2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu-barrier.h"
26 #if !defined(CONFIG_SOFTMMU)
38 #include <sys/ucontext.h>
42 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
43 // Work around ugly bugs in glibc that mangle global register contents
45 #define env cpu_single_env
48 int tb_invalidated_flag
;
50 //#define CONFIG_DEBUG_EXEC
51 //#define DEBUG_SIGNAL
53 int qemu_cpu_has_work(CPUState
*env
)
55 return cpu_has_work(env
);
58 void cpu_loop_exit(void)
60 env
->current_tb
= NULL
;
61 longjmp(env
->jmp_env
, 1);
64 /* exit the current TB from a signal handler. The host registers are
65 restored in a state compatible with the CPU emulator
67 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
69 #if !defined(CONFIG_SOFTMMU)
71 struct ucontext
*uc
= puc
;
72 #elif defined(__OpenBSD__)
73 struct sigcontext
*uc
= puc
;
79 /* XXX: restore cpu registers saved in host registers */
81 #if !defined(CONFIG_SOFTMMU)
83 /* XXX: use siglongjmp ? */
86 sigprocmask(SIG_SETMASK
, (sigset_t
*)&uc
->uc_sigmask
, NULL
);
88 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
90 #elif defined(__OpenBSD__)
91 sigprocmask(SIG_SETMASK
, &uc
->sc_mask
, NULL
);
95 env
->exception_index
= -1;
96 longjmp(env
->jmp_env
, 1);
99 /* Execute the code without caching the generated code. An interpreter
100 could be used if available. */
101 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
103 unsigned long next_tb
;
104 TranslationBlock
*tb
;
106 /* Should never happen.
107 We only end up here when an existing TB is too long. */
108 if (max_cycles
> CF_COUNT_MASK
)
109 max_cycles
= CF_COUNT_MASK
;
111 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
113 env
->current_tb
= tb
;
114 /* execute the generated code */
115 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
116 env
->current_tb
= NULL
;
118 if ((next_tb
& 3) == 2) {
119 /* Restore PC. This may happen if async event occurs before
120 the TB starts executing. */
121 cpu_pc_from_tb(env
, tb
);
123 tb_phys_invalidate(tb
, -1);
127 static TranslationBlock
*tb_find_slow(target_ulong pc
,
128 target_ulong cs_base
,
131 TranslationBlock
*tb
, **ptb1
;
133 tb_page_addr_t phys_pc
, phys_page1
, phys_page2
;
134 target_ulong virt_page2
;
136 tb_invalidated_flag
= 0;
138 /* find translated block using physical mappings */
139 phys_pc
= get_page_addr_code(env
, pc
);
140 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
142 h
= tb_phys_hash_func(phys_pc
);
143 ptb1
= &tb_phys_hash
[h
];
149 tb
->page_addr
[0] == phys_page1
&&
150 tb
->cs_base
== cs_base
&&
151 tb
->flags
== flags
) {
152 /* check next page if needed */
153 if (tb
->page_addr
[1] != -1) {
154 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
156 phys_page2
= get_page_addr_code(env
, virt_page2
);
157 if (tb
->page_addr
[1] == phys_page2
)
163 ptb1
= &tb
->phys_hash_next
;
166 /* if no translated code available, then translate it now */
167 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
170 /* Move the last found TB to the head of the list */
172 *ptb1
= tb
->phys_hash_next
;
173 tb
->phys_hash_next
= tb_phys_hash
[h
];
174 tb_phys_hash
[h
] = tb
;
176 /* we add the TB in the virtual pc hash table */
177 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
181 static inline TranslationBlock
*tb_find_fast(void)
183 TranslationBlock
*tb
;
184 target_ulong cs_base
, pc
;
187 /* we record a subset of the CPU state. It will
188 always be the same before a given translated block
190 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
191 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
192 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
193 tb
->flags
!= flags
)) {
194 tb
= tb_find_slow(pc
, cs_base
, flags
);
199 /* main execution loop */
201 volatile sig_atomic_t exit_request
;
203 int cpu_exec(CPUState
*env1
)
205 volatile host_reg_t saved_env_reg
;
206 int ret
, interrupt_request
;
207 TranslationBlock
*tb
;
209 unsigned long next_tb
;
211 if (cpu_halted(env1
) == EXCP_HALTED
)
214 cpu_single_env
= env1
;
216 /* the access to env below is actually saving the global register's
217 value, so that files not including target-xyz/exec.h are free to
219 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg
) != sizeof (env
));
220 saved_env_reg
= (host_reg_t
) env
;
224 if (unlikely(exit_request
)) {
225 env
->exit_request
= 1;
228 #if defined(TARGET_I386)
229 /* put eflags in CPU temporary format */
230 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
231 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
232 CC_OP
= CC_OP_EFLAGS
;
233 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
234 #elif defined(TARGET_SPARC)
235 #elif defined(TARGET_M68K)
236 env
->cc_op
= CC_OP_FLAGS
;
237 env
->cc_dest
= env
->sr
& 0xf;
238 env
->cc_x
= (env
->sr
>> 4) & 1;
239 #elif defined(TARGET_ALPHA)
240 #elif defined(TARGET_ARM)
241 #elif defined(TARGET_PPC)
242 #elif defined(TARGET_MICROBLAZE)
243 #elif defined(TARGET_MIPS)
244 #elif defined(TARGET_SH4)
245 #elif defined(TARGET_CRIS)
246 #elif defined(TARGET_S390X)
249 #error unsupported target CPU
251 env
->exception_index
= -1;
253 /* prepare setjmp context for exception handling */
255 if (setjmp(env
->jmp_env
) == 0) {
256 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
258 env
= cpu_single_env
;
259 #define env cpu_single_env
261 /* if an exception is pending, we execute it here */
262 if (env
->exception_index
>= 0) {
263 if (env
->exception_index
>= EXCP_INTERRUPT
) {
264 /* exit request from the cpu execution loop */
265 ret
= env
->exception_index
;
268 #if defined(CONFIG_USER_ONLY)
269 /* if user mode only, we simulate a fake exception
270 which will be handled outside the cpu execution
272 #if defined(TARGET_I386)
273 do_interrupt_user(env
->exception_index
,
274 env
->exception_is_int
,
276 env
->exception_next_eip
);
277 /* successfully delivered */
278 env
->old_exception
= -1;
280 ret
= env
->exception_index
;
283 #if defined(TARGET_I386)
284 /* simulate a real cpu exception. On i386, it can
285 trigger new exceptions, but we do not handle
286 double or triple faults yet. */
287 do_interrupt(env
->exception_index
,
288 env
->exception_is_int
,
290 env
->exception_next_eip
, 0);
291 /* successfully delivered */
292 env
->old_exception
= -1;
293 #elif defined(TARGET_PPC)
295 #elif defined(TARGET_MICROBLAZE)
297 #elif defined(TARGET_MIPS)
299 #elif defined(TARGET_SPARC)
301 #elif defined(TARGET_ARM)
303 #elif defined(TARGET_SH4)
305 #elif defined(TARGET_ALPHA)
307 #elif defined(TARGET_CRIS)
309 #elif defined(TARGET_M68K)
312 env
->exception_index
= -1;
317 next_tb
= 0; /* force lookup of first TB */
319 interrupt_request
= env
->interrupt_request
;
320 if (unlikely(interrupt_request
)) {
321 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
322 /* Mask out external interrupts for this step. */
323 interrupt_request
&= ~(CPU_INTERRUPT_HARD
|
328 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
329 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
330 env
->exception_index
= EXCP_DEBUG
;
333 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
334 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
335 defined(TARGET_MICROBLAZE)
336 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
337 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
339 env
->exception_index
= EXCP_HLT
;
343 #if defined(TARGET_I386)
344 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
345 svm_check_intercept(SVM_EXIT_INIT
);
347 env
->exception_index
= EXCP_HALTED
;
349 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
351 } else if (env
->hflags2
& HF2_GIF_MASK
) {
352 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
353 !(env
->hflags
& HF_SMM_MASK
)) {
354 svm_check_intercept(SVM_EXIT_SMI
);
355 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
358 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
359 !(env
->hflags2
& HF2_NMI_MASK
)) {
360 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
361 env
->hflags2
|= HF2_NMI_MASK
;
362 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
364 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
365 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
366 do_interrupt(EXCP12_MCHK
, 0, 0, 0, 0);
368 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
369 (((env
->hflags2
& HF2_VINTR_MASK
) &&
370 (env
->hflags2
& HF2_HIF_MASK
)) ||
371 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
372 (env
->eflags
& IF_MASK
&&
373 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
375 svm_check_intercept(SVM_EXIT_INTR
);
376 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
377 intno
= cpu_get_pic_interrupt(env
);
378 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
379 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
381 env
= cpu_single_env
;
382 #define env cpu_single_env
384 do_interrupt(intno
, 0, 0, 0, 1);
385 /* ensure that no TB jump will be modified as
386 the program flow was changed */
388 #if !defined(CONFIG_USER_ONLY)
389 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
390 (env
->eflags
& IF_MASK
) &&
391 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
393 /* FIXME: this should respect TPR */
394 svm_check_intercept(SVM_EXIT_VINTR
);
395 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
396 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
397 do_interrupt(intno
, 0, 0, 0, 1);
398 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
403 #elif defined(TARGET_PPC)
405 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
409 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
410 ppc_hw_interrupt(env
);
411 if (env
->pending_interrupts
== 0)
412 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
415 #elif defined(TARGET_MICROBLAZE)
416 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
417 && (env
->sregs
[SR_MSR
] & MSR_IE
)
418 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
419 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
420 env
->exception_index
= EXCP_IRQ
;
424 #elif defined(TARGET_MIPS)
425 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
426 cpu_mips_hw_interrupts_pending(env
)) {
428 env
->exception_index
= EXCP_EXT_INTERRUPT
;
433 #elif defined(TARGET_SPARC)
434 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
435 if (cpu_interrupts_enabled(env
) &&
436 env
->interrupt_index
> 0) {
437 int pil
= env
->interrupt_index
& 0xf;
438 int type
= env
->interrupt_index
& 0xf0;
440 if (((type
== TT_EXTINT
) &&
441 cpu_pil_allowed(env
, pil
)) ||
443 env
->exception_index
= env
->interrupt_index
;
448 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
449 //do_interrupt(0, 0, 0, 0, 0);
450 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
452 #elif defined(TARGET_ARM)
453 if (interrupt_request
& CPU_INTERRUPT_FIQ
454 && !(env
->uncached_cpsr
& CPSR_F
)) {
455 env
->exception_index
= EXCP_FIQ
;
459 /* ARMv7-M interrupt return works by loading a magic value
460 into the PC. On real hardware the load causes the
461 return to occur. The qemu implementation performs the
462 jump normally, then does the exception return when the
463 CPU tries to execute code at the magic address.
464 This will cause the magic PC value to be pushed to
465 the stack if an interrupt occured at the wrong time.
466 We avoid this by disabling interrupts when
467 pc contains a magic address. */
468 if (interrupt_request
& CPU_INTERRUPT_HARD
469 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
470 || !(env
->uncached_cpsr
& CPSR_I
))) {
471 env
->exception_index
= EXCP_IRQ
;
475 #elif defined(TARGET_SH4)
476 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
480 #elif defined(TARGET_ALPHA)
481 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
485 #elif defined(TARGET_CRIS)
486 if (interrupt_request
& CPU_INTERRUPT_HARD
487 && (env
->pregs
[PR_CCS
] & I_FLAG
)
488 && !env
->locked_irq
) {
489 env
->exception_index
= EXCP_IRQ
;
493 if (interrupt_request
& CPU_INTERRUPT_NMI
494 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
495 env
->exception_index
= EXCP_NMI
;
499 #elif defined(TARGET_M68K)
500 if (interrupt_request
& CPU_INTERRUPT_HARD
501 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
502 < env
->pending_level
) {
503 /* Real hardware gets the interrupt vector via an
504 IACK cycle at this point. Current emulated
505 hardware doesn't rely on this, so we
506 provide/save the vector when the interrupt is
508 env
->exception_index
= env
->pending_vector
;
513 /* Don't use the cached interupt_request value,
514 do_interrupt may have updated the EXITTB flag. */
515 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
516 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
517 /* ensure that no TB jump will be modified as
518 the program flow was changed */
522 if (unlikely(env
->exit_request
)) {
523 env
->exit_request
= 0;
524 env
->exception_index
= EXCP_INTERRUPT
;
527 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
528 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
529 /* restore flags in standard format */
530 #if defined(TARGET_I386)
531 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
532 log_cpu_state(env
, X86_DUMP_CCOP
);
533 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
534 #elif defined(TARGET_M68K)
535 cpu_m68k_flush_flags(env
, env
->cc_op
);
536 env
->cc_op
= CC_OP_FLAGS
;
537 env
->sr
= (env
->sr
& 0xffe0)
538 | env
->cc_dest
| (env
->cc_x
<< 4);
539 log_cpu_state(env
, 0);
541 log_cpu_state(env
, 0);
544 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
547 /* Note: we do it here to avoid a gcc bug on Mac OS X when
548 doing it in tb_find_slow */
549 if (tb_invalidated_flag
) {
550 /* as some TB could have been invalidated because
551 of memory exceptions while generating the code, we
552 must recompute the hash index here */
554 tb_invalidated_flag
= 0;
556 #ifdef CONFIG_DEBUG_EXEC
557 qemu_log_mask(CPU_LOG_EXEC
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
558 (long)tb
->tc_ptr
, tb
->pc
,
559 lookup_symbol(tb
->pc
));
561 /* see if we can patch the calling TB. When the TB
562 spans two pages, we cannot safely do a direct
564 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
565 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
567 spin_unlock(&tb_lock
);
569 /* cpu_interrupt might be called while translating the
570 TB, but before it is linked into a potentially
571 infinite loop and becomes env->current_tb. Avoid
572 starting execution if there is a pending interrupt. */
573 env
->current_tb
= tb
;
575 if (likely(!env
->exit_request
)) {
577 /* execute the generated code */
578 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
580 env
= cpu_single_env
;
581 #define env cpu_single_env
583 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
584 if ((next_tb
& 3) == 2) {
585 /* Instruction counter expired. */
587 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
589 cpu_pc_from_tb(env
, tb
);
590 insns_left
= env
->icount_decr
.u32
;
591 if (env
->icount_extra
&& insns_left
>= 0) {
592 /* Refill decrementer and continue execution. */
593 env
->icount_extra
+= insns_left
;
594 if (env
->icount_extra
> 0xffff) {
597 insns_left
= env
->icount_extra
;
599 env
->icount_extra
-= insns_left
;
600 env
->icount_decr
.u16
.low
= insns_left
;
602 if (insns_left
> 0) {
603 /* Execute remaining instructions. */
604 cpu_exec_nocache(insns_left
, tb
);
606 env
->exception_index
= EXCP_INTERRUPT
;
612 env
->current_tb
= NULL
;
613 /* reset soft MMU for next block (it can currently
614 only be set by a memory fault) */
620 #if defined(TARGET_I386)
621 /* restore flags in standard format */
622 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
623 #elif defined(TARGET_ARM)
624 /* XXX: Save/restore host fpu exception state?. */
625 #elif defined(TARGET_SPARC)
626 #elif defined(TARGET_PPC)
627 #elif defined(TARGET_M68K)
628 cpu_m68k_flush_flags(env
, env
->cc_op
);
629 env
->cc_op
= CC_OP_FLAGS
;
630 env
->sr
= (env
->sr
& 0xffe0)
631 | env
->cc_dest
| (env
->cc_x
<< 4);
632 #elif defined(TARGET_MICROBLAZE)
633 #elif defined(TARGET_MIPS)
634 #elif defined(TARGET_SH4)
635 #elif defined(TARGET_ALPHA)
636 #elif defined(TARGET_CRIS)
637 #elif defined(TARGET_S390X)
640 #error unsupported target CPU
643 /* restore global registers */
645 env
= (void *) saved_env_reg
;
647 /* fail safe : never use cpu_single_env outside cpu_exec() */
648 cpu_single_env
= NULL
;
652 /* must only be called from the generated code as an exception can be
654 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
656 /* XXX: cannot enable it yet because it yields to MMU exception
657 where NIP != read address on PowerPC */
659 target_ulong phys_addr
;
660 phys_addr
= get_phys_addr_code(env
, start
);
661 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
665 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
667 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
669 CPUX86State
*saved_env
;
673 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
675 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
676 (selector
<< 4), 0xffff, 0);
678 helper_load_seg(seg_reg
, selector
);
683 void cpu_x86_fsave(CPUX86State
*s
, target_ulong ptr
, int data32
)
685 CPUX86State
*saved_env
;
690 helper_fsave(ptr
, data32
);
695 void cpu_x86_frstor(CPUX86State
*s
, target_ulong ptr
, int data32
)
697 CPUX86State
*saved_env
;
702 helper_frstor(ptr
, data32
);
707 #endif /* TARGET_I386 */
709 #if !defined(CONFIG_SOFTMMU)
711 #if defined(TARGET_I386)
712 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
714 #define EXCEPTION_ACTION cpu_loop_exit()
717 /* 'pc' is the host PC at which the exception was raised. 'address' is
718 the effective address of the memory exception. 'is_write' is 1 if a
719 write caused the exception and otherwise 0'. 'old_set' is the
720 signal set which should be restored */
721 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
722 int is_write
, sigset_t
*old_set
,
725 TranslationBlock
*tb
;
729 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
730 #if defined(DEBUG_SIGNAL)
731 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
732 pc
, address
, is_write
, *(unsigned long *)old_set
);
734 /* XXX: locking issue */
735 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
739 /* see if it is an MMU fault */
740 ret
= cpu_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
742 return 0; /* not an MMU fault */
744 return 1; /* the MMU fault was handled without causing real CPU fault */
745 /* now we have a real cpu fault */
748 /* the PC is inside the translated code. It means that we have
749 a virtual CPU fault */
750 cpu_restore_state(tb
, env
, pc
, puc
);
753 /* we restore the process signal mask as the sigreturn should
754 do it (XXX: use sigsetjmp) */
755 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
758 /* never comes here */
762 #if defined(__i386__)
764 #if defined(__APPLE__)
765 # include <sys/ucontext.h>
767 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
768 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
769 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
770 # define MASK_sig(context) ((context)->uc_sigmask)
771 #elif defined (__NetBSD__)
772 # include <ucontext.h>
774 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
775 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
776 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
777 # define MASK_sig(context) ((context)->uc_sigmask)
778 #elif defined (__FreeBSD__) || defined(__DragonFly__)
779 # include <ucontext.h>
781 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
782 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
783 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
784 # define MASK_sig(context) ((context)->uc_sigmask)
785 #elif defined(__OpenBSD__)
786 # define EIP_sig(context) ((context)->sc_eip)
787 # define TRAP_sig(context) ((context)->sc_trapno)
788 # define ERROR_sig(context) ((context)->sc_err)
789 # define MASK_sig(context) ((context)->sc_mask)
791 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
792 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
793 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
794 # define MASK_sig(context) ((context)->uc_sigmask)
797 int cpu_signal_handler(int host_signum
, void *pinfo
,
800 siginfo_t
*info
= pinfo
;
801 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
802 ucontext_t
*uc
= puc
;
803 #elif defined(__OpenBSD__)
804 struct sigcontext
*uc
= puc
;
806 struct ucontext
*uc
= puc
;
815 #define REG_TRAPNO TRAPNO
818 trapno
= TRAP_sig(uc
);
819 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
821 (ERROR_sig(uc
) >> 1) & 1 : 0,
825 #elif defined(__x86_64__)
828 #define PC_sig(context) _UC_MACHINE_PC(context)
829 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
830 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
831 #define MASK_sig(context) ((context)->uc_sigmask)
832 #elif defined(__OpenBSD__)
833 #define PC_sig(context) ((context)->sc_rip)
834 #define TRAP_sig(context) ((context)->sc_trapno)
835 #define ERROR_sig(context) ((context)->sc_err)
836 #define MASK_sig(context) ((context)->sc_mask)
837 #elif defined (__FreeBSD__) || defined(__DragonFly__)
838 #include <ucontext.h>
840 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
841 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
842 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
843 #define MASK_sig(context) ((context)->uc_sigmask)
845 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
846 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
847 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
848 #define MASK_sig(context) ((context)->uc_sigmask)
851 int cpu_signal_handler(int host_signum
, void *pinfo
,
854 siginfo_t
*info
= pinfo
;
856 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
857 ucontext_t
*uc
= puc
;
858 #elif defined(__OpenBSD__)
859 struct sigcontext
*uc
= puc
;
861 struct ucontext
*uc
= puc
;
865 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
866 TRAP_sig(uc
) == 0xe ?
867 (ERROR_sig(uc
) >> 1) & 1 : 0,
871 #elif defined(_ARCH_PPC)
873 /***********************************************************************
874 * signal context platform-specific definitions
878 /* All Registers access - only for local access */
879 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
880 /* Gpr Registers access */
881 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
882 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
883 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
884 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
885 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
886 # define LR_sig(context) REG_sig(link, context) /* Link register */
887 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
888 /* Float Registers access */
889 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
890 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
891 /* Exception Registers access */
892 # define DAR_sig(context) REG_sig(dar, context)
893 # define DSISR_sig(context) REG_sig(dsisr, context)
894 # define TRAP_sig(context) REG_sig(trap, context)
897 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
898 #include <ucontext.h>
899 # define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
900 # define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
901 # define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
902 # define XER_sig(context) ((context)->uc_mcontext.mc_xer)
903 # define LR_sig(context) ((context)->uc_mcontext.mc_lr)
904 # define CR_sig(context) ((context)->uc_mcontext.mc_cr)
905 /* Exception Registers access */
906 # define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
907 # define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
908 # define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
909 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
912 # include <sys/ucontext.h>
913 typedef struct ucontext SIGCONTEXT
;
914 /* All Registers access - only for local access */
915 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
916 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
917 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
918 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
919 /* Gpr Registers access */
920 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
921 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
922 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
923 # define CTR_sig(context) REG_sig(ctr, context)
924 # define XER_sig(context) REG_sig(xer, context) /* Link register */
925 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
926 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
927 /* Float Registers access */
928 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
929 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
930 /* Exception Registers access */
931 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
932 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
933 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
934 #endif /* __APPLE__ */
936 int cpu_signal_handler(int host_signum
, void *pinfo
,
939 siginfo_t
*info
= pinfo
;
940 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
941 ucontext_t
*uc
= puc
;
943 struct ucontext
*uc
= puc
;
952 if (DSISR_sig(uc
) & 0x00800000)
955 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
958 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
959 is_write
, &uc
->uc_sigmask
, puc
);
962 #elif defined(__alpha__)
964 int cpu_signal_handler(int host_signum
, void *pinfo
,
967 siginfo_t
*info
= pinfo
;
968 struct ucontext
*uc
= puc
;
969 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
973 /* XXX: need kernel patch to get write flag faster */
974 switch (insn
>> 26) {
989 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
990 is_write
, &uc
->uc_sigmask
, puc
);
992 #elif defined(__sparc__)
994 int cpu_signal_handler(int host_signum
, void *pinfo
,
997 siginfo_t
*info
= pinfo
;
1000 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1001 uint32_t *regs
= (uint32_t *)(info
+ 1);
1002 void *sigmask
= (regs
+ 20);
1003 /* XXX: is there a standard glibc define ? */
1004 unsigned long pc
= regs
[1];
1007 struct sigcontext
*sc
= puc
;
1008 unsigned long pc
= sc
->sigc_regs
.tpc
;
1009 void *sigmask
= (void *)sc
->sigc_mask
;
1010 #elif defined(__OpenBSD__)
1011 struct sigcontext
*uc
= puc
;
1012 unsigned long pc
= uc
->sc_pc
;
1013 void *sigmask
= (void *)(long)uc
->sc_mask
;
1017 /* XXX: need kernel patch to get write flag faster */
1019 insn
= *(uint32_t *)pc
;
1020 if ((insn
>> 30) == 3) {
1021 switch((insn
>> 19) & 0x3f) {
1045 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1046 is_write
, sigmask
, NULL
);
1049 #elif defined(__arm__)
1051 int cpu_signal_handler(int host_signum
, void *pinfo
,
1054 siginfo_t
*info
= pinfo
;
1055 struct ucontext
*uc
= puc
;
1059 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1060 pc
= uc
->uc_mcontext
.gregs
[R15
];
1062 pc
= uc
->uc_mcontext
.arm_pc
;
1064 /* XXX: compute is_write */
1066 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1068 &uc
->uc_sigmask
, puc
);
1071 #elif defined(__mc68000)
1073 int cpu_signal_handler(int host_signum
, void *pinfo
,
1076 siginfo_t
*info
= pinfo
;
1077 struct ucontext
*uc
= puc
;
1081 pc
= uc
->uc_mcontext
.gregs
[16];
1082 /* XXX: compute is_write */
1084 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1086 &uc
->uc_sigmask
, puc
);
1089 #elif defined(__ia64)
1092 /* This ought to be in <bits/siginfo.h>... */
1093 # define __ISR_VALID 1
1096 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1098 siginfo_t
*info
= pinfo
;
1099 struct ucontext
*uc
= puc
;
1103 ip
= uc
->uc_mcontext
.sc_ip
;
1104 switch (host_signum
) {
1110 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1111 /* ISR.W (write-access) is bit 33: */
1112 is_write
= (info
->si_isr
>> 33) & 1;
1118 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1120 (sigset_t
*)&uc
->uc_sigmask
, puc
);
1123 #elif defined(__s390__)
1125 int cpu_signal_handler(int host_signum
, void *pinfo
,
1128 siginfo_t
*info
= pinfo
;
1129 struct ucontext
*uc
= puc
;
1134 pc
= uc
->uc_mcontext
.psw
.addr
;
1136 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
1137 of the normal 2 arguments. The 3rd argument contains the "int_code"
1138 from the hardware which does in fact contain the is_write value.
1139 The rt signal handler, as far as I can tell, does not give this value
1140 at all. Not that we could get to it from here even if it were. */
1141 /* ??? This is not even close to complete, since it ignores all
1142 of the read-modify-write instructions. */
1143 pinsn
= (uint16_t *)pc
;
1144 switch (pinsn
[0] >> 8) {
1146 case 0x42: /* STC */
1147 case 0x40: /* STH */
1150 case 0xc4: /* RIL format insns */
1151 switch (pinsn
[0] & 0xf) {
1152 case 0xf: /* STRL */
1153 case 0xb: /* STGRL */
1154 case 0x7: /* STHRL */
1158 case 0xe3: /* RXY format insns */
1159 switch (pinsn
[2] & 0xff) {
1160 case 0x50: /* STY */
1161 case 0x24: /* STG */
1162 case 0x72: /* STCY */
1163 case 0x70: /* STHY */
1164 case 0x8e: /* STPQ */
1165 case 0x3f: /* STRVH */
1166 case 0x3e: /* STRV */
1167 case 0x2f: /* STRVG */
1172 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1173 is_write
, &uc
->uc_sigmask
, puc
);
1176 #elif defined(__mips__)
1178 int cpu_signal_handler(int host_signum
, void *pinfo
,
1181 siginfo_t
*info
= pinfo
;
1182 struct ucontext
*uc
= puc
;
1183 greg_t pc
= uc
->uc_mcontext
.pc
;
1186 /* XXX: compute is_write */
1188 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1189 is_write
, &uc
->uc_sigmask
, puc
);
1192 #elif defined(__hppa__)
1194 int cpu_signal_handler(int host_signum
, void *pinfo
,
1197 struct siginfo
*info
= pinfo
;
1198 struct ucontext
*uc
= puc
;
1199 unsigned long pc
= uc
->uc_mcontext
.sc_iaoq
[0];
1200 uint32_t insn
= *(uint32_t *)pc
;
1203 /* XXX: need kernel patch to get write flag faster. */
1204 switch (insn
>> 26) {
1205 case 0x1a: /* STW */
1206 case 0x19: /* STH */
1207 case 0x18: /* STB */
1208 case 0x1b: /* STWM */
1212 case 0x09: /* CSTWX, FSTWX, FSTWS */
1213 case 0x0b: /* CSTDX, FSTDX, FSTDS */
1214 /* Distinguish from coprocessor load ... */
1215 is_write
= (insn
>> 9) & 1;
1219 switch ((insn
>> 6) & 15) {
1220 case 0xa: /* STWS */
1221 case 0x9: /* STHS */
1222 case 0x8: /* STBS */
1223 case 0xe: /* STWAS */
1224 case 0xc: /* STBYS */
1230 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1231 is_write
, &uc
->uc_sigmask
, puc
);
1236 #error host CPU specific signal handler needed
1240 #endif /* !defined(CONFIG_SOFTMMU) */