Merge remote-tracking branch 'remotes/jasowang/tags/net-pull-request' into staging
[qemu.git] / target-arm / psci.c
blob20e4cb6f9c11a6ebfe79f78fdb222d17c24e0065
1 /*
2 * Copyright (C) 2014 - Linaro
3 * Author: Rob Herring <rob.herring@linaro.org>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 #include <cpu.h>
19 #include <cpu-qom.h>
20 #include <exec/helper-proto.h>
21 #include <kvm-consts.h>
22 #include <sysemu/sysemu.h>
23 #include "internals.h"
25 bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
27 /* Return true if the r0/x0 value indicates a PSCI call and
28 * the exception type matches the configured PSCI conduit. This is
29 * called before the SMC/HVC instruction is executed, to decide whether
30 * we should treat it as a PSCI call or with the architecturally
31 * defined behaviour for an SMC or HVC (which might be UNDEF or trap
32 * to EL2 or to EL3).
34 CPUARMState *env = &cpu->env;
35 uint64_t param = is_a64(env) ? env->xregs[0] : env->regs[0];
37 switch (excp_type) {
38 case EXCP_HVC:
39 if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_HVC) {
40 return false;
42 break;
43 case EXCP_SMC:
44 if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
45 return false;
47 break;
48 default:
49 return false;
52 switch (param) {
53 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
54 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
55 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
56 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
57 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
58 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
59 case QEMU_PSCI_0_1_FN_CPU_ON:
60 case QEMU_PSCI_0_2_FN_CPU_ON:
61 case QEMU_PSCI_0_2_FN64_CPU_ON:
62 case QEMU_PSCI_0_1_FN_CPU_OFF:
63 case QEMU_PSCI_0_2_FN_CPU_OFF:
64 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
65 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
66 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
67 case QEMU_PSCI_0_1_FN_MIGRATE:
68 case QEMU_PSCI_0_2_FN_MIGRATE:
69 return true;
70 default:
71 return false;
75 static CPUState *get_cpu_by_id(uint64_t id)
77 CPUState *cpu;
79 CPU_FOREACH(cpu) {
80 ARMCPU *armcpu = ARM_CPU(cpu);
82 if (armcpu->mp_affinity == id) {
83 return cpu;
87 return NULL;
90 void arm_handle_psci_call(ARMCPU *cpu)
93 * This function partially implements the logic for dispatching Power State
94 * Coordination Interface (PSCI) calls (as described in ARM DEN 0022B.b),
95 * to the extent required for bringing up and taking down secondary cores,
96 * and for handling reset and poweroff requests.
97 * Additional information about the calling convention used is available in
98 * the document 'SMC Calling Convention' (ARM DEN 0028)
100 CPUState *cs = CPU(cpu);
101 CPUARMState *env = &cpu->env;
102 uint64_t param[4];
103 uint64_t context_id, mpidr;
104 target_ulong entry;
105 int32_t ret = 0;
106 int i;
108 for (i = 0; i < 4; i++) {
110 * All PSCI functions take explicit 32-bit or native int sized
111 * arguments so we can simply zero-extend all arguments regardless
112 * of which exact function we are about to call.
114 param[i] = is_a64(env) ? env->xregs[i] : env->regs[i];
117 if ((param[0] & QEMU_PSCI_0_2_64BIT) && !is_a64(env)) {
118 ret = QEMU_PSCI_RET_INVALID_PARAMS;
119 goto err;
122 switch (param[0]) {
123 CPUState *target_cpu_state;
124 ARMCPU *target_cpu;
125 CPUClass *target_cpu_class;
127 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
128 ret = QEMU_PSCI_0_2_RET_VERSION_0_2;
129 break;
130 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
131 ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
132 break;
133 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
134 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
135 mpidr = param[1];
137 switch (param[2]) {
138 case 0:
139 target_cpu_state = get_cpu_by_id(mpidr);
140 if (!target_cpu_state) {
141 ret = QEMU_PSCI_RET_INVALID_PARAMS;
142 break;
144 target_cpu = ARM_CPU(target_cpu_state);
145 ret = target_cpu->powered_off ? 1 : 0;
146 break;
147 default:
148 /* Everything above affinity level 0 is always on. */
149 ret = 0;
151 break;
152 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
153 qemu_system_reset_request();
154 /* QEMU reset and shutdown are async requests, but PSCI
155 * mandates that we never return from the reset/shutdown
156 * call, so power the CPU off now so it doesn't execute
157 * anything further.
159 goto cpu_off;
160 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
161 qemu_system_shutdown_request();
162 goto cpu_off;
163 case QEMU_PSCI_0_1_FN_CPU_ON:
164 case QEMU_PSCI_0_2_FN_CPU_ON:
165 case QEMU_PSCI_0_2_FN64_CPU_ON:
166 mpidr = param[1];
167 entry = param[2];
168 context_id = param[3];
170 /* change to the cpu we are powering up */
171 target_cpu_state = get_cpu_by_id(mpidr);
172 if (!target_cpu_state) {
173 ret = QEMU_PSCI_RET_INVALID_PARAMS;
174 break;
176 target_cpu = ARM_CPU(target_cpu_state);
177 if (!target_cpu->powered_off) {
178 ret = QEMU_PSCI_RET_ALREADY_ON;
179 break;
181 target_cpu_class = CPU_GET_CLASS(target_cpu);
183 /* Initialize the cpu we are turning on */
184 cpu_reset(target_cpu_state);
185 target_cpu->powered_off = false;
186 target_cpu_state->halted = 0;
189 * The PSCI spec mandates that newly brought up CPUs enter the
190 * exception level of the caller in the same execution mode as
191 * the caller, with context_id in x0/r0, respectively.
193 * For now, it is sufficient to assert() that CPUs come out of
194 * reset in the same mode as the calling CPU, since we only
195 * implement EL1, which means that
196 * (a) there is no EL2 for the calling CPU to trap into to change
197 * its state
198 * (b) the newly brought up CPU enters EL1 immediately after coming
199 * out of reset in the default state
201 assert(is_a64(env) == is_a64(&target_cpu->env));
202 if (is_a64(env)) {
203 if (entry & 1) {
204 ret = QEMU_PSCI_RET_INVALID_PARAMS;
205 break;
207 target_cpu->env.xregs[0] = context_id;
208 } else {
209 target_cpu->env.regs[0] = context_id;
210 target_cpu->env.thumb = entry & 1;
212 target_cpu_class->set_pc(target_cpu_state, entry);
214 ret = 0;
215 break;
216 case QEMU_PSCI_0_1_FN_CPU_OFF:
217 case QEMU_PSCI_0_2_FN_CPU_OFF:
218 goto cpu_off;
219 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
220 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
221 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
222 /* Affinity levels are not supported in QEMU */
223 if (param[1] & 0xfffe0000) {
224 ret = QEMU_PSCI_RET_INVALID_PARAMS;
225 break;
227 /* Powerdown is not supported, we always go into WFI */
228 if (is_a64(env)) {
229 env->xregs[0] = 0;
230 } else {
231 env->regs[0] = 0;
233 helper_wfi(env);
234 break;
235 case QEMU_PSCI_0_1_FN_MIGRATE:
236 case QEMU_PSCI_0_2_FN_MIGRATE:
237 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
238 break;
239 default:
240 g_assert_not_reached();
243 err:
244 if (is_a64(env)) {
245 env->xregs[0] = ret;
246 } else {
247 env->regs[0] = ret;
249 return;
251 cpu_off:
252 cpu->powered_off = true;
253 cs->halted = 1;
254 cs->exception_index = EXCP_HLT;
255 cpu_loop_exit(cs);
256 /* notreached */