCR does not have the exception
4298 * routed to EL2.
4299 * In these two cases, the below table contain a target of EL1. This value is
4300 * returned as it is expected that the consumer of the table data will check
4301 * for "target EL >= current EL" to ensure the exception is not taken.
4303 * SCR HCR
4304 * 64 EA AMO From
4305 * BIT IRQ IMO Non-secure Secure
4306 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
4308 const int8_t target_el_table[2][2][2][2][2][4] = {
4309 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4310 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
4311 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4312 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
4313 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4314 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
4315 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4316 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
4317 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
4318 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
4319 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
4320 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
4321 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4322 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
4323 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4324 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
4328 * Determine the target EL for physical exceptions
4330 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
4331 uint32_t cur_el, bool secure)
4333 CPUARMState *env = cs->env_ptr;
4334 int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
4335 int scr;
4336 int hcr;
4337 int target_el;
4338 int is64 = arm_el_is_aa64(env, 3);
4340 switch (excp_idx) {
4341 case EXCP_IRQ:
4342 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
4343 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
4344 break;
4345 case EXCP_FIQ:
4346 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
4347 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
4348 break;
4349 default:
4350 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
4351 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
4352 break;
4355 /* If HCR.TGE is set then HCR is treated as being 1 */
4356 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
4358 /* Perform a table-lookup for the target EL given the current state */
4359 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
4361 assert(target_el > 0);
4363 return target_el;
4366 static void v7m_push(CPUARMState *env, uint32_t val)
4368 CPUState *cs = CPU(arm_env_get_cpu(env));
4370 env->regs[13] -= 4;
4371 stl_phys(cs->as, env->regs[13], val);
4374 static uint32_t v7m_pop(CPUARMState *env)
4376 CPUState *cs = CPU(arm_env_get_cpu(env));
4377 uint32_t val;
4379 val = ldl_phys(cs->as, env->regs[13]);
4380 env->regs[13] += 4;
4381 return val;
4384 /* Switch to V7M main or process stack pointer. */
4385 static void switch_v7m_sp(CPUARMState *env, int process)
4387 uint32_t tmp;
4388 if (env->v7m.current_sp != process) {
4389 tmp = env->v7m.other_sp;
4390 env->v7m.other_sp = env->regs[13];
4391 env->regs[13] = tmp;
4392 env->v7m.current_sp = process;
4396 static void do_v7m_exception_exit(CPUARMState *env)
4398 uint32_t type;
4399 uint32_t xpsr;
4401 type = env->regs[15];
4402 if (env->v7m.exception != 0)
4403 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
4405 /* Switch to the target stack. */
4406 switch_v7m_sp(env, (type & 4) != 0);
4407 /* Pop registers. */
4408 env->regs[0] = v7m_pop(env);
4409 env->regs[1] = v7m_pop(env);
4410 env->regs[2] = v7m_pop(env);
4411 env->regs[3] = v7m_pop(env);
4412 env->regs[12] = v7m_pop(env);
4413 env->regs[14] = v7m_pop(env);
4414 env->regs[15] = v7m_pop(env);
4415 if (env->regs[15] & 1) {
4416 qemu_log_mask(LOG_GUEST_ERROR,
4417 "M profile return from interrupt with misaligned "
4418 "PC is UNPREDICTABLE\n");
4419 /* Actual hardware seems to ignore the lsbit, and there are several
4420 * RTOSes out there which incorrectly assume the r15 in the stack
4421 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
4423 env->regs[15] &= ~1U;
4425 xpsr = v7m_pop(env);
4426 xpsr_write(env, xpsr, 0xfffffdff);
4427 /* Undo stack alignment. */
4428 if (xpsr & 0x200)
4429 env->regs[13] |= 4;
4430 /* ??? The exception return type specifies Thread/Handler mode. However
4431 this is also implied by the xPSR value. Not sure what to do
4432 if there is a mismatch. */
4433 /* ??? Likewise for mismatches between the CONTROL register and the stack
4434 pointer. */
4437 void arm_v7m_cpu_do_interrupt(CPUState *cs)
4439 ARMCPU *cpu = ARM_CPU(cs);
4440 CPUARMState *env = &cpu->env;
4441 uint32_t xpsr = xpsr_read(env);
4442 uint32_t lr;
4443 uint32_t addr;
4445 arm_log_exception(cs->exception_index);
4447 lr = 0xfffffff1;
4448 if (env->v7m.current_sp)
4449 lr |= 4;
4450 if (env->v7m.exception == 0)
4451 lr |= 8;
4453 /* For exceptions we just mark as pending on the NVIC, and let that
4454 handle it. */
4455 /* TODO: Need to escalate if the current priority is higher than the
4456 one we're raising. */
4457 switch (cs->exception_index) {
4458 case EXCP_UDEF:
4459 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
4460 return;
4461 case EXCP_SWI:
4462 /* The PC already points to the next instruction. */
4463 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
4464 return;
4465 case EXCP_PREFETCH_ABORT:
4466 case EXCP_DATA_ABORT:
4467 /* TODO: if we implemented the MPU registers, this is where we
4468 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
4470 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
4471 return;
4472 case EXCP_BKPT:
4473 if (semihosting_enabled) {
4474 int nr;
4475 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
4476 if (nr == 0xab) {
4477 env->regs[15] += 2;
4478 env->regs[0] = do_arm_semihosting(env);
4479 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4480 return;
4483 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
4484 return;
4485 case EXCP_IRQ:
4486 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
4487 break;
4488 case EXCP_EXCEPTION_EXIT:
4489 do_v7m_exception_exit(env);
4490 return;
4491 default:
4492 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
4493 return; /* Never happens. Keep compiler happy. */
4496 /* Align stack pointer. */
4497 /* ??? Should only do this if Configuration Control Register
4498 STACKALIGN bit is set. */
4499 if (env->regs[13] & 4) {
4500 env->regs[13] -= 4;
4501 xpsr |= 0x200;
4503 /* Switch to the handler mode. */
4504 v7m_push(env, xpsr);
4505 v7m_push(env, env->regs[15]);
4506 v7m_push(env, env->regs[14]);
4507 v7m_push(env, env->regs[12]);
4508 v7m_push(env, env->regs[3]);
4509 v7m_push(env, env->regs[2]);
4510 v7m_push(env, env->regs[1]);
4511 v7m_push(env, env->regs[0]);
4512 switch_v7m_sp(env, 0);
4513 /* Clear IT bits */
4514 env->condexec_bits = 0;
4515 env->regs[14] = lr;
4516 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
4517 env->regs[15] = addr & 0xfffffffe;
4518 env->thumb = addr & 1;
4521 /* Function used to synchronize QEMU's AArch64 register set with AArch32
4522 * register set. This is necessary when switching between AArch32 and AArch64
4523 * execution state.
4525 void aarch64_sync_32_to_64(CPUARMState *env)
4527 int i;
4528 uint32_t mode = env->uncached_cpsr & CPSR_M;
4530 /* We can blanket copy R[0:7] to X[0:7] */
4531 for (i = 0; i < 8; i++) {
4532 env->xregs[i] = env->regs[i];
4535 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
4536 * Otherwise, they come from the banked user regs.
4538 if (mode == ARM_CPU_MODE_FIQ) {
4539 for (i = 8; i < 13; i++) {
4540 env->xregs[i] = env->usr_regs[i - 8];
4542 } else {
4543 for (i = 8; i < 13; i++) {
4544 env->xregs[i] = env->regs[i];
4548 /* Registers x13-x23 are the various mode SP and FP registers. Registers
4549 * r13 and r14 are only copied if we are in that mode, otherwise we copy
4550 * from the mode banked register.
4552 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
4553 env->xregs[13] = env->regs[13];
4554 env->xregs[14] = env->regs[14];
4555 } else {
4556 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
4557 /* HYP is an exception in that it is copied from r14 */
4558 if (mode == ARM_CPU_MODE_HYP) {
4559 env->xregs[14] = env->regs[14];
4560 } else {
4561 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
4565 if (mode == ARM_CPU_MODE_HYP) {
4566 env->xregs[15] = env->regs[13];
4567 } else {
4568 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
4571 if (mode == ARM_CPU_MODE_IRQ) {
4572 env->xregs[16] = env->regs[13];
4573 env->xregs[17] = env->regs[14];
4574 } else {
4575 env->xregs[16] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
4576 env->xregs[17] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
4579 if (mode == ARM_CPU_MODE_SVC) {
4580 env->xregs[18] = env->regs[13];
4581 env->xregs[19] = env->regs[14];
4582 } else {
4583 env->xregs[18] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
4584 env->xregs[19] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
4587 if (mode == ARM_CPU_MODE_ABT) {
4588 env->xregs[20] = env->regs[13];
4589 env->xregs[21] = env->regs[14];
4590 } else {
4591 env->xregs[20] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
4592 env->xregs[21] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
4595 if (mode == ARM_CPU_MODE_UND) {
4596 env->xregs[22] = env->regs[13];
4597 env->xregs[23] = env->regs[14];
4598 } else {
4599 env->xregs[22] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
4600 env->xregs[23] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
4603 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
4604 * mode, then we can copy from r8-r14. Otherwise, we copy from the
4605 * FIQ bank for r8-r14.
4607 if (mode == ARM_CPU_MODE_FIQ) {
4608 for (i = 24; i < 31; i++) {
4609 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
4611 } else {
4612 for (i = 24; i < 29; i++) {
4613 env->xregs[i] = env->fiq_regs[i - 24];
4615 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
4616 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
4619 env->pc = env->regs[15];
4622 /* Function used to synchronize QEMU's AArch32 register set with AArch64
4623 * register set. This is necessary when switching between AArch32 and AArch64
4624 * execution state.
4626 void aarch64_sync_64_to_32(CPUARMState *env)
4628 int i;
4629 uint32_t mode = env->uncached_cpsr & CPSR_M;
4631 /* We can blanket copy X[0:7] to R[0:7] */
4632 for (i = 0; i < 8; i++) {
4633 env->regs[i] = env->xregs[i];
4636 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
4637 * Otherwise, we copy x8-x12 into the banked user regs.
4639 if (mode == ARM_CPU_MODE_FIQ) {
4640 for (i = 8; i < 13; i++) {
4641 env->usr_regs[i - 8] = env->xregs[i];
4643 } else {
4644 for (i = 8; i < 13; i++) {
4645 env->regs[i] = env->xregs[i];
4649 /* Registers r13 & r14 depend on the current mode.
4650 * If we are in a given mode, we copy the corresponding x registers to r13
4651 * and r14. Otherwise, we copy the x register to the banked r13 and r14
4652 * for the mode.
4654 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
4655 env->regs[13] = env->xregs[13];
4656 env->regs[14] = env->xregs[14];
4657 } else {
4658 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
4660 /* HYP is an exception in that it does not have its own banked r14 but
4661 * shares the USR r14
4663 if (mode == ARM_CPU_MODE_HYP) {
4664 env->regs[14] = env->xregs[14];
4665 } else {
4666 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
4670 if (mode == ARM_CPU_MODE_HYP) {
4671 env->regs[13] = env->xregs[15];
4672 } else {
4673 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
4676 if (mode == ARM_CPU_MODE_IRQ) {
4677 env->regs[13] = env->xregs[16];
4678 env->regs[14] = env->xregs[17];
4679 } else {
4680 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
4681 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
4684 if (mode == ARM_CPU_MODE_SVC) {
4685 env->regs[13] = env->xregs[18];
4686 env->regs[14] = env->xregs[19];
4687 } else {
4688 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
4689 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
4692 if (mode == ARM_CPU_MODE_ABT) {
4693 env->regs[13] = env->xregs[20];
4694 env->regs[14] = env->xregs[21];
4695 } else {
4696 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
4697 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
4700 if (mode == ARM_CPU_MODE_UND) {
4701 env->regs[13] = env->xregs[22];
4702 env->regs[14] = env->xregs[23];
4703 } else {
4704 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
4705 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
4708 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
4709 * mode, then we can copy to r8-r14. Otherwise, we copy to the
4710 * FIQ bank for r8-r14.
4712 if (mode == ARM_CPU_MODE_FIQ) {
4713 for (i = 24; i < 31; i++) {
4714 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
4716 } else {
4717 for (i = 24; i < 29; i++) {
4718 env->fiq_regs[i - 24] = env->xregs[i];
4720 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
4721 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
4724 env->regs[15] = env->pc;
4727 /* Handle a CPU exception. */
4728 void arm_cpu_do_interrupt(CPUState *cs)
4730 ARMCPU *cpu = ARM_CPU(cs);
4731 CPUARMState *env = &cpu->env;
4732 uint32_t addr;
4733 uint32_t mask;
4734 int new_mode;
4735 uint32_t offset;
4736 uint32_t moe;
4738 assert(!IS_M(env));
4740 arm_log_exception(cs->exception_index);
4742 if (arm_is_psci_call(cpu, cs->exception_index)) {
4743 arm_handle_psci_call(cpu);
4744 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
4745 return;
4748 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
4749 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
4750 case EC_BREAKPOINT:
4751 case EC_BREAKPOINT_SAME_EL:
4752 moe = 1;
4753 break;
4754 case EC_WATCHPOINT:
4755 case EC_WATCHPOINT_SAME_EL:
4756 moe = 10;
4757 break;
4758 case EC_AA32_BKPT:
4759 moe = 3;
4760 break;
4761 case EC_VECTORCATCH:
4762 moe = 5;
4763 break;
4764 default:
4765 moe = 0;
4766 break;
4769 if (moe) {
4770 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
4773 /* TODO: Vectored interrupt controller. */
4774 switch (cs->exception_index) {
4775 case EXCP_UDEF:
4776 new_mode = ARM_CPU_MODE_UND;
4777 addr = 0x04;
4778 mask = CPSR_I;
4779 if (env->thumb)
4780 offset = 2;
4781 else
4782 offset = 4;
4783 break;
4784 case EXCP_SWI:
4785 if (semihosting_enabled) {
4786 /* Check for semihosting interrupt. */
4787 if (env->thumb) {
4788 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
4789 & 0xff;
4790 } else {
4791 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
4792 & 0xffffff;
4794 /* Only intercept calls from privileged modes, to provide some
4795 semblance of security. */
4796 if (((mask == 0x123456 && !env->thumb)
4797 || (mask == 0xab && env->thumb))
4798 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
4799 env->regs[0] = do_arm_semihosting(env);
4800 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4801 return;
4804 new_mode = ARM_CPU_MODE_SVC;
4805 addr = 0x08;
4806 mask = CPSR_I;
4807 /* The PC already points to the next instruction. */
4808 offset = 0;
4809 break;
4810 case EXCP_BKPT:
4811 /* See if this is a semihosting syscall. */
4812 if (env->thumb && semihosting_enabled) {
4813 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
4814 if (mask == 0xab
4815 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
4816 env->regs[15] += 2;
4817 env->regs[0] = do_arm_semihosting(env);
4818 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4819 return;
4822 env->exception.fsr = 2;
4823 /* Fall through to prefetch abort. */
4824 case EXCP_PREFETCH_ABORT:
4825 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
4826 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
4827 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
4828 env->exception.fsr, (uint32_t)env->exception.vaddress);
4829 new_mode = ARM_CPU_MODE_ABT;
4830 addr = 0x0c;
4831 mask = CPSR_A | CPSR_I;
4832 offset = 4;
4833 break;
4834 case EXCP_DATA_ABORT:
4835 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
4836 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
4837 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4838 env->exception.fsr,
4839 (uint32_t)env->exception.vaddress);
4840 new_mode = ARM_CPU_MODE_ABT;
4841 addr = 0x10;
4842 mask = CPSR_A | CPSR_I;
4843 offset = 8;
4844 break;
4845 case EXCP_IRQ:
4846 new_mode = ARM_CPU_MODE_IRQ;
4847 addr = 0x18;
4848 /* Disable IRQ and imprecise data aborts. */
4849 mask = CPSR_A | CPSR_I;
4850 offset = 4;
4851 if (env->cp15.scr_el3 & SCR_IRQ) {
4852 /* IRQ routed to monitor mode */
4853 new_mode = ARM_CPU_MODE_MON;
4854 mask |= CPSR_F;
4856 break;
4857 case EXCP_FIQ:
4858 new_mode = ARM_CPU_MODE_FIQ;
4859 addr = 0x1c;
4860 /* Disable FIQ, IRQ and imprecise data aborts. */
4861 mask = CPSR_A | CPSR_I | CPSR_F;
4862 if (env->cp15.scr_el3 & SCR_FIQ) {
4863 /* FIQ routed to monitor mode */
4864 new_mode = ARM_CPU_MODE_MON;
4866 offset = 4;
4867 break;
4868 case EXCP_SMC:
4869 new_mode = ARM_CPU_MODE_MON;
4870 addr = 0x08;
4871 mask = CPSR_A | CPSR_I | CPSR_F;
4872 offset = 0;
4873 break;
4874 default:
4875 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
4876 return; /* Never happens. Keep compiler happy. */
4879 if (new_mode == ARM_CPU_MODE_MON) {
4880 addr += env->cp15.mvbar;
4881 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
4882 /* High vectors. When enabled, base address cannot be remapped. */
4883 addr += 0xffff0000;
4884 } else {
4885 /* ARM v7 architectures provide a vector base address register to remap
4886 * the interrupt vector table.
4887 * This register is only followed in non-monitor mode, and is banked.
4888 * Note: only bits 31:5 are valid.
4890 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
4893 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
4894 env->cp15.scr_el3 &= ~SCR_NS;
4897 switch_mode (env, new_mode);
4898 /* For exceptions taken to AArch32 we must clear the SS bit in both
4899 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
4901 env->uncached_cpsr &= ~PSTATE_SS;
4902 env->spsr = cpsr_read(env);
4903 /* Clear IT bits. */
4904 env->condexec_bits = 0;
4905 /* Switch to the new mode, and to the correct instruction set. */
4906 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
4907 env->daif |= mask;
4908 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
4909 * and we should just guard the thumb mode on V4 */
4910 if (arm_feature(env, ARM_FEATURE_V4T)) {
4911 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
4913 env->regs[14] = env->regs[15] + offset;
4914 env->regs[15] = addr;
4915 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
4919 /* Return the exception level which controls this address translation regime */
4920 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
4922 switch (mmu_idx) {
4923 case ARMMMUIdx_S2NS:
4924 case ARMMMUIdx_S1E2:
4925 return 2;
4926 case ARMMMUIdx_S1E3:
4927 return 3;
4928 case ARMMMUIdx_S1SE0:
4929 return arm_el_is_aa64(env, 3) ? 1 : 3;
4930 case ARMMMUIdx_S1SE1:
4931 case ARMMMUIdx_S1NSE0:
4932 case ARMMMUIdx_S1NSE1:
4933 return 1;
4934 default:
4935 g_assert_not_reached();
4939 /* Return true if this address translation regime is secure */
4940 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
4942 switch (mmu_idx) {
4943 case ARMMMUIdx_S12NSE0:
4944 case ARMMMUIdx_S12NSE1:
4945 case ARMMMUIdx_S1NSE0:
4946 case ARMMMUIdx_S1NSE1:
4947 case ARMMMUIdx_S1E2:
4948 case ARMMMUIdx_S2NS:
4949 return false;
4950 case ARMMMUIdx_S1E3:
4951 case ARMMMUIdx_S1SE0:
4952 case ARMMMUIdx_S1SE1:
4953 return true;
4954 default:
4955 g_assert_not_reached();
4959 /* Return the SCTLR value which controls this address translation regime */
4960 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
4962 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
4965 /* Return true if the specified stage of address translation is disabled */
4966 static inline bool regime_translation_disabled(CPUARMState *env,
4967 ARMMMUIdx mmu_idx)
4969 if (mmu_idx == ARMMMUIdx_S2NS) {
4970 return (env->cp15.hcr_el2 & HCR_VM) == 0;
4972 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
4975 /* Return the TCR controlling this translation regime */
4976 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
4978 if (mmu_idx == ARMMMUIdx_S2NS) {
4979 /* TODO: return VTCR_EL2 */
4980 g_assert_not_reached();
4982 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
4985 /* Return the TTBR associated with this translation regime */
4986 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
4987 int ttbrn)
4989 if (mmu_idx == ARMMMUIdx_S2NS) {
4990 /* TODO: return VTTBR_EL2 */
4991 g_assert_not_reached();
4993 if (ttbrn == 0) {
4994 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
4995 } else {
4996 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
5000 /* Return true if the translation regime is using LPAE format page tables */
5001 static inline bool regime_using_lpae_format(CPUARMState *env,
5002 ARMMMUIdx mmu_idx)
5004 int el = regime_el(env, mmu_idx);
5005 if (el == 2 || arm_el_is_aa64(env, el)) {
5006 return true;
5008 if (arm_feature(env, ARM_FEATURE_LPAE)
5009 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
5010 return true;
5012 return false;
5015 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
5017 switch (mmu_idx) {
5018 case ARMMMUIdx_S1SE0:
5019 case ARMMMUIdx_S1NSE0:
5020 return true;
5021 default:
5022 return false;
5023 case ARMMMUIdx_S12NSE0:
5024 case ARMMMUIdx_S12NSE1:
5025 g_assert_not_reached();
5029 /* Translate section/page access permissions to page
5030 * R/W protection flags
5032 * @env: CPUARMState
5033 * @mmu_idx: MMU index indicating required translation regime
5034 * @ap: The 3-bit access permissions (AP[2:0])
5035 * @domain_prot: The 2-bit domain access permissions
5037 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
5038 int ap, int domain_prot)
5040 bool is_user = regime_is_user(env, mmu_idx);
5042 if (domain_prot == 3) {
5043 return PAGE_READ | PAGE_WRITE;
5046 switch (ap) {
5047 case 0:
5048 if (arm_feature(env, ARM_FEATURE_V7)) {
5049 return 0;
5051 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
5052 case SCTLR_S:
5053 return is_user ? 0 : PAGE_READ;
5054 case SCTLR_R:
5055 return PAGE_READ;
5056 default:
5057 return 0;
5059 case 1:
5060 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5061 case 2:
5062 if (is_user) {
5063 return PAGE_READ;
5064 } else {
5065 return PAGE_READ | PAGE_WRITE;
5067 case 3:
5068 return PAGE_READ | PAGE_WRITE;
5069 case 4: /* Reserved. */
5070 return 0;
5071 case 5:
5072 return is_user ? 0 : PAGE_READ;
5073 case 6:
5074 return PAGE_READ;
5075 case 7:
5076 if (!arm_feature(env, ARM_FEATURE_V6K)) {
5077 return 0;
5079 return PAGE_READ;
5080 default:
5081 g_assert_not_reached();
5085 /* Translate section/page access permissions to page
5086 * R/W protection flags.
5088 * @ap: The 2-bit simple AP (AP[2:1])
5089 * @is_user: TRUE if accessing from PL0
5091 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
5093 switch (ap) {
5094 case 0:
5095 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5096 case 1:
5097 return PAGE_READ | PAGE_WRITE;
5098 case 2:
5099 return is_user ? 0 : PAGE_READ;
5100 case 3:
5101 return PAGE_READ;
5102 default:
5103 g_assert_not_reached();
5107 static inline int
5108 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
5110 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
5113 /* Translate section/page access permissions to protection flags
5115 * @env: CPUARMState
5116 * @mmu_idx: MMU index indicating required translation regime
5117 * @is_aa64: TRUE if AArch64
5118 * @ap: The 2-bit simple AP (AP[2:1])
5119 * @ns: NS (non-secure) bit
5120 * @xn: XN (execute-never) bit
5121 * @pxn: PXN (privileged execute-never) bit
5123 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
5124 int ap, int ns, int xn, int pxn)
5126 bool is_user = regime_is_user(env, mmu_idx);
5127 int prot_rw, user_rw;
5128 bool have_wxn;
5129 int wxn = 0;
5131 assert(mmu_idx != ARMMMUIdx_S2NS);
5133 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
5134 if (is_user) {
5135 prot_rw = user_rw;
5136 } else {
5137 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
5140 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
5141 return prot_rw;
5144 /* TODO have_wxn should be replaced with
5145 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
5146 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
5147 * compatible processors have EL2, which is required for [U]WXN.
5149 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
5151 if (have_wxn) {
5152 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
5155 if (is_aa64) {
5156 switch (regime_el(env, mmu_idx)) {
5157 case 1:
5158 if (!is_user) {
5159 xn = pxn || (user_rw & PAGE_WRITE);
5161 break;
5162 case 2:
5163 case 3:
5164 break;
5166 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5167 switch (regime_el(env, mmu_idx)) {
5168 case 1:
5169 case 3:
5170 if (is_user) {
5171 xn = xn || !(user_rw & PAGE_READ);
5172 } else {
5173 int uwxn = 0;
5174 if (have_wxn) {
5175 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
5177 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
5178 (uwxn && (user_rw & PAGE_WRITE));
5180 break;
5181 case 2:
5182 break;
5184 } else {
5185 xn = wxn = 0;
5188 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
5189 return prot_rw;
5191 return prot_rw | PAGE_EXEC;
5194 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
5195 uint32_t *table, uint32_t address)
5197 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
5198 TCR *tcr = regime_tcr(env, mmu_idx);
5200 if (address & tcr->mask) {
5201 if (tcr->raw_tcr & TTBCR_PD1) {
5202 /* Translation table walk disabled for TTBR1 */
5203 return false;
5205 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
5206 } else {
5207 if (tcr->raw_tcr & TTBCR_PD0) {
5208 /* Translation table walk disabled for TTBR0 */
5209 return false;
5211 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
5213 *table |= (address >> 18) & 0x3ffc;
5214 return true;
5217 /* All loads done in the course of a page table walk go through here.
5218 * TODO: rather than ignoring errors from physical memory reads (which
5219 * are external aborts in ARM terminology) we should propagate this
5220 * error out so that we can turn it into a Data Abort if this walk
5221 * was being done for a CPU load/store or an address translation instruction
5222 * (but not if it was for a debug access).
5224 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure)
5226 MemTxAttrs attrs = {};
5228 attrs.secure = is_secure;
5229 return address_space_ldl(cs->as, addr, attrs, NULL);
5232 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure)
5234 MemTxAttrs attrs = {};
5236 attrs.secure = is_secure;
5237 return address_space_ldq(cs->as, addr, attrs, NULL);
5240 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
5241 ARMMMUIdx mmu_idx, hwaddr *phys_ptr,
5242 int *prot, target_ulong *page_size)
5244 CPUState *cs = CPU(arm_env_get_cpu(env));
5245 int code;
5246 uint32_t table;
5247 uint32_t desc;
5248 int type;
5249 int ap;
5250 int domain = 0;
5251 int domain_prot;
5252 hwaddr phys_addr;
5253 uint32_t dacr;
5255 /* Pagetable walk. */
5256 /* Lookup l1 descriptor. */
5257 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5258 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5259 code = 5;
5260 goto do_fault;
5262 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5263 type = (desc & 3);
5264 domain = (desc >> 5) & 0x0f;
5265 if (regime_el(env, mmu_idx) == 1) {
5266 dacr = env->cp15.dacr_ns;
5267 } else {
5268 dacr = env->cp15.dacr_s;
5270 domain_prot = (dacr >> (domain * 2)) & 3;
5271 if (type == 0) {
5272 /* Section translation fault. */
5273 code = 5;
5274 goto do_fault;
5276 if (domain_prot == 0 || domain_prot == 2) {
5277 if (type == 2)
5278 code = 9; /* Section domain fault. */
5279 else
5280 code = 11; /* Page domain fault. */
5281 goto do_fault;
5283 if (type == 2) {
5284 /* 1Mb section. */
5285 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
5286 ap = (desc >> 10) & 3;
5287 code = 13;
5288 *page_size = 1024 * 1024;
5289 } else {
5290 /* Lookup l2 entry. */
5291 if (type == 1) {
5292 /* Coarse pagetable. */
5293 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
5294 } else {
5295 /* Fine pagetable. */
5296 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
5298 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5299 switch (desc & 3) {
5300 case 0: /* Page translation fault. */
5301 code = 7;
5302 goto do_fault;
5303 case 1: /* 64k page. */
5304 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
5305 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
5306 *page_size = 0x10000;
5307 break;
5308 case 2: /* 4k page. */
5309 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5310 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
5311 *page_size = 0x1000;
5312 break;
5313 case 3: /* 1k page. */
5314 if (type == 1) {
5315 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5316 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5317 } else {
5318 /* Page translation fault. */
5319 code = 7;
5320 goto do_fault;
5322 } else {
5323 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
5325 ap = (desc >> 4) & 3;
5326 *page_size = 0x400;
5327 break;
5328 default:
5329 /* Never happens, but compiler isn't smart enough to tell. */
5330 abort();
5332 code = 15;
5334 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
5335 *prot |= *prot ? PAGE_EXEC : 0;
5336 if (!(*prot & (1 << access_type))) {
5337 /* Access permission fault. */
5338 goto do_fault;
5340 *phys_ptr = phys_addr;
5341 return 0;
5342 do_fault:
5343 return code | (domain << 4);
5346 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
5347 ARMMMUIdx mmu_idx, hwaddr *phys_ptr,
5348 MemTxAttrs *attrs,
5349 int *prot, target_ulong *page_size)
5351 CPUState *cs = CPU(arm_env_get_cpu(env));
5352 int code;
5353 uint32_t table;
5354 uint32_t desc;
5355 uint32_t xn;
5356 uint32_t pxn = 0;
5357 int type;
5358 int ap;
5359 int domain = 0;
5360 int domain_prot;
5361 hwaddr phys_addr;
5362 uint32_t dacr;
5363 bool ns;
5365 /* Pagetable walk. */
5366 /* Lookup l1 descriptor. */
5367 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5368 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5369 code = 5;
5370 goto do_fault;
5372 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5373 type = (desc & 3);
5374 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
5375 /* Section translation fault, or attempt to use the encoding
5376 * which is Reserved on implementations without PXN.
5378 code = 5;
5379 goto do_fault;
5381 if ((type == 1) || !(desc & (1 << 18))) {
5382 /* Page or Section. */
5383 domain = (desc >> 5) & 0x0f;
5385 if (regime_el(env, mmu_idx) == 1) {
5386 dacr = env->cp15.dacr_ns;
5387 } else {
5388 dacr = env->cp15.dacr_s;
5390 domain_prot = (dacr >> (domain * 2)) & 3;
5391 if (domain_prot == 0 || domain_prot == 2) {
5392 if (type != 1) {
5393 code = 9; /* Section domain fault. */
5394 } else {
5395 code = 11; /* Page domain fault. */
5397 goto do_fault;
5399 if (type != 1) {
5400 if (desc & (1 << 18)) {
5401 /* Supersection. */
5402 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
5403 *page_size = 0x1000000;
5404 } else {
5405 /* Section. */
5406 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
5407 *page_size = 0x100000;
5409 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
5410 xn = desc & (1 << 4);
5411 pxn = desc & 1;
5412 code = 13;
5413 ns = extract32(desc, 19, 1);
5414 } else {
5415 if (arm_feature(env, ARM_FEATURE_PXN)) {
5416 pxn = (desc >> 2) & 1;
5418 ns = extract32(desc, 3, 1);
5419 /* Lookup l2 entry. */
5420 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
5421 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5422 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
5423 switch (desc & 3) {
5424 case 0: /* Page translation fault. */
5425 code = 7;
5426 goto do_fault;
5427 case 1: /* 64k page. */
5428 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
5429 xn = desc & (1 << 15);
5430 *page_size = 0x10000;
5431 break;
5432 case 2: case 3: /* 4k page. */
5433 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5434 xn = desc & 1;
5435 *page_size = 0x1000;
5436 break;
5437 default:
5438 /* Never happens, but compiler isn't smart enough to tell. */
5439 abort();
5441 code = 15;
5443 if (domain_prot == 3) {
5444 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
5445 } else {
5446 if (pxn && !regime_is_user(env, mmu_idx)) {
5447 xn = 1;
5449 if (xn && access_type == 2)
5450 goto do_fault;
5452 if (arm_feature(env, ARM_FEATURE_V6K) &&
5453 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
5454 /* The simplified model uses AP[0] as an access control bit. */
5455 if ((ap & 1) == 0) {
5456 /* Access flag fault. */
5457 code = (code == 15) ? 6 : 3;
5458 goto do_fault;
5460 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
5461 } else {
5462 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
5464 if (*prot && !xn) {
5465 *prot |= PAGE_EXEC;
5467 if (!(*prot & (1 << access_type))) {
5468 /* Access permission fault. */
5469 goto do_fault;
5472 if (ns) {
5473 /* The NS bit will (as required by the architecture) have no effect if
5474 * the CPU doesn't support TZ or this is a non-secure translation
5475 * regime, because the attribute will already be non-secure.
5477 attrs->secure = false;
5479 *phys_ptr = phys_addr;
5480 return 0;
5481 do_fault:
5482 return code | (domain << 4);
5485 /* Fault type for long-descriptor MMU fault reporting; this corresponds
5486 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
5488 typedef enum {
5489 translation_fault = 1,
5490 access_fault = 2,
5491 permission_fault = 3,
5492 } MMUFaultType;
5494 static int get_phys_addr_lpae(CPUARMState *env, target_ulong address,
5495 int access_type, ARMMMUIdx mmu_idx,
5496 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
5497 target_ulong *page_size_ptr)
5499 CPUState *cs = CPU(arm_env_get_cpu(env));
5500 /* Read an LPAE long-descriptor translation table. */
5501 MMUFaultType fault_type = translation_fault;
5502 uint32_t level = 1;
5503 uint32_t epd;
5504 int32_t tsz;
5505 uint32_t tg;
5506 uint64_t ttbr;
5507 int ttbr_select;
5508 hwaddr descaddr, descmask;
5509 uint32_t tableattrs;
5510 target_ulong page_size;
5511 uint32_t attrs;
5512 int32_t granule_sz = 9;
5513 int32_t va_size = 32;
5514 int32_t tbi = 0;
5515 TCR *tcr = regime_tcr(env, mmu_idx);
5516 int ap, ns, xn, pxn;
5517 uint32_t el = regime_el(env, mmu_idx);
5518 bool ttbr1_valid = true;
5520 /* TODO:
5521 * This code does not handle the different format TCR for VTCR_EL2.
5522 * This code also does not support shareability levels.
5523 * Attribute and permission bit handling should also be checked when adding
5524 * support for those page table walks.
5526 if (arm_el_is_aa64(env, el)) {
5527 va_size = 64;
5528 if (el > 1) {
5529 tbi = extract64(tcr->raw_tcr, 20, 1);
5530 } else {
5531 if (extract64(address, 55, 1)) {
5532 tbi = extract64(tcr->raw_tcr, 38, 1);
5533 } else {
5534 tbi = extract64(tcr->raw_tcr, 37, 1);
5537 tbi *= 8;
5539 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
5540 * invalid.
5542 if (el > 1) {
5543 ttbr1_valid = false;
5547 /* Determine whether this address is in the region controlled by
5548 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
5549 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
5550 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
5552 uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6);
5553 if (va_size == 64) {
5554 t0sz = MIN(t0sz, 39);
5555 t0sz = MAX(t0sz, 16);
5557 uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6);
5558 if (va_size == 64) {
5559 t1sz = MIN(t1sz, 39);
5560 t1sz = MAX(t1sz, 16);
5562 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
5563 /* there is a ttbr0 region and we are in it (high bits all zero) */
5564 ttbr_select = 0;
5565 } else if (ttbr1_valid && t1sz &&
5566 !extract64(~address, va_size - t1sz, t1sz - tbi)) {
5567 /* there is a ttbr1 region and we are in it (high bits all one) */
5568 ttbr_select = 1;
5569 } else if (!t0sz) {
5570 /* ttbr0 region is "everything not in the ttbr1 region" */
5571 ttbr_select = 0;
5572 } else if (!t1sz && ttbr1_valid) {
5573 /* ttbr1 region is "everything not in the ttbr0 region" */
5574 ttbr_select = 1;
5575 } else {
5576 /* in the gap between the two regions, this is a Translation fault */
5577 fault_type = translation_fault;
5578 goto do_fault;
5581 /* Note that QEMU ignores shareability and cacheability attributes,
5582 * so we don't need to do anything with the SH, ORGN, IRGN fields
5583 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
5584 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
5585 * implement any ASID-like capability so we can ignore it (instead
5586 * we will always flush the TLB any time the ASID is changed).
5588 if (ttbr_select == 0) {
5589 ttbr = regime_ttbr(env, mmu_idx, 0);
5590 epd = extract32(tcr->raw_tcr, 7, 1);
5591 tsz = t0sz;
5593 tg = extract32(tcr->raw_tcr, 14, 2);
5594 if (tg == 1) { /* 64KB pages */
5595 granule_sz = 13;
5597 if (tg == 2) { /* 16KB pages */
5598 granule_sz = 11;
5600 } else {
5601 /* We should only be here if TTBR1 is valid */
5602 assert(ttbr1_valid);
5604 ttbr = regime_ttbr(env, mmu_idx, 1);
5605 epd = extract32(tcr->raw_tcr, 23, 1);
5606 tsz = t1sz;
5608 tg = extract32(tcr->raw_tcr, 30, 2);
5609 if (tg == 3) { /* 64KB pages */
5610 granule_sz = 13;
5612 if (tg == 1) { /* 16KB pages */
5613 granule_sz = 11;
5617 /* Here we should have set up all the parameters for the translation:
5618 * va_size, ttbr, epd, tsz, granule_sz, tbi
5621 if (epd) {
5622 /* Translation table walk disabled => Translation fault on TLB miss
5623 * Note: This is always 0 on 64-bit EL2 and EL3.
5625 goto do_fault;
5628 /* The starting level depends on the virtual address size (which can be
5629 * up to 48 bits) and the translation granule size. It indicates the number
5630 * of strides (granule_sz bits at a time) needed to consume the bits
5631 * of the input address. In the pseudocode this is:
5632 * level = 4 - RoundUp((inputsize - grainsize) / stride)
5633 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
5634 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
5635 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
5636 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
5637 * = 4 - (va_size - tsz - 4) / granule_sz;
5639 level = 4 - (va_size - tsz - 4) / granule_sz;
5641 /* Clear the vaddr bits which aren't part of the within-region address,
5642 * so that we don't have to special case things when calculating the
5643 * first descriptor address.
5645 if (tsz) {
5646 address &= (1ULL << (va_size - tsz)) - 1;
5649 descmask = (1ULL << (granule_sz + 3)) - 1;
5651 /* Now we can extract the actual base address from the TTBR */
5652 descaddr = extract64(ttbr, 0, 48);
5653 descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
5655 /* Secure accesses start with the page table in secure memory and
5656 * can be downgraded to non-secure at any step. Non-secure accesses
5657 * remain non-secure. We implement this by just ORing in the NSTable/NS
5658 * bits at each step.
5660 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
5661 for (;;) {
5662 uint64_t descriptor;
5663 bool nstable;
5665 descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
5666 descaddr &= ~7ULL;
5667 nstable = extract32(tableattrs, 4, 1);
5668 descriptor = arm_ldq_ptw(cs, descaddr, !nstable);
5669 if (!(descriptor & 1) ||
5670 (!(descriptor & 2) && (level == 3))) {
5671 /* Invalid, or the Reserved level 3 encoding */
5672 goto do_fault;
5674 descaddr = descriptor & 0xfffffff000ULL;
5676 if ((descriptor & 2) && (level < 3)) {
5677 /* Table entry. The top five bits are attributes which may
5678 * propagate down through lower levels of the table (and
5679 * which are all arranged so that 0 means "no effect", so
5680 * we can gather them up by ORing in the bits at each level).
5682 tableattrs |= extract64(descriptor, 59, 5);
5683 level++;
5684 continue;
5686 /* Block entry at level 1 or 2, or page entry at level 3.
5687 * These are basically the same thing, although the number
5688 * of bits we pull in from the vaddr varies.
5690 page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
5691 descaddr |= (address & (page_size - 1));
5692 /* Extract attributes from the descriptor and merge with table attrs */
5693 attrs = extract64(descriptor, 2, 10)
5694 | (extract64(descriptor, 52, 12) << 10);
5695 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
5696 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
5697 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
5698 * means "force PL1 access only", which means forcing AP[1] to 0.
5700 if (extract32(tableattrs, 2, 1)) {
5701 attrs &= ~(1 << 4);
5703 attrs |= nstable << 3; /* NS */
5704 break;
5706 /* Here descaddr is the final physical address, and attributes
5707 * are all in attrs.
5709 fault_type = access_fault;
5710 if ((attrs & (1 << 8)) == 0) {
5711 /* Access flag */
5712 goto do_fault;
5715 ap = extract32(attrs, 4, 2);
5716 ns = extract32(attrs, 3, 1);
5717 xn = extract32(attrs, 12, 1);
5718 pxn = extract32(attrs, 11, 1);
5720 *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
5722 fault_type = permission_fault;
5723 if (!(*prot & (1 << access_type))) {
5724 goto do_fault;
5727 if (ns) {
5728 /* The NS bit will (as required by the architecture) have no effect if
5729 * the CPU doesn't support TZ or this is a non-secure translation
5730 * regime, because the attribute will already be non-secure.
5732 txattrs->secure = false;
5734 *phys_ptr = descaddr;
5735 *page_size_ptr = page_size;
5736 return 0;
5738 do_fault:
5739 /* Long-descriptor format IFSR/DFSR value */
5740 return (1 << 9) | (fault_type << 2) | level;
5743 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
5744 int access_type, ARMMMUIdx mmu_idx,
5745 hwaddr *phys_ptr, int *prot)
5747 int n;
5748 uint32_t mask;
5749 uint32_t base;
5750 bool is_user = regime_is_user(env, mmu_idx);
5752 *phys_ptr = address;
5753 for (n = 7; n >= 0; n--) {
5754 base = env->cp15.c6_region[n];
5755 if ((base & 1) == 0) {
5756 continue;
5758 mask = 1 << ((base >> 1) & 0x1f);
5759 /* Keep this shift separate from the above to avoid an
5760 (undefined) << 32. */
5761 mask = (mask << 1) - 1;
5762 if (((base ^ address) & ~mask) == 0) {
5763 break;
5766 if (n < 0) {
5767 return 2;
5770 if (access_type == 2) {
5771 mask = env->cp15.pmsav5_insn_ap;
5772 } else {
5773 mask = env->cp15.pmsav5_data_ap;
5775 mask = (mask >> (n * 4)) & 0xf;
5776 switch (mask) {
5777 case 0:
5778 return 1;
5779 case 1:
5780 if (is_user) {
5781 return 1;
5783 *prot = PAGE_READ | PAGE_WRITE;
5784 break;
5785 case 2:
5786 *prot = PAGE_READ;
5787 if (!is_user) {
5788 *prot |= PAGE_WRITE;
5790 break;
5791 case 3:
5792 *prot = PAGE_READ | PAGE_WRITE;
5793 break;
5794 case 5:
5795 if (is_user) {
5796 return 1;
5798 *prot = PAGE_READ;
5799 break;
5800 case 6:
5801 *prot = PAGE_READ;
5802 break;
5803 default:
5804 /* Bad permission. */
5805 return 1;
5807 *prot |= PAGE_EXEC;
5808 return 0;
5811 /* get_phys_addr - get the physical address for this virtual address
5813 * Find the physical address corresponding to the given virtual address,
5814 * by doing a translation table walk on MMU based systems or using the
5815 * MPU state on MPU based systems.
5817 * Returns 0 if the translation was successful. Otherwise, phys_ptr, attrs,
5818 * prot and page_size may not be filled in, and the return value provides
5819 * information on why the translation aborted, in the format of a
5820 * DFSR/IFSR fault register, with the following caveats:
5821 * * we honour the short vs long DFSR format differences.
5822 * * the WnR bit is never set (the caller must do this).
5823 * * for MPU based systems we don't bother to return a full FSR format
5824 * value.
5826 * @env: CPUARMState
5827 * @address: virtual address to get physical address for
5828 * @access_type: 0 for read, 1 for write, 2 for execute
5829 * @mmu_idx: MMU index indicating required translation regime
5830 * @phys_ptr: set to the physical address corresponding to the virtual address
5831 * @attrs: set to the memory transaction attributes to use
5832 * @prot: set to the permissions for the page containing phys_ptr
5833 * @page_size: set to the size of the page containing phys_ptr
5835 static inline int get_phys_addr(CPUARMState *env, target_ulong address,
5836 int access_type, ARMMMUIdx mmu_idx,
5837 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
5838 target_ulong *page_size)
5840 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
5841 /* TODO: when we support EL2 we should here call ourselves recursively
5842 * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
5843 * functions will also need changing to perform ARMMMUIdx_S2NS loads
5844 * rather than direct physical memory loads when appropriate.
5845 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
5847 assert(!arm_feature(env, ARM_FEATURE_EL2));
5848 mmu_idx += ARMMMUIdx_S1NSE0;
5851 /* The page table entries may downgrade secure to non-secure, but
5852 * cannot upgrade an non-secure translation regime's attributes
5853 * to secure.
5855 attrs->secure = regime_is_secure(env, mmu_idx);
5856 attrs->user = regime_is_user(env, mmu_idx);
5858 /* Fast Context Switch Extension. This doesn't exist at all in v8.
5859 * In v7 and earlier it affects all stage 1 translations.
5861 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
5862 && !arm_feature(env, ARM_FEATURE_V8)) {
5863 if (regime_el(env, mmu_idx) == 3) {
5864 address += env->cp15.fcseidr_s;
5865 } else {
5866 address += env->cp15.fcseidr_ns;
5870 if (regime_translation_disabled(env, mmu_idx)) {
5871 /* MMU/MPU disabled. */
5872 *phys_ptr = address;
5873 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
5874 *page_size = TARGET_PAGE_SIZE;
5875 return 0;
5878 if (arm_feature(env, ARM_FEATURE_MPU)) {
5879 *page_size = TARGET_PAGE_SIZE;
5880 return get_phys_addr_mpu(env, address, access_type, mmu_idx, phys_ptr,
5881 prot);
5884 if (regime_using_lpae_format(env, mmu_idx)) {
5885 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
5886 attrs, prot, page_size);
5887 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
5888 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
5889 attrs, prot, page_size);
5890 } else {
5891 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
5892 prot, page_size);
5896 /* Walk the page table and (if the mapping exists) add the page
5897 * to the TLB. Return 0 on success, or an ARM DFSR/IFSR fault
5898 * register format value on failure.
5900 int arm_tlb_fill(CPUState *cs, vaddr address,
5901 int access_type, int mmu_idx)
5903 ARMCPU *cpu = ARM_CPU(cs);
5904 CPUARMState *env = &cpu->env;
5905 hwaddr phys_addr;
5906 target_ulong page_size;
5907 int prot;
5908 int ret;
5909 MemTxAttrs attrs = {};
5911 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
5912 &attrs, &prot, &page_size);
5913 if (ret == 0) {
5914 /* Map a single [sub]page. */
5915 phys_addr &= TARGET_PAGE_MASK;
5916 address &= TARGET_PAGE_MASK;
5917 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
5918 prot, mmu_idx, page_size);
5919 return 0;
5922 return ret;
5925 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
5927 ARMCPU *cpu = ARM_CPU(cs);
5928 CPUARMState *env = &cpu->env;
5929 hwaddr phys_addr;
5930 target_ulong page_size;
5931 int prot;
5932 int ret;
5933 MemTxAttrs attrs = {};
5935 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env), &phys_addr,
5936 &attrs, &prot, &page_size);
5938 if (ret != 0) {
5939 return -1;
5942 return phys_addr;
5945 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
5947 if ((env->uncached_cpsr & CPSR_M) == mode) {
5948 env->regs[13] = val;
5949 } else {
5950 env->banked_r13[bank_number(mode)] = val;
5954 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
5956 if ((env->uncached_cpsr & CPSR_M) == mode) {
5957 return env->regs[13];
5958 } else {
5959 return env->banked_r13[bank_number(mode)];
5963 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5965 ARMCPU *cpu = arm_env_get_cpu(env);
5967 switch (reg) {
5968 case 0: /* APSR */
5969 return xpsr_read(env) & 0xf8000000;
5970 case 1: /* IAPSR */
5971 return xpsr_read(env) & 0xf80001ff;
5972 case 2: /* EAPSR */
5973 return xpsr_read(env) & 0xff00fc00;
5974 case 3: /* xPSR */
5975 return xpsr_read(env) & 0xff00fdff;
5976 case 5: /* IPSR */
5977 return xpsr_read(env) & 0x000001ff;
5978 case 6: /* EPSR */
5979 return xpsr_read(env) & 0x0700fc00;
5980 case 7: /* IEPSR */
5981 return xpsr_read(env) & 0x0700edff;
5982 case 8: /* MSP */
5983 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
5984 case 9: /* PSP */
5985 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
5986 case 16: /* PRIMASK */
5987 return (env->daif & PSTATE_I) != 0;
5988 case 17: /* BASEPRI */
5989 case 18: /* BASEPRI_MAX */
5990 return env->v7m.basepri;
5991 case 19: /* FAULTMASK */
5992 return (env->daif & PSTATE_F) != 0;
5993 case 20: /* CONTROL */
5994 return env->v7m.control;
5995 default:
5996 /* ??? For debugging only. */
5997 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
5998 return 0;
6002 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
6004 ARMCPU *cpu = arm_env_get_cpu(env);
6006 switch (reg) {
6007 case 0: /* APSR */
6008 xpsr_write(env, val, 0xf8000000);
6009 break;
6010 case 1: /* IAPSR */
6011 xpsr_write(env, val, 0xf8000000);
6012 break;
6013 case 2: /* EAPSR */
6014 xpsr_write(env, val, 0xfe00fc00);
6015 break;
6016 case 3: /* xPSR */
6017 xpsr_write(env, val, 0xfe00fc00);
6018 break;
6019 case 5: /* IPSR */
6020 /* IPSR bits are readonly. */
6021 break;
6022 case 6: /* EPSR */
6023 xpsr_write(env, val, 0x0600fc00);
6024 break;
6025 case 7: /* IEPSR */
6026 xpsr_write(env, val, 0x0600fc00);
6027 break;
6028 case 8: /* MSP */
6029 if (env->v7m.current_sp)
6030 env->v7m.other_sp = val;
6031 else
6032 env->regs[13] = val;
6033 break;
6034 case 9: /* PSP */
6035 if (env->v7m.current_sp)
6036 env->regs[13] = val;
6037 else
6038 env->v7m.other_sp = val;
6039 break;
6040 case 16: /* PRIMASK */
6041 if (val & 1) {
6042 env->daif |= PSTATE_I;
6043 } else {
6044 env->daif &= ~PSTATE_I;
6046 break;
6047 case 17: /* BASEPRI */
6048 env->v7m.basepri = val & 0xff;
6049 break;
6050 case 18: /* BASEPRI_MAX */
6051 val &= 0xff;
6052 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
6053 env->v7m.basepri = val;
6054 break;
6055 case 19: /* FAULTMASK */
6056 if (val & 1) {
6057 env->daif |= PSTATE_F;
6058 } else {
6059 env->daif &= ~PSTATE_F;
6061 break;
6062 case 20: /* CONTROL */
6063 env->v7m.control = val & 3;
6064 switch_v7m_sp(env, (val & 2) != 0);
6065 break;
6066 default:
6067 /* ??? For debugging only. */
6068 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
6069 return;
6073 #endif
6075 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
6077 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
6078 * Note that we do not implement the (architecturally mandated)
6079 * alignment fault for attempts to use this on Device memory
6080 * (which matches the usual QEMU behaviour of not implementing either
6081 * alignment faults or any memory attribute handling).
6084 ARMCPU *cpu = arm_env_get_cpu(env);
6085 uint64_t blocklen = 4 << cpu->dcz_blocksize;
6086 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
6088 #ifndef CONFIG_USER_ONLY
6090 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
6091 * the block size so we might have to do more than one TLB lookup.
6092 * We know that in fact for any v8 CPU the page size is at least 4K
6093 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
6094 * 1K as an artefact of legacy v5 subpage support being present in the
6095 * same QEMU executable.
6097 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
6098 void *hostaddr[maxidx];
6099 int try, i;
6100 unsigned mmu_idx = cpu_mmu_index(env);
6101 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
6103 for (try = 0; try < 2; try++) {
6105 for (i = 0; i < maxidx; i++) {
6106 hostaddr[i] = tlb_vaddr_to_host(env,
6107 vaddr + TARGET_PAGE_SIZE * i,
6108 1, mmu_idx);
6109 if (!hostaddr[i]) {
6110 break;
6113 if (i == maxidx) {
6114 /* If it's all in the TLB it's fair game for just writing to;
6115 * we know we don't need to update dirty status, etc.
6117 for (i = 0; i < maxidx - 1; i++) {
6118 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
6120 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
6121 return;
6123 /* OK, try a store and see if we can populate the tlb. This
6124 * might cause an exception if the memory isn't writable,
6125 * in which case we will longjmp out of here. We must for
6126 * this purpose use the actual register value passed to us
6127 * so that we get the fault address right.
6129 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
6130 /* Now we can populate the other TLB entries, if any */
6131 for (i = 0; i < maxidx; i++) {
6132 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
6133 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
6134 helper_ret_stb_mmu(env, va, 0, oi, GETRA());
6139 /* Slow path (probably attempt to do this to an I/O device or
6140 * similar, or clearing of a block of code we have translations
6141 * cached for). Just do a series of byte writes as the architecture
6142 * demands. It's not worth trying to use a cpu_physical_memory_map(),
6143 * memset(), unmap() sequence here because:
6144 * + we'd need to account for the blocksize being larger than a page
6145 * + the direct-RAM access case is almost always going to be dealt
6146 * with in the fastpath code above, so there's no speed benefit
6147 * + we would have to deal with the map returning NULL because the
6148 * bounce buffer was in use
6150 for (i = 0; i < blocklen; i++) {
6151 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
6154 #else
6155 memset(g2h(vaddr), 0, blocklen);
6156 #endif
6159 /* Note that signed overflow is undefined in C. The following routines are
6160 careful to use unsigned types where modulo arithmetic is required.
6161 Failure to do so _will_ break on newer gcc. */
6163 /* Signed saturating arithmetic. */
6165 /* Perform 16-bit signed saturating addition. */
6166 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
6168 uint16_t res;
6170 res = a + b;
6171 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
6172 if (a & 0x8000)
6173 res = 0x8000;
6174 else
6175 res = 0x7fff;
6177 return res;
6180 /* Perform 8-bit signed saturating addition. */
6181 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
6183 uint8_t res;
6185 res = a + b;
6186 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
6187 if (a & 0x80)
6188 res = 0x80;
6189 else
6190 res = 0x7f;
6192 return res;
6195 /* Perform 16-bit signed saturating subtraction. */
6196 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
6198 uint16_t res;
6200 res = a - b;
6201 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
6202 if (a & 0x8000)
6203 res = 0x8000;
6204 else
6205 res = 0x7fff;
6207 return res;
6210 /* Perform 8-bit signed saturating subtraction. */
6211 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
6213 uint8_t res;
6215 res = a - b;
6216 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
6217 if (a & 0x80)
6218 res = 0x80;
6219 else
6220 res = 0x7f;
6222 return res;
6225 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
6226 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
6227 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
6228 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
6229 #define PFX q
6231 #include "op_addsub.h"
6233 /* Unsigned saturating arithmetic. */
6234 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6236 uint16_t res;
6237 res = a + b;
6238 if (res < a)
6239 res = 0xffff;
6240 return res;
6243 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6245 if (a > b)
6246 return a - b;
6247 else
6248 return 0;
6251 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
6253 uint8_t res;
6254 res = a + b;
6255 if (res < a)
6256 res = 0xff;
6257 return res;
6260 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
6262 if (a > b)
6263 return a - b;
6264 else
6265 return 0;
6268 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
6269 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
6270 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
6271 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
6272 #define PFX uq
6274 #include "op_addsub.h"
6276 /* Signed modulo arithmetic. */
6277 #define SARITH16(a, b, n, op) do { \
6278 int32_t sum; \
6279 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6280 RESULT(sum, n, 16); \
6281 if (sum >= 0) \
6282 ge |= 3 << (n * 2); \
6283 } while(0)
6285 #define SARITH8(a, b, n, op) do { \
6286 int32_t sum; \
6287 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6288 RESULT(sum, n, 8); \
6289 if (sum >= 0) \
6290 ge |= 1 << n; \
6291 } while(0)
6294 #define ADD16(a, b, n) SARITH16(a, b, n, +)
6295 #define SUB16(a, b, n) SARITH16(a, b, n, -)
6296 #define ADD8(a, b, n) SARITH8(a, b, n, +)
6297 #define SUB8(a, b, n) SARITH8(a, b, n, -)
6298 #define PFX s
6299 #define ARITH_GE
6301 #include "op_addsub.h"
6303 /* Unsigned modulo arithmetic. */
6304 #define ADD16(a, b, n) do { \
6305 uint32_t sum; \
6306 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
6307 RESULT(sum, n, 16); \
6308 if ((sum >> 16) == 1) \
6309 ge |= 3 << (n * 2); \
6310 } while(0)
6312 #define ADD8(a, b, n) do { \
6313 uint32_t sum; \
6314 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
6315 RESULT(sum, n, 8); \
6316 if ((sum >> 8) == 1) \
6317 ge |= 1 << n; \
6318 } while(0)
6320 #define SUB16(a, b, n) do { \
6321 uint32_t sum; \
6322 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
6323 RESULT(sum, n, 16); \
6324 if ((sum >> 16) == 0) \
6325 ge |= 3 << (n * 2); \
6326 } while(0)
6328 #define SUB8(a, b, n) do { \
6329 uint32_t sum; \
6330 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
6331 RESULT(sum, n, 8); \
6332 if ((sum >> 8) == 0) \
6333 ge |= 1 << n; \
6334 } while(0)
6336 #define PFX u
6337 #define ARITH_GE
6339 #include "op_addsub.h"
6341 /* Halved signed arithmetic. */
6342 #define ADD16(a, b, n) \
6343 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
6344 #define SUB16(a, b, n) \
6345 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
6346 #define ADD8(a, b, n) \
6347 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
6348 #define SUB8(a, b, n) \
6349 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
6350 #define PFX sh
6352 #include "op_addsub.h"
6354 /* Halved unsigned arithmetic. */
6355 #define ADD16(a, b, n) \
6356 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
6357 #define SUB16(a, b, n) \
6358 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
6359 #define ADD8(a, b, n) \
6360 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
6361 #define SUB8(a, b, n) \
6362 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
6363 #define PFX uh
6365 #include "op_addsub.h"
6367 static inline uint8_t do_usad(uint8_t a, uint8_t b)
6369 if (a > b)
6370 return a - b;
6371 else
6372 return b - a;
6375 /* Unsigned sum of absolute byte differences. */
6376 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
6378 uint32_t sum;
6379 sum = do_usad(a, b);
6380 sum += do_usad(a >> 8, b >> 8);
6381 sum += do_usad(a >> 16, b >>16);
6382 sum += do_usad(a >> 24, b >> 24);
6383 return sum;
6386 /* For ARMv6 SEL instruction. */
6387 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
6389 uint32_t mask;
6391 mask = 0;
6392 if (flags & 1)
6393 mask |= 0xff;
6394 if (flags & 2)
6395 mask |= 0xff00;
6396 if (flags & 4)
6397 mask |= 0xff0000;
6398 if (flags & 8)
6399 mask |= 0xff000000;
6400 return (a & mask) | (b & ~mask);
6403 /* VFP support. We follow the convention used for VFP instructions:
6404 Single precision routines have a "s" suffix, double precision a
6405 "d" suffix. */
6407 /* Convert host exception flags to vfp form. */
6408 static inline int vfp_exceptbits_from_host(int host_bits)
6410 int target_bits = 0;
6412 if (host_bits & float_flag_invalid)
6413 target_bits |= 1;
6414 if (host_bits & float_flag_divbyzero)
6415 target_bits |= 2;
6416 if (host_bits & float_flag_overflow)
6417 target_bits |= 4;
6418 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
6419 target_bits |= 8;
6420 if (host_bits & float_flag_inexact)
6421 target_bits |= 0x10;
6422 if (host_bits & float_flag_input_denormal)
6423 target_bits |= 0x80;
6424 return target_bits;
6427 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
6429 int i;
6430 uint32_t fpscr;
6432 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
6433 | (env->vfp.vec_len << 16)
6434 | (env->vfp.vec_stride << 20);
6435 i = get_float_exception_flags(&env->vfp.fp_status);
6436 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
6437 fpscr |= vfp_exceptbits_from_host(i);
6438 return fpscr;
6441 uint32_t vfp_get_fpscr(CPUARMState *env)
6443 return HELPER(vfp_get_fpscr)(env);
6446 /* Convert vfp exception flags to target form. */
6447 static inline int vfp_exceptbits_to_host(int target_bits)
6449 int host_bits = 0;
6451 if (target_bits & 1)
6452 host_bits |= float_flag_invalid;
6453 if (target_bits & 2)
6454 host_bits |= float_flag_divbyzero;
6455 if (target_bits & 4)
6456 host_bits |= float_flag_overflow;
6457 if (target_bits & 8)
6458 host_bits |= float_flag_underflow;
6459 if (target_bits & 0x10)
6460 host_bits |= float_flag_inexact;
6461 if (target_bits & 0x80)
6462 host_bits |= float_flag_input_denormal;
6463 return host_bits;
6466 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
6468 int i;
6469 uint32_t changed;
6471 changed = env->vfp.xregs[ARM_VFP_FPSCR];
6472 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
6473 env->vfp.vec_len = (val >> 16) & 7;
6474 env->vfp.vec_stride = (val >> 20) & 3;
6476 changed ^= val;
6477 if (changed & (3 << 22)) {
6478 i = (val >> 22) & 3;
6479 switch (i) {
6480 case FPROUNDING_TIEEVEN:
6481 i = float_round_nearest_even;
6482 break;
6483 case FPROUNDING_POSINF:
6484 i = float_round_up;
6485 break;
6486 case FPROUNDING_NEGINF:
6487 i = float_round_down;
6488 break;
6489 case FPROUNDING_ZERO:
6490 i = float_round_to_zero;
6491 break;
6493 set_float_rounding_mode(i, &env->vfp.fp_status);
6495 if (changed & (1 << 24)) {
6496 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
6497 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
6499 if (changed & (1 << 25))
6500 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
6502 i = vfp_exceptbits_to_host(val);
6503 set_float_exception_flags(i, &env->vfp.fp_status);
6504 set_float_exception_flags(0, &env->vfp.standard_fp_status);
6507 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
6509 HELPER(vfp_set_fpscr)(env, val);
6512 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
6514 #define VFP_BINOP(name) \
6515 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
6517 float_status *fpst = fpstp; \
6518 return float32_ ## name(a, b, fpst); \
6520 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
6522 float_status *fpst = fpstp; \
6523 return float64_ ## name(a, b, fpst); \
6525 VFP_BINOP(add)
6526 VFP_BINOP(sub)
6527 VFP_BINOP(mul)
6528 VFP_BINOP(div)
6529 VFP_BINOP(min)
6530 VFP_BINOP(max)
6531 VFP_BINOP(minnum)
6532 VFP_BINOP(maxnum)
6533 #undef VFP_BINOP
6535 float32 VFP_HELPER(neg, s)(float32 a)
6537 return float32_chs(a);
6540 float64 VFP_HELPER(neg, d)(float64 a)
6542 return float64_chs(a);
6545 float32 VFP_HELPER(abs, s)(float32 a)
6547 return float32_abs(a);
6550 float64 VFP_HELPER(abs, d)(float64 a)
6552 return float64_abs(a);
6555 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
6557 return float32_sqrt(a, &env->vfp.fp_status);
6560 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
6562 return float64_sqrt(a, &env->vfp.fp_status);
6565 /* XXX: check quiet/signaling case */
6566 #define DO_VFP_cmp(p, type) \
6567 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
6569 uint32_t flags; \
6570 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
6571 case 0: flags = 0x6; break; \
6572 case -1: flags = 0x8; break; \
6573 case 1: flags = 0x2; break; \
6574 default: case 2: flags = 0x3; break; \
6576 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
6577 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
6579 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
6581 uint32_t flags; \
6582 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
6583 case 0: flags = 0x6; break; \
6584 case -1: flags = 0x8; break; \
6585 case 1: flags = 0x2; break; \
6586 default: case 2: flags = 0x3; break; \
6588 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
6589 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
6591 DO_VFP_cmp(s, float32)
6592 DO_VFP_cmp(d, float64)
6593 #undef DO_VFP_cmp
6595 /* Integer to float and float to integer conversions */
6597 #define CONV_ITOF(name, fsz, sign) \
6598 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
6600 float_status *fpst = fpstp; \
6601 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
6604 #define CONV_FTOI(name, fsz, sign, round) \
6605 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
6607 float_status *fpst = fpstp; \
6608 if (float##fsz##_is_any_nan(x)) { \
6609 float_raise(float_flag_invalid, fpst); \
6610 return 0; \
6612 return float##fsz##_to_##sign##int32##round(x, fpst); \
6615 #define FLOAT_CONVS(name, p, fsz, sign) \
6616 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
6617 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
6618 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
6620 FLOAT_CONVS(si, s, 32, )
6621 FLOAT_CONVS(si, d, 64, )
6622 FLOAT_CONVS(ui, s, 32, u)
6623 FLOAT_CONVS(ui, d, 64, u)
6625 #undef CONV_ITOF
6626 #undef CONV_FTOI
6627 #undef FLOAT_CONVS
6629 /* floating point conversion */
6630 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
6632 float64 r = float32_to_float64(x, &env->vfp.fp_status);
6633 /* ARM requires that S<->D conversion of any kind of NaN generates
6634 * a quiet NaN by forcing the most significant frac bit to 1.
6636 return float64_maybe_silence_nan(r);
6639 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
6641 float32 r = float64_to_float32(x, &env->vfp.fp_status);
6642 /* ARM requires that S<->D conversion of any kind of NaN generates
6643 * a quiet NaN by forcing the most significant frac bit to 1.
6645 return float32_maybe_silence_nan(r);
6648 /* VFP3 fixed point conversion. */
6649 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6650 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
6651 void *fpstp) \
6653 float_status *fpst = fpstp; \
6654 float##fsz tmp; \
6655 tmp = itype##_to_##float##fsz(x, fpst); \
6656 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
6659 /* Notice that we want only input-denormal exception flags from the
6660 * scalbn operation: the other possible flags (overflow+inexact if
6661 * we overflow to infinity, output-denormal) aren't correct for the
6662 * complete scale-and-convert operation.
6664 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
6665 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
6666 uint32_t shift, \
6667 void *fpstp) \
6669 float_status *fpst = fpstp; \
6670 int old_exc_flags = get_float_exception_flags(fpst); \
6671 float##fsz tmp; \
6672 if (float##fsz##_is_any_nan(x)) { \
6673 float_raise(float_flag_invalid, fpst); \
6674 return 0; \
6676 tmp = float##fsz##_scalbn(x, shift, fpst); \
6677 old_exc_flags |= get_float_exception_flags(fpst) \
6678 & float_flag_input_denormal; \
6679 set_float_exception_flags(old_exc_flags, fpst); \
6680 return float##fsz##_to_##itype##round(tmp, fpst); \
6683 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
6684 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6685 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
6686 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6688 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
6689 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6690 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6692 VFP_CONV_FIX(sh, d, 64, 64, int16)
6693 VFP_CONV_FIX(sl, d, 64, 64, int32)
6694 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
6695 VFP_CONV_FIX(uh, d, 64, 64, uint16)
6696 VFP_CONV_FIX(ul, d, 64, 64, uint32)
6697 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
6698 VFP_CONV_FIX(sh, s, 32, 32, int16)
6699 VFP_CONV_FIX(sl, s, 32, 32, int32)
6700 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
6701 VFP_CONV_FIX(uh, s, 32, 32, uint16)
6702 VFP_CONV_FIX(ul, s, 32, 32, uint32)
6703 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
6704 #undef VFP_CONV_FIX
6705 #undef VFP_CONV_FIX_FLOAT
6706 #undef VFP_CONV_FLOAT_FIX_ROUND
6708 /* Set the current fp rounding mode and return the old one.
6709 * The argument is a softfloat float_round_ value.
6711 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
6713 float_status *fp_status = &env->vfp.fp_status;
6715 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
6716 set_float_rounding_mode(rmode, fp_status);
6718 return prev_rmode;
6721 /* Set the current fp rounding mode in the standard fp status and return
6722 * the old one. This is for NEON instructions that need to change the
6723 * rounding mode but wish to use the standard FPSCR values for everything
6724 * else. Always set the rounding mode back to the correct value after
6725 * modifying it.
6726 * The argument is a softfloat float_round_ value.
6728 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
6730 float_status *fp_status = &env->vfp.standard_fp_status;
6732 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
6733 set_float_rounding_mode(rmode, fp_status);
6735 return prev_rmode;
6738 /* Half precision conversions. */
6739 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
6741 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6742 float32 r = float16_to_float32(make_float16(a), ieee, s);
6743 if (ieee) {
6744 return float32_maybe_silence_nan(r);
6746 return r;
6749 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
6751 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6752 float16 r = float32_to_float16(a, ieee, s);
6753 if (ieee) {
6754 r = float16_maybe_silence_nan(r);
6756 return float16_val(r);
6759 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
6761 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
6764 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
6766 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
6769 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
6771 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
6774 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
6776 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
6779 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
6781 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6782 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
6783 if (ieee) {
6784 return float64_maybe_silence_nan(r);
6786 return r;
6789 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
6791 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6792 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
6793 if (ieee) {
6794 r = float16_maybe_silence_nan(r);
6796 return float16_val(r);
6799 #define float32_two make_float32(0x40000000)
6800 #define float32_three make_float32(0x40400000)
6801 #define float32_one_point_five make_float32(0x3fc00000)
6803 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
6805 float_status *s = &env->vfp.standard_fp_status;
6806 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
6807 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
6808 if (!(float32_is_zero(a) || float32_is_zero(b))) {
6809 float_raise(float_flag_input_denormal, s);
6811 return float32_two;
6813 return float32_sub(float32_two, float32_mul(a, b, s), s);
6816 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
6818 float_status *s = &env->vfp.standard_fp_status;
6819 float32 product;
6820 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
6821 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
6822 if (!(float32_is_zero(a) || float32_is_zero(b))) {
6823 float_raise(float_flag_input_denormal, s);
6825 return float32_one_point_five;
6827 product = float32_mul(a, b, s);
6828 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
6831 /* NEON helpers. */
6833 /* Constants 256 and 512 are used in some helpers; we avoid relying on
6834 * int->float conversions at run-time. */
6835 #define float64_256 make_float64(0x4070000000000000LL)
6836 #define float64_512 make_float64(0x4080000000000000LL)
6837 #define float32_maxnorm make_float32(0x7f7fffff)
6838 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
6840 /* Reciprocal functions
6842 * The algorithm that must be used to calculate the estimate
6843 * is specified by the ARM ARM, see FPRecipEstimate()
6846 static float64 recip_estimate(float64 a, float_status *real_fp_status)
6848 /* These calculations mustn't set any fp exception flags,
6849 * so we use a local copy of the fp_status.
6851 float_status dummy_status = *real_fp_status;
6852 float_status *s = &dummy_status;
6853 /* q = (int)(a * 512.0) */
6854 float64 q = float64_mul(float64_512, a, s);
6855 int64_t q_int = float64_to_int64_round_to_zero(q, s);
6857 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
6858 q = int64_to_float64(q_int, s);
6859 q = float64_add(q, float64_half, s);
6860 q = float64_div(q, float64_512, s);
6861 q = float64_div(float64_one, q, s);
6863 /* s = (int)(256.0 * r + 0.5) */
6864 q = float64_mul(q, float64_256, s);
6865 q = float64_add(q, float64_half, s);
6866 q_int = float64_to_int64_round_to_zero(q, s);
6868 /* return (double)s / 256.0 */
6869 return float64_div(int64_to_float64(q_int, s), float64_256, s);
6872 /* Common wrapper to call recip_estimate */
6873 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
6875 uint64_t val64 = float64_val(num);
6876 uint64_t frac = extract64(val64, 0, 52);
6877 int64_t exp = extract64(val64, 52, 11);
6878 uint64_t sbit;
6879 float64 scaled, estimate;
6881 /* Generate the scaled number for the estimate function */
6882 if (exp == 0) {
6883 if (extract64(frac, 51, 1) == 0) {
6884 exp = -1;
6885 frac = extract64(frac, 0, 50) << 2;
6886 } else {
6887 frac = extract64(frac, 0, 51) << 1;
6891 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
6892 scaled = make_float64((0x3feULL << 52)
6893 | extract64(frac, 44, 8) << 44);
6895 estimate = recip_estimate(scaled, fpst);
6897 /* Build new result */
6898 val64 = float64_val(estimate);
6899 sbit = 0x8000000000000000ULL & val64;
6900 exp = off - exp;
6901 frac = extract64(val64, 0, 52);
6903 if (exp == 0) {
6904 frac = 1ULL << 51 | extract64(frac, 1, 51);
6905 } else if (exp == -1) {
6906 frac = 1ULL << 50 | extract64(frac, 2, 50);
6907 exp = 0;
6910 return make_float64(sbit | (exp << 52) | frac);
6913 static bool round_to_inf(float_status *fpst, bool sign_bit)
6915 switch (fpst->float_rounding_mode) {
6916 case float_round_nearest_even: /* Round to Nearest */
6917 return true;
6918 case float_round_up: /* Round to +Inf */
6919 return !sign_bit;
6920 case float_round_down: /* Round to -Inf */
6921 return sign_bit;
6922 case float_round_to_zero: /* Round to Zero */
6923 return false;
6926 g_assert_not_reached();
6929 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
6931 float_status *fpst = fpstp;
6932 float32 f32 = float32_squash_input_denormal(input, fpst);
6933 uint32_t f32_val = float32_val(f32);
6934 uint32_t f32_sbit = 0x80000000ULL & f32_val;
6935 int32_t f32_exp = extract32(f32_val, 23, 8);
6936 uint32_t f32_frac = extract32(f32_val, 0, 23);
6937 float64 f64, r64;
6938 uint64_t r64_val;
6939 int64_t r64_exp;
6940 uint64_t r64_frac;
6942 if (float32_is_any_nan(f32)) {
6943 float32 nan = f32;
6944 if (float32_is_signaling_nan(f32)) {
6945 float_raise(float_flag_invalid, fpst);
6946 nan = float32_maybe_silence_nan(f32);
6948 if (fpst->default_nan_mode) {
6949 nan = float32_default_nan;
6951 return nan;
6952 } else if (float32_is_infinity(f32)) {
6953 return float32_set_sign(float32_zero, float32_is_neg(f32));
6954 } else if (float32_is_zero(f32)) {
6955 float_raise(float_flag_divbyzero, fpst);
6956 return float32_set_sign(float32_infinity, float32_is_neg(f32));
6957 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
6958 /* Abs(value) < 2.0^-128 */
6959 float_raise(float_flag_overflow | float_flag_inexact, fpst);
6960 if (round_to_inf(fpst, f32_sbit)) {
6961 return float32_set_sign(float32_infinity, float32_is_neg(f32));
6962 } else {
6963 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
6965 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
6966 float_raise(float_flag_underflow, fpst);
6967 return float32_set_sign(float32_zero, float32_is_neg(f32));
6971 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
6972 r64 = call_recip_estimate(f64, 253, fpst);
6973 r64_val = float64_val(r64);
6974 r64_exp = extract64(r64_val, 52, 11);
6975 r64_frac = extract64(r64_val, 0, 52);
6977 /* result = sign : result_exp<7:0> : fraction<51:29>; */
6978 return make_float32(f32_sbit |
6979 (r64_exp & 0xff) << 23 |
6980 extract64(r64_frac, 29, 24));
6983 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
6985 float_status *fpst = fpstp;
6986 float64 f64 = float64_squash_input_denormal(input, fpst);
6987 uint64_t f64_val = float64_val(f64);
6988 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
6989 int64_t f64_exp = extract64(f64_val, 52, 11);
6990 float64 r64;
6991 uint64_t r64_val;
6992 int64_t r64_exp;
6993 uint64_t r64_frac;
6995 /* Deal with any special cases */
6996 if (float64_is_any_nan(f64)) {
6997 float64 nan = f64;
6998 if (float64_is_signaling_nan(f64)) {
6999 float_raise(float_flag_invalid, fpst);
7000 nan = float64_maybe_silence_nan(f64);
7002 if (fpst->default_nan_mode) {
7003 nan = float64_default_nan;
7005 return nan;
7006 } else if (float64_is_infinity(f64)) {
7007 return float64_set_sign(float64_zero, float64_is_neg(f64));
7008 } else if (float64_is_zero(f64)) {
7009 float_raise(float_flag_divbyzero, fpst);
7010 return float64_set_sign(float64_infinity, float64_is_neg(f64));
7011 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
7012 /* Abs(value) < 2.0^-1024 */
7013 float_raise(float_flag_overflow | float_flag_inexact, fpst);
7014 if (round_to_inf(fpst, f64_sbit)) {
7015 return float64_set_sign(float64_infinity, float64_is_neg(f64));
7016 } else {
7017 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
7019 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
7020 float_raise(float_flag_underflow, fpst);
7021 return float64_set_sign(float64_zero, float64_is_neg(f64));
7024 r64 = call_recip_estimate(f64, 2045, fpst);
7025 r64_val = float64_val(r64);
7026 r64_exp = extract64(r64_val, 52, 11);
7027 r64_frac = extract64(r64_val, 0, 52);
7029 /* result = sign : result_exp<10:0> : fraction<51:0> */
7030 return make_float64(f64_sbit |
7031 ((r64_exp & 0x7ff) << 52) |
7032 r64_frac);
7035 /* The algorithm that must be used to calculate the estimate
7036 * is specified by the ARM ARM.
7038 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
7040 /* These calculations mustn't set any fp exception flags,
7041 * so we use a local copy of the fp_status.
7043 float_status dummy_status = *real_fp_status;
7044 float_status *s = &dummy_status;
7045 float64 q;
7046 int64_t q_int;
7048 if (float64_lt(a, float64_half, s)) {
7049 /* range 0.25 <= a < 0.5 */
7051 /* a in units of 1/512 rounded down */
7052 /* q0 = (int)(a * 512.0); */
7053 q = float64_mul(float64_512, a, s);
7054 q_int = float64_to_int64_round_to_zero(q, s);
7056 /* reciprocal root r */
7057 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
7058 q = int64_to_float64(q_int, s);
7059 q = float64_add(q, float64_half, s);
7060 q = float64_div(q, float64_512, s);
7061 q = float64_sqrt(q, s);
7062 q = float64_div(float64_one, q, s);
7063 } else {
7064 /* range 0.5 <= a < 1.0 */
7066 /* a in units of 1/256 rounded down */
7067 /* q1 = (int)(a * 256.0); */
7068 q = float64_mul(float64_256, a, s);
7069 int64_t q_int = float64_to_int64_round_to_zero(q, s);
7071 /* reciprocal root r */
7072 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
7073 q = int64_to_float64(q_int, s);
7074 q = float64_add(q, float64_half, s);
7075 q = float64_div(q, float64_256, s);
7076 q = float64_sqrt(q, s);
7077 q = float64_div(float64_one, q, s);
7079 /* r in units of 1/256 rounded to nearest */
7080 /* s = (int)(256.0 * r + 0.5); */
7082 q = float64_mul(q, float64_256,s );
7083 q = float64_add(q, float64_half, s);
7084 q_int = float64_to_int64_round_to_zero(q, s);
7086 /* return (double)s / 256.0;*/
7087 return float64_div(int64_to_float64(q_int, s), float64_256, s);
7090 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
7092 float_status *s = fpstp;
7093 float32 f32 = float32_squash_input_denormal(input, s);
7094 uint32_t val = float32_val(f32);
7095 uint32_t f32_sbit = 0x80000000 & val;
7096 int32_t f32_exp = extract32(val, 23, 8);
7097 uint32_t f32_frac = extract32(val, 0, 23);
7098 uint64_t f64_frac;
7099 uint64_t val64;
7100 int result_exp;
7101 float64 f64;
7103 if (float32_is_any_nan(f32)) {
7104 float32 nan = f32;
7105 if (float32_is_signaling_nan(f32)) {
7106 float_raise(float_flag_invalid, s);
7107 nan = float32_maybe_silence_nan(f32);
7109 if (s->default_nan_mode) {
7110 nan = float32_default_nan;
7112 return nan;
7113 } else if (float32_is_zero(f32)) {
7114 float_raise(float_flag_divbyzero, s);
7115 return float32_set_sign(float32_infinity, float32_is_neg(f32));
7116 } else if (float32_is_neg(f32)) {
7117 float_raise(float_flag_invalid, s);
7118 return float32_default_nan;
7119 } else if (float32_is_infinity(f32)) {
7120 return float32_zero;
7123 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
7124 * preserving the parity of the exponent. */
7126 f64_frac = ((uint64_t) f32_frac) << 29;
7127 if (f32_exp == 0) {
7128 while (extract64(f64_frac, 51, 1) == 0) {
7129 f64_frac = f64_frac << 1;
7130 f32_exp = f32_exp-1;
7132 f64_frac = extract64(f64_frac, 0, 51) << 1;
7135 if (extract64(f32_exp, 0, 1) == 0) {
7136 f64 = make_float64(((uint64_t) f32_sbit) << 32
7137 | (0x3feULL << 52)
7138 | f64_frac);
7139 } else {
7140 f64 = make_float64(((uint64_t) f32_sbit) << 32
7141 | (0x3fdULL << 52)
7142 | f64_frac);
7145 result_exp = (380 - f32_exp) / 2;
7147 f64 = recip_sqrt_estimate(f64, s);
7149 val64 = float64_val(f64);
7151 val = ((result_exp & 0xff) << 23)
7152 | ((val64 >> 29) & 0x7fffff);
7153 return make_float32(val);
7156 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
7158 float_status *s = fpstp;
7159 float64 f64 = float64_squash_input_denormal(input, s);
7160 uint64_t val = float64_val(f64);
7161 uint64_t f64_sbit = 0x8000000000000000ULL & val;
7162 int64_t f64_exp = extract64(val, 52, 11);
7163 uint64_t f64_frac = extract64(val, 0, 52);
7164 int64_t result_exp;
7165 uint64_t result_frac;
7167 if (float64_is_any_nan(f64)) {
7168 float64 nan = f64;
7169 if (float64_is_signaling_nan(f64)) {
7170 float_raise(float_flag_invalid, s);
7171 nan = float64_maybe_silence_nan(f64);
7173 if (s->default_nan_mode) {
7174 nan = float64_default_nan;
7176 return nan;
7177 } else if (float64_is_zero(f64)) {
7178 float_raise(float_flag_divbyzero, s);
7179 return float64_set_sign(float64_infinity, float64_is_neg(f64));
7180 } else if (float64_is_neg(f64)) {
7181 float_raise(float_flag_invalid, s);
7182 return float64_default_nan;
7183 } else if (float64_is_infinity(f64)) {
7184 return float64_zero;
7187 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
7188 * preserving the parity of the exponent. */
7190 if (f64_exp == 0) {
7191 while (extract64(f64_frac, 51, 1) == 0) {
7192 f64_frac = f64_frac << 1;
7193 f64_exp = f64_exp - 1;
7195 f64_frac = extract64(f64_frac, 0, 51) << 1;
7198 if (extract64(f64_exp, 0, 1) == 0) {
7199 f64 = make_float64(f64_sbit
7200 | (0x3feULL << 52)
7201 | f64_frac);
7202 } else {
7203 f64 = make_float64(f64_sbit
7204 | (0x3fdULL << 52)
7205 | f64_frac);
7208 result_exp = (3068 - f64_exp) / 2;
7210 f64 = recip_sqrt_estimate(f64, s);
7212 result_frac = extract64(float64_val(f64), 0, 52);
7214 return make_float64(f64_sbit |
7215 ((result_exp & 0x7ff) << 52) |
7216 result_frac);
7219 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
7221 float_status *s = fpstp;
7222 float64 f64;
7224 if ((a & 0x80000000) == 0) {
7225 return 0xffffffff;
7228 f64 = make_float64((0x3feULL << 52)
7229 | ((int64_t)(a & 0x7fffffff) << 21));
7231 f64 = recip_estimate(f64, s);
7233 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
7236 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
7238 float_status *fpst = fpstp;
7239 float64 f64;
7241 if ((a & 0xc0000000) == 0) {
7242 return 0xffffffff;
7245 if (a & 0x80000000) {
7246 f64 = make_float64((0x3feULL << 52)
7247 | ((uint64_t)(a & 0x7fffffff) << 21));
7248 } else { /* bits 31-30 == '01' */
7249 f64 = make_float64((0x3fdULL << 52)
7250 | ((uint64_t)(a & 0x3fffffff) << 22));
7253 f64 = recip_sqrt_estimate(f64, fpst);
7255 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
7258 /* VFPv4 fused multiply-accumulate */
7259 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
7261 float_status *fpst = fpstp;
7262 return float32_muladd(a, b, c, 0, fpst);
7265 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
7267 float_status *fpst = fpstp;
7268 return float64_muladd(a, b, c, 0, fpst);
7271 /* ARMv8 round to integral */
7272 float32 HELPER(rints_exact)(float32 x, void *fp_status)
7274 return float32_round_to_int(x, fp_status);
7277 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
7279 return float64_round_to_int(x, fp_status);
7282 float32 HELPER(rints)(float32 x, void *fp_status)
7284 int old_flags = get_float_exception_flags(fp_status), new_flags;
7285 float32 ret;
7287 ret = float32_round_to_int(x, fp_status);
7289 /* Suppress any inexact exceptions the conversion produced */
7290 if (!(old_flags & float_flag_inexact)) {
7291 new_flags = get_float_exception_flags(fp_status);
7292 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
7295 return ret;
7298 float64 HELPER(rintd)(float64 x, void *fp_status)
7300 int old_flags = get_float_exception_flags(fp_status), new_flags;
7301 float64 ret;
7303 ret = float64_round_to_int(x, fp_status);
7305 new_flags = get_float_exception_flags(fp_status);
7307 /* Suppress any inexact exceptions the conversion produced */
7308 if (!(old_flags & float_flag_inexact)) {
7309 new_flags = get_float_exception_flags(fp_status);
7310 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
7313 return ret;
7316 /* Convert ARM rounding mode to softfloat */
7317 int arm_rmode_to_sf(int rmode)
7319 switch (rmode) {
7320 case FPROUNDING_TIEAWAY:
7321 rmode = float_round_ties_away;
7322 break;
7323 case FPROUNDING_ODD:
7324 /* FIXME: add support for TIEAWAY and ODD */
7325 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
7326 rmode);
7327 case FPROUNDING_TIEEVEN:
7328 default:
7329 rmode = float_round_nearest_even;
7330 break;
7331 case FPROUNDING_POSINF:
7332 rmode = float_round_up;
7333 break;
7334 case FPROUNDING_NEGINF:
7335 rmode = float_round_down;
7336 break;
7337 case FPROUNDING_ZERO:
7338 rmode = float_round_to_zero;
7339 break;
7341 return rmode;
7344 /* CRC helpers.
7345 * The upper bytes of val (above the number specified by 'bytes') must have
7346 * been zeroed out by the caller.
7348 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
7350 uint8_t buf[4];
7352 stl_le_p(buf, val);
7354 /* zlib crc32 converts the accumulator and output to one's complement. */
7355 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
7358 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
7360 uint8_t buf[4];
7362 stl_le_p(buf, val);
7364 /* Linux crc32c converts the output to one's complement. */
7365 return crc32c(acc, buf, bytes) ^ 0xffffffff;