hw/arm/xlnx-versal: Connect the OSPI flash memory controller model
[qemu.git] / hw / arm / virt.c
blob141350bf2155a6a5f8b0c1c0599995947dc1b9de
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "qapi/error.h"
37 #include "hw/sysbus.h"
38 #include "hw/arm/boot.h"
39 #include "hw/arm/primecell.h"
40 #include "hw/arm/virt.h"
41 #include "hw/block/flash.h"
42 #include "hw/vfio/vfio-calxeda-xgmac.h"
43 #include "hw/vfio/vfio-amd-xgbe.h"
44 #include "hw/display/ramfb.h"
45 #include "net/net.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/runstate.h"
49 #include "sysemu/tpm.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "hw/loader.h"
53 #include "qapi/error.h"
54 #include "qemu/bitops.h"
55 #include "qemu/error-report.h"
56 #include "qemu/module.h"
57 #include "hw/pci-host/gpex.h"
58 #include "hw/virtio/virtio-pci.h"
59 #include "hw/arm/sysbus-fdt.h"
60 #include "hw/platform-bus.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/arm/fdt.h"
63 #include "hw/intc/arm_gic.h"
64 #include "hw/intc/arm_gicv3_common.h"
65 #include "hw/irq.h"
66 #include "kvm_arm.h"
67 #include "hw/firmware/smbios.h"
68 #include "qapi/visitor.h"
69 #include "qapi/qapi-visit-common.h"
70 #include "standard-headers/linux/input.h"
71 #include "hw/arm/smmuv3.h"
72 #include "hw/acpi/acpi.h"
73 #include "target/arm/internals.h"
74 #include "hw/mem/memory-device.h"
75 #include "hw/mem/pc-dimm.h"
76 #include "hw/mem/nvdimm.h"
77 #include "hw/acpi/generic_event_device.h"
78 #include "hw/virtio/virtio-mem-pci.h"
79 #include "hw/virtio/virtio-iommu.h"
80 #include "hw/char/pl011.h"
81 #include "qemu/guest-random.h"
83 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
84 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
85 void *data) \
86 { \
87 MachineClass *mc = MACHINE_CLASS(oc); \
88 virt_machine_##major##_##minor##_options(mc); \
89 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
90 if (latest) { \
91 mc->alias = "virt"; \
92 } \
93 } \
94 static const TypeInfo machvirt_##major##_##minor##_info = { \
95 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
96 .parent = TYPE_VIRT_MACHINE, \
97 .class_init = virt_##major##_##minor##_class_init, \
98 }; \
99 static void machvirt_machine_##major##_##minor##_init(void) \
101 type_register_static(&machvirt_##major##_##minor##_info); \
103 type_init(machvirt_machine_##major##_##minor##_init);
105 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
106 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
107 #define DEFINE_VIRT_MACHINE(major, minor) \
108 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
111 /* Number of external interrupt lines to configure the GIC with */
112 #define NUM_IRQS 256
114 #define PLATFORM_BUS_NUM_IRQS 64
116 /* Legacy RAM limit in GB (< version 4.0) */
117 #define LEGACY_RAMLIMIT_GB 255
118 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
120 /* Addresses and sizes of our components.
121 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
122 * 128MB..256MB is used for miscellaneous device I/O.
123 * 256MB..1GB is reserved for possible future PCI support (ie where the
124 * PCI memory window will go if we add a PCI host controller).
125 * 1GB and up is RAM (which may happily spill over into the
126 * high memory region beyond 4GB).
127 * This represents a compromise between how much RAM can be given to
128 * a 32 bit VM and leaving space for expansion and in particular for PCI.
129 * Note that devices should generally be placed at multiples of 0x10000,
130 * to accommodate guests using 64K pages.
132 static const MemMapEntry base_memmap[] = {
133 /* Space up to 0x8000000 is reserved for a boot ROM */
134 [VIRT_FLASH] = { 0, 0x08000000 },
135 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
136 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
137 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
138 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
139 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
140 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
141 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
142 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
143 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
144 /* This redistributor space allows up to 2*64kB*123 CPUs */
145 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
146 [VIRT_UART] = { 0x09000000, 0x00001000 },
147 [VIRT_RTC] = { 0x09010000, 0x00001000 },
148 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
149 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
150 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
151 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
152 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
153 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
154 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
155 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
156 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
157 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
158 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
159 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
160 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
161 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
162 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
163 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
164 /* Actual RAM size depends on initial RAM and device memory settings */
165 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
169 * Highmem IO Regions: This memory map is floating, located after the RAM.
170 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
171 * top of the RAM, so that its base get the same alignment as the size,
172 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
173 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
174 * Note the extended_memmap is sized so that it eventually also includes the
175 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
176 * index of base_memmap).
178 static MemMapEntry extended_memmap[] = {
179 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
180 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
181 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
182 /* Second PCIe window */
183 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
186 static const int a15irqmap[] = {
187 [VIRT_UART] = 1,
188 [VIRT_RTC] = 2,
189 [VIRT_PCIE] = 3, /* ... to 6 */
190 [VIRT_GPIO] = 7,
191 [VIRT_SECURE_UART] = 8,
192 [VIRT_ACPI_GED] = 9,
193 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
194 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
195 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
196 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
199 static const char *valid_cpus[] = {
200 ARM_CPU_TYPE_NAME("cortex-a7"),
201 ARM_CPU_TYPE_NAME("cortex-a15"),
202 ARM_CPU_TYPE_NAME("cortex-a53"),
203 ARM_CPU_TYPE_NAME("cortex-a57"),
204 ARM_CPU_TYPE_NAME("cortex-a72"),
205 ARM_CPU_TYPE_NAME("a64fx"),
206 ARM_CPU_TYPE_NAME("host"),
207 ARM_CPU_TYPE_NAME("max"),
210 static bool cpu_type_valid(const char *cpu)
212 int i;
214 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
215 if (strcmp(cpu, valid_cpus[i]) == 0) {
216 return true;
219 return false;
222 static void create_kaslr_seed(MachineState *ms, const char *node)
224 uint64_t seed;
226 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
227 return;
229 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed);
232 static void create_fdt(VirtMachineState *vms)
234 MachineState *ms = MACHINE(vms);
235 int nb_numa_nodes = ms->numa_state->num_nodes;
236 void *fdt = create_device_tree(&vms->fdt_size);
238 if (!fdt) {
239 error_report("create_device_tree() failed");
240 exit(1);
243 ms->fdt = fdt;
245 /* Header */
246 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
247 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
248 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
250 /* /chosen must exist for load_dtb to fill in necessary properties later */
251 qemu_fdt_add_subnode(fdt, "/chosen");
252 if (vms->dtb_kaslr_seed) {
253 create_kaslr_seed(ms, "/chosen");
256 if (vms->secure) {
257 qemu_fdt_add_subnode(fdt, "/secure-chosen");
258 if (vms->dtb_kaslr_seed) {
259 create_kaslr_seed(ms, "/secure-chosen");
263 /* Clock node, for the benefit of the UART. The kernel device tree
264 * binding documentation claims the PL011 node clock properties are
265 * optional but in practice if you omit them the kernel refuses to
266 * probe for the device.
268 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
269 qemu_fdt_add_subnode(fdt, "/apb-pclk");
270 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
271 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
272 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
273 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
274 "clk24mhz");
275 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
277 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
278 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
279 uint32_t *matrix = g_malloc0(size);
280 int idx, i, j;
282 for (i = 0; i < nb_numa_nodes; i++) {
283 for (j = 0; j < nb_numa_nodes; j++) {
284 idx = (i * nb_numa_nodes + j) * 3;
285 matrix[idx + 0] = cpu_to_be32(i);
286 matrix[idx + 1] = cpu_to_be32(j);
287 matrix[idx + 2] =
288 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
292 qemu_fdt_add_subnode(fdt, "/distance-map");
293 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
294 "numa-distance-map-v1");
295 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
296 matrix, size);
297 g_free(matrix);
301 static void fdt_add_timer_nodes(const VirtMachineState *vms)
303 /* On real hardware these interrupts are level-triggered.
304 * On KVM they were edge-triggered before host kernel version 4.4,
305 * and level-triggered afterwards.
306 * On emulated QEMU they are level-triggered.
308 * Getting the DTB info about them wrong is awkward for some
309 * guest kernels:
310 * pre-4.8 ignore the DT and leave the interrupt configured
311 * with whatever the GIC reset value (or the bootloader) left it at
312 * 4.8 before rc6 honour the incorrect data by programming it back
313 * into the GIC, causing problems
314 * 4.8rc6 and later ignore the DT and always write "level triggered"
315 * into the GIC
317 * For backwards-compatibility, virt-2.8 and earlier will continue
318 * to say these are edge-triggered, but later machines will report
319 * the correct information.
321 ARMCPU *armcpu;
322 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
323 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
324 MachineState *ms = MACHINE(vms);
326 if (vmc->claim_edge_triggered_timers) {
327 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
330 if (vms->gic_version == VIRT_GIC_VERSION_2) {
331 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
332 GIC_FDT_IRQ_PPI_CPU_WIDTH,
333 (1 << MACHINE(vms)->smp.cpus) - 1);
336 qemu_fdt_add_subnode(ms->fdt, "/timer");
338 armcpu = ARM_CPU(qemu_get_cpu(0));
339 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
340 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
341 qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
342 compat, sizeof(compat));
343 } else {
344 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
345 "arm,armv7-timer");
347 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
348 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
349 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
350 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
351 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
352 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
355 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
357 int cpu;
358 int addr_cells = 1;
359 const MachineState *ms = MACHINE(vms);
360 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
361 int smp_cpus = ms->smp.cpus;
364 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
365 * On ARM v8 64-bit systems value should be set to 2,
366 * that corresponds to the MPIDR_EL1 register size.
367 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
368 * in the system, #address-cells can be set to 1, since
369 * MPIDR_EL1[63:32] bits are not used for CPUs
370 * identification.
372 * Here we actually don't know whether our system is 32- or 64-bit one.
373 * The simplest way to go is to examine affinity IDs of all our CPUs. If
374 * at least one of them has Aff3 populated, we set #address-cells to 2.
376 for (cpu = 0; cpu < smp_cpus; cpu++) {
377 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
379 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
380 addr_cells = 2;
381 break;
385 qemu_fdt_add_subnode(ms->fdt, "/cpus");
386 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
387 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
389 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
390 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
391 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
392 CPUState *cs = CPU(armcpu);
394 qemu_fdt_add_subnode(ms->fdt, nodename);
395 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
396 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
397 armcpu->dtb_compatible);
399 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
400 qemu_fdt_setprop_string(ms->fdt, nodename,
401 "enable-method", "psci");
404 if (addr_cells == 2) {
405 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
406 armcpu->mp_affinity);
407 } else {
408 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
409 armcpu->mp_affinity);
412 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
413 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
414 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
417 if (!vmc->no_cpu_topology) {
418 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
419 qemu_fdt_alloc_phandle(ms->fdt));
422 g_free(nodename);
425 if (!vmc->no_cpu_topology) {
427 * Add vCPU topology description through fdt node cpu-map.
429 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
430 * In a SMP system, the hierarchy of CPUs can be defined through
431 * four entities that are used to describe the layout of CPUs in
432 * the system: socket/cluster/core/thread.
434 * A socket node represents the boundary of system physical package
435 * and its child nodes must be one or more cluster nodes. A system
436 * can contain several layers of clustering within a single physical
437 * package and cluster nodes can be contained in parent cluster nodes.
439 * Note: currently we only support one layer of clustering within
440 * each physical package.
442 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
444 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
445 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
446 char *map_path;
448 if (ms->smp.threads > 1) {
449 map_path = g_strdup_printf(
450 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
451 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
452 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
453 (cpu / ms->smp.threads) % ms->smp.cores,
454 cpu % ms->smp.threads);
455 } else {
456 map_path = g_strdup_printf(
457 "/cpus/cpu-map/socket%d/cluster%d/core%d",
458 cpu / (ms->smp.clusters * ms->smp.cores),
459 (cpu / ms->smp.cores) % ms->smp.clusters,
460 cpu % ms->smp.cores);
462 qemu_fdt_add_path(ms->fdt, map_path);
463 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
465 g_free(map_path);
466 g_free(cpu_path);
471 static void fdt_add_its_gic_node(VirtMachineState *vms)
473 char *nodename;
474 MachineState *ms = MACHINE(vms);
476 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
477 nodename = g_strdup_printf("/intc/its@%" PRIx64,
478 vms->memmap[VIRT_GIC_ITS].base);
479 qemu_fdt_add_subnode(ms->fdt, nodename);
480 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
481 "arm,gic-v3-its");
482 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
483 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
484 2, vms->memmap[VIRT_GIC_ITS].base,
485 2, vms->memmap[VIRT_GIC_ITS].size);
486 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
487 g_free(nodename);
490 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
492 MachineState *ms = MACHINE(vms);
493 char *nodename;
495 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
496 vms->memmap[VIRT_GIC_V2M].base);
497 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
498 qemu_fdt_add_subnode(ms->fdt, nodename);
499 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
500 "arm,gic-v2m-frame");
501 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
502 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
503 2, vms->memmap[VIRT_GIC_V2M].base,
504 2, vms->memmap[VIRT_GIC_V2M].size);
505 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
506 g_free(nodename);
509 static void fdt_add_gic_node(VirtMachineState *vms)
511 MachineState *ms = MACHINE(vms);
512 char *nodename;
514 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
515 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
517 nodename = g_strdup_printf("/intc@%" PRIx64,
518 vms->memmap[VIRT_GIC_DIST].base);
519 qemu_fdt_add_subnode(ms->fdt, nodename);
520 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
521 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
522 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
523 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
524 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
525 if (vms->gic_version == VIRT_GIC_VERSION_3) {
526 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
528 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
529 "arm,gic-v3");
531 qemu_fdt_setprop_cell(ms->fdt, nodename,
532 "#redistributor-regions", nb_redist_regions);
534 if (nb_redist_regions == 1) {
535 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
536 2, vms->memmap[VIRT_GIC_DIST].base,
537 2, vms->memmap[VIRT_GIC_DIST].size,
538 2, vms->memmap[VIRT_GIC_REDIST].base,
539 2, vms->memmap[VIRT_GIC_REDIST].size);
540 } else {
541 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
542 2, vms->memmap[VIRT_GIC_DIST].base,
543 2, vms->memmap[VIRT_GIC_DIST].size,
544 2, vms->memmap[VIRT_GIC_REDIST].base,
545 2, vms->memmap[VIRT_GIC_REDIST].size,
546 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
547 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
550 if (vms->virt) {
551 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
552 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
553 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
555 } else {
556 /* 'cortex-a15-gic' means 'GIC v2' */
557 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
558 "arm,cortex-a15-gic");
559 if (!vms->virt) {
560 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
561 2, vms->memmap[VIRT_GIC_DIST].base,
562 2, vms->memmap[VIRT_GIC_DIST].size,
563 2, vms->memmap[VIRT_GIC_CPU].base,
564 2, vms->memmap[VIRT_GIC_CPU].size);
565 } else {
566 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
567 2, vms->memmap[VIRT_GIC_DIST].base,
568 2, vms->memmap[VIRT_GIC_DIST].size,
569 2, vms->memmap[VIRT_GIC_CPU].base,
570 2, vms->memmap[VIRT_GIC_CPU].size,
571 2, vms->memmap[VIRT_GIC_HYP].base,
572 2, vms->memmap[VIRT_GIC_HYP].size,
573 2, vms->memmap[VIRT_GIC_VCPU].base,
574 2, vms->memmap[VIRT_GIC_VCPU].size);
575 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
576 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
577 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
581 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
582 g_free(nodename);
585 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
587 ARMCPU *armcpu = ARM_CPU(first_cpu);
588 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
589 MachineState *ms = MACHINE(vms);
591 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
592 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
593 return;
596 if (vms->gic_version == VIRT_GIC_VERSION_2) {
597 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
598 GIC_FDT_IRQ_PPI_CPU_WIDTH,
599 (1 << MACHINE(vms)->smp.cpus) - 1);
602 qemu_fdt_add_subnode(ms->fdt, "/pmu");
603 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
604 const char compat[] = "arm,armv8-pmuv3";
605 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
606 compat, sizeof(compat));
607 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
608 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
612 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
614 DeviceState *dev;
615 MachineState *ms = MACHINE(vms);
616 int irq = vms->irqmap[VIRT_ACPI_GED];
617 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
619 if (ms->ram_slots) {
620 event |= ACPI_GED_MEM_HOTPLUG_EVT;
623 if (ms->nvdimms_state->is_enabled) {
624 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
627 dev = qdev_new(TYPE_ACPI_GED);
628 qdev_prop_set_uint32(dev, "ged-event", event);
630 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
631 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
632 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
634 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
636 return dev;
639 static void create_its(VirtMachineState *vms)
641 const char *itsclass = its_class_name();
642 DeviceState *dev;
644 if (!strcmp(itsclass, "arm-gicv3-its")) {
645 if (!vms->tcg_its) {
646 itsclass = NULL;
650 if (!itsclass) {
651 /* Do nothing if not supported */
652 return;
655 dev = qdev_new(itsclass);
657 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
658 &error_abort);
659 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
660 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
662 fdt_add_its_gic_node(vms);
663 vms->msi_controller = VIRT_MSI_CTRL_ITS;
666 static void create_v2m(VirtMachineState *vms)
668 int i;
669 int irq = vms->irqmap[VIRT_GIC_V2M];
670 DeviceState *dev;
672 dev = qdev_new("arm-gicv2m");
673 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
674 qdev_prop_set_uint32(dev, "base-spi", irq);
675 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
676 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
678 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
679 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
680 qdev_get_gpio_in(vms->gic, irq + i));
683 fdt_add_v2m_gic_node(vms);
684 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
687 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
689 MachineState *ms = MACHINE(vms);
690 /* We create a standalone GIC */
691 SysBusDevice *gicbusdev;
692 const char *gictype;
693 int type = vms->gic_version, i;
694 unsigned int smp_cpus = ms->smp.cpus;
695 uint32_t nb_redist_regions = 0;
697 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
699 vms->gic = qdev_new(gictype);
700 qdev_prop_set_uint32(vms->gic, "revision", type);
701 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
702 /* Note that the num-irq property counts both internal and external
703 * interrupts; there are always 32 of the former (mandated by GIC spec).
705 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
706 if (!kvm_irqchip_in_kernel()) {
707 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
710 if (type == 3) {
711 uint32_t redist0_capacity =
712 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
713 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
715 nb_redist_regions = virt_gicv3_redist_region_count(vms);
717 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
718 nb_redist_regions);
719 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
721 if (!kvm_irqchip_in_kernel()) {
722 if (vms->tcg_its) {
723 object_property_set_link(OBJECT(vms->gic), "sysmem",
724 OBJECT(mem), &error_fatal);
725 qdev_prop_set_bit(vms->gic, "has-lpi", true);
729 if (nb_redist_regions == 2) {
730 uint32_t redist1_capacity =
731 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
733 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
734 MIN(smp_cpus - redist0_count, redist1_capacity));
736 } else {
737 if (!kvm_irqchip_in_kernel()) {
738 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
739 vms->virt);
742 gicbusdev = SYS_BUS_DEVICE(vms->gic);
743 sysbus_realize_and_unref(gicbusdev, &error_fatal);
744 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
745 if (type == 3) {
746 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
747 if (nb_redist_regions == 2) {
748 sysbus_mmio_map(gicbusdev, 2,
749 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
751 } else {
752 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
753 if (vms->virt) {
754 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
755 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
759 /* Wire the outputs from each CPU's generic timer and the GICv3
760 * maintenance interrupt signal to the appropriate GIC PPI inputs,
761 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
763 for (i = 0; i < smp_cpus; i++) {
764 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
765 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
766 int irq;
767 /* Mapping from the output timer irq lines from the CPU to the
768 * GIC PPI inputs we use for the virt board.
770 const int timer_irq[] = {
771 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
772 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
773 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
774 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
777 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
778 qdev_connect_gpio_out(cpudev, irq,
779 qdev_get_gpio_in(vms->gic,
780 ppibase + timer_irq[irq]));
783 if (type == 3) {
784 qemu_irq irq = qdev_get_gpio_in(vms->gic,
785 ppibase + ARCH_GIC_MAINT_IRQ);
786 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
787 0, irq);
788 } else if (vms->virt) {
789 qemu_irq irq = qdev_get_gpio_in(vms->gic,
790 ppibase + ARCH_GIC_MAINT_IRQ);
791 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
794 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
795 qdev_get_gpio_in(vms->gic, ppibase
796 + VIRTUAL_PMU_IRQ));
798 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
799 sysbus_connect_irq(gicbusdev, i + smp_cpus,
800 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
801 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
802 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
803 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
804 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
807 fdt_add_gic_node(vms);
809 if (type == 3 && vms->its) {
810 create_its(vms);
811 } else if (type == 2) {
812 create_v2m(vms);
816 static void create_uart(const VirtMachineState *vms, int uart,
817 MemoryRegion *mem, Chardev *chr)
819 char *nodename;
820 hwaddr base = vms->memmap[uart].base;
821 hwaddr size = vms->memmap[uart].size;
822 int irq = vms->irqmap[uart];
823 const char compat[] = "arm,pl011\0arm,primecell";
824 const char clocknames[] = "uartclk\0apb_pclk";
825 DeviceState *dev = qdev_new(TYPE_PL011);
826 SysBusDevice *s = SYS_BUS_DEVICE(dev);
827 MachineState *ms = MACHINE(vms);
829 qdev_prop_set_chr(dev, "chardev", chr);
830 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
831 memory_region_add_subregion(mem, base,
832 sysbus_mmio_get_region(s, 0));
833 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
835 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
836 qemu_fdt_add_subnode(ms->fdt, nodename);
837 /* Note that we can't use setprop_string because of the embedded NUL */
838 qemu_fdt_setprop(ms->fdt, nodename, "compatible",
839 compat, sizeof(compat));
840 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
841 2, base, 2, size);
842 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
843 GIC_FDT_IRQ_TYPE_SPI, irq,
844 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
845 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
846 vms->clock_phandle, vms->clock_phandle);
847 qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
848 clocknames, sizeof(clocknames));
850 if (uart == VIRT_UART) {
851 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
852 } else {
853 /* Mark as not usable by the normal world */
854 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
855 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
857 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
858 nodename);
861 g_free(nodename);
864 static void create_rtc(const VirtMachineState *vms)
866 char *nodename;
867 hwaddr base = vms->memmap[VIRT_RTC].base;
868 hwaddr size = vms->memmap[VIRT_RTC].size;
869 int irq = vms->irqmap[VIRT_RTC];
870 const char compat[] = "arm,pl031\0arm,primecell";
871 MachineState *ms = MACHINE(vms);
873 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
875 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
876 qemu_fdt_add_subnode(ms->fdt, nodename);
877 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
878 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
879 2, base, 2, size);
880 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
881 GIC_FDT_IRQ_TYPE_SPI, irq,
882 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
883 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
884 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
885 g_free(nodename);
888 static DeviceState *gpio_key_dev;
889 static void virt_powerdown_req(Notifier *n, void *opaque)
891 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
893 if (s->acpi_dev) {
894 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
895 } else {
896 /* use gpio Pin 3 for power button event */
897 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
901 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
902 uint32_t phandle)
904 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
905 qdev_get_gpio_in(pl061_dev, 3));
907 qemu_fdt_add_subnode(fdt, "/gpio-keys");
908 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
909 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#size-cells", 0);
910 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#address-cells", 1);
912 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
913 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
914 "label", "GPIO Key Poweroff");
915 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
916 KEY_POWER);
917 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
918 "gpios", phandle, 3, 0);
921 #define SECURE_GPIO_POWEROFF 0
922 #define SECURE_GPIO_RESET 1
924 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
925 uint32_t phandle)
927 DeviceState *gpio_pwr_dev;
929 /* gpio-pwr */
930 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
932 /* connect secure pl061 to gpio-pwr */
933 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
934 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
935 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
936 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
938 qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
939 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
940 "gpio-poweroff");
941 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
942 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
943 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
944 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
945 "okay");
947 qemu_fdt_add_subnode(fdt, "/gpio-restart");
948 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
949 "gpio-restart");
950 qemu_fdt_setprop_cells(fdt, "/gpio-restart",
951 "gpios", phandle, SECURE_GPIO_RESET, 0);
952 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
953 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
954 "okay");
957 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
958 MemoryRegion *mem)
960 char *nodename;
961 DeviceState *pl061_dev;
962 hwaddr base = vms->memmap[gpio].base;
963 hwaddr size = vms->memmap[gpio].size;
964 int irq = vms->irqmap[gpio];
965 const char compat[] = "arm,pl061\0arm,primecell";
966 SysBusDevice *s;
967 MachineState *ms = MACHINE(vms);
969 pl061_dev = qdev_new("pl061");
970 /* Pull lines down to 0 if not driven by the PL061 */
971 qdev_prop_set_uint32(pl061_dev, "pullups", 0);
972 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
973 s = SYS_BUS_DEVICE(pl061_dev);
974 sysbus_realize_and_unref(s, &error_fatal);
975 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
976 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
978 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
979 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
980 qemu_fdt_add_subnode(ms->fdt, nodename);
981 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
982 2, base, 2, size);
983 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
984 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
985 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
986 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
987 GIC_FDT_IRQ_TYPE_SPI, irq,
988 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
989 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
990 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
991 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
993 if (gpio != VIRT_GPIO) {
994 /* Mark as not usable by the normal world */
995 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
996 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
998 g_free(nodename);
1000 /* Child gpio devices */
1001 if (gpio == VIRT_GPIO) {
1002 create_gpio_keys(ms->fdt, pl061_dev, phandle);
1003 } else {
1004 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1008 static void create_virtio_devices(const VirtMachineState *vms)
1010 int i;
1011 hwaddr size = vms->memmap[VIRT_MMIO].size;
1012 MachineState *ms = MACHINE(vms);
1014 /* We create the transports in forwards order. Since qbus_realize()
1015 * prepends (not appends) new child buses, the incrementing loop below will
1016 * create a list of virtio-mmio buses with decreasing base addresses.
1018 * When a -device option is processed from the command line,
1019 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1020 * order. The upshot is that -device options in increasing command line
1021 * order are mapped to virtio-mmio buses with decreasing base addresses.
1023 * When this code was originally written, that arrangement ensured that the
1024 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1025 * the first -device on the command line. (The end-to-end order is a
1026 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1027 * guest kernel's name-to-address assignment strategy.)
1029 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1030 * the message, if not necessarily the code, of commit 70161ff336.
1031 * Therefore the loop now establishes the inverse of the original intent.
1033 * Unfortunately, we can't counteract the kernel change by reversing the
1034 * loop; it would break existing command lines.
1036 * In any case, the kernel makes no guarantee about the stability of
1037 * enumeration order of virtio devices (as demonstrated by it changing
1038 * between kernel versions). For reliable and stable identification
1039 * of disks users must use UUIDs or similar mechanisms.
1041 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1042 int irq = vms->irqmap[VIRT_MMIO] + i;
1043 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1045 sysbus_create_simple("virtio-mmio", base,
1046 qdev_get_gpio_in(vms->gic, irq));
1049 /* We add dtb nodes in reverse order so that they appear in the finished
1050 * device tree lowest address first.
1052 * Note that this mapping is independent of the loop above. The previous
1053 * loop influences virtio device to virtio transport assignment, whereas
1054 * this loop controls how virtio transports are laid out in the dtb.
1056 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1057 char *nodename;
1058 int irq = vms->irqmap[VIRT_MMIO] + i;
1059 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1061 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1062 qemu_fdt_add_subnode(ms->fdt, nodename);
1063 qemu_fdt_setprop_string(ms->fdt, nodename,
1064 "compatible", "virtio,mmio");
1065 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1066 2, base, 2, size);
1067 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1068 GIC_FDT_IRQ_TYPE_SPI, irq,
1069 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1070 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1071 g_free(nodename);
1075 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1077 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1078 const char *name,
1079 const char *alias_prop_name)
1082 * Create a single flash device. We use the same parameters as
1083 * the flash devices on the Versatile Express board.
1085 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1087 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1088 qdev_prop_set_uint8(dev, "width", 4);
1089 qdev_prop_set_uint8(dev, "device-width", 2);
1090 qdev_prop_set_bit(dev, "big-endian", false);
1091 qdev_prop_set_uint16(dev, "id0", 0x89);
1092 qdev_prop_set_uint16(dev, "id1", 0x18);
1093 qdev_prop_set_uint16(dev, "id2", 0x00);
1094 qdev_prop_set_uint16(dev, "id3", 0x00);
1095 qdev_prop_set_string(dev, "name", name);
1096 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1097 object_property_add_alias(OBJECT(vms), alias_prop_name,
1098 OBJECT(dev), "drive");
1099 return PFLASH_CFI01(dev);
1102 static void virt_flash_create(VirtMachineState *vms)
1104 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1105 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1108 static void virt_flash_map1(PFlashCFI01 *flash,
1109 hwaddr base, hwaddr size,
1110 MemoryRegion *sysmem)
1112 DeviceState *dev = DEVICE(flash);
1114 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1115 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1116 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1117 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1119 memory_region_add_subregion(sysmem, base,
1120 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1121 0));
1124 static void virt_flash_map(VirtMachineState *vms,
1125 MemoryRegion *sysmem,
1126 MemoryRegion *secure_sysmem)
1129 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1130 * sysmem is the system memory space. secure_sysmem is the secure view
1131 * of the system, and the first flash device should be made visible only
1132 * there. The second flash device is visible to both secure and nonsecure.
1133 * If sysmem == secure_sysmem this means there is no separate Secure
1134 * address space and both flash devices are generally visible.
1136 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1137 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1139 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1140 secure_sysmem);
1141 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1142 sysmem);
1145 static void virt_flash_fdt(VirtMachineState *vms,
1146 MemoryRegion *sysmem,
1147 MemoryRegion *secure_sysmem)
1149 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1150 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1151 MachineState *ms = MACHINE(vms);
1152 char *nodename;
1154 if (sysmem == secure_sysmem) {
1155 /* Report both flash devices as a single node in the DT */
1156 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1157 qemu_fdt_add_subnode(ms->fdt, nodename);
1158 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1159 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1160 2, flashbase, 2, flashsize,
1161 2, flashbase + flashsize, 2, flashsize);
1162 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1163 g_free(nodename);
1164 } else {
1166 * Report the devices as separate nodes so we can mark one as
1167 * only visible to the secure world.
1169 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1170 qemu_fdt_add_subnode(ms->fdt, nodename);
1171 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1172 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1173 2, flashbase, 2, flashsize);
1174 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1175 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1176 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1177 g_free(nodename);
1179 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1180 qemu_fdt_add_subnode(ms->fdt, nodename);
1181 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1182 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1183 2, flashbase + flashsize, 2, flashsize);
1184 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1185 g_free(nodename);
1189 static bool virt_firmware_init(VirtMachineState *vms,
1190 MemoryRegion *sysmem,
1191 MemoryRegion *secure_sysmem)
1193 int i;
1194 const char *bios_name;
1195 BlockBackend *pflash_blk0;
1197 /* Map legacy -drive if=pflash to machine properties */
1198 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1199 pflash_cfi01_legacy_drive(vms->flash[i],
1200 drive_get(IF_PFLASH, 0, i));
1203 virt_flash_map(vms, sysmem, secure_sysmem);
1205 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1207 bios_name = MACHINE(vms)->firmware;
1208 if (bios_name) {
1209 char *fname;
1210 MemoryRegion *mr;
1211 int image_size;
1213 if (pflash_blk0) {
1214 error_report("The contents of the first flash device may be "
1215 "specified with -bios or with -drive if=pflash... "
1216 "but you cannot use both options at once");
1217 exit(1);
1220 /* Fall back to -bios */
1222 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1223 if (!fname) {
1224 error_report("Could not find ROM image '%s'", bios_name);
1225 exit(1);
1227 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1228 image_size = load_image_mr(fname, mr);
1229 g_free(fname);
1230 if (image_size < 0) {
1231 error_report("Could not load ROM image '%s'", bios_name);
1232 exit(1);
1236 return pflash_blk0 || bios_name;
1239 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1241 MachineState *ms = MACHINE(vms);
1242 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1243 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1244 FWCfgState *fw_cfg;
1245 char *nodename;
1247 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1248 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1250 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1251 qemu_fdt_add_subnode(ms->fdt, nodename);
1252 qemu_fdt_setprop_string(ms->fdt, nodename,
1253 "compatible", "qemu,fw-cfg-mmio");
1254 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1255 2, base, 2, size);
1256 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1257 g_free(nodename);
1258 return fw_cfg;
1261 static void create_pcie_irq_map(const MachineState *ms,
1262 uint32_t gic_phandle,
1263 int first_irq, const char *nodename)
1265 int devfn, pin;
1266 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1267 uint32_t *irq_map = full_irq_map;
1269 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1270 for (pin = 0; pin < 4; pin++) {
1271 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1272 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1273 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1274 int i;
1276 uint32_t map[] = {
1277 devfn << 8, 0, 0, /* devfn */
1278 pin + 1, /* PCI pin */
1279 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1281 /* Convert map to big endian */
1282 for (i = 0; i < 10; i++) {
1283 irq_map[i] = cpu_to_be32(map[i]);
1285 irq_map += 10;
1289 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1290 full_irq_map, sizeof(full_irq_map));
1292 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1293 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1294 0, 0,
1295 0x7 /* PCI irq */);
1298 static void create_smmu(const VirtMachineState *vms,
1299 PCIBus *bus)
1301 char *node;
1302 const char compat[] = "arm,smmu-v3";
1303 int irq = vms->irqmap[VIRT_SMMU];
1304 int i;
1305 hwaddr base = vms->memmap[VIRT_SMMU].base;
1306 hwaddr size = vms->memmap[VIRT_SMMU].size;
1307 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1308 DeviceState *dev;
1309 MachineState *ms = MACHINE(vms);
1311 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1312 return;
1315 dev = qdev_new("arm-smmuv3");
1317 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1318 &error_abort);
1319 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1320 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1321 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1322 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1323 qdev_get_gpio_in(vms->gic, irq + i));
1326 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1327 qemu_fdt_add_subnode(ms->fdt, node);
1328 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1329 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1331 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1332 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1333 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1334 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1335 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1337 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1338 sizeof(irq_names));
1340 qemu_fdt_setprop_cell(ms->fdt, node, "clocks", vms->clock_phandle);
1341 qemu_fdt_setprop_string(ms->fdt, node, "clock-names", "apb_pclk");
1342 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1344 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1346 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1347 g_free(node);
1350 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1352 const char compat[] = "virtio,pci-iommu";
1353 uint16_t bdf = vms->virtio_iommu_bdf;
1354 MachineState *ms = MACHINE(vms);
1355 char *node;
1357 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1359 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1360 qemu_fdt_add_subnode(ms->fdt, node);
1361 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1362 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1363 1, bdf << 8, 1, 0, 1, 0,
1364 1, 0, 1, 0);
1366 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1367 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1368 g_free(node);
1370 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1371 0x0, vms->iommu_phandle, 0x0, bdf,
1372 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1375 static void create_pcie(VirtMachineState *vms)
1377 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1378 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1379 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1380 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1381 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1382 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1383 hwaddr base_ecam, size_ecam;
1384 hwaddr base = base_mmio;
1385 int nr_pcie_buses;
1386 int irq = vms->irqmap[VIRT_PCIE];
1387 MemoryRegion *mmio_alias;
1388 MemoryRegion *mmio_reg;
1389 MemoryRegion *ecam_alias;
1390 MemoryRegion *ecam_reg;
1391 DeviceState *dev;
1392 char *nodename;
1393 int i, ecam_id;
1394 PCIHostState *pci;
1395 MachineState *ms = MACHINE(vms);
1397 dev = qdev_new(TYPE_GPEX_HOST);
1398 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1400 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1401 base_ecam = vms->memmap[ecam_id].base;
1402 size_ecam = vms->memmap[ecam_id].size;
1403 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1404 /* Map only the first size_ecam bytes of ECAM space */
1405 ecam_alias = g_new0(MemoryRegion, 1);
1406 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1407 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1408 ecam_reg, 0, size_ecam);
1409 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1411 /* Map the MMIO window into system address space so as to expose
1412 * the section of PCI MMIO space which starts at the same base address
1413 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1414 * the window).
1416 mmio_alias = g_new0(MemoryRegion, 1);
1417 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1418 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1419 mmio_reg, base_mmio, size_mmio);
1420 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1422 if (vms->highmem_mmio) {
1423 /* Map high MMIO space */
1424 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1426 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1427 mmio_reg, base_mmio_high, size_mmio_high);
1428 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1429 high_mmio_alias);
1432 /* Map IO port space */
1433 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1435 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1436 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1437 qdev_get_gpio_in(vms->gic, irq + i));
1438 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1441 pci = PCI_HOST_BRIDGE(dev);
1442 pci->bypass_iommu = vms->default_bus_bypass_iommu;
1443 vms->bus = pci->bus;
1444 if (vms->bus) {
1445 for (i = 0; i < nb_nics; i++) {
1446 NICInfo *nd = &nd_table[i];
1448 if (!nd->model) {
1449 nd->model = g_strdup("virtio");
1452 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1456 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1457 qemu_fdt_add_subnode(ms->fdt, nodename);
1458 qemu_fdt_setprop_string(ms->fdt, nodename,
1459 "compatible", "pci-host-ecam-generic");
1460 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1461 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1462 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1463 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1464 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1465 nr_pcie_buses - 1);
1466 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1468 if (vms->msi_phandle) {
1469 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-parent",
1470 vms->msi_phandle);
1473 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1474 2, base_ecam, 2, size_ecam);
1476 if (vms->highmem_mmio) {
1477 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1478 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1479 2, base_pio, 2, size_pio,
1480 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1481 2, base_mmio, 2, size_mmio,
1482 1, FDT_PCI_RANGE_MMIO_64BIT,
1483 2, base_mmio_high,
1484 2, base_mmio_high, 2, size_mmio_high);
1485 } else {
1486 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1487 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1488 2, base_pio, 2, size_pio,
1489 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1490 2, base_mmio, 2, size_mmio);
1493 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1494 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1496 if (vms->iommu) {
1497 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1499 switch (vms->iommu) {
1500 case VIRT_IOMMU_SMMUV3:
1501 create_smmu(vms, vms->bus);
1502 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1503 0x0, vms->iommu_phandle, 0x0, 0x10000);
1504 break;
1505 default:
1506 g_assert_not_reached();
1511 static void create_platform_bus(VirtMachineState *vms)
1513 DeviceState *dev;
1514 SysBusDevice *s;
1515 int i;
1516 MemoryRegion *sysmem = get_system_memory();
1518 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1519 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1520 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1521 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1522 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1523 vms->platform_bus_dev = dev;
1525 s = SYS_BUS_DEVICE(dev);
1526 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1527 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1528 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1531 memory_region_add_subregion(sysmem,
1532 vms->memmap[VIRT_PLATFORM_BUS].base,
1533 sysbus_mmio_get_region(s, 0));
1536 static void create_tag_ram(MemoryRegion *tag_sysmem,
1537 hwaddr base, hwaddr size,
1538 const char *name)
1540 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1542 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1543 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1546 static void create_secure_ram(VirtMachineState *vms,
1547 MemoryRegion *secure_sysmem,
1548 MemoryRegion *secure_tag_sysmem)
1550 MemoryRegion *secram = g_new(MemoryRegion, 1);
1551 char *nodename;
1552 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1553 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1554 MachineState *ms = MACHINE(vms);
1556 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1557 &error_fatal);
1558 memory_region_add_subregion(secure_sysmem, base, secram);
1560 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1561 qemu_fdt_add_subnode(ms->fdt, nodename);
1562 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1563 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1564 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1565 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1567 if (secure_tag_sysmem) {
1568 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1571 g_free(nodename);
1574 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1576 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1577 bootinfo);
1578 MachineState *ms = MACHINE(board);
1581 *fdt_size = board->fdt_size;
1582 return ms->fdt;
1585 static void virt_build_smbios(VirtMachineState *vms)
1587 MachineClass *mc = MACHINE_GET_CLASS(vms);
1588 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1589 uint8_t *smbios_tables, *smbios_anchor;
1590 size_t smbios_tables_len, smbios_anchor_len;
1591 const char *product = "QEMU Virtual Machine";
1593 if (kvm_enabled()) {
1594 product = "KVM Virtual Machine";
1597 smbios_set_defaults("QEMU", product,
1598 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1599 true, SMBIOS_ENTRY_POINT_TYPE_64);
1601 smbios_get_tables(MACHINE(vms), NULL, 0,
1602 &smbios_tables, &smbios_tables_len,
1603 &smbios_anchor, &smbios_anchor_len,
1604 &error_fatal);
1606 if (smbios_anchor) {
1607 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1608 smbios_tables, smbios_tables_len);
1609 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1610 smbios_anchor, smbios_anchor_len);
1614 static
1615 void virt_machine_done(Notifier *notifier, void *data)
1617 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1618 machine_done);
1619 MachineState *ms = MACHINE(vms);
1620 ARMCPU *cpu = ARM_CPU(first_cpu);
1621 struct arm_boot_info *info = &vms->bootinfo;
1622 AddressSpace *as = arm_boot_address_space(cpu, info);
1625 * If the user provided a dtb, we assume the dynamic sysbus nodes
1626 * already are integrated there. This corresponds to a use case where
1627 * the dynamic sysbus nodes are complex and their generation is not yet
1628 * supported. In that case the user can take charge of the guest dt
1629 * while qemu takes charge of the qom stuff.
1631 if (info->dtb_filename == NULL) {
1632 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1633 vms->memmap[VIRT_PLATFORM_BUS].base,
1634 vms->memmap[VIRT_PLATFORM_BUS].size,
1635 vms->irqmap[VIRT_PLATFORM_BUS]);
1637 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1638 exit(1);
1641 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1643 virt_acpi_setup(vms);
1644 virt_build_smbios(vms);
1647 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1649 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1650 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1652 if (!vmc->disallow_affinity_adjustment) {
1653 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1654 * GIC's target-list limitations. 32-bit KVM hosts currently
1655 * always create clusters of 4 CPUs, but that is expected to
1656 * change when they gain support for gicv3. When KVM is enabled
1657 * it will override the changes we make here, therefore our
1658 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1659 * and to improve SGI efficiency.
1661 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1662 clustersz = GICV3_TARGETLIST_BITS;
1663 } else {
1664 clustersz = GIC_TARGETLIST_BITS;
1667 return arm_cpu_mp_affinity(idx, clustersz);
1670 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1672 MachineState *ms = MACHINE(vms);
1673 hwaddr base, device_memory_base, device_memory_size, memtop;
1674 int i;
1676 vms->memmap = extended_memmap;
1678 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1679 vms->memmap[i] = base_memmap[i];
1682 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1683 error_report("unsupported number of memory slots: %"PRIu64,
1684 ms->ram_slots);
1685 exit(EXIT_FAILURE);
1689 * !highmem is exactly the same as limiting the PA space to 32bit,
1690 * irrespective of the underlying capabilities of the HW.
1692 if (!vms->highmem) {
1693 pa_bits = 32;
1697 * We compute the base of the high IO region depending on the
1698 * amount of initial and device memory. The device memory start/size
1699 * is aligned on 1GiB. We never put the high IO region below 256GiB
1700 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1701 * The device region size assumes 1GiB page max alignment per slot.
1703 device_memory_base =
1704 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1705 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1707 /* Base address of the high IO region */
1708 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1709 if (memtop > BIT_ULL(pa_bits)) {
1710 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
1711 pa_bits, memtop - BIT_ULL(pa_bits));
1712 exit(EXIT_FAILURE);
1714 if (base < device_memory_base) {
1715 error_report("maxmem/slots too huge");
1716 exit(EXIT_FAILURE);
1718 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1719 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1722 /* We know for sure that at least the memory fits in the PA space */
1723 vms->highest_gpa = memtop - 1;
1725 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1726 hwaddr size = extended_memmap[i].size;
1727 bool fits;
1729 base = ROUND_UP(base, size);
1730 vms->memmap[i].base = base;
1731 vms->memmap[i].size = size;
1734 * Check each device to see if they fit in the PA space,
1735 * moving highest_gpa as we go.
1737 * For each device that doesn't fit, disable it.
1739 fits = (base + size) <= BIT_ULL(pa_bits);
1740 if (fits) {
1741 vms->highest_gpa = base + size - 1;
1744 switch (i) {
1745 case VIRT_HIGH_GIC_REDIST2:
1746 vms->highmem_redists &= fits;
1747 break;
1748 case VIRT_HIGH_PCIE_ECAM:
1749 vms->highmem_ecam &= fits;
1750 break;
1751 case VIRT_HIGH_PCIE_MMIO:
1752 vms->highmem_mmio &= fits;
1753 break;
1756 base += size;
1759 if (device_memory_size > 0) {
1760 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1761 ms->device_memory->base = device_memory_base;
1762 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1763 "device-memory", device_memory_size);
1768 * finalize_gic_version - Determines the final gic_version
1769 * according to the gic-version property
1771 * Default GIC type is v2
1773 static void finalize_gic_version(VirtMachineState *vms)
1775 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1777 if (kvm_enabled()) {
1778 int probe_bitmap;
1780 if (!kvm_irqchip_in_kernel()) {
1781 switch (vms->gic_version) {
1782 case VIRT_GIC_VERSION_HOST:
1783 warn_report(
1784 "gic-version=host not relevant with kernel-irqchip=off "
1785 "as only userspace GICv2 is supported. Using v2 ...");
1786 return;
1787 case VIRT_GIC_VERSION_MAX:
1788 case VIRT_GIC_VERSION_NOSEL:
1789 vms->gic_version = VIRT_GIC_VERSION_2;
1790 return;
1791 case VIRT_GIC_VERSION_2:
1792 return;
1793 case VIRT_GIC_VERSION_3:
1794 error_report(
1795 "gic-version=3 is not supported with kernel-irqchip=off");
1796 exit(1);
1800 probe_bitmap = kvm_arm_vgic_probe();
1801 if (!probe_bitmap) {
1802 error_report("Unable to determine GIC version supported by host");
1803 exit(1);
1806 switch (vms->gic_version) {
1807 case VIRT_GIC_VERSION_HOST:
1808 case VIRT_GIC_VERSION_MAX:
1809 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1810 vms->gic_version = VIRT_GIC_VERSION_3;
1811 } else {
1812 vms->gic_version = VIRT_GIC_VERSION_2;
1814 return;
1815 case VIRT_GIC_VERSION_NOSEL:
1816 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1817 vms->gic_version = VIRT_GIC_VERSION_2;
1818 } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1820 * in case the host does not support v2 in-kernel emulation or
1821 * the end-user requested more than 8 VCPUs we now default
1822 * to v3. In any case defaulting to v2 would be broken.
1824 vms->gic_version = VIRT_GIC_VERSION_3;
1825 } else if (max_cpus > GIC_NCPU) {
1826 error_report("host only supports in-kernel GICv2 emulation "
1827 "but more than 8 vcpus are requested");
1828 exit(1);
1830 break;
1831 case VIRT_GIC_VERSION_2:
1832 case VIRT_GIC_VERSION_3:
1833 break;
1836 /* Check chosen version is effectively supported by the host */
1837 if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1838 !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1839 error_report("host does not support in-kernel GICv2 emulation");
1840 exit(1);
1841 } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1842 !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1843 error_report("host does not support in-kernel GICv3 emulation");
1844 exit(1);
1846 return;
1849 /* TCG mode */
1850 switch (vms->gic_version) {
1851 case VIRT_GIC_VERSION_NOSEL:
1852 vms->gic_version = VIRT_GIC_VERSION_2;
1853 break;
1854 case VIRT_GIC_VERSION_MAX:
1855 vms->gic_version = VIRT_GIC_VERSION_3;
1856 break;
1857 case VIRT_GIC_VERSION_HOST:
1858 error_report("gic-version=host requires KVM");
1859 exit(1);
1860 case VIRT_GIC_VERSION_2:
1861 case VIRT_GIC_VERSION_3:
1862 break;
1867 * virt_cpu_post_init() must be called after the CPUs have
1868 * been realized and the GIC has been created.
1870 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1872 int max_cpus = MACHINE(vms)->smp.max_cpus;
1873 bool aarch64, pmu, steal_time;
1874 CPUState *cpu;
1876 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1877 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1878 steal_time = object_property_get_bool(OBJECT(first_cpu),
1879 "kvm-steal-time", NULL);
1881 if (kvm_enabled()) {
1882 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1883 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1885 if (steal_time) {
1886 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1887 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1889 /* The memory region size must be a multiple of host page size. */
1890 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1892 if (pvtime_size > pvtime_reg_size) {
1893 error_report("pvtime requires a %" HWADDR_PRId
1894 " byte memory region for %d CPUs,"
1895 " but only %" HWADDR_PRId " has been reserved",
1896 pvtime_size, max_cpus, pvtime_reg_size);
1897 exit(1);
1900 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1901 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1904 CPU_FOREACH(cpu) {
1905 if (pmu) {
1906 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1907 if (kvm_irqchip_in_kernel()) {
1908 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1910 kvm_arm_pmu_init(cpu);
1912 if (steal_time) {
1913 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1914 cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1917 } else {
1918 if (aarch64 && vms->highmem) {
1919 int requested_pa_size = 64 - clz64(vms->highest_gpa);
1920 int pamax = arm_pamax(ARM_CPU(first_cpu));
1922 if (pamax < requested_pa_size) {
1923 error_report("VCPU supports less PA bits (%d) than "
1924 "requested by the memory map (%d)",
1925 pamax, requested_pa_size);
1926 exit(1);
1932 static void machvirt_init(MachineState *machine)
1934 VirtMachineState *vms = VIRT_MACHINE(machine);
1935 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1936 MachineClass *mc = MACHINE_GET_CLASS(machine);
1937 const CPUArchIdList *possible_cpus;
1938 MemoryRegion *sysmem = get_system_memory();
1939 MemoryRegion *secure_sysmem = NULL;
1940 MemoryRegion *tag_sysmem = NULL;
1941 MemoryRegion *secure_tag_sysmem = NULL;
1942 int n, virt_max_cpus;
1943 bool firmware_loaded;
1944 bool aarch64 = true;
1945 bool has_ged = !vmc->no_ged;
1946 unsigned int smp_cpus = machine->smp.cpus;
1947 unsigned int max_cpus = machine->smp.max_cpus;
1949 if (!cpu_type_valid(machine->cpu_type)) {
1950 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1951 exit(1);
1954 possible_cpus = mc->possible_cpu_arch_ids(machine);
1957 * In accelerated mode, the memory map is computed earlier in kvm_type()
1958 * to create a VM with the right number of IPA bits.
1960 if (!vms->memmap) {
1961 Object *cpuobj;
1962 ARMCPU *armcpu;
1963 int pa_bits;
1966 * Instanciate a temporary CPU object to find out about what
1967 * we are about to deal with. Once this is done, get rid of
1968 * the object.
1970 cpuobj = object_new(possible_cpus->cpus[0].type);
1971 armcpu = ARM_CPU(cpuobj);
1973 if (object_property_get_bool(cpuobj, "aarch64", NULL)) {
1974 pa_bits = arm_pamax(armcpu);
1975 } else if (arm_feature(&armcpu->env, ARM_FEATURE_LPAE)) {
1976 /* v7 with LPAE */
1977 pa_bits = 40;
1978 } else {
1979 /* Anything else */
1980 pa_bits = 32;
1983 object_unref(cpuobj);
1985 virt_set_memmap(vms, pa_bits);
1988 /* We can probe only here because during property set
1989 * KVM is not available yet
1991 finalize_gic_version(vms);
1993 if (vms->secure) {
1995 * The Secure view of the world is the same as the NonSecure,
1996 * but with a few extra devices. Create it as a container region
1997 * containing the system memory at low priority; any secure-only
1998 * devices go in at higher priority and take precedence.
2000 secure_sysmem = g_new(MemoryRegion, 1);
2001 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2002 UINT64_MAX);
2003 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2006 firmware_loaded = virt_firmware_init(vms, sysmem,
2007 secure_sysmem ?: sysmem);
2009 /* If we have an EL3 boot ROM then the assumption is that it will
2010 * implement PSCI itself, so disable QEMU's internal implementation
2011 * so it doesn't get in the way. Instead of starting secondary
2012 * CPUs in PSCI powerdown state we will start them all running and
2013 * let the boot ROM sort them out.
2014 * The usual case is that we do use QEMU's PSCI implementation;
2015 * if the guest has EL2 then we will use SMC as the conduit,
2016 * and otherwise we will use HVC (for backwards compatibility and
2017 * because if we're using KVM then we must use HVC).
2019 if (vms->secure && firmware_loaded) {
2020 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2021 } else if (vms->virt) {
2022 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2023 } else {
2024 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2027 /* The maximum number of CPUs depends on the GIC version, or on how
2028 * many redistributors we can fit into the memory map.
2030 if (vms->gic_version == VIRT_GIC_VERSION_3) {
2031 virt_max_cpus =
2032 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
2033 virt_max_cpus +=
2034 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
2035 } else {
2036 virt_max_cpus = GIC_NCPU;
2039 if (max_cpus > virt_max_cpus) {
2040 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2041 "supported by machine 'mach-virt' (%d)",
2042 max_cpus, virt_max_cpus);
2043 exit(1);
2046 if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2047 error_report("mach-virt: %s does not support providing "
2048 "Virtualization extensions to the guest CPU",
2049 kvm_enabled() ? "KVM" : "HVF");
2050 exit(1);
2053 if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2054 error_report("mach-virt: %s does not support providing "
2055 "MTE to the guest CPU",
2056 kvm_enabled() ? "KVM" : "HVF");
2057 exit(1);
2060 create_fdt(vms);
2062 assert(possible_cpus->len == max_cpus);
2063 for (n = 0; n < possible_cpus->len; n++) {
2064 Object *cpuobj;
2065 CPUState *cs;
2067 if (n >= smp_cpus) {
2068 break;
2071 cpuobj = object_new(possible_cpus->cpus[n].type);
2072 object_property_set_int(cpuobj, "mp-affinity",
2073 possible_cpus->cpus[n].arch_id, NULL);
2075 cs = CPU(cpuobj);
2076 cs->cpu_index = n;
2078 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2079 &error_fatal);
2081 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2083 if (!vms->secure) {
2084 object_property_set_bool(cpuobj, "has_el3", false, NULL);
2087 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2088 object_property_set_bool(cpuobj, "has_el2", false, NULL);
2091 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
2092 object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit,
2093 NULL);
2095 /* Secondary CPUs start in PSCI powered-down state */
2096 if (n > 0) {
2097 object_property_set_bool(cpuobj, "start-powered-off", true,
2098 NULL);
2102 if (vmc->kvm_no_adjvtime &&
2103 object_property_find(cpuobj, "kvm-no-adjvtime")) {
2104 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2107 if (vmc->no_kvm_steal_time &&
2108 object_property_find(cpuobj, "kvm-steal-time")) {
2109 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2112 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2113 object_property_set_bool(cpuobj, "pmu", false, NULL);
2116 if (object_property_find(cpuobj, "reset-cbar")) {
2117 object_property_set_int(cpuobj, "reset-cbar",
2118 vms->memmap[VIRT_CPUPERIPHS].base,
2119 &error_abort);
2122 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2123 &error_abort);
2124 if (vms->secure) {
2125 object_property_set_link(cpuobj, "secure-memory",
2126 OBJECT(secure_sysmem), &error_abort);
2129 if (vms->mte) {
2130 /* Create the memory region only once, but link to all cpus. */
2131 if (!tag_sysmem) {
2133 * The property exists only if MemTag is supported.
2134 * If it is, we must allocate the ram to back that up.
2136 if (!object_property_find(cpuobj, "tag-memory")) {
2137 error_report("MTE requested, but not supported "
2138 "by the guest CPU");
2139 exit(1);
2142 tag_sysmem = g_new(MemoryRegion, 1);
2143 memory_region_init(tag_sysmem, OBJECT(machine),
2144 "tag-memory", UINT64_MAX / 32);
2146 if (vms->secure) {
2147 secure_tag_sysmem = g_new(MemoryRegion, 1);
2148 memory_region_init(secure_tag_sysmem, OBJECT(machine),
2149 "secure-tag-memory", UINT64_MAX / 32);
2151 /* As with ram, secure-tag takes precedence over tag. */
2152 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2153 tag_sysmem, -1);
2157 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2158 &error_abort);
2159 if (vms->secure) {
2160 object_property_set_link(cpuobj, "secure-tag-memory",
2161 OBJECT(secure_tag_sysmem),
2162 &error_abort);
2166 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2167 object_unref(cpuobj);
2169 fdt_add_timer_nodes(vms);
2170 fdt_add_cpu_nodes(vms);
2172 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2173 machine->ram);
2174 if (machine->device_memory) {
2175 memory_region_add_subregion(sysmem, machine->device_memory->base,
2176 &machine->device_memory->mr);
2179 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2181 create_gic(vms, sysmem);
2183 virt_cpu_post_init(vms, sysmem);
2185 fdt_add_pmu_nodes(vms);
2187 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2189 if (vms->secure) {
2190 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2191 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2194 if (tag_sysmem) {
2195 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2196 machine->ram_size, "mach-virt.tag");
2199 vms->highmem_ecam &= (!firmware_loaded || aarch64);
2201 create_rtc(vms);
2203 create_pcie(vms);
2205 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2206 vms->acpi_dev = create_acpi_ged(vms);
2207 } else {
2208 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2211 if (vms->secure && !vmc->no_secure_gpio) {
2212 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2215 /* connect powerdown request */
2216 vms->powerdown_notifier.notify = virt_powerdown_req;
2217 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2219 /* Create mmio transports, so the user can create virtio backends
2220 * (which will be automatically plugged in to the transports). If
2221 * no backend is created the transport will just sit harmlessly idle.
2223 create_virtio_devices(vms);
2225 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2226 rom_set_fw(vms->fw_cfg);
2228 create_platform_bus(vms);
2230 if (machine->nvdimms_state->is_enabled) {
2231 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2232 .space_id = AML_AS_SYSTEM_MEMORY,
2233 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2234 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2237 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2238 arm_virt_nvdimm_acpi_dsmio,
2239 vms->fw_cfg, OBJECT(vms));
2242 vms->bootinfo.ram_size = machine->ram_size;
2243 vms->bootinfo.nb_cpus = smp_cpus;
2244 vms->bootinfo.board_id = -1;
2245 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2246 vms->bootinfo.get_dtb = machvirt_dtb;
2247 vms->bootinfo.skip_dtb_autoload = true;
2248 vms->bootinfo.firmware_loaded = firmware_loaded;
2249 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2251 vms->machine_done.notify = virt_machine_done;
2252 qemu_add_machine_init_done_notifier(&vms->machine_done);
2255 static bool virt_get_secure(Object *obj, Error **errp)
2257 VirtMachineState *vms = VIRT_MACHINE(obj);
2259 return vms->secure;
2262 static void virt_set_secure(Object *obj, bool value, Error **errp)
2264 VirtMachineState *vms = VIRT_MACHINE(obj);
2266 vms->secure = value;
2269 static bool virt_get_virt(Object *obj, Error **errp)
2271 VirtMachineState *vms = VIRT_MACHINE(obj);
2273 return vms->virt;
2276 static void virt_set_virt(Object *obj, bool value, Error **errp)
2278 VirtMachineState *vms = VIRT_MACHINE(obj);
2280 vms->virt = value;
2283 static bool virt_get_highmem(Object *obj, Error **errp)
2285 VirtMachineState *vms = VIRT_MACHINE(obj);
2287 return vms->highmem;
2290 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2292 VirtMachineState *vms = VIRT_MACHINE(obj);
2294 vms->highmem = value;
2297 static bool virt_get_its(Object *obj, Error **errp)
2299 VirtMachineState *vms = VIRT_MACHINE(obj);
2301 return vms->its;
2304 static void virt_set_its(Object *obj, bool value, Error **errp)
2306 VirtMachineState *vms = VIRT_MACHINE(obj);
2308 vms->its = value;
2311 static bool virt_get_dtb_kaslr_seed(Object *obj, Error **errp)
2313 VirtMachineState *vms = VIRT_MACHINE(obj);
2315 return vms->dtb_kaslr_seed;
2318 static void virt_set_dtb_kaslr_seed(Object *obj, bool value, Error **errp)
2320 VirtMachineState *vms = VIRT_MACHINE(obj);
2322 vms->dtb_kaslr_seed = value;
2325 static char *virt_get_oem_id(Object *obj, Error **errp)
2327 VirtMachineState *vms = VIRT_MACHINE(obj);
2329 return g_strdup(vms->oem_id);
2332 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2334 VirtMachineState *vms = VIRT_MACHINE(obj);
2335 size_t len = strlen(value);
2337 if (len > 6) {
2338 error_setg(errp,
2339 "User specified oem-id value is bigger than 6 bytes in size");
2340 return;
2343 strncpy(vms->oem_id, value, 6);
2346 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2348 VirtMachineState *vms = VIRT_MACHINE(obj);
2350 return g_strdup(vms->oem_table_id);
2353 static void virt_set_oem_table_id(Object *obj, const char *value,
2354 Error **errp)
2356 VirtMachineState *vms = VIRT_MACHINE(obj);
2357 size_t len = strlen(value);
2359 if (len > 8) {
2360 error_setg(errp,
2361 "User specified oem-table-id value is bigger than 8 bytes in size");
2362 return;
2364 strncpy(vms->oem_table_id, value, 8);
2368 bool virt_is_acpi_enabled(VirtMachineState *vms)
2370 if (vms->acpi == ON_OFF_AUTO_OFF) {
2371 return false;
2373 return true;
2376 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2377 void *opaque, Error **errp)
2379 VirtMachineState *vms = VIRT_MACHINE(obj);
2380 OnOffAuto acpi = vms->acpi;
2382 visit_type_OnOffAuto(v, name, &acpi, errp);
2385 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2386 void *opaque, Error **errp)
2388 VirtMachineState *vms = VIRT_MACHINE(obj);
2390 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2393 static bool virt_get_ras(Object *obj, Error **errp)
2395 VirtMachineState *vms = VIRT_MACHINE(obj);
2397 return vms->ras;
2400 static void virt_set_ras(Object *obj, bool value, Error **errp)
2402 VirtMachineState *vms = VIRT_MACHINE(obj);
2404 vms->ras = value;
2407 static bool virt_get_mte(Object *obj, Error **errp)
2409 VirtMachineState *vms = VIRT_MACHINE(obj);
2411 return vms->mte;
2414 static void virt_set_mte(Object *obj, bool value, Error **errp)
2416 VirtMachineState *vms = VIRT_MACHINE(obj);
2418 vms->mte = value;
2421 static char *virt_get_gic_version(Object *obj, Error **errp)
2423 VirtMachineState *vms = VIRT_MACHINE(obj);
2424 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
2426 return g_strdup(val);
2429 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2431 VirtMachineState *vms = VIRT_MACHINE(obj);
2433 if (!strcmp(value, "3")) {
2434 vms->gic_version = VIRT_GIC_VERSION_3;
2435 } else if (!strcmp(value, "2")) {
2436 vms->gic_version = VIRT_GIC_VERSION_2;
2437 } else if (!strcmp(value, "host")) {
2438 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2439 } else if (!strcmp(value, "max")) {
2440 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2441 } else {
2442 error_setg(errp, "Invalid gic-version value");
2443 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2447 static char *virt_get_iommu(Object *obj, Error **errp)
2449 VirtMachineState *vms = VIRT_MACHINE(obj);
2451 switch (vms->iommu) {
2452 case VIRT_IOMMU_NONE:
2453 return g_strdup("none");
2454 case VIRT_IOMMU_SMMUV3:
2455 return g_strdup("smmuv3");
2456 default:
2457 g_assert_not_reached();
2461 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2463 VirtMachineState *vms = VIRT_MACHINE(obj);
2465 if (!strcmp(value, "smmuv3")) {
2466 vms->iommu = VIRT_IOMMU_SMMUV3;
2467 } else if (!strcmp(value, "none")) {
2468 vms->iommu = VIRT_IOMMU_NONE;
2469 } else {
2470 error_setg(errp, "Invalid iommu value");
2471 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2475 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2477 VirtMachineState *vms = VIRT_MACHINE(obj);
2479 return vms->default_bus_bypass_iommu;
2482 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2483 Error **errp)
2485 VirtMachineState *vms = VIRT_MACHINE(obj);
2487 vms->default_bus_bypass_iommu = value;
2490 static CpuInstanceProperties
2491 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2493 MachineClass *mc = MACHINE_GET_CLASS(ms);
2494 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2496 assert(cpu_index < possible_cpus->len);
2497 return possible_cpus->cpus[cpu_index].props;
2500 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2502 return idx % ms->numa_state->num_nodes;
2505 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2507 int n;
2508 unsigned int max_cpus = ms->smp.max_cpus;
2509 VirtMachineState *vms = VIRT_MACHINE(ms);
2511 if (ms->possible_cpus) {
2512 assert(ms->possible_cpus->len == max_cpus);
2513 return ms->possible_cpus;
2516 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2517 sizeof(CPUArchId) * max_cpus);
2518 ms->possible_cpus->len = max_cpus;
2519 for (n = 0; n < ms->possible_cpus->len; n++) {
2520 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2521 ms->possible_cpus->cpus[n].arch_id =
2522 virt_cpu_mp_affinity(vms, n);
2523 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2524 ms->possible_cpus->cpus[n].props.thread_id = n;
2526 return ms->possible_cpus;
2529 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2530 Error **errp)
2532 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2533 const MachineState *ms = MACHINE(hotplug_dev);
2534 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2536 if (!vms->acpi_dev) {
2537 error_setg(errp,
2538 "memory hotplug is not enabled: missing acpi-ged device");
2539 return;
2542 if (vms->mte) {
2543 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2544 return;
2547 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2548 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2549 return;
2552 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2555 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2556 DeviceState *dev, Error **errp)
2558 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2559 MachineState *ms = MACHINE(hotplug_dev);
2560 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2562 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2564 if (is_nvdimm) {
2565 nvdimm_plug(ms->nvdimms_state);
2568 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2569 dev, &error_abort);
2572 static void virt_virtio_md_pci_pre_plug(HotplugHandler *hotplug_dev,
2573 DeviceState *dev, Error **errp)
2575 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2576 Error *local_err = NULL;
2578 if (!hotplug_dev2 && dev->hotplugged) {
2580 * Without a bus hotplug handler, we cannot control the plug/unplug
2581 * order. We should never reach this point when hotplugging on ARM.
2582 * However, it's nice to add a safety net, similar to what we have
2583 * on x86.
2585 error_setg(errp, "hotplug of virtio based memory devices not supported"
2586 " on this bus.");
2587 return;
2590 * First, see if we can plug this memory device at all. If that
2591 * succeeds, branch of to the actual hotplug handler.
2593 memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
2594 &local_err);
2595 if (!local_err && hotplug_dev2) {
2596 hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
2598 error_propagate(errp, local_err);
2601 static void virt_virtio_md_pci_plug(HotplugHandler *hotplug_dev,
2602 DeviceState *dev, Error **errp)
2604 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2605 Error *local_err = NULL;
2608 * Plug the memory device first and then branch off to the actual
2609 * hotplug handler. If that one fails, we can easily undo the memory
2610 * device bits.
2612 memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2613 if (hotplug_dev2) {
2614 hotplug_handler_plug(hotplug_dev2, dev, &local_err);
2615 if (local_err) {
2616 memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2619 error_propagate(errp, local_err);
2622 static void virt_virtio_md_pci_unplug_request(HotplugHandler *hotplug_dev,
2623 DeviceState *dev, Error **errp)
2625 /* We don't support hot unplug of virtio based memory devices */
2626 error_setg(errp, "virtio based memory devices cannot be unplugged.");
2630 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2631 DeviceState *dev, Error **errp)
2633 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2635 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2636 virt_memory_pre_plug(hotplug_dev, dev, errp);
2637 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2638 virt_virtio_md_pci_pre_plug(hotplug_dev, dev, errp);
2639 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2640 hwaddr db_start = 0, db_end = 0;
2641 char *resv_prop_str;
2643 if (vms->iommu != VIRT_IOMMU_NONE) {
2644 error_setg(errp, "virt machine does not support multiple IOMMUs");
2645 return;
2648 switch (vms->msi_controller) {
2649 case VIRT_MSI_CTRL_NONE:
2650 return;
2651 case VIRT_MSI_CTRL_ITS:
2652 /* GITS_TRANSLATER page */
2653 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2654 db_end = base_memmap[VIRT_GIC_ITS].base +
2655 base_memmap[VIRT_GIC_ITS].size - 1;
2656 break;
2657 case VIRT_MSI_CTRL_GICV2M:
2658 /* MSI_SETSPI_NS page */
2659 db_start = base_memmap[VIRT_GIC_V2M].base;
2660 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2661 break;
2663 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2664 db_start, db_end,
2665 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2667 object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp);
2668 object_property_set_str(OBJECT(dev), "reserved-regions[0]",
2669 resv_prop_str, errp);
2670 g_free(resv_prop_str);
2674 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2675 DeviceState *dev, Error **errp)
2677 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2679 if (vms->platform_bus_dev) {
2680 MachineClass *mc = MACHINE_GET_CLASS(vms);
2682 if (device_is_dynamic_sysbus(mc, dev)) {
2683 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2684 SYS_BUS_DEVICE(dev));
2687 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2688 virt_memory_plug(hotplug_dev, dev, errp);
2691 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2692 virt_virtio_md_pci_plug(hotplug_dev, dev, errp);
2695 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2696 PCIDevice *pdev = PCI_DEVICE(dev);
2698 vms->iommu = VIRT_IOMMU_VIRTIO;
2699 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2700 create_virtio_iommu_dt_bindings(vms);
2704 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2705 DeviceState *dev, Error **errp)
2707 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2708 Error *local_err = NULL;
2710 if (!vms->acpi_dev) {
2711 error_setg(&local_err,
2712 "memory hotplug is not enabled: missing acpi-ged device");
2713 goto out;
2716 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2717 error_setg(&local_err,
2718 "nvdimm device hot unplug is not supported yet.");
2719 goto out;
2722 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2723 &local_err);
2724 out:
2725 error_propagate(errp, local_err);
2728 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2729 DeviceState *dev, Error **errp)
2731 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2732 Error *local_err = NULL;
2734 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2735 if (local_err) {
2736 goto out;
2739 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2740 qdev_unrealize(dev);
2742 out:
2743 error_propagate(errp, local_err);
2746 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2747 DeviceState *dev, Error **errp)
2749 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2750 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2751 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2752 virt_virtio_md_pci_unplug_request(hotplug_dev, dev, errp);
2753 } else {
2754 error_setg(errp, "device unplug request for unsupported device"
2755 " type: %s", object_get_typename(OBJECT(dev)));
2759 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2760 DeviceState *dev, Error **errp)
2762 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2763 virt_dimm_unplug(hotplug_dev, dev, errp);
2764 } else {
2765 error_setg(errp, "virt: device unplug for unsupported device"
2766 " type: %s", object_get_typename(OBJECT(dev)));
2770 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2771 DeviceState *dev)
2773 MachineClass *mc = MACHINE_GET_CLASS(machine);
2775 if (device_is_dynamic_sysbus(mc, dev) ||
2776 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2777 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI) ||
2778 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2779 return HOTPLUG_HANDLER(machine);
2781 return NULL;
2785 * for arm64 kvm_type [7-0] encodes the requested number of bits
2786 * in the IPA address space
2788 static int virt_kvm_type(MachineState *ms, const char *type_str)
2790 VirtMachineState *vms = VIRT_MACHINE(ms);
2791 int max_vm_pa_size, requested_pa_size;
2792 bool fixed_ipa;
2794 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2796 /* we freeze the memory map to compute the highest gpa */
2797 virt_set_memmap(vms, max_vm_pa_size);
2799 requested_pa_size = 64 - clz64(vms->highest_gpa);
2802 * KVM requires the IPA size to be at least 32 bits.
2804 if (requested_pa_size < 32) {
2805 requested_pa_size = 32;
2808 if (requested_pa_size > max_vm_pa_size) {
2809 error_report("-m and ,maxmem option values "
2810 "require an IPA range (%d bits) larger than "
2811 "the one supported by the host (%d bits)",
2812 requested_pa_size, max_vm_pa_size);
2813 exit(1);
2816 * We return the requested PA log size, unless KVM only supports
2817 * the implicit legacy 40b IPA setting, in which case the kvm_type
2818 * must be 0.
2820 return fixed_ipa ? 0 : requested_pa_size;
2823 static void virt_machine_class_init(ObjectClass *oc, void *data)
2825 MachineClass *mc = MACHINE_CLASS(oc);
2826 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2828 mc->init = machvirt_init;
2829 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2830 * The value may be reduced later when we have more information about the
2831 * configuration of the particular instance.
2833 mc->max_cpus = 512;
2834 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2835 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2836 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2837 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2838 #ifdef CONFIG_TPM
2839 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2840 #endif
2841 mc->block_default_type = IF_VIRTIO;
2842 mc->no_cdrom = 1;
2843 mc->pci_allow_0_address = true;
2844 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2845 mc->minimum_page_bits = 12;
2846 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2847 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2848 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2849 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2850 mc->kvm_type = virt_kvm_type;
2851 assert(!mc->get_hotplug_handler);
2852 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2853 hc->pre_plug = virt_machine_device_pre_plug_cb;
2854 hc->plug = virt_machine_device_plug_cb;
2855 hc->unplug_request = virt_machine_device_unplug_request_cb;
2856 hc->unplug = virt_machine_device_unplug_cb;
2857 mc->nvdimm_supported = true;
2858 mc->smp_props.clusters_supported = true;
2859 mc->auto_enable_numa_with_memhp = true;
2860 mc->auto_enable_numa_with_memdev = true;
2861 mc->default_ram_id = "mach-virt.ram";
2863 object_class_property_add(oc, "acpi", "OnOffAuto",
2864 virt_get_acpi, virt_set_acpi,
2865 NULL, NULL);
2866 object_class_property_set_description(oc, "acpi",
2867 "Enable ACPI");
2868 object_class_property_add_bool(oc, "secure", virt_get_secure,
2869 virt_set_secure);
2870 object_class_property_set_description(oc, "secure",
2871 "Set on/off to enable/disable the ARM "
2872 "Security Extensions (TrustZone)");
2874 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2875 virt_set_virt);
2876 object_class_property_set_description(oc, "virtualization",
2877 "Set on/off to enable/disable emulating a "
2878 "guest CPU which implements the ARM "
2879 "Virtualization Extensions");
2881 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2882 virt_set_highmem);
2883 object_class_property_set_description(oc, "highmem",
2884 "Set on/off to enable/disable using "
2885 "physical address space above 32 bits");
2887 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
2888 virt_set_gic_version);
2889 object_class_property_set_description(oc, "gic-version",
2890 "Set GIC version. "
2891 "Valid values are 2, 3, host and max");
2893 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
2894 object_class_property_set_description(oc, "iommu",
2895 "Set the IOMMU type. "
2896 "Valid values are none and smmuv3");
2898 object_class_property_add_bool(oc, "default-bus-bypass-iommu",
2899 virt_get_default_bus_bypass_iommu,
2900 virt_set_default_bus_bypass_iommu);
2901 object_class_property_set_description(oc, "default-bus-bypass-iommu",
2902 "Set on/off to enable/disable "
2903 "bypass_iommu for default root bus");
2905 object_class_property_add_bool(oc, "ras", virt_get_ras,
2906 virt_set_ras);
2907 object_class_property_set_description(oc, "ras",
2908 "Set on/off to enable/disable reporting host memory errors "
2909 "to a KVM guest using ACPI and guest external abort exceptions");
2911 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
2912 object_class_property_set_description(oc, "mte",
2913 "Set on/off to enable/disable emulating a "
2914 "guest CPU which implements the ARM "
2915 "Memory Tagging Extension");
2917 object_class_property_add_bool(oc, "its", virt_get_its,
2918 virt_set_its);
2919 object_class_property_set_description(oc, "its",
2920 "Set on/off to enable/disable "
2921 "ITS instantiation");
2923 object_class_property_add_bool(oc, "dtb-kaslr-seed",
2924 virt_get_dtb_kaslr_seed,
2925 virt_set_dtb_kaslr_seed);
2926 object_class_property_set_description(oc, "dtb-kaslr-seed",
2927 "Set off to disable passing of kaslr-seed "
2928 "dtb node to guest");
2930 object_class_property_add_str(oc, "x-oem-id",
2931 virt_get_oem_id,
2932 virt_set_oem_id);
2933 object_class_property_set_description(oc, "x-oem-id",
2934 "Override the default value of field OEMID "
2935 "in ACPI table header."
2936 "The string may be up to 6 bytes in size");
2939 object_class_property_add_str(oc, "x-oem-table-id",
2940 virt_get_oem_table_id,
2941 virt_set_oem_table_id);
2942 object_class_property_set_description(oc, "x-oem-table-id",
2943 "Override the default value of field OEM Table ID "
2944 "in ACPI table header."
2945 "The string may be up to 8 bytes in size");
2949 static void virt_instance_init(Object *obj)
2951 VirtMachineState *vms = VIRT_MACHINE(obj);
2952 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2954 /* EL3 is disabled by default on virt: this makes us consistent
2955 * between KVM and TCG for this board, and it also allows us to
2956 * boot UEFI blobs which assume no TrustZone support.
2958 vms->secure = false;
2960 /* EL2 is also disabled by default, for similar reasons */
2961 vms->virt = false;
2963 /* High memory is enabled by default */
2964 vms->highmem = true;
2965 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2967 vms->highmem_ecam = !vmc->no_highmem_ecam;
2968 vms->highmem_mmio = true;
2969 vms->highmem_redists = true;
2971 if (vmc->no_its) {
2972 vms->its = false;
2973 } else {
2974 /* Default allows ITS instantiation */
2975 vms->its = true;
2977 if (vmc->no_tcg_its) {
2978 vms->tcg_its = false;
2979 } else {
2980 vms->tcg_its = true;
2984 /* Default disallows iommu instantiation */
2985 vms->iommu = VIRT_IOMMU_NONE;
2987 /* The default root bus is attached to iommu by default */
2988 vms->default_bus_bypass_iommu = false;
2990 /* Default disallows RAS instantiation */
2991 vms->ras = false;
2993 /* MTE is disabled by default. */
2994 vms->mte = false;
2996 /* Supply a kaslr-seed by default */
2997 vms->dtb_kaslr_seed = true;
2999 vms->irqmap = a15irqmap;
3001 virt_flash_create(vms);
3003 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3004 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3007 static const TypeInfo virt_machine_info = {
3008 .name = TYPE_VIRT_MACHINE,
3009 .parent = TYPE_MACHINE,
3010 .abstract = true,
3011 .instance_size = sizeof(VirtMachineState),
3012 .class_size = sizeof(VirtMachineClass),
3013 .class_init = virt_machine_class_init,
3014 .instance_init = virt_instance_init,
3015 .interfaces = (InterfaceInfo[]) {
3016 { TYPE_HOTPLUG_HANDLER },
3021 static void machvirt_machine_init(void)
3023 type_register_static(&virt_machine_info);
3025 type_init(machvirt_machine_init);
3027 static void virt_machine_7_0_options(MachineClass *mc)
3030 DEFINE_VIRT_MACHINE_AS_LATEST(7, 0)
3032 static void virt_machine_6_2_options(MachineClass *mc)
3034 virt_machine_7_0_options(mc);
3035 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3037 DEFINE_VIRT_MACHINE(6, 2)
3039 static void virt_machine_6_1_options(MachineClass *mc)
3041 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3043 virt_machine_6_2_options(mc);
3044 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3045 mc->smp_props.prefer_sockets = true;
3046 vmc->no_cpu_topology = true;
3048 /* qemu ITS was introduced with 6.2 */
3049 vmc->no_tcg_its = true;
3051 DEFINE_VIRT_MACHINE(6, 1)
3053 static void virt_machine_6_0_options(MachineClass *mc)
3055 virt_machine_6_1_options(mc);
3056 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3058 DEFINE_VIRT_MACHINE(6, 0)
3060 static void virt_machine_5_2_options(MachineClass *mc)
3062 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3064 virt_machine_6_0_options(mc);
3065 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3066 vmc->no_secure_gpio = true;
3068 DEFINE_VIRT_MACHINE(5, 2)
3070 static void virt_machine_5_1_options(MachineClass *mc)
3072 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3074 virt_machine_5_2_options(mc);
3075 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3076 vmc->no_kvm_steal_time = true;
3078 DEFINE_VIRT_MACHINE(5, 1)
3080 static void virt_machine_5_0_options(MachineClass *mc)
3082 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3084 virt_machine_5_1_options(mc);
3085 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3086 mc->numa_mem_supported = true;
3087 vmc->acpi_expose_flash = true;
3088 mc->auto_enable_numa_with_memdev = false;
3090 DEFINE_VIRT_MACHINE(5, 0)
3092 static void virt_machine_4_2_options(MachineClass *mc)
3094 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3096 virt_machine_5_0_options(mc);
3097 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3098 vmc->kvm_no_adjvtime = true;
3100 DEFINE_VIRT_MACHINE(4, 2)
3102 static void virt_machine_4_1_options(MachineClass *mc)
3104 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3106 virt_machine_4_2_options(mc);
3107 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3108 vmc->no_ged = true;
3109 mc->auto_enable_numa_with_memhp = false;
3111 DEFINE_VIRT_MACHINE(4, 1)
3113 static void virt_machine_4_0_options(MachineClass *mc)
3115 virt_machine_4_1_options(mc);
3116 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3118 DEFINE_VIRT_MACHINE(4, 0)
3120 static void virt_machine_3_1_options(MachineClass *mc)
3122 virt_machine_4_0_options(mc);
3123 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3125 DEFINE_VIRT_MACHINE(3, 1)
3127 static void virt_machine_3_0_options(MachineClass *mc)
3129 virt_machine_3_1_options(mc);
3130 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3132 DEFINE_VIRT_MACHINE(3, 0)
3134 static void virt_machine_2_12_options(MachineClass *mc)
3136 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3138 virt_machine_3_0_options(mc);
3139 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3140 vmc->no_highmem_ecam = true;
3141 mc->max_cpus = 255;
3143 DEFINE_VIRT_MACHINE(2, 12)
3145 static void virt_machine_2_11_options(MachineClass *mc)
3147 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3149 virt_machine_2_12_options(mc);
3150 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3151 vmc->smbios_old_sys_ver = true;
3153 DEFINE_VIRT_MACHINE(2, 11)
3155 static void virt_machine_2_10_options(MachineClass *mc)
3157 virt_machine_2_11_options(mc);
3158 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3159 /* before 2.11 we never faulted accesses to bad addresses */
3160 mc->ignore_memory_transaction_failures = true;
3162 DEFINE_VIRT_MACHINE(2, 10)
3164 static void virt_machine_2_9_options(MachineClass *mc)
3166 virt_machine_2_10_options(mc);
3167 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3169 DEFINE_VIRT_MACHINE(2, 9)
3171 static void virt_machine_2_8_options(MachineClass *mc)
3173 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3175 virt_machine_2_9_options(mc);
3176 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3177 /* For 2.8 and earlier we falsely claimed in the DT that
3178 * our timers were edge-triggered, not level-triggered.
3180 vmc->claim_edge_triggered_timers = true;
3182 DEFINE_VIRT_MACHINE(2, 8)
3184 static void virt_machine_2_7_options(MachineClass *mc)
3186 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3188 virt_machine_2_8_options(mc);
3189 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3190 /* ITS was introduced with 2.8 */
3191 vmc->no_its = true;
3192 /* Stick with 1K pages for migration compatibility */
3193 mc->minimum_page_bits = 0;
3195 DEFINE_VIRT_MACHINE(2, 7)
3197 static void virt_machine_2_6_options(MachineClass *mc)
3199 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3201 virt_machine_2_7_options(mc);
3202 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3203 vmc->disallow_affinity_adjustment = true;
3204 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3205 vmc->no_pmu = true;
3207 DEFINE_VIRT_MACHINE(2, 6)