4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
33 #include "qemu-char.h"
38 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
44 #ifndef TARGET_CPU_MEMORY_RW_DEBUG
45 static inline int target_memory_rw_debug(CPUState
*env
, target_ulong addr
,
46 uint8_t *buf
, int len
, int is_write
)
48 return cpu_memory_rw_debug(env
, addr
, buf
, len
, is_write
);
51 /* target_memory_rw_debug() defined in cpu.h */
63 GDB_SIGNAL_UNKNOWN
= 143
66 #ifdef CONFIG_USER_ONLY
68 /* Map target signal numbers to GDB protocol signal numbers and vice
69 * versa. For user emulation's currently supported systems, we can
70 * assume most signals are defined.
73 static int gdb_signal_table
[] = {
233 /* In system mode we only need SIGINT and SIGTRAP; other signals
234 are not yet supported. */
241 static int gdb_signal_table
[] = {
251 #ifdef CONFIG_USER_ONLY
252 static int target_signal_to_gdb (int sig
)
255 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
256 if (gdb_signal_table
[i
] == sig
)
258 return GDB_SIGNAL_UNKNOWN
;
262 static int gdb_signal_to_target (int sig
)
264 if (sig
< ARRAY_SIZE (gdb_signal_table
))
265 return gdb_signal_table
[sig
];
272 typedef struct GDBRegisterState
{
278 struct GDBRegisterState
*next
;
289 typedef struct GDBState
{
290 CPUState
*c_cpu
; /* current CPU for step/continue ops */
291 CPUState
*g_cpu
; /* current CPU for other ops */
292 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
293 enum RSState state
; /* parsing state */
294 char line_buf
[MAX_PACKET_LENGTH
];
297 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
300 #ifdef CONFIG_USER_ONLY
304 CharDriverState
*chr
;
305 CharDriverState
*mon_chr
;
309 /* By default use no IRQs and no timers while single stepping so as to
310 * make single stepping like an ICE HW step.
312 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
314 static GDBState
*gdbserver_state
;
316 /* This is an ugly hack to cope with both new and old gdb.
317 If gdb sends qXfer:features:read then assume we're talking to a newish
318 gdb that understands target descriptions. */
319 static int gdb_has_xml
;
321 #ifdef CONFIG_USER_ONLY
322 /* XXX: This is not thread safe. Do we care? */
323 static int gdbserver_fd
= -1;
325 static int get_char(GDBState
*s
)
331 ret
= qemu_recv(s
->fd
, &ch
, 1, 0);
333 if (errno
== ECONNRESET
)
335 if (errno
!= EINTR
&& errno
!= EAGAIN
)
337 } else if (ret
== 0) {
349 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
357 /* If gdb is connected when the first semihosting syscall occurs then use
358 remote gdb syscalls. Otherwise use native file IO. */
359 int use_gdb_syscalls(void)
361 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
362 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
365 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
368 /* Resume execution. */
369 static inline void gdb_continue(GDBState
*s
)
371 #ifdef CONFIG_USER_ONLY
372 s
->running_state
= 1;
378 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
380 #ifdef CONFIG_USER_ONLY
384 ret
= send(s
->fd
, buf
, len
, 0);
386 if (errno
!= EINTR
&& errno
!= EAGAIN
)
394 qemu_chr_fe_write(s
->chr
, buf
, len
);
398 static inline int fromhex(int v
)
400 if (v
>= '0' && v
<= '9')
402 else if (v
>= 'A' && v
<= 'F')
404 else if (v
>= 'a' && v
<= 'f')
410 static inline int tohex(int v
)
418 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
423 for(i
= 0; i
< len
; i
++) {
425 *q
++ = tohex(c
>> 4);
426 *q
++ = tohex(c
& 0xf);
431 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
435 for(i
= 0; i
< len
; i
++) {
436 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
441 /* return -1 if error, 0 if OK */
442 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
453 for(i
= 0; i
< len
; i
++) {
457 *(p
++) = tohex((csum
>> 4) & 0xf);
458 *(p
++) = tohex((csum
) & 0xf);
460 s
->last_packet_len
= p
- s
->last_packet
;
461 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
463 #ifdef CONFIG_USER_ONLY
476 /* return -1 if error, 0 if OK */
477 static int put_packet(GDBState
*s
, const char *buf
)
480 printf("reply='%s'\n", buf
);
483 return put_packet_binary(s
, buf
, strlen(buf
));
486 /* The GDB remote protocol transfers values in target byte order. This means
487 we can use the raw memory access routines to access the value buffer.
488 Conveniently, these also handle the case where the buffer is mis-aligned.
490 #define GET_REG8(val) do { \
491 stb_p(mem_buf, val); \
494 #define GET_REG16(val) do { \
495 stw_p(mem_buf, val); \
498 #define GET_REG32(val) do { \
499 stl_p(mem_buf, val); \
502 #define GET_REG64(val) do { \
503 stq_p(mem_buf, val); \
507 #if TARGET_LONG_BITS == 64
508 #define GET_REGL(val) GET_REG64(val)
509 #define ldtul_p(addr) ldq_p(addr)
511 #define GET_REGL(val) GET_REG32(val)
512 #define ldtul_p(addr) ldl_p(addr)
515 #if defined(TARGET_I386)
518 static const int gpr_map
[16] = {
519 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
520 8, 9, 10, 11, 12, 13, 14, 15
523 #define gpr_map gpr_map32
525 static const int gpr_map32
[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
527 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
529 #define IDX_IP_REG CPU_NB_REGS
530 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
531 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
532 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
533 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
534 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
536 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
538 if (n
< CPU_NB_REGS
) {
539 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
540 GET_REG64(env
->regs
[gpr_map
[n
]]);
541 } else if (n
< CPU_NB_REGS32
) {
542 GET_REG32(env
->regs
[gpr_map32
[n
]]);
544 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
545 #ifdef USE_X86LDOUBLE
546 /* FIXME: byteswap float values - after fixing fpregs layout. */
547 memcpy(mem_buf
, &env
->fpregs
[n
- IDX_FP_REGS
], 10);
549 memset(mem_buf
, 0, 10);
552 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
554 if (n
< CPU_NB_REGS32
||
555 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
556 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
557 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
563 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
568 case IDX_FLAGS_REG
: GET_REG32(env
->eflags
);
570 case IDX_SEG_REGS
: GET_REG32(env
->segs
[R_CS
].selector
);
571 case IDX_SEG_REGS
+ 1: GET_REG32(env
->segs
[R_SS
].selector
);
572 case IDX_SEG_REGS
+ 2: GET_REG32(env
->segs
[R_DS
].selector
);
573 case IDX_SEG_REGS
+ 3: GET_REG32(env
->segs
[R_ES
].selector
);
574 case IDX_SEG_REGS
+ 4: GET_REG32(env
->segs
[R_FS
].selector
);
575 case IDX_SEG_REGS
+ 5: GET_REG32(env
->segs
[R_GS
].selector
);
577 case IDX_FP_REGS
+ 8: GET_REG32(env
->fpuc
);
578 case IDX_FP_REGS
+ 9: GET_REG32((env
->fpus
& ~0x3800) |
579 (env
->fpstt
& 0x7) << 11);
580 case IDX_FP_REGS
+ 10: GET_REG32(0); /* ftag */
581 case IDX_FP_REGS
+ 11: GET_REG32(0); /* fiseg */
582 case IDX_FP_REGS
+ 12: GET_REG32(0); /* fioff */
583 case IDX_FP_REGS
+ 13: GET_REG32(0); /* foseg */
584 case IDX_FP_REGS
+ 14: GET_REG32(0); /* fooff */
585 case IDX_FP_REGS
+ 15: GET_REG32(0); /* fop */
587 case IDX_MXCSR_REG
: GET_REG32(env
->mxcsr
);
593 static int cpu_x86_gdb_load_seg(CPUState
*env
, int sreg
, uint8_t *mem_buf
)
595 uint16_t selector
= ldl_p(mem_buf
);
597 if (selector
!= env
->segs
[sreg
].selector
) {
598 #if defined(CONFIG_USER_ONLY)
599 cpu_x86_load_seg(env
, sreg
, selector
);
601 unsigned int limit
, flags
;
604 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
605 base
= selector
<< 4;
609 if (!cpu_x86_get_descr_debug(env
, selector
, &base
, &limit
, &flags
))
612 cpu_x86_load_seg_cache(env
, sreg
, selector
, base
, limit
, flags
);
618 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
622 if (n
< CPU_NB_REGS
) {
623 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
624 env
->regs
[gpr_map
[n
]] = ldtul_p(mem_buf
);
625 return sizeof(target_ulong
);
626 } else if (n
< CPU_NB_REGS32
) {
628 env
->regs
[n
] &= ~0xffffffffUL
;
629 env
->regs
[n
] |= (uint32_t)ldl_p(mem_buf
);
632 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
633 #ifdef USE_X86LDOUBLE
634 /* FIXME: byteswap float values - after fixing fpregs layout. */
635 memcpy(&env
->fpregs
[n
- IDX_FP_REGS
], mem_buf
, 10);
638 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
640 if (n
< CPU_NB_REGS32
||
641 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
642 env
->xmm_regs
[n
].XMM_Q(0) = ldq_p(mem_buf
);
643 env
->xmm_regs
[n
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
649 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
650 env
->eip
= ldq_p(mem_buf
);
653 env
->eip
&= ~0xffffffffUL
;
654 env
->eip
|= (uint32_t)ldl_p(mem_buf
);
658 env
->eflags
= ldl_p(mem_buf
);
661 case IDX_SEG_REGS
: return cpu_x86_gdb_load_seg(env
, R_CS
, mem_buf
);
662 case IDX_SEG_REGS
+ 1: return cpu_x86_gdb_load_seg(env
, R_SS
, mem_buf
);
663 case IDX_SEG_REGS
+ 2: return cpu_x86_gdb_load_seg(env
, R_DS
, mem_buf
);
664 case IDX_SEG_REGS
+ 3: return cpu_x86_gdb_load_seg(env
, R_ES
, mem_buf
);
665 case IDX_SEG_REGS
+ 4: return cpu_x86_gdb_load_seg(env
, R_FS
, mem_buf
);
666 case IDX_SEG_REGS
+ 5: return cpu_x86_gdb_load_seg(env
, R_GS
, mem_buf
);
668 case IDX_FP_REGS
+ 8:
669 env
->fpuc
= ldl_p(mem_buf
);
671 case IDX_FP_REGS
+ 9:
672 tmp
= ldl_p(mem_buf
);
673 env
->fpstt
= (tmp
>> 11) & 7;
674 env
->fpus
= tmp
& ~0x3800;
676 case IDX_FP_REGS
+ 10: /* ftag */ return 4;
677 case IDX_FP_REGS
+ 11: /* fiseg */ return 4;
678 case IDX_FP_REGS
+ 12: /* fioff */ return 4;
679 case IDX_FP_REGS
+ 13: /* foseg */ return 4;
680 case IDX_FP_REGS
+ 14: /* fooff */ return 4;
681 case IDX_FP_REGS
+ 15: /* fop */ return 4;
684 env
->mxcsr
= ldl_p(mem_buf
);
688 /* Unrecognised register. */
692 #elif defined (TARGET_PPC)
694 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
695 expects whatever the target description contains. Due to a
696 historical mishap the FP registers appear in between core integer
697 regs and PC, MSR, CR, and so forth. We hack round this by giving the
698 FP regs zero size when talking to a newer gdb. */
699 #define NUM_CORE_REGS 71
700 #if defined (TARGET_PPC64)
701 #define GDB_CORE_XML "power64-core.xml"
703 #define GDB_CORE_XML "power-core.xml"
706 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
710 GET_REGL(env
->gpr
[n
]);
715 stfq_p(mem_buf
, env
->fpr
[n
-32]);
719 case 64: GET_REGL(env
->nip
);
720 case 65: GET_REGL(env
->msr
);
725 for (i
= 0; i
< 8; i
++)
726 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
729 case 67: GET_REGL(env
->lr
);
730 case 68: GET_REGL(env
->ctr
);
731 case 69: GET_REGL(env
->xer
);
736 GET_REG32(env
->fpscr
);
743 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
747 env
->gpr
[n
] = ldtul_p(mem_buf
);
748 return sizeof(target_ulong
);
753 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
758 env
->nip
= ldtul_p(mem_buf
);
759 return sizeof(target_ulong
);
761 ppc_store_msr(env
, ldtul_p(mem_buf
));
762 return sizeof(target_ulong
);
765 uint32_t cr
= ldl_p(mem_buf
);
767 for (i
= 0; i
< 8; i
++)
768 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
772 env
->lr
= ldtul_p(mem_buf
);
773 return sizeof(target_ulong
);
775 env
->ctr
= ldtul_p(mem_buf
);
776 return sizeof(target_ulong
);
778 env
->xer
= ldtul_p(mem_buf
);
779 return sizeof(target_ulong
);
790 #elif defined (TARGET_SPARC)
792 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
793 #define NUM_CORE_REGS 86
795 #define NUM_CORE_REGS 72
799 #define GET_REGA(val) GET_REG32(val)
801 #define GET_REGA(val) GET_REGL(val)
804 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
808 GET_REGA(env
->gregs
[n
]);
811 /* register window */
812 GET_REGA(env
->regwptr
[n
- 8]);
814 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
818 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.lower
);
820 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.upper
);
823 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
825 case 64: GET_REGA(env
->y
);
826 case 65: GET_REGA(cpu_get_psr(env
));
827 case 66: GET_REGA(env
->wim
);
828 case 67: GET_REGA(env
->tbr
);
829 case 68: GET_REGA(env
->pc
);
830 case 69: GET_REGA(env
->npc
);
831 case 70: GET_REGA(env
->fsr
);
832 case 71: GET_REGA(0); /* csr */
833 default: GET_REGA(0);
839 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.lower
);
841 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.upper
);
845 /* f32-f62 (double width, even numbers only) */
846 GET_REG64(env
->fpr
[(n
- 32) / 2].ll
);
849 case 80: GET_REGL(env
->pc
);
850 case 81: GET_REGL(env
->npc
);
851 case 82: GET_REGL((cpu_get_ccr(env
) << 32) |
852 ((env
->asi
& 0xff) << 24) |
853 ((env
->pstate
& 0xfff) << 8) |
855 case 83: GET_REGL(env
->fsr
);
856 case 84: GET_REGL(env
->fprs
);
857 case 85: GET_REGL(env
->y
);
863 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
865 #if defined(TARGET_ABI32)
868 tmp
= ldl_p(mem_buf
);
872 tmp
= ldtul_p(mem_buf
);
879 /* register window */
880 env
->regwptr
[n
- 8] = tmp
;
882 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
887 env
->fpr
[(n
- 32) / 2].l
.lower
= tmp
;
889 env
->fpr
[(n
- 32) / 2].l
.upper
= tmp
;
892 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
894 case 64: env
->y
= tmp
; break;
895 case 65: cpu_put_psr(env
, tmp
); break;
896 case 66: env
->wim
= tmp
; break;
897 case 67: env
->tbr
= tmp
; break;
898 case 68: env
->pc
= tmp
; break;
899 case 69: env
->npc
= tmp
; break;
900 case 70: env
->fsr
= tmp
; break;
908 tmp
= ldl_p(mem_buf
);
910 env
->fpr
[(n
- 32) / 2].l
.lower
= tmp
;
912 env
->fpr
[(n
- 32) / 2].l
.upper
= tmp
;
916 /* f32-f62 (double width, even numbers only) */
917 env
->fpr
[(n
- 32) / 2].ll
= tmp
;
920 case 80: env
->pc
= tmp
; break;
921 case 81: env
->npc
= tmp
; break;
923 cpu_put_ccr(env
, tmp
>> 32);
924 env
->asi
= (tmp
>> 24) & 0xff;
925 env
->pstate
= (tmp
>> 8) & 0xfff;
926 cpu_put_cwp64(env
, tmp
& 0xff);
928 case 83: env
->fsr
= tmp
; break;
929 case 84: env
->fprs
= tmp
; break;
930 case 85: env
->y
= tmp
; break;
937 #elif defined (TARGET_ARM)
939 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
940 whatever the target description contains. Due to a historical mishap
941 the FPA registers appear in between core integer regs and the CPSR.
942 We hack round this by giving the FPA regs zero size when talking to a
944 #define NUM_CORE_REGS 26
945 #define GDB_CORE_XML "arm-core.xml"
947 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
950 /* Core integer register. */
951 GET_REG32(env
->regs
[n
]);
957 memset(mem_buf
, 0, 12);
962 /* FPA status register. */
968 GET_REG32(cpsr_read(env
));
970 /* Unknown register. */
974 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
978 tmp
= ldl_p(mem_buf
);
980 /* Mask out low bit of PC to workaround gdb bugs. This will probably
981 cause problems if we ever implement the Jazelle DBX extensions. */
986 /* Core integer register. */
990 if (n
< 24) { /* 16-23 */
991 /* FPA registers (ignored). */
998 /* FPA status register (ignored). */
1004 cpsr_write (env
, tmp
, 0xffffffff);
1007 /* Unknown register. */
1011 #elif defined (TARGET_M68K)
1013 #define NUM_CORE_REGS 18
1015 #define GDB_CORE_XML "cf-core.xml"
1017 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1021 GET_REG32(env
->dregs
[n
]);
1022 } else if (n
< 16) {
1024 GET_REG32(env
->aregs
[n
- 8]);
1027 case 16: GET_REG32(env
->sr
);
1028 case 17: GET_REG32(env
->pc
);
1031 /* FP registers not included here because they vary between
1032 ColdFire and m68k. Use XML bits for these. */
1036 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1040 tmp
= ldl_p(mem_buf
);
1044 env
->dregs
[n
] = tmp
;
1045 } else if (n
< 16) {
1047 env
->aregs
[n
- 8] = tmp
;
1050 case 16: env
->sr
= tmp
; break;
1051 case 17: env
->pc
= tmp
; break;
1057 #elif defined (TARGET_MIPS)
1059 #define NUM_CORE_REGS 73
1061 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1064 GET_REGL(env
->active_tc
.gpr
[n
]);
1066 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
1067 if (n
>= 38 && n
< 70) {
1068 if (env
->CP0_Status
& (1 << CP0St_FR
))
1069 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
1071 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
1074 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
1075 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
1079 case 32: GET_REGL((int32_t)env
->CP0_Status
);
1080 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1081 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1082 case 35: GET_REGL(env
->CP0_BadVAddr
);
1083 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1084 case 37: GET_REGL(env
->active_tc
.PC
| !!(env
->hflags
& MIPS_HFLAG_M16
));
1085 case 72: GET_REGL(0); /* fp */
1086 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1088 if (n
>= 73 && n
<= 88) {
1089 /* 16 embedded regs. */
1096 /* convert MIPS rounding mode in FCR31 to IEEE library */
1097 static unsigned int ieee_rm
[] =
1099 float_round_nearest_even
,
1100 float_round_to_zero
,
1104 #define RESTORE_ROUNDING_MODE \
1105 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1107 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1111 tmp
= ldtul_p(mem_buf
);
1114 env
->active_tc
.gpr
[n
] = tmp
;
1115 return sizeof(target_ulong
);
1117 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1118 && n
>= 38 && n
< 73) {
1120 if (env
->CP0_Status
& (1 << CP0St_FR
))
1121 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1123 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1127 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1128 /* set rounding mode */
1129 RESTORE_ROUNDING_MODE
;
1131 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1133 return sizeof(target_ulong
);
1136 case 32: env
->CP0_Status
= tmp
; break;
1137 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1138 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1139 case 35: env
->CP0_BadVAddr
= tmp
; break;
1140 case 36: env
->CP0_Cause
= tmp
; break;
1142 env
->active_tc
.PC
= tmp
& ~(target_ulong
)1;
1144 env
->hflags
|= MIPS_HFLAG_M16
;
1146 env
->hflags
&= ~(MIPS_HFLAG_M16
);
1149 case 72: /* fp, ignored */ break;
1153 /* Other registers are readonly. Ignore writes. */
1157 return sizeof(target_ulong
);
1159 #elif defined (TARGET_SH4)
1161 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1162 /* FIXME: We should use XML for this. */
1164 #define NUM_CORE_REGS 59
1166 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1169 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1170 GET_REGL(env
->gregs
[n
+ 16]);
1172 GET_REGL(env
->gregs
[n
]);
1174 } else if (n
< 16) {
1175 GET_REGL(env
->gregs
[n
]);
1176 } else if (n
>= 25 && n
< 41) {
1177 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
1178 } else if (n
>= 43 && n
< 51) {
1179 GET_REGL(env
->gregs
[n
- 43]);
1180 } else if (n
>= 51 && n
< 59) {
1181 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1184 case 16: GET_REGL(env
->pc
);
1185 case 17: GET_REGL(env
->pr
);
1186 case 18: GET_REGL(env
->gbr
);
1187 case 19: GET_REGL(env
->vbr
);
1188 case 20: GET_REGL(env
->mach
);
1189 case 21: GET_REGL(env
->macl
);
1190 case 22: GET_REGL(env
->sr
);
1191 case 23: GET_REGL(env
->fpul
);
1192 case 24: GET_REGL(env
->fpscr
);
1193 case 41: GET_REGL(env
->ssr
);
1194 case 42: GET_REGL(env
->spc
);
1200 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1204 tmp
= ldl_p(mem_buf
);
1207 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1208 env
->gregs
[n
+ 16] = tmp
;
1210 env
->gregs
[n
] = tmp
;
1213 } else if (n
< 16) {
1214 env
->gregs
[n
] = tmp
;
1216 } else if (n
>= 25 && n
< 41) {
1217 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
1219 } else if (n
>= 43 && n
< 51) {
1220 env
->gregs
[n
- 43] = tmp
;
1222 } else if (n
>= 51 && n
< 59) {
1223 env
->gregs
[n
- (51 - 16)] = tmp
;
1227 case 16: env
->pc
= tmp
; break;
1228 case 17: env
->pr
= tmp
; break;
1229 case 18: env
->gbr
= tmp
; break;
1230 case 19: env
->vbr
= tmp
; break;
1231 case 20: env
->mach
= tmp
; break;
1232 case 21: env
->macl
= tmp
; break;
1233 case 22: env
->sr
= tmp
; break;
1234 case 23: env
->fpul
= tmp
; break;
1235 case 24: env
->fpscr
= tmp
; break;
1236 case 41: env
->ssr
= tmp
; break;
1237 case 42: env
->spc
= tmp
; break;
1243 #elif defined (TARGET_MICROBLAZE)
1245 #define NUM_CORE_REGS (32 + 5)
1247 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1250 GET_REG32(env
->regs
[n
]);
1252 GET_REG32(env
->sregs
[n
- 32]);
1257 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1261 if (n
> NUM_CORE_REGS
)
1264 tmp
= ldl_p(mem_buf
);
1269 env
->sregs
[n
- 32] = tmp
;
1273 #elif defined (TARGET_CRIS)
1275 #define NUM_CORE_REGS 49
1278 read_register_crisv10(CPUState
*env
, uint8_t *mem_buf
, int n
)
1281 GET_REG32(env
->regs
[n
]);
1291 GET_REG8(env
->pregs
[n
- 16]);
1294 GET_REG8(env
->pregs
[n
- 16]);
1298 GET_REG16(env
->pregs
[n
- 16]);
1302 GET_REG32(env
->pregs
[n
- 16]);
1310 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1314 if (env
->pregs
[PR_VR
] < 32)
1315 return read_register_crisv10(env
, mem_buf
, n
);
1317 srs
= env
->pregs
[PR_SRS
];
1319 GET_REG32(env
->regs
[n
]);
1322 if (n
>= 21 && n
< 32) {
1323 GET_REG32(env
->pregs
[n
- 16]);
1325 if (n
>= 33 && n
< 49) {
1326 GET_REG32(env
->sregs
[srs
][n
- 33]);
1329 case 16: GET_REG8(env
->pregs
[0]);
1330 case 17: GET_REG8(env
->pregs
[1]);
1331 case 18: GET_REG32(env
->pregs
[2]);
1332 case 19: GET_REG8(srs
);
1333 case 20: GET_REG16(env
->pregs
[4]);
1334 case 32: GET_REG32(env
->pc
);
1340 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1347 tmp
= ldl_p(mem_buf
);
1353 if (n
>= 21 && n
< 32) {
1354 env
->pregs
[n
- 16] = tmp
;
1357 /* FIXME: Should support function regs be writable? */
1361 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1364 case 32: env
->pc
= tmp
; break;
1369 #elif defined (TARGET_ALPHA)
1371 #define NUM_CORE_REGS 67
1373 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1383 d
.d
= env
->fir
[n
- 32];
1387 val
= cpu_alpha_load_fpcr(env
);
1397 /* 31 really is the zero register; 65 is unassigned in the
1398 gdb protocol, but is still required to occupy 8 bytes. */
1407 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1409 target_ulong tmp
= ldtul_p(mem_buf
);
1418 env
->fir
[n
- 32] = d
.d
;
1421 cpu_alpha_store_fpcr(env
, tmp
);
1431 /* 31 really is the zero register; 65 is unassigned in the
1432 gdb protocol, but is still required to occupy 8 bytes. */
1439 #elif defined (TARGET_S390X)
1441 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1443 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1446 case S390_PSWM_REGNUM
: GET_REGL(env
->psw
.mask
); break;
1447 case S390_PSWA_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1448 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1449 GET_REGL(env
->regs
[n
-S390_R0_REGNUM
]); break;
1450 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1451 GET_REG32(env
->aregs
[n
-S390_A0_REGNUM
]); break;
1452 case S390_FPC_REGNUM
: GET_REG32(env
->fpc
); break;
1453 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1456 case S390_PC_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1457 case S390_CC_REGNUM
:
1458 env
->cc_op
= calc_cc(env
, env
->cc_op
, env
->cc_src
, env
->cc_dst
,
1460 GET_REG32(env
->cc_op
);
1467 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1472 tmpl
= ldtul_p(mem_buf
);
1473 tmp32
= ldl_p(mem_buf
);
1476 case S390_PSWM_REGNUM
: env
->psw
.mask
= tmpl
; break;
1477 case S390_PSWA_REGNUM
: env
->psw
.addr
= tmpl
; break;
1478 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1479 env
->regs
[n
-S390_R0_REGNUM
] = tmpl
; break;
1480 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1481 env
->aregs
[n
-S390_A0_REGNUM
] = tmp32
; r
=4; break;
1482 case S390_FPC_REGNUM
: env
->fpc
= tmp32
; r
=4; break;
1483 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1486 case S390_PC_REGNUM
: env
->psw
.addr
= tmpl
; break;
1487 case S390_CC_REGNUM
: env
->cc_op
= tmp32
; r
=4; break;
1492 #elif defined (TARGET_LM32)
1494 #include "hw/lm32_pic.h"
1495 #define NUM_CORE_REGS (32 + 7)
1497 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1500 GET_REG32(env
->regs
[n
]);
1506 /* FIXME: put in right exception ID */
1511 GET_REG32(env
->eba
);
1514 GET_REG32(env
->deba
);
1520 GET_REG32(lm32_pic_get_im(env
->pic_state
));
1523 GET_REG32(lm32_pic_get_ip(env
->pic_state
));
1530 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1534 if (n
> NUM_CORE_REGS
) {
1538 tmp
= ldl_p(mem_buf
);
1557 lm32_pic_set_im(env
->pic_state
, tmp
);
1560 lm32_pic_set_ip(env
->pic_state
, tmp
);
1566 #elif defined(TARGET_XTENSA)
1568 /* Use num_core_regs to see only non-privileged registers in an unmodified gdb.
1569 * Use num_regs to see all registers. gdb modification is required for that:
1570 * reset bit 0 in the 'flags' field of the registers definitions in the
1571 * gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
1573 #define NUM_CORE_REGS (env->config->gdb_regmap.num_regs)
1574 #define num_g_regs NUM_CORE_REGS
1576 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1578 const XtensaGdbReg
*reg
= env
->config
->gdb_regmap
.reg
+ n
;
1580 if (n
< 0 || n
>= env
->config
->gdb_regmap
.num_regs
) {
1584 switch (reg
->type
) {
1590 xtensa_sync_phys_from_window(env
);
1591 GET_REG32(env
->phys_regs
[(reg
->targno
& 0xff) % env
->config
->nareg
]);
1595 GET_REG32(env
->sregs
[reg
->targno
& 0xff]);
1599 GET_REG32(env
->uregs
[reg
->targno
& 0xff]);
1603 GET_REG32(env
->regs
[reg
->targno
& 0x0f]);
1607 qemu_log("%s from reg %d of unsupported type %d\n",
1608 __func__
, n
, reg
->type
);
1613 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1616 const XtensaGdbReg
*reg
= env
->config
->gdb_regmap
.reg
+ n
;
1618 if (n
< 0 || n
>= env
->config
->gdb_regmap
.num_regs
) {
1622 tmp
= ldl_p(mem_buf
);
1624 switch (reg
->type
) {
1630 env
->phys_regs
[(reg
->targno
& 0xff) % env
->config
->nareg
] = tmp
;
1631 xtensa_sync_window_from_phys(env
);
1635 env
->sregs
[reg
->targno
& 0xff] = tmp
;
1639 env
->uregs
[reg
->targno
& 0xff] = tmp
;
1643 env
->regs
[reg
->targno
& 0x0f] = tmp
;
1647 qemu_log("%s to reg %d of unsupported type %d\n",
1648 __func__
, n
, reg
->type
);
1656 #define NUM_CORE_REGS 0
1658 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1663 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1670 #if !defined(TARGET_XTENSA)
1671 static int num_g_regs
= NUM_CORE_REGS
;
1675 /* Encode data using the encoding for 'x' packets. */
1676 static int memtox(char *buf
, const char *mem
, int len
)
1684 case '#': case '$': case '*': case '}':
1696 static const char *get_feature_xml(const char *p
, const char **newp
)
1701 static char target_xml
[1024];
1704 while (p
[len
] && p
[len
] != ':')
1709 if (strncmp(p
, "target.xml", len
) == 0) {
1710 /* Generate the XML description for this CPU. */
1711 if (!target_xml
[0]) {
1712 GDBRegisterState
*r
;
1714 snprintf(target_xml
, sizeof(target_xml
),
1715 "<?xml version=\"1.0\"?>"
1716 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1718 "<xi:include href=\"%s\"/>",
1721 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1722 pstrcat(target_xml
, sizeof(target_xml
), "<xi:include href=\"");
1723 pstrcat(target_xml
, sizeof(target_xml
), r
->xml
);
1724 pstrcat(target_xml
, sizeof(target_xml
), "\"/>");
1726 pstrcat(target_xml
, sizeof(target_xml
), "</target>");
1730 for (i
= 0; ; i
++) {
1731 name
= xml_builtin
[i
][0];
1732 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1735 return name
? xml_builtin
[i
][1] : NULL
;
1739 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1741 GDBRegisterState
*r
;
1743 if (reg
< NUM_CORE_REGS
)
1744 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1746 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1747 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1748 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1754 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1756 GDBRegisterState
*r
;
1758 if (reg
< NUM_CORE_REGS
)
1759 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1761 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1762 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1763 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1769 #if !defined(TARGET_XTENSA)
1770 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1771 specifies the first register number and these registers are included in
1772 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1773 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1776 void gdb_register_coprocessor(CPUState
* env
,
1777 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1778 int num_regs
, const char *xml
, int g_pos
)
1780 GDBRegisterState
*s
;
1781 GDBRegisterState
**p
;
1782 static int last_reg
= NUM_CORE_REGS
;
1784 s
= (GDBRegisterState
*)g_malloc0(sizeof(GDBRegisterState
));
1785 s
->base_reg
= last_reg
;
1786 s
->num_regs
= num_regs
;
1787 s
->get_reg
= get_reg
;
1788 s
->set_reg
= set_reg
;
1792 /* Check for duplicates. */
1793 if (strcmp((*p
)->xml
, xml
) == 0)
1797 /* Add to end of list. */
1798 last_reg
+= num_regs
;
1801 if (g_pos
!= s
->base_reg
) {
1802 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1803 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1805 num_g_regs
= last_reg
;
1811 #ifndef CONFIG_USER_ONLY
1812 static const int xlat_gdb_type
[] = {
1813 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1814 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1815 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1819 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1825 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1828 case GDB_BREAKPOINT_SW
:
1829 case GDB_BREAKPOINT_HW
:
1830 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1831 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1836 #ifndef CONFIG_USER_ONLY
1837 case GDB_WATCHPOINT_WRITE
:
1838 case GDB_WATCHPOINT_READ
:
1839 case GDB_WATCHPOINT_ACCESS
:
1840 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1841 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1853 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1859 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1862 case GDB_BREAKPOINT_SW
:
1863 case GDB_BREAKPOINT_HW
:
1864 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1865 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1870 #ifndef CONFIG_USER_ONLY
1871 case GDB_WATCHPOINT_WRITE
:
1872 case GDB_WATCHPOINT_READ
:
1873 case GDB_WATCHPOINT_ACCESS
:
1874 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1875 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1886 static void gdb_breakpoint_remove_all(void)
1890 if (kvm_enabled()) {
1891 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1895 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1896 cpu_breakpoint_remove_all(env
, BP_GDB
);
1897 #ifndef CONFIG_USER_ONLY
1898 cpu_watchpoint_remove_all(env
, BP_GDB
);
1903 static void gdb_set_cpu_pc(GDBState
*s
, target_ulong pc
)
1905 #if defined(TARGET_I386)
1906 cpu_synchronize_state(s
->c_cpu
);
1908 #elif defined (TARGET_PPC)
1910 #elif defined (TARGET_SPARC)
1912 s
->c_cpu
->npc
= pc
+ 4;
1913 #elif defined (TARGET_ARM)
1914 s
->c_cpu
->regs
[15] = pc
;
1915 #elif defined (TARGET_SH4)
1917 #elif defined (TARGET_MIPS)
1918 s
->c_cpu
->active_tc
.PC
= pc
& ~(target_ulong
)1;
1920 s
->c_cpu
->hflags
|= MIPS_HFLAG_M16
;
1922 s
->c_cpu
->hflags
&= ~(MIPS_HFLAG_M16
);
1924 #elif defined (TARGET_MICROBLAZE)
1925 s
->c_cpu
->sregs
[SR_PC
] = pc
;
1926 #elif defined (TARGET_CRIS)
1928 #elif defined (TARGET_ALPHA)
1930 #elif defined (TARGET_S390X)
1931 cpu_synchronize_state(s
->c_cpu
);
1932 s
->c_cpu
->psw
.addr
= pc
;
1933 #elif defined (TARGET_LM32)
1935 #elif defined(TARGET_XTENSA)
1940 static inline int gdb_id(CPUState
*env
)
1942 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1943 return env
->host_tid
;
1945 return env
->cpu_index
+ 1;
1949 static CPUState
*find_cpu(uint32_t thread_id
)
1953 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1954 if (gdb_id(env
) == thread_id
) {
1962 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1967 int ch
, reg_size
, type
, res
;
1968 char buf
[MAX_PACKET_LENGTH
];
1969 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1971 target_ulong addr
, len
;
1974 printf("command='%s'\n", line_buf
);
1980 /* TODO: Make this return the correct value for user-mode. */
1981 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
1984 /* Remove all the breakpoints when this query is issued,
1985 * because gdb is doing and initial connect and the state
1986 * should be cleaned up.
1988 gdb_breakpoint_remove_all();
1992 addr
= strtoull(p
, (char **)&p
, 16);
1993 gdb_set_cpu_pc(s
, addr
);
1999 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
2000 if (s
->signal
== -1)
2005 if (strncmp(p
, "Cont", 4) == 0) {
2006 int res_signal
, res_thread
;
2010 put_packet(s
, "vCont;c;C;s;S");
2025 if (action
== 'C' || action
== 'S') {
2026 signal
= strtoul(p
, (char **)&p
, 16);
2027 } else if (action
!= 'c' && action
!= 's') {
2033 thread
= strtoull(p
+1, (char **)&p
, 16);
2035 action
= tolower(action
);
2036 if (res
== 0 || (res
== 'c' && action
== 's')) {
2038 res_signal
= signal
;
2039 res_thread
= thread
;
2043 if (res_thread
!= -1 && res_thread
!= 0) {
2044 env
= find_cpu(res_thread
);
2046 put_packet(s
, "E22");
2052 cpu_single_step(s
->c_cpu
, sstep_flags
);
2054 s
->signal
= res_signal
;
2060 goto unknown_command
;
2063 /* Kill the target */
2064 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
2068 gdb_breakpoint_remove_all();
2069 gdb_syscall_mode
= GDB_SYS_DISABLED
;
2071 put_packet(s
, "OK");
2075 addr
= strtoull(p
, (char **)&p
, 16);
2076 gdb_set_cpu_pc(s
, addr
);
2078 cpu_single_step(s
->c_cpu
, sstep_flags
);
2086 ret
= strtoull(p
, (char **)&p
, 16);
2089 err
= strtoull(p
, (char **)&p
, 16);
2096 if (gdb_current_syscall_cb
)
2097 gdb_current_syscall_cb(s
->c_cpu
, ret
, err
);
2099 put_packet(s
, "T02");
2106 cpu_synchronize_state(s
->g_cpu
);
2109 for (addr
= 0; addr
< num_g_regs
; addr
++) {
2110 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
2113 memtohex(buf
, mem_buf
, len
);
2117 cpu_synchronize_state(s
->g_cpu
);
2119 registers
= mem_buf
;
2120 len
= strlen(p
) / 2;
2121 hextomem((uint8_t *)registers
, p
, len
);
2122 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
2123 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
2125 registers
+= reg_size
;
2127 put_packet(s
, "OK");
2130 addr
= strtoull(p
, (char **)&p
, 16);
2133 len
= strtoull(p
, NULL
, 16);
2134 if (target_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
2135 put_packet (s
, "E14");
2137 memtohex(buf
, mem_buf
, len
);
2142 addr
= strtoull(p
, (char **)&p
, 16);
2145 len
= strtoull(p
, (char **)&p
, 16);
2148 hextomem(mem_buf
, p
, len
);
2149 if (target_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0) {
2150 put_packet(s
, "E14");
2152 put_packet(s
, "OK");
2156 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
2157 This works, but can be very slow. Anything new enough to
2158 understand XML also knows how to use this properly. */
2160 goto unknown_command
;
2161 addr
= strtoull(p
, (char **)&p
, 16);
2162 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
2164 memtohex(buf
, mem_buf
, reg_size
);
2167 put_packet(s
, "E14");
2172 goto unknown_command
;
2173 addr
= strtoull(p
, (char **)&p
, 16);
2176 reg_size
= strlen(p
) / 2;
2177 hextomem(mem_buf
, p
, reg_size
);
2178 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
2179 put_packet(s
, "OK");
2183 type
= strtoul(p
, (char **)&p
, 16);
2186 addr
= strtoull(p
, (char **)&p
, 16);
2189 len
= strtoull(p
, (char **)&p
, 16);
2191 res
= gdb_breakpoint_insert(addr
, len
, type
);
2193 res
= gdb_breakpoint_remove(addr
, len
, type
);
2195 put_packet(s
, "OK");
2196 else if (res
== -ENOSYS
)
2199 put_packet(s
, "E22");
2203 thread
= strtoull(p
, (char **)&p
, 16);
2204 if (thread
== -1 || thread
== 0) {
2205 put_packet(s
, "OK");
2208 env
= find_cpu(thread
);
2210 put_packet(s
, "E22");
2216 put_packet(s
, "OK");
2220 put_packet(s
, "OK");
2223 put_packet(s
, "E22");
2228 thread
= strtoull(p
, (char **)&p
, 16);
2229 env
= find_cpu(thread
);
2232 put_packet(s
, "OK");
2234 put_packet(s
, "E22");
2239 /* parse any 'q' packets here */
2240 if (!strcmp(p
,"qemu.sstepbits")) {
2241 /* Query Breakpoint bit definitions */
2242 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2248 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
2249 /* Display or change the sstep_flags */
2252 /* Display current setting */
2253 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
2258 type
= strtoul(p
, (char **)&p
, 16);
2260 put_packet(s
, "OK");
2262 } else if (strcmp(p
,"C") == 0) {
2263 /* "Current thread" remains vague in the spec, so always return
2264 * the first CPU (gdb returns the first thread). */
2265 put_packet(s
, "QC1");
2267 } else if (strcmp(p
,"fThreadInfo") == 0) {
2268 s
->query_cpu
= first_cpu
;
2269 goto report_cpuinfo
;
2270 } else if (strcmp(p
,"sThreadInfo") == 0) {
2273 snprintf(buf
, sizeof(buf
), "m%x", gdb_id(s
->query_cpu
));
2275 s
->query_cpu
= s
->query_cpu
->next_cpu
;
2279 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
2280 thread
= strtoull(p
+16, (char **)&p
, 16);
2281 env
= find_cpu(thread
);
2283 cpu_synchronize_state(env
);
2284 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
2285 "CPU#%d [%s]", env
->cpu_index
,
2286 env
->halted
? "halted " : "running");
2287 memtohex(buf
, mem_buf
, len
);
2292 #ifdef CONFIG_USER_ONLY
2293 else if (strncmp(p
, "Offsets", 7) == 0) {
2294 TaskState
*ts
= s
->c_cpu
->opaque
;
2296 snprintf(buf
, sizeof(buf
),
2297 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
2298 ";Bss=" TARGET_ABI_FMT_lx
,
2299 ts
->info
->code_offset
,
2300 ts
->info
->data_offset
,
2301 ts
->info
->data_offset
);
2305 #else /* !CONFIG_USER_ONLY */
2306 else if (strncmp(p
, "Rcmd,", 5) == 0) {
2307 int len
= strlen(p
+ 5);
2309 if ((len
% 2) != 0) {
2310 put_packet(s
, "E01");
2313 hextomem(mem_buf
, p
+ 5, len
);
2316 qemu_chr_be_write(s
->mon_chr
, mem_buf
, len
);
2317 put_packet(s
, "OK");
2320 #endif /* !CONFIG_USER_ONLY */
2321 if (strncmp(p
, "Supported", 9) == 0) {
2322 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
2324 pstrcat(buf
, sizeof(buf
), ";qXfer:features:read+");
2330 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
2332 target_ulong total_len
;
2336 xml
= get_feature_xml(p
, &p
);
2338 snprintf(buf
, sizeof(buf
), "E00");
2345 addr
= strtoul(p
, (char **)&p
, 16);
2348 len
= strtoul(p
, (char **)&p
, 16);
2350 total_len
= strlen(xml
);
2351 if (addr
> total_len
) {
2352 snprintf(buf
, sizeof(buf
), "E00");
2356 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
2357 len
= (MAX_PACKET_LENGTH
- 5) / 2;
2358 if (len
< total_len
- addr
) {
2360 len
= memtox(buf
+ 1, xml
+ addr
, len
);
2363 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
2365 put_packet_binary(s
, buf
, len
+ 1);
2369 /* Unrecognised 'q' command. */
2370 goto unknown_command
;
2374 /* put empty packet */
2382 void gdb_set_stop_cpu(CPUState
*env
)
2384 gdbserver_state
->c_cpu
= env
;
2385 gdbserver_state
->g_cpu
= env
;
2388 #ifndef CONFIG_USER_ONLY
2389 static void gdb_vm_state_change(void *opaque
, int running
, RunState state
)
2391 GDBState
*s
= gdbserver_state
;
2392 CPUState
*env
= s
->c_cpu
;
2397 if (running
|| s
->state
== RS_INACTIVE
|| s
->state
== RS_SYSCALL
) {
2401 case RUN_STATE_DEBUG
:
2402 if (env
->watchpoint_hit
) {
2403 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2414 snprintf(buf
, sizeof(buf
),
2415 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
2416 GDB_SIGNAL_TRAP
, gdb_id(env
), type
,
2417 env
->watchpoint_hit
->vaddr
);
2418 env
->watchpoint_hit
= NULL
;
2422 ret
= GDB_SIGNAL_TRAP
;
2424 case RUN_STATE_PAUSED
:
2425 ret
= GDB_SIGNAL_INT
;
2427 case RUN_STATE_SHUTDOWN
:
2428 ret
= GDB_SIGNAL_QUIT
;
2430 case RUN_STATE_IO_ERROR
:
2431 ret
= GDB_SIGNAL_IO
;
2433 case RUN_STATE_WATCHDOG
:
2434 ret
= GDB_SIGNAL_ALRM
;
2436 case RUN_STATE_INTERNAL_ERROR
:
2437 ret
= GDB_SIGNAL_ABRT
;
2439 case RUN_STATE_SAVE_VM
:
2440 case RUN_STATE_RESTORE_VM
:
2442 case RUN_STATE_FINISH_MIGRATE
:
2443 ret
= GDB_SIGNAL_XCPU
;
2446 ret
= GDB_SIGNAL_UNKNOWN
;
2449 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, gdb_id(env
));
2454 /* disable single step if it was enabled */
2455 cpu_single_step(env
, 0);
2459 /* Send a gdb syscall request.
2460 This accepts limited printf-style format specifiers, specifically:
2461 %x - target_ulong argument printed in hex.
2462 %lx - 64-bit argument printed in hex.
2463 %s - string pointer (target_ulong) and length (int) pair. */
2464 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2473 s
= gdbserver_state
;
2476 gdb_current_syscall_cb
= cb
;
2477 s
->state
= RS_SYSCALL
;
2478 #ifndef CONFIG_USER_ONLY
2479 vm_stop(RUN_STATE_DEBUG
);
2490 addr
= va_arg(va
, target_ulong
);
2491 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
2494 if (*(fmt
++) != 'x')
2496 i64
= va_arg(va
, uint64_t);
2497 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
2500 addr
= va_arg(va
, target_ulong
);
2501 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
2502 addr
, va_arg(va
, int));
2506 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2517 #ifdef CONFIG_USER_ONLY
2518 gdb_handlesig(s
->c_cpu
, 0);
2524 static void gdb_read_byte(GDBState
*s
, int ch
)
2529 #ifndef CONFIG_USER_ONLY
2530 if (s
->last_packet_len
) {
2531 /* Waiting for a response to the last packet. If we see the start
2532 of a new command then abandon the previous response. */
2535 printf("Got NACK, retransmitting\n");
2537 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2541 printf("Got ACK\n");
2543 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2545 if (ch
== '+' || ch
== '$')
2546 s
->last_packet_len
= 0;
2550 if (runstate_is_running()) {
2551 /* when the CPU is running, we cannot do anything except stop
2552 it when receiving a char */
2553 vm_stop(RUN_STATE_PAUSED
);
2560 s
->line_buf_index
= 0;
2561 s
->state
= RS_GETLINE
;
2566 s
->state
= RS_CHKSUM1
;
2567 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2570 s
->line_buf
[s
->line_buf_index
++] = ch
;
2574 s
->line_buf
[s
->line_buf_index
] = '\0';
2575 s
->line_csum
= fromhex(ch
) << 4;
2576 s
->state
= RS_CHKSUM2
;
2579 s
->line_csum
|= fromhex(ch
);
2581 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2582 csum
+= s
->line_buf
[i
];
2584 if (s
->line_csum
!= (csum
& 0xff)) {
2586 put_buffer(s
, &reply
, 1);
2590 put_buffer(s
, &reply
, 1);
2591 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2600 /* Tell the remote gdb that the process has exited. */
2601 void gdb_exit(CPUState
*env
, int code
)
2606 s
= gdbserver_state
;
2610 #ifdef CONFIG_USER_ONLY
2611 if (gdbserver_fd
< 0 || s
->fd
< 0) {
2616 snprintf(buf
, sizeof(buf
), "W%02x", (uint8_t)code
);
2619 #ifndef CONFIG_USER_ONLY
2621 qemu_chr_delete(s
->chr
);
2626 #ifdef CONFIG_USER_ONLY
2632 s
= gdbserver_state
;
2634 if (gdbserver_fd
< 0 || s
->fd
< 0)
2641 gdb_handlesig (CPUState
*env
, int sig
)
2647 s
= gdbserver_state
;
2648 if (gdbserver_fd
< 0 || s
->fd
< 0)
2651 /* disable single step if it was enabled */
2652 cpu_single_step(env
, 0);
2657 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2660 /* put_packet() might have detected that the peer terminated the
2667 s
->running_state
= 0;
2668 while (s
->running_state
== 0) {
2669 n
= read (s
->fd
, buf
, 256);
2674 for (i
= 0; i
< n
; i
++)
2675 gdb_read_byte (s
, buf
[i
]);
2677 else if (n
== 0 || errno
!= EAGAIN
)
2679 /* XXX: Connection closed. Should probably wait for annother
2680 connection before continuing. */
2689 /* Tell the remote gdb that the process has exited due to SIG. */
2690 void gdb_signalled(CPUState
*env
, int sig
)
2695 s
= gdbserver_state
;
2696 if (gdbserver_fd
< 0 || s
->fd
< 0)
2699 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2703 static void gdb_accept(void)
2706 struct sockaddr_in sockaddr
;
2711 len
= sizeof(sockaddr
);
2712 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2713 if (fd
< 0 && errno
!= EINTR
) {
2716 } else if (fd
>= 0) {
2718 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2724 /* set short latency */
2726 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2728 s
= g_malloc0(sizeof(GDBState
));
2729 s
->c_cpu
= first_cpu
;
2730 s
->g_cpu
= first_cpu
;
2734 gdbserver_state
= s
;
2736 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2739 static int gdbserver_open(int port
)
2741 struct sockaddr_in sockaddr
;
2744 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2750 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2753 /* allow fast reuse */
2755 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2757 sockaddr
.sin_family
= AF_INET
;
2758 sockaddr
.sin_port
= htons(port
);
2759 sockaddr
.sin_addr
.s_addr
= 0;
2760 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2765 ret
= listen(fd
, 0);
2773 int gdbserver_start(int port
)
2775 gdbserver_fd
= gdbserver_open(port
);
2776 if (gdbserver_fd
< 0)
2778 /* accept connections */
2783 /* Disable gdb stub for child processes. */
2784 void gdbserver_fork(CPUState
*env
)
2786 GDBState
*s
= gdbserver_state
;
2787 if (gdbserver_fd
< 0 || s
->fd
< 0)
2791 cpu_breakpoint_remove_all(env
, BP_GDB
);
2792 cpu_watchpoint_remove_all(env
, BP_GDB
);
2795 static int gdb_chr_can_receive(void *opaque
)
2797 /* We can handle an arbitrarily large amount of data.
2798 Pick the maximum packet size, which is as good as anything. */
2799 return MAX_PACKET_LENGTH
;
2802 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2806 for (i
= 0; i
< size
; i
++) {
2807 gdb_read_byte(gdbserver_state
, buf
[i
]);
2811 static void gdb_chr_event(void *opaque
, int event
)
2814 case CHR_EVENT_OPENED
:
2815 vm_stop(RUN_STATE_PAUSED
);
2823 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2825 char buf
[MAX_PACKET_LENGTH
];
2828 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2829 len
= (MAX_PACKET_LENGTH
/2) - 1;
2830 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2834 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2836 const char *p
= (const char *)buf
;
2839 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2841 if (len
<= max_sz
) {
2842 gdb_monitor_output(gdbserver_state
, p
, len
);
2845 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2853 static void gdb_sigterm_handler(int signal
)
2855 if (runstate_is_running()) {
2856 vm_stop(RUN_STATE_PAUSED
);
2861 int gdbserver_start(const char *device
)
2864 char gdbstub_device_name
[128];
2865 CharDriverState
*chr
= NULL
;
2866 CharDriverState
*mon_chr
;
2870 if (strcmp(device
, "none") != 0) {
2871 if (strstart(device
, "tcp:", NULL
)) {
2872 /* enforce required TCP attributes */
2873 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
2874 "%s,nowait,nodelay,server", device
);
2875 device
= gdbstub_device_name
;
2878 else if (strcmp(device
, "stdio") == 0) {
2879 struct sigaction act
;
2881 memset(&act
, 0, sizeof(act
));
2882 act
.sa_handler
= gdb_sigterm_handler
;
2883 sigaction(SIGINT
, &act
, NULL
);
2886 chr
= qemu_chr_new("gdb", device
, NULL
);
2890 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2891 gdb_chr_event
, NULL
);
2894 s
= gdbserver_state
;
2896 s
= g_malloc0(sizeof(GDBState
));
2897 gdbserver_state
= s
;
2899 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
2901 /* Initialize a monitor terminal for gdb */
2902 mon_chr
= g_malloc0(sizeof(*mon_chr
));
2903 mon_chr
->chr_write
= gdb_monitor_write
;
2904 monitor_init(mon_chr
, 0);
2907 qemu_chr_delete(s
->chr
);
2908 mon_chr
= s
->mon_chr
;
2909 memset(s
, 0, sizeof(GDBState
));
2911 s
->c_cpu
= first_cpu
;
2912 s
->g_cpu
= first_cpu
;
2914 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
2915 s
->mon_chr
= mon_chr
;