3 #include "exec/gdbstub.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include <zlib.h> /* For crc32 */
12 #ifndef CONFIG_USER_ONLY
13 #include "exec/softmmu_exec.h"
15 static inline int get_phys_addr(CPUARMState
*env
, target_ulong address
,
16 int access_type
, int is_user
,
17 hwaddr
*phys_ptr
, int *prot
,
18 target_ulong
*page_size
);
20 /* Definitions for the PMCCNTR and PMCR registers */
26 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
30 /* VFP data registers are always little-endian. */
31 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
33 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
36 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
37 /* Aliases for Q regs. */
40 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
41 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
45 switch (reg
- nregs
) {
46 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
47 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
48 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
53 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
57 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
59 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
62 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
65 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
66 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
70 switch (reg
- nregs
) {
71 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
72 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
73 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
78 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
82 /* 128 bit FP register */
83 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
84 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
88 stl_p(buf
, vfp_get_fpsr(env
));
92 stl_p(buf
, vfp_get_fpcr(env
));
99 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
103 /* 128 bit FP register */
104 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
105 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
109 vfp_set_fpsr(env
, ldl_p(buf
));
113 vfp_set_fpcr(env
, ldl_p(buf
));
120 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
122 if (cpreg_field_is_64bit(ri
)) {
123 return CPREG_FIELD64(env
, ri
);
125 return CPREG_FIELD32(env
, ri
);
129 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
132 if (cpreg_field_is_64bit(ri
)) {
133 CPREG_FIELD64(env
, ri
) = value
;
135 CPREG_FIELD32(env
, ri
) = value
;
139 static uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
141 /* Raw read of a coprocessor register (as needed for migration, etc). */
142 if (ri
->type
& ARM_CP_CONST
) {
143 return ri
->resetvalue
;
144 } else if (ri
->raw_readfn
) {
145 return ri
->raw_readfn(env
, ri
);
146 } else if (ri
->readfn
) {
147 return ri
->readfn(env
, ri
);
149 return raw_read(env
, ri
);
153 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
156 /* Raw write of a coprocessor register (as needed for migration, etc).
157 * Note that constant registers are treated as write-ignored; the
158 * caller should check for success by whether a readback gives the
161 if (ri
->type
& ARM_CP_CONST
) {
163 } else if (ri
->raw_writefn
) {
164 ri
->raw_writefn(env
, ri
, v
);
165 } else if (ri
->writefn
) {
166 ri
->writefn(env
, ri
, v
);
168 raw_write(env
, ri
, v
);
172 bool write_cpustate_to_list(ARMCPU
*cpu
)
174 /* Write the coprocessor state from cpu->env to the (index,value) list. */
178 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
179 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
180 const ARMCPRegInfo
*ri
;
182 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
187 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
190 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
195 bool write_list_to_cpustate(ARMCPU
*cpu
)
200 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
201 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
202 uint64_t v
= cpu
->cpreg_values
[i
];
203 const ARMCPRegInfo
*ri
;
205 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
210 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
213 /* Write value and confirm it reads back as written
214 * (to catch read-only registers and partially read-only
215 * registers where the incoming migration value doesn't match)
217 write_raw_cp_reg(&cpu
->env
, ri
, v
);
218 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
225 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
227 ARMCPU
*cpu
= opaque
;
229 const ARMCPRegInfo
*ri
;
231 regidx
= *(uint32_t *)key
;
232 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
234 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
235 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
236 /* The value array need not be initialized at this point */
237 cpu
->cpreg_array_len
++;
241 static void count_cpreg(gpointer key
, gpointer opaque
)
243 ARMCPU
*cpu
= opaque
;
245 const ARMCPRegInfo
*ri
;
247 regidx
= *(uint32_t *)key
;
248 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
250 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
251 cpu
->cpreg_array_len
++;
255 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
257 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
258 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
269 static void cpreg_make_keylist(gpointer key
, gpointer value
, gpointer udata
)
271 GList
**plist
= udata
;
273 *plist
= g_list_prepend(*plist
, key
);
276 void init_cpreg_list(ARMCPU
*cpu
)
278 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
279 * Note that we require cpreg_tuples[] to be sorted by key ID.
284 g_hash_table_foreach(cpu
->cp_regs
, cpreg_make_keylist
, &keys
);
286 keys
= g_list_sort(keys
, cpreg_key_compare
);
288 cpu
->cpreg_array_len
= 0;
290 g_list_foreach(keys
, count_cpreg
, cpu
);
292 arraylen
= cpu
->cpreg_array_len
;
293 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
294 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
295 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
296 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
297 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
298 cpu
->cpreg_array_len
= 0;
300 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
302 assert(cpu
->cpreg_array_len
== arraylen
);
307 /* Return true if extended addresses are enabled.
308 * This is always the case if our translation regime is 64 bit,
309 * but depends on TTBCR.EAE for 32 bit.
311 static inline bool extended_addresses_enabled(CPUARMState
*env
)
313 return arm_el_is_aa64(env
, 1)
314 || ((arm_feature(env
, ARM_FEATURE_LPAE
)
315 && (env
->cp15
.c2_control
& (1U << 31))));
318 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
320 ARMCPU
*cpu
= arm_env_get_cpu(env
);
322 env
->cp15
.c3
= value
;
323 tlb_flush(CPU(cpu
), 1); /* Flush TLB as domain not tracked in TLB */
326 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
328 ARMCPU
*cpu
= arm_env_get_cpu(env
);
330 if (env
->cp15
.c13_fcse
!= value
) {
331 /* Unlike real hardware the qemu TLB uses virtual addresses,
332 * not modified virtual addresses, so this causes a TLB flush.
334 tlb_flush(CPU(cpu
), 1);
335 env
->cp15
.c13_fcse
= value
;
339 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
342 ARMCPU
*cpu
= arm_env_get_cpu(env
);
344 if (env
->cp15
.contextidr_el1
!= value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
345 && !extended_addresses_enabled(env
)) {
346 /* For VMSA (when not using the LPAE long descriptor page table
347 * format) this register includes the ASID, so do a TLB flush.
348 * For PMSA it is purely a process ID and no action is needed.
350 tlb_flush(CPU(cpu
), 1);
352 env
->cp15
.contextidr_el1
= value
;
355 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
358 /* Invalidate all (TLBIALL) */
359 ARMCPU
*cpu
= arm_env_get_cpu(env
);
361 tlb_flush(CPU(cpu
), 1);
364 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
367 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
368 ARMCPU
*cpu
= arm_env_get_cpu(env
);
370 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
373 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
376 /* Invalidate by ASID (TLBIASID) */
377 ARMCPU
*cpu
= arm_env_get_cpu(env
);
379 tlb_flush(CPU(cpu
), value
== 0);
382 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
385 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
386 ARMCPU
*cpu
= arm_env_get_cpu(env
);
388 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
391 static const ARMCPRegInfo cp_reginfo
[] = {
392 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
393 * version" bits will read as a reserved value, which should cause
394 * Linux to not try to use the debug hardware.
396 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
397 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
398 { .name
= "FCSEIDR", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 0,
399 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_fcse
),
400 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
401 { .name
= "CONTEXTIDR", .state
= ARM_CP_STATE_BOTH
,
402 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
404 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el1
),
405 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
409 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
410 /* NB: Some of these registers exist in v8 but with more precise
411 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
413 /* MMU Domain access control / MPU write buffer control */
414 { .name
= "DACR", .cp
= 15,
415 .crn
= 3, .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
416 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c3
),
417 .resetvalue
= 0, .writefn
= dacr_write
, .raw_writefn
= raw_write
, },
418 /* ??? This covers not just the impdef TLB lockdown registers but also
419 * some v7VMSA registers relating to TEX remap, so it is overly broad.
421 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= CP_ANY
,
422 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
423 /* MMU TLB control. Note that the wildcarding means we cover not just
424 * the unified TLB ops but also the dside/iside/inner-shareable variants.
426 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
427 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
428 .type
= ARM_CP_NO_MIGRATE
},
429 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
430 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
431 .type
= ARM_CP_NO_MIGRATE
},
432 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
433 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
434 .type
= ARM_CP_NO_MIGRATE
},
435 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
436 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
437 .type
= ARM_CP_NO_MIGRATE
},
438 /* Cache maintenance ops; some of this space may be overridden later. */
439 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
440 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
441 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
445 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
446 /* Not all pre-v6 cores implemented this WFI, so this is slightly
449 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
450 .access
= PL1_W
, .type
= ARM_CP_WFI
},
454 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
455 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
456 * is UNPREDICTABLE; we choose to NOP as most implementations do).
458 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
459 .access
= PL1_W
, .type
= ARM_CP_WFI
},
460 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
461 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
462 * OMAPCP will override this space.
464 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
465 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
467 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
468 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
470 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
471 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
472 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
477 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
480 if (env
->cp15
.c1_coproc
!= value
) {
481 env
->cp15
.c1_coproc
= value
;
482 /* ??? Is this safe when called from within a TB? */
487 static const ARMCPRegInfo v6_cp_reginfo
[] = {
488 /* prefetch by MVA in v6, NOP in v7 */
489 { .name
= "MVA_prefetch",
490 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
491 .access
= PL1_W
, .type
= ARM_CP_NOP
},
492 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
493 .access
= PL0_W
, .type
= ARM_CP_NOP
},
494 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
495 .access
= PL0_W
, .type
= ARM_CP_NOP
},
496 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
497 .access
= PL0_W
, .type
= ARM_CP_NOP
},
498 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
500 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.far_el1
),
502 /* Watchpoint Fault Address Register : should actually only be present
503 * for 1136, 1176, 11MPCore.
505 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
506 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
507 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
508 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2,
509 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_coproc
),
510 .resetvalue
= 0, .writefn
= cpacr_write
},
514 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
516 /* Performance monitor registers user accessibility is controlled
519 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
520 return CP_ACCESS_TRAP
;
525 #ifndef CONFIG_USER_ONLY
526 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
529 /* Don't computer the number of ticks in user mode */
532 temp_ticks
= qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
) *
533 get_ticks_per_sec() / 1000000;
535 if (env
->cp15
.c9_pmcr
& PMCRE
) {
536 /* If the counter is enabled */
537 if (env
->cp15
.c9_pmcr
& PMCRD
) {
538 /* Increment once every 64 processor clock cycles */
539 env
->cp15
.c15_ccnt
= (temp_ticks
/64) - env
->cp15
.c15_ccnt
;
541 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
546 /* The counter has been reset */
547 env
->cp15
.c15_ccnt
= 0;
550 /* only the DP, X, D and E bits are writable */
551 env
->cp15
.c9_pmcr
&= ~0x39;
552 env
->cp15
.c9_pmcr
|= (value
& 0x39);
554 if (env
->cp15
.c9_pmcr
& PMCRE
) {
555 if (env
->cp15
.c9_pmcr
& PMCRD
) {
556 /* Increment once every 64 processor clock cycles */
559 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
563 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
565 uint32_t total_ticks
;
567 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
568 /* Counter is disabled, do not change value */
569 return env
->cp15
.c15_ccnt
;
572 total_ticks
= qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
) *
573 get_ticks_per_sec() / 1000000;
575 if (env
->cp15
.c9_pmcr
& PMCRD
) {
576 /* Increment once every 64 processor clock cycles */
579 return total_ticks
- env
->cp15
.c15_ccnt
;
582 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
585 uint32_t total_ticks
;
587 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
588 /* Counter is disabled, set the absolute value */
589 env
->cp15
.c15_ccnt
= value
;
593 total_ticks
= qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
) *
594 get_ticks_per_sec() / 1000000;
596 if (env
->cp15
.c9_pmcr
& PMCRD
) {
597 /* Increment once every 64 processor clock cycles */
600 env
->cp15
.c15_ccnt
= total_ticks
- value
;
604 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
608 env
->cp15
.c9_pmcnten
|= value
;
611 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
615 env
->cp15
.c9_pmcnten
&= ~value
;
618 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
621 env
->cp15
.c9_pmovsr
&= ~value
;
624 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
627 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
630 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
633 env
->cp15
.c9_pmuserenr
= value
& 1;
636 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
639 /* We have no event counters so only the C bit can be changed */
641 env
->cp15
.c9_pminten
|= value
;
644 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
648 env
->cp15
.c9_pminten
&= ~value
;
651 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
654 /* Note that even though the AArch64 view of this register has bits
655 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
656 * architectural requirements for bits which are RES0 only in some
657 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
658 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
660 env
->cp15
.c12_vbar
= value
& ~0x1Ful
;
663 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
665 ARMCPU
*cpu
= arm_env_get_cpu(env
);
666 return cpu
->ccsidr
[env
->cp15
.c0_cssel
];
669 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
672 env
->cp15
.c0_cssel
= value
& 0xf;
675 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
677 CPUState
*cs
= ENV_GET_CPU(env
);
680 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
683 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
686 /* External aborts are not possible in QEMU so A bit is always clear */
690 static const ARMCPRegInfo v7_cp_reginfo
[] = {
691 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
694 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
695 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
696 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
697 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
698 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
699 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
700 .access
= PL1_W
, .type
= ARM_CP_NOP
},
701 /* Performance monitors are implementation defined in v7,
702 * but with an ARM recommended set of registers, which we
703 * follow (although we don't actually implement any counters)
705 * Performance registers fall into three categories:
706 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
707 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
708 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
709 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
710 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
712 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
713 .access
= PL0_RW
, .resetvalue
= 0,
714 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
715 .writefn
= pmcntenset_write
,
716 .accessfn
= pmreg_access
,
717 .raw_writefn
= raw_write
},
718 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
719 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
720 .accessfn
= pmreg_access
,
721 .writefn
= pmcntenclr_write
,
722 .type
= ARM_CP_NO_MIGRATE
},
723 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
724 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
725 .accessfn
= pmreg_access
,
726 .writefn
= pmovsr_write
,
727 .raw_writefn
= raw_write
},
728 /* Unimplemented so WI. */
729 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
730 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
731 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
732 * We choose to RAZ/WI.
734 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
735 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
736 .accessfn
= pmreg_access
},
737 #ifndef CONFIG_USER_ONLY
738 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
739 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
740 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
,
741 .accessfn
= pmreg_access
},
743 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
745 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
746 .accessfn
= pmreg_access
, .writefn
= pmxevtyper_write
,
747 .raw_writefn
= raw_write
},
748 /* Unimplemented, RAZ/WI. */
749 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
750 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
751 .accessfn
= pmreg_access
},
752 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
753 .access
= PL0_R
| PL1_RW
,
754 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
756 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
757 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
759 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
761 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
762 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
763 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
764 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
765 .resetvalue
= 0, .writefn
= pmintenclr_write
, },
766 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
767 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
768 .access
= PL1_RW
, .writefn
= vbar_write
,
769 .fieldoffset
= offsetof(CPUARMState
, cp15
.c12_vbar
),
771 { .name
= "SCR", .cp
= 15, .crn
= 1, .crm
= 1, .opc1
= 0, .opc2
= 0,
772 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_scr
),
774 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
775 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
776 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_MIGRATE
},
777 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
778 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
779 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cssel
),
780 .writefn
= csselr_write
, .resetvalue
= 0 },
781 /* Auxiliary ID register: this actually has an IMPDEF value but for now
782 * just RAZ for all cores:
784 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
785 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
786 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
787 /* Auxiliary fault status registers: these also are IMPDEF, and we
788 * choose to RAZ/WI for all cores.
790 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
791 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
792 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
793 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
794 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
795 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
796 /* MAIR can just read-as-written because we don't implement caches
797 * and so don't need to care about memory attributes.
799 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
800 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
801 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el1
),
803 /* For non-long-descriptor page tables these are PRRR and NMRR;
804 * regardless they still act as reads-as-written for QEMU.
805 * The override is necessary because of the overly-broad TLB_LOCKDOWN
808 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
, .type
= ARM_CP_OVERRIDE
,
809 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
810 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.mair_el1
),
811 .resetfn
= arm_cp_reset_ignore
},
812 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
, .type
= ARM_CP_OVERRIDE
,
813 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
814 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el1
),
815 .resetfn
= arm_cp_reset_ignore
},
816 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
817 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
818 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_R
, .readfn
= isr_read
},
822 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
829 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
831 if (arm_current_pl(env
) == 0 && (env
->teecr
& 1)) {
832 return CP_ACCESS_TRAP
;
837 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
838 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
839 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
841 .writefn
= teecr_write
},
842 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
843 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
844 .accessfn
= teehbr_access
, .resetvalue
= 0 },
848 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
849 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
850 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
852 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el0
), .resetvalue
= 0 },
853 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
855 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.tpidr_el0
),
856 .resetfn
= arm_cp_reset_ignore
},
857 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
858 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
859 .access
= PL0_R
|PL1_W
,
860 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el0
), .resetvalue
= 0 },
861 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
862 .access
= PL0_R
|PL1_W
,
863 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.tpidrro_el0
),
864 .resetfn
= arm_cp_reset_ignore
},
865 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
866 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
868 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el1
), .resetvalue
= 0 },
872 #ifndef CONFIG_USER_ONLY
874 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
876 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
877 if (arm_current_pl(env
) == 0 && !extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
878 return CP_ACCESS_TRAP
;
883 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
)
885 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
886 if (arm_current_pl(env
) == 0 &&
887 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
888 return CP_ACCESS_TRAP
;
893 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
)
895 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
896 * EL0[PV]TEN is zero.
898 if (arm_current_pl(env
) == 0 &&
899 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
900 return CP_ACCESS_TRAP
;
905 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
906 const ARMCPRegInfo
*ri
)
908 return gt_counter_access(env
, GTIMER_PHYS
);
911 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
912 const ARMCPRegInfo
*ri
)
914 return gt_counter_access(env
, GTIMER_VIRT
);
917 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
919 return gt_timer_access(env
, GTIMER_PHYS
);
922 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
924 return gt_timer_access(env
, GTIMER_VIRT
);
927 static uint64_t gt_get_countervalue(CPUARMState
*env
)
929 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
932 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
934 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
937 /* Timer enabled: calculate and set current ISTATUS, irq, and
938 * reset timer to when ISTATUS next has to change
940 uint64_t count
= gt_get_countervalue(&cpu
->env
);
941 /* Note that this must be unsigned 64 bit arithmetic: */
942 int istatus
= count
>= gt
->cval
;
945 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
946 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
947 (istatus
&& !(gt
->ctl
& 2)));
949 /* Next transition is when count rolls back over to zero */
950 nexttick
= UINT64_MAX
;
952 /* Next transition is when we hit cval */
955 /* Note that the desired next expiry time might be beyond the
956 * signed-64-bit range of a QEMUTimer -- in this case we just
957 * set the timer for as far in the future as possible. When the
958 * timer expires we will reset the timer for any remaining period.
960 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
961 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
963 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
965 /* Timer disabled: ISTATUS and timer output always clear */
967 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
968 timer_del(cpu
->gt_timer
[timeridx
]);
972 static void gt_cnt_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
974 ARMCPU
*cpu
= arm_env_get_cpu(env
);
975 int timeridx
= ri
->opc1
& 1;
977 timer_del(cpu
->gt_timer
[timeridx
]);
980 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
982 return gt_get_countervalue(env
);
985 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
988 int timeridx
= ri
->opc1
& 1;
990 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
991 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
994 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
996 int timeridx
= ri
->crm
& 1;
998 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
999 gt_get_countervalue(env
));
1002 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1005 int timeridx
= ri
->crm
& 1;
1007 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) +
1008 + sextract64(value
, 0, 32);
1009 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1012 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1015 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1016 int timeridx
= ri
->crm
& 1;
1017 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1019 env
->cp15
.c14_timer
[timeridx
].ctl
= value
& 3;
1020 if ((oldval
^ value
) & 1) {
1021 /* Enable toggled */
1022 gt_recalc_timer(cpu
, timeridx
);
1023 } else if ((oldval
& value
) & 2) {
1024 /* IMASK toggled: don't need to recalculate,
1025 * just set the interrupt line based on ISTATUS
1027 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1028 (oldval
& 4) && (value
& 2));
1032 void arm_gt_ptimer_cb(void *opaque
)
1034 ARMCPU
*cpu
= opaque
;
1036 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1039 void arm_gt_vtimer_cb(void *opaque
)
1041 ARMCPU
*cpu
= opaque
;
1043 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1046 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1047 /* Note that CNTFRQ is purely reads-as-written for the benefit
1048 * of software; writing it doesn't actually change the timer frequency.
1049 * Our reset value matches the fixed frequency we implement the timer at.
1051 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1052 .type
= ARM_CP_NO_MIGRATE
,
1053 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1054 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1055 .resetfn
= arm_cp_reset_ignore
,
1057 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1058 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1059 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1060 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1061 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1063 /* overall control: mostly access permissions */
1064 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1065 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1067 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1070 /* per-timer control */
1071 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1072 .type
= ARM_CP_IO
| ARM_CP_NO_MIGRATE
, .access
= PL1_RW
| PL0_R
,
1073 .accessfn
= gt_ptimer_access
,
1074 .fieldoffset
= offsetoflow32(CPUARMState
,
1075 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1076 .resetfn
= arm_cp_reset_ignore
,
1077 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1079 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1080 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1081 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1082 .accessfn
= gt_ptimer_access
,
1083 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1085 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1087 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1088 .type
= ARM_CP_IO
| ARM_CP_NO_MIGRATE
, .access
= PL1_RW
| PL0_R
,
1089 .accessfn
= gt_vtimer_access
,
1090 .fieldoffset
= offsetoflow32(CPUARMState
,
1091 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1092 .resetfn
= arm_cp_reset_ignore
,
1093 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1095 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1096 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1097 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1098 .accessfn
= gt_vtimer_access
,
1099 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1101 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1103 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1104 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1105 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1106 .accessfn
= gt_ptimer_access
,
1107 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1109 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1110 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1111 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1112 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1114 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1115 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1116 .accessfn
= gt_vtimer_access
,
1117 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1119 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1120 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1121 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1122 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1124 /* The counter itself */
1125 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1126 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1127 .accessfn
= gt_pct_access
,
1128 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1130 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1131 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1132 .access
= PL0_R
, .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1133 .accessfn
= gt_pct_access
,
1134 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
1136 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1137 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1138 .accessfn
= gt_vct_access
,
1139 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1141 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1142 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1143 .access
= PL0_R
, .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1144 .accessfn
= gt_vct_access
,
1145 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
1147 /* Comparison value, indicating when the timer goes off */
1148 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1149 .access
= PL1_RW
| PL0_R
,
1150 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_MIGRATE
,
1151 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1152 .accessfn
= gt_ptimer_access
, .resetfn
= arm_cp_reset_ignore
,
1153 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1155 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1156 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1157 .access
= PL1_RW
| PL0_R
,
1159 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1160 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1161 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1163 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1164 .access
= PL1_RW
| PL0_R
,
1165 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_MIGRATE
,
1166 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1167 .accessfn
= gt_vtimer_access
, .resetfn
= arm_cp_reset_ignore
,
1168 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1170 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1171 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1172 .access
= PL1_RW
| PL0_R
,
1174 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1175 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1176 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1182 /* In user-mode none of the generic timer registers are accessible,
1183 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1184 * so instead just don't register any of them.
1186 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1192 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1194 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1195 env
->cp15
.par_el1
= value
;
1196 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1197 env
->cp15
.par_el1
= value
& 0xfffff6ff;
1199 env
->cp15
.par_el1
= value
& 0xfffff1ff;
1203 #ifndef CONFIG_USER_ONLY
1204 /* get_phys_addr() isn't present for user-mode-only targets */
1206 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1209 /* Other states are only available with TrustZone; in
1210 * a non-TZ implementation these registers don't exist
1211 * at all, which is an Uncategorized trap. This underdecoding
1212 * is safe because the reginfo is NO_MIGRATE.
1214 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1216 return CP_ACCESS_OK
;
1219 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1222 target_ulong page_size
;
1224 int ret
, is_user
= ri
->opc2
& 2;
1225 int access_type
= ri
->opc2
& 1;
1227 ret
= get_phys_addr(env
, value
, access_type
, is_user
,
1228 &phys_addr
, &prot
, &page_size
);
1229 if (extended_addresses_enabled(env
)) {
1230 /* ret is a DFSR/IFSR value for the long descriptor
1231 * translation table format, but with WnR always clear.
1232 * Convert it to a 64-bit PAR.
1234 uint64_t par64
= (1 << 11); /* LPAE bit always set */
1236 par64
|= phys_addr
& ~0xfffULL
;
1237 /* We don't set the ATTR or SH fields in the PAR. */
1240 par64
|= (ret
& 0x3f) << 1; /* FS */
1241 /* Note that S2WLK and FSTAGE are always zero, because we don't
1242 * implement virtualization and therefore there can't be a stage 2
1246 env
->cp15
.par_el1
= par64
;
1248 /* ret is a DFSR/IFSR value for the short descriptor
1249 * translation table format (with WnR always clear).
1250 * Convert it to a 32-bit PAR.
1253 /* We do not set any attribute bits in the PAR */
1254 if (page_size
== (1 << 24)
1255 && arm_feature(env
, ARM_FEATURE_V7
)) {
1256 env
->cp15
.par_el1
= (phys_addr
& 0xff000000) | 1 << 1;
1258 env
->cp15
.par_el1
= phys_addr
& 0xfffff000;
1261 env
->cp15
.par_el1
= ((ret
& (1 << 10)) >> 5) |
1262 ((ret
& (1 << 12)) >> 6) |
1263 ((ret
& 0xf) << 1) | 1;
1269 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
1270 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
1271 .access
= PL1_RW
, .resetvalue
= 0,
1272 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.par_el1
),
1273 .writefn
= par_write
},
1274 #ifndef CONFIG_USER_ONLY
1275 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
1276 .access
= PL1_W
, .accessfn
= ats_access
,
1277 .writefn
= ats_write
, .type
= ARM_CP_NO_MIGRATE
},
1282 /* Return basic MPU access permission bits. */
1283 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1290 for (i
= 0; i
< 16; i
+= 2) {
1291 ret
|= (val
>> i
) & mask
;
1297 /* Pad basic MPU access permission bits to extended format. */
1298 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1305 for (i
= 0; i
< 16; i
+= 2) {
1306 ret
|= (val
& mask
) << i
;
1312 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1315 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
1318 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1320 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
1323 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1326 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
1329 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1331 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
1334 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
1335 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1336 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1337 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
1339 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
1340 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1341 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1342 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
1344 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
1345 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
1347 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
1349 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
1351 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
1353 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1355 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
1356 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1358 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
1359 /* Protection region base and size registers */
1360 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
1361 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1362 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
1363 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
1364 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1365 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
1366 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
1367 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1368 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
1369 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
1370 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1371 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
1372 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
1373 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1374 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
1375 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
1376 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1377 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
1378 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
1379 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1380 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
1381 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
1382 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1383 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
1387 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1390 int maskshift
= extract32(value
, 0, 3);
1392 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& (1 << 31))) {
1393 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
1397 /* Note that we always calculate c2_mask and c2_base_mask, but
1398 * they are only used for short-descriptor tables (ie if EAE is 0);
1399 * for long-descriptor tables the TTBCR fields are used differently
1400 * and the c2_mask and c2_base_mask values are meaningless.
1402 env
->cp15
.c2_control
= value
;
1403 env
->cp15
.c2_mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
1404 env
->cp15
.c2_base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
1407 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1410 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1412 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1413 /* With LPAE the TTBCR could result in a change of ASID
1414 * via the TTBCR.A1 bit, so do a TLB flush.
1416 tlb_flush(CPU(cpu
), 1);
1418 vmsa_ttbcr_raw_write(env
, ri
, value
);
1421 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1423 env
->cp15
.c2_base_mask
= 0xffffc000u
;
1424 env
->cp15
.c2_control
= 0;
1425 env
->cp15
.c2_mask
= 0;
1428 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1431 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1433 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1434 tlb_flush(CPU(cpu
), 1);
1435 env
->cp15
.c2_control
= value
;
1438 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1441 /* 64 bit accesses to the TTBRs can change the ASID and so we
1442 * must flush the TLB.
1444 if (cpreg_field_is_64bit(ri
)) {
1445 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1447 tlb_flush(CPU(cpu
), 1);
1449 raw_write(env
, ri
, value
);
1452 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
1453 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1454 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1455 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el1
),
1456 .resetfn
= arm_cp_reset_ignore
, },
1457 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1459 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr_el2
), .resetvalue
= 0, },
1460 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
1461 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
1463 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el1
), .resetvalue
= 0, },
1464 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1465 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1466 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el1
),
1467 .writefn
= vmsa_ttbr_write
, .resetvalue
= 0 },
1468 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1469 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1470 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr1_el1
),
1471 .writefn
= vmsa_ttbr_write
, .resetvalue
= 0 },
1472 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
1473 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1474 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
1475 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
1476 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_control
) },
1477 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1478 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= vmsa_ttbcr_write
,
1479 .resetfn
= arm_cp_reset_ignore
, .raw_writefn
= vmsa_ttbcr_raw_write
,
1480 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c2_control
) },
1481 /* 64-bit FAR; this entry also gives us the AArch32 DFAR */
1482 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_BOTH
,
1483 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
1484 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el1
),
1489 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1492 env
->cp15
.c15_ticonfig
= value
& 0xe7;
1493 /* The OS_TYPE bit in this register changes the reported CPUID! */
1494 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
1495 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1498 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1501 env
->cp15
.c15_threadid
= value
& 0xffff;
1504 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1507 /* Wait-for-interrupt (deprecated) */
1508 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
1511 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1514 /* On OMAP there are registers indicating the max/min index of dcache lines
1515 * containing a dirty line; cache flush operations have to reset these.
1517 env
->cp15
.c15_i_max
= 0x000;
1518 env
->cp15
.c15_i_min
= 0xff0;
1521 static const ARMCPRegInfo omap_cp_reginfo
[] = {
1522 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
1523 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
1524 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el1
),
1526 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1527 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1528 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1530 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
1531 .writefn
= omap_ticonfig_write
},
1532 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
1534 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
1535 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
1536 .access
= PL1_RW
, .resetvalue
= 0xff0,
1537 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
1538 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
1540 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
1541 .writefn
= omap_threadid_write
},
1542 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
1543 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1544 .type
= ARM_CP_NO_MIGRATE
,
1545 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
1546 /* TODO: Peripheral port remap register:
1547 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1548 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1551 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
1552 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
1553 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
,
1554 .writefn
= omap_cachemaint_write
},
1555 { .name
= "C9", .cp
= 15, .crn
= 9,
1556 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
1557 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
1561 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1565 if (env
->cp15
.c15_cpar
!= value
) {
1566 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1568 env
->cp15
.c15_cpar
= value
;
1572 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
1573 { .name
= "XSCALE_CPAR",
1574 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1575 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
1576 .writefn
= xscale_cpar_write
, },
1577 { .name
= "XSCALE_AUXCR",
1578 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
1579 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
1584 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
1585 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1586 * implementation of this implementation-defined space.
1587 * Ideally this should eventually disappear in favour of actually
1588 * implementing the correct behaviour for all cores.
1590 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
1591 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1593 .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
| ARM_CP_OVERRIDE
,
1598 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
1599 /* Cache status: RAZ because we have no cache so it's always clean */
1600 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
1601 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1606 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
1607 /* We never have a a block transfer operation in progress */
1608 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
1609 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1611 /* The cache ops themselves: these all NOP for QEMU */
1612 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
1613 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1614 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
1615 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1616 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
1617 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1618 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
1619 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1620 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
1621 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1622 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
1623 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1627 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
1628 /* The cache test-and-clean instructions always return (1 << 30)
1629 * to indicate that there are no dirty cache lines.
1631 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
1632 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1633 .resetvalue
= (1 << 30) },
1634 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
1635 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1636 .resetvalue
= (1 << 30) },
1640 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
1641 /* Ignore ReadBuffer accesses */
1642 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
1643 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1644 .access
= PL1_RW
, .resetvalue
= 0,
1645 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
},
1649 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1651 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
1652 uint32_t mpidr
= cs
->cpu_index
;
1653 /* We don't support setting cluster ID ([8..11]) (known as Aff1
1654 * in later ARM ARM versions), or any of the higher affinity level fields,
1655 * so these bits always RAZ.
1657 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
1658 mpidr
|= (1U << 31);
1659 /* Cores which are uniprocessor (non-coherent)
1660 * but still implement the MP extensions set
1661 * bit 30. (For instance, A9UP.) However we do
1662 * not currently model any of those cores.
1668 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
1669 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
1670 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
1671 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_MIGRATE
},
1675 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
1676 /* NOP AMAIR0/1: the override is because these clash with the rather
1677 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1679 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
1680 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
1681 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1683 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
1684 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
1685 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1687 /* 64 bit access versions of the (dummy) debug registers */
1688 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
1689 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
1690 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
1691 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
1692 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
1693 .access
= PL1_RW
, .type
= ARM_CP_64BIT
,
1694 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el1
), .resetvalue
= 0 },
1695 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
1696 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
,
1697 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el1
),
1698 .writefn
= vmsa_ttbr_write
, .resetfn
= arm_cp_reset_ignore
},
1699 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
1700 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
,
1701 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr1_el1
),
1702 .writefn
= vmsa_ttbr_write
, .resetfn
= arm_cp_reset_ignore
},
1706 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1708 return vfp_get_fpcr(env
);
1711 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1714 vfp_set_fpcr(env
, value
);
1717 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1719 return vfp_get_fpsr(env
);
1722 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1725 vfp_set_fpsr(env
, value
);
1728 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1730 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_UMA
)) {
1731 return CP_ACCESS_TRAP
;
1733 return CP_ACCESS_OK
;
1736 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1739 env
->daif
= value
& PSTATE_DAIF
;
1742 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
1743 const ARMCPRegInfo
*ri
)
1745 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
1746 * SCTLR_EL1.UCI is set.
1748 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_UCI
)) {
1749 return CP_ACCESS_TRAP
;
1751 return CP_ACCESS_OK
;
1754 static void tlbi_aa64_va_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1757 /* Invalidate by VA (AArch64 version) */
1758 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1759 uint64_t pageaddr
= value
<< 12;
1760 tlb_flush_page(CPU(cpu
), pageaddr
);
1763 static void tlbi_aa64_vaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1766 /* Invalidate by VA, all ASIDs (AArch64 version) */
1767 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1768 uint64_t pageaddr
= value
<< 12;
1769 tlb_flush_page(CPU(cpu
), pageaddr
);
1772 static void tlbi_aa64_asid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1775 /* Invalidate by ASID (AArch64 version) */
1776 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1777 int asid
= extract64(value
, 48, 16);
1778 tlb_flush(CPU(cpu
), asid
== 0);
1781 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1783 /* We don't implement EL2, so the only control on DC ZVA is the
1784 * bit in the SCTLR which can prohibit access for EL0.
1786 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_DZE
)) {
1787 return CP_ACCESS_TRAP
;
1789 return CP_ACCESS_OK
;
1792 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1794 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1795 int dzp_bit
= 1 << 4;
1797 /* DZP indicates whether DC ZVA access is allowed */
1798 if (aa64_zva_access(env
, NULL
) != CP_ACCESS_OK
) {
1801 return cpu
->dcz_blocksize
| dzp_bit
;
1804 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1806 if (!env
->pstate
& PSTATE_SP
) {
1807 /* Access to SP_EL0 is undefined if it's being used as
1808 * the stack pointer.
1810 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1812 return CP_ACCESS_OK
;
1815 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1817 return env
->pstate
& PSTATE_SP
;
1820 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
1822 update_spsel(env
, val
);
1825 static const ARMCPRegInfo v8_cp_reginfo
[] = {
1826 /* Minimal set of EL0-visible registers. This will need to be expanded
1827 * significantly for system emulation of AArch64 CPUs.
1829 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
1830 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
1831 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
1832 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
1833 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
1834 .type
= ARM_CP_NO_MIGRATE
,
1835 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
1836 .fieldoffset
= offsetof(CPUARMState
, daif
),
1837 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
1838 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
1839 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
1840 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
1841 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
1842 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
1843 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
1844 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
1845 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
1846 .access
= PL0_R
, .type
= ARM_CP_NO_MIGRATE
,
1847 .readfn
= aa64_dczid_read
},
1848 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
1849 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
1850 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
1851 #ifndef CONFIG_USER_ONLY
1852 /* Avoid overhead of an access check that always passes in user-mode */
1853 .accessfn
= aa64_zva_access
,
1856 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
1857 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
1858 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
1859 /* Cache ops: all NOPs since we don't emulate caches */
1860 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
1861 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
1862 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1863 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
1864 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
1865 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1866 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
1867 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
1868 .access
= PL0_W
, .type
= ARM_CP_NOP
,
1869 .accessfn
= aa64_cacheop_access
},
1870 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
1871 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
1872 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1873 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
1874 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
1875 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1876 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
1877 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
1878 .access
= PL0_W
, .type
= ARM_CP_NOP
,
1879 .accessfn
= aa64_cacheop_access
},
1880 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
1881 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
1882 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1883 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
1884 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
1885 .access
= PL0_W
, .type
= ARM_CP_NOP
,
1886 .accessfn
= aa64_cacheop_access
},
1887 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
1888 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
1889 .access
= PL0_W
, .type
= ARM_CP_NOP
,
1890 .accessfn
= aa64_cacheop_access
},
1891 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
1892 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
1893 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1894 /* TLBI operations */
1895 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
1896 .opc0
= 1, .opc2
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1897 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1898 .writefn
= tlbiall_write
},
1899 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
1900 .opc0
= 1, .opc2
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1901 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1902 .writefn
= tlbi_aa64_va_write
},
1903 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
1904 .opc0
= 1, .opc2
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1905 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1906 .writefn
= tlbi_aa64_asid_write
},
1907 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
1908 .opc0
= 1, .opc2
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1909 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1910 .writefn
= tlbi_aa64_vaa_write
},
1911 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
1912 .opc0
= 1, .opc2
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
1913 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1914 .writefn
= tlbi_aa64_va_write
},
1915 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
1916 .opc0
= 1, .opc2
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
1917 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1918 .writefn
= tlbi_aa64_vaa_write
},
1919 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
1920 .opc0
= 1, .opc2
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1921 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1922 .writefn
= tlbiall_write
},
1923 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
1924 .opc0
= 1, .opc2
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1925 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1926 .writefn
= tlbi_aa64_va_write
},
1927 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
1928 .opc0
= 1, .opc2
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1929 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1930 .writefn
= tlbi_aa64_asid_write
},
1931 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
1932 .opc0
= 1, .opc2
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1933 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1934 .writefn
= tlbi_aa64_vaa_write
},
1935 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
1936 .opc0
= 1, .opc2
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
1937 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1938 .writefn
= tlbi_aa64_va_write
},
1939 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
1940 .opc0
= 1, .opc2
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
1941 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1942 .writefn
= tlbi_aa64_vaa_write
},
1943 #ifndef CONFIG_USER_ONLY
1944 /* 64 bit address translation operations */
1945 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
1946 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
1947 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
1948 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
1949 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
1950 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
1951 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
1952 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
1953 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
1954 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
1955 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
1956 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
1958 /* 32 bit TLB invalidates, Inner Shareable */
1959 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1960 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1961 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1962 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1963 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1964 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1965 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1966 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1967 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
1968 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1969 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
1970 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1971 /* 32 bit ITLB invalidates */
1972 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
1973 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1974 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
1975 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1976 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
1977 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1978 /* 32 bit DTLB invalidates */
1979 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
1980 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1981 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
1982 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1983 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
1984 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1985 /* 32 bit TLB invalidates */
1986 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1987 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1988 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1989 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1990 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1991 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1992 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1993 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1994 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
1995 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1996 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
1997 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1998 /* 32 bit cache operations */
1999 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
2000 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2001 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
2002 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2003 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
2004 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2005 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
2006 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2007 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
2008 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2009 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
2010 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2011 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
2012 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2013 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
2014 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2015 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
2016 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2017 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
2018 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2019 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
2020 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2021 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
2022 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2023 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
2024 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2025 /* MMU Domain access control / MPU write buffer control */
2026 { .name
= "DACR", .cp
= 15,
2027 .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
2028 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c3
),
2029 .resetvalue
= 0, .writefn
= dacr_write
, .raw_writefn
= raw_write
, },
2030 /* Dummy implementation of monitor debug system control register:
2031 * we don't support debug.
2033 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_AA64
,
2034 .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
2035 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2036 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2037 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_AA64
,
2038 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
2039 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2040 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
2041 .type
= ARM_CP_NO_MIGRATE
,
2042 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
2043 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, elr_el1
) },
2044 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
2045 .type
= ARM_CP_NO_MIGRATE
,
2046 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
2047 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[0]) },
2048 /* We rely on the access checks not allowing the guest to write to the
2049 * state field when SPSel indicates that it's being used as the stack
2052 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
2053 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
2054 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
2055 .type
= ARM_CP_NO_MIGRATE
,
2056 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
2057 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
2058 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
2059 .type
= ARM_CP_NO_MIGRATE
,
2060 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
2064 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2067 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2069 env
->cp15
.c1_sys
= value
;
2070 /* ??? Lots of these bits are not implemented. */
2071 /* This may enable/disable the MMU, so do a TLB flush. */
2072 tlb_flush(CPU(cpu
), 1);
2075 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2077 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
2078 * but the AArch32 CTR has its own reginfo struct)
2080 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_UCT
)) {
2081 return CP_ACCESS_TRAP
;
2083 return CP_ACCESS_OK
;
2086 static void define_aarch64_debug_regs(ARMCPU
*cpu
)
2088 /* Define breakpoint and watchpoint registers. These do nothing
2089 * but read as written, for now.
2093 for (i
= 0; i
< 16; i
++) {
2094 ARMCPRegInfo dbgregs
[] = {
2095 { .name
= "DBGBVR", .state
= ARM_CP_STATE_AA64
,
2096 .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
2098 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]) },
2099 { .name
= "DBGBCR", .state
= ARM_CP_STATE_AA64
,
2100 .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
2102 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]) },
2103 { .name
= "DBGWVR", .state
= ARM_CP_STATE_AA64
,
2104 .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
2106 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]) },
2107 { .name
= "DBGWCR", .state
= ARM_CP_STATE_AA64
,
2108 .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
2110 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]) },
2113 define_arm_cp_regs(cpu
, dbgregs
);
2117 void register_cp_regs_for_features(ARMCPU
*cpu
)
2119 /* Register all the coprocessor registers based on feature bits */
2120 CPUARMState
*env
= &cpu
->env
;
2121 if (arm_feature(env
, ARM_FEATURE_M
)) {
2122 /* M profile has no coprocessor registers */
2126 define_arm_cp_regs(cpu
, cp_reginfo
);
2127 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2128 /* Must go early as it is full of wildcards that may be
2129 * overridden by later definitions.
2131 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
2134 if (arm_feature(env
, ARM_FEATURE_V6
)) {
2135 /* The ID registers all have impdef reset values */
2136 ARMCPRegInfo v6_idregs
[] = {
2137 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
2138 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
2139 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2140 .resetvalue
= cpu
->id_pfr0
},
2141 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
2142 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
2143 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2144 .resetvalue
= cpu
->id_pfr1
},
2145 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
2146 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
2147 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2148 .resetvalue
= cpu
->id_dfr0
},
2149 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
2150 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
2151 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2152 .resetvalue
= cpu
->id_afr0
},
2153 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
2154 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
2155 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2156 .resetvalue
= cpu
->id_mmfr0
},
2157 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
2158 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
2159 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2160 .resetvalue
= cpu
->id_mmfr1
},
2161 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
2162 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
2163 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2164 .resetvalue
= cpu
->id_mmfr2
},
2165 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
2166 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
2167 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2168 .resetvalue
= cpu
->id_mmfr3
},
2169 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
2170 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
2171 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2172 .resetvalue
= cpu
->id_isar0
},
2173 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
2174 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
2175 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2176 .resetvalue
= cpu
->id_isar1
},
2177 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
2178 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
2179 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2180 .resetvalue
= cpu
->id_isar2
},
2181 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
2182 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
2183 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2184 .resetvalue
= cpu
->id_isar3
},
2185 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
2186 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
2187 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2188 .resetvalue
= cpu
->id_isar4
},
2189 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
2190 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
2191 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2192 .resetvalue
= cpu
->id_isar5
},
2193 /* 6..7 are as yet unallocated and must RAZ */
2194 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
2195 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
2197 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
2198 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
2202 define_arm_cp_regs(cpu
, v6_idregs
);
2203 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
2205 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
2207 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
2208 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
2210 if (arm_feature(env
, ARM_FEATURE_V7
)) {
2211 /* v7 performance monitor control register: same implementor
2212 * field as main ID register, and we implement only the cycle
2215 #ifndef CONFIG_USER_ONLY
2216 ARMCPRegInfo pmcr
= {
2217 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
2218 .access
= PL0_RW
, .resetvalue
= cpu
->midr
& 0xff000000,
2220 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
2221 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
2222 .raw_writefn
= raw_write
,
2224 define_one_arm_cp_reg(cpu
, &pmcr
);
2226 ARMCPRegInfo clidr
= {
2227 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
2228 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
2229 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
2231 define_one_arm_cp_reg(cpu
, &clidr
);
2232 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
2234 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
2236 if (arm_feature(env
, ARM_FEATURE_V8
)) {
2237 /* AArch64 ID registers, which all have impdef reset values */
2238 ARMCPRegInfo v8_idregs
[] = {
2239 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2240 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
2241 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2242 .resetvalue
= cpu
->id_aa64pfr0
},
2243 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2244 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
2245 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2246 .resetvalue
= cpu
->id_aa64pfr1
},
2247 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2248 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
2249 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2250 /* We mask out the PMUVer field, beacuse we don't currently
2251 * implement the PMU. Not advertising it prevents the guest
2252 * from trying to use it and getting UNDEFs on registers we
2255 .resetvalue
= cpu
->id_aa64dfr0
& ~0xf00 },
2256 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2257 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
2258 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2259 .resetvalue
= cpu
->id_aa64dfr1
},
2260 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2261 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
2262 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2263 .resetvalue
= cpu
->id_aa64afr0
},
2264 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2265 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
2266 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2267 .resetvalue
= cpu
->id_aa64afr1
},
2268 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
2269 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
2270 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2271 .resetvalue
= cpu
->id_aa64isar0
},
2272 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
2273 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
2274 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2275 .resetvalue
= cpu
->id_aa64isar1
},
2276 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2277 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
2278 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2279 .resetvalue
= cpu
->id_aa64mmfr0
},
2280 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2281 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
2282 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2283 .resetvalue
= cpu
->id_aa64mmfr1
},
2284 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2285 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
2286 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2287 .resetvalue
= cpu
->mvfr0
},
2288 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2289 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
2290 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2291 .resetvalue
= cpu
->mvfr1
},
2292 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
2293 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
2294 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2295 .resetvalue
= cpu
->mvfr2
},
2298 ARMCPRegInfo rvbar
= {
2299 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
2300 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 2,
2301 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
2303 define_one_arm_cp_reg(cpu
, &rvbar
);
2304 define_arm_cp_regs(cpu
, v8_idregs
);
2305 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
2306 define_aarch64_debug_regs(cpu
);
2308 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
2309 /* These are the MPU registers prior to PMSAv6. Any new
2310 * PMSA core later than the ARM946 will require that we
2311 * implement the PMSAv6 or PMSAv7 registers, which are
2312 * completely different.
2314 assert(!arm_feature(env
, ARM_FEATURE_V6
));
2315 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
2317 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
2319 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
2320 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
2322 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
2323 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
2325 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
2326 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
2328 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
2329 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
2331 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
2332 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
2334 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
2335 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
2337 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
2338 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
2340 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
2341 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
2343 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
2344 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
2346 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
2347 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
2349 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2350 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
2352 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
2353 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
2354 * be read-only (ie write causes UNDEF exception).
2357 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
2358 /* Pre-v8 MIDR space.
2359 * Note that the MIDR isn't a simple constant register because
2360 * of the TI925 behaviour where writes to another register can
2361 * cause the MIDR value to change.
2363 * Unimplemented registers in the c15 0 0 0 space default to
2364 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
2365 * and friends override accordingly.
2368 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
2369 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
2370 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
2371 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
2372 .type
= ARM_CP_OVERRIDE
},
2373 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
2375 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
2376 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2378 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
2379 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2381 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
2382 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2384 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
2385 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2387 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
2388 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2391 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
2392 /* v8 MIDR -- the wildcard isn't necessary, and nor is the
2393 * variable-MIDR TI925 behaviour. Instead we have a single
2394 * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
2396 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
2397 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
2398 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
},
2399 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
2400 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
2401 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
},
2404 ARMCPRegInfo id_cp_reginfo
[] = {
2405 /* These are common to v8 and pre-v8 */
2407 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
2408 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
2409 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
2410 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
2411 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
2412 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
2413 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
2415 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
2416 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2418 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
2419 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2422 ARMCPRegInfo crn0_wi_reginfo
= {
2423 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
2424 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
2425 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
2427 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
2428 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
2430 /* Register the blanket "writes ignored" value first to cover the
2431 * whole space. Then update the specific ID registers to allow write
2432 * access, so that they ignore writes rather than causing them to
2435 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
2436 for (r
= id_pre_v8_midr_cp_reginfo
;
2437 r
->type
!= ARM_CP_SENTINEL
; r
++) {
2440 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
2444 if (arm_feature(env
, ARM_FEATURE_V8
)) {
2445 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
2447 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
2449 define_arm_cp_regs(cpu
, id_cp_reginfo
);
2452 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
2453 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
2456 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
2457 ARMCPRegInfo auxcr
= {
2458 .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
2459 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
2460 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2461 .resetvalue
= cpu
->reset_auxcr
2463 define_one_arm_cp_reg(cpu
, &auxcr
);
2466 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
2467 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
2468 /* 32 bit view is [31:18] 0...0 [43:32]. */
2469 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
2470 | extract64(cpu
->reset_cbar
, 32, 12);
2471 ARMCPRegInfo cbar_reginfo
[] = {
2473 .type
= ARM_CP_CONST
,
2474 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
2475 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
2476 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
2477 .type
= ARM_CP_CONST
,
2478 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
2479 .access
= PL1_R
, .resetvalue
= cbar32
},
2482 /* We don't implement a r/w 64 bit CBAR currently */
2483 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
2484 define_arm_cp_regs(cpu
, cbar_reginfo
);
2486 ARMCPRegInfo cbar
= {
2488 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
2489 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
2490 .fieldoffset
= offsetof(CPUARMState
,
2491 cp15
.c15_config_base_address
)
2493 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
2494 cbar
.access
= PL1_R
;
2495 cbar
.fieldoffset
= 0;
2496 cbar
.type
= ARM_CP_CONST
;
2498 define_one_arm_cp_reg(cpu
, &cbar
);
2502 /* Generic registers whose values depend on the implementation */
2504 ARMCPRegInfo sctlr
= {
2505 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
2506 .opc0
= 3, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
2507 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_sys
),
2508 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
2509 .raw_writefn
= raw_write
,
2511 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
2512 /* Normally we would always end the TB on an SCTLR write, but Linux
2513 * arch/arm/mach-pxa/sleep.S expects two instructions following
2514 * an MMU enable to execute from cache. Imitate this behaviour.
2516 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
2518 define_one_arm_cp_reg(cpu
, &sctlr
);
2522 ARMCPU
*cpu_arm_init(const char *cpu_model
)
2524 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
2527 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
2529 CPUState
*cs
= CPU(cpu
);
2530 CPUARMState
*env
= &cpu
->env
;
2532 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
2533 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
2534 aarch64_fpu_gdb_set_reg
,
2535 34, "aarch64-fpu.xml", 0);
2536 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
2537 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
2538 51, "arm-neon.xml", 0);
2539 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
2540 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
2541 35, "arm-vfp3.xml", 0);
2542 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
2543 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
2544 19, "arm-vfp.xml", 0);
2548 /* Sort alphabetically by type name, except for "any". */
2549 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
2551 ObjectClass
*class_a
= (ObjectClass
*)a
;
2552 ObjectClass
*class_b
= (ObjectClass
*)b
;
2553 const char *name_a
, *name_b
;
2555 name_a
= object_class_get_name(class_a
);
2556 name_b
= object_class_get_name(class_b
);
2557 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
2559 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
2562 return strcmp(name_a
, name_b
);
2566 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
2568 ObjectClass
*oc
= data
;
2569 CPUListState
*s
= user_data
;
2570 const char *typename
;
2573 typename
= object_class_get_name(oc
);
2574 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
2575 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
2580 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
2584 .cpu_fprintf
= cpu_fprintf
,
2588 list
= object_class_get_list(TYPE_ARM_CPU
, false);
2589 list
= g_slist_sort(list
, arm_cpu_list_compare
);
2590 (*cpu_fprintf
)(f
, "Available CPUs:\n");
2591 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
2594 /* The 'host' CPU type is dynamically registered only if KVM is
2595 * enabled, so we have to special-case it here:
2597 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
2601 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
2603 ObjectClass
*oc
= data
;
2604 CpuDefinitionInfoList
**cpu_list
= user_data
;
2605 CpuDefinitionInfoList
*entry
;
2606 CpuDefinitionInfo
*info
;
2607 const char *typename
;
2609 typename
= object_class_get_name(oc
);
2610 info
= g_malloc0(sizeof(*info
));
2611 info
->name
= g_strndup(typename
,
2612 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
2614 entry
= g_malloc0(sizeof(*entry
));
2615 entry
->value
= info
;
2616 entry
->next
= *cpu_list
;
2620 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
2622 CpuDefinitionInfoList
*cpu_list
= NULL
;
2625 list
= object_class_get_list(TYPE_ARM_CPU
, false);
2626 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
2632 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
2633 void *opaque
, int state
,
2634 int crm
, int opc1
, int opc2
)
2636 /* Private utility function for define_one_arm_cp_reg_with_opaque():
2637 * add a single reginfo struct to the hash table.
2639 uint32_t *key
= g_new(uint32_t, 1);
2640 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
2641 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
2642 if (r
->state
== ARM_CP_STATE_BOTH
&& state
== ARM_CP_STATE_AA32
) {
2643 /* The AArch32 view of a shared register sees the lower 32 bits
2644 * of a 64 bit backing field. It is not migratable as the AArch64
2645 * view handles that. AArch64 also handles reset.
2646 * We assume it is a cp15 register.
2649 r2
->type
|= ARM_CP_NO_MIGRATE
;
2650 r2
->resetfn
= arm_cp_reset_ignore
;
2651 #ifdef HOST_WORDS_BIGENDIAN
2652 if (r2
->fieldoffset
) {
2653 r2
->fieldoffset
+= sizeof(uint32_t);
2657 if (state
== ARM_CP_STATE_AA64
) {
2658 /* To allow abbreviation of ARMCPRegInfo
2659 * definitions, we treat cp == 0 as equivalent to
2660 * the value for "standard guest-visible sysreg".
2663 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
2665 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
2666 r2
->opc0
, opc1
, opc2
);
2668 *key
= ENCODE_CP_REG(r2
->cp
, is64
, r2
->crn
, crm
, opc1
, opc2
);
2671 r2
->opaque
= opaque
;
2673 /* reginfo passed to helpers is correct for the actual access,
2674 * and is never ARM_CP_STATE_BOTH:
2677 /* Make sure reginfo passed to helpers for wildcarded regs
2678 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
2683 /* By convention, for wildcarded registers only the first
2684 * entry is used for migration; the others are marked as
2685 * NO_MIGRATE so we don't try to transfer the register
2686 * multiple times. Special registers (ie NOP/WFI) are
2689 if ((r
->type
& ARM_CP_SPECIAL
) ||
2690 ((r
->crm
== CP_ANY
) && crm
!= 0) ||
2691 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
2692 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
2693 r2
->type
|= ARM_CP_NO_MIGRATE
;
2696 /* Overriding of an existing definition must be explicitly
2699 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
2700 ARMCPRegInfo
*oldreg
;
2701 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
2702 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
2703 fprintf(stderr
, "Register redefined: cp=%d %d bit "
2704 "crn=%d crm=%d opc1=%d opc2=%d, "
2705 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
2706 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
2707 oldreg
->name
, r2
->name
);
2708 g_assert_not_reached();
2711 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
2715 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
2716 const ARMCPRegInfo
*r
, void *opaque
)
2718 /* Define implementations of coprocessor registers.
2719 * We store these in a hashtable because typically
2720 * there are less than 150 registers in a space which
2721 * is 16*16*16*8*8 = 262144 in size.
2722 * Wildcarding is supported for the crm, opc1 and opc2 fields.
2723 * If a register is defined twice then the second definition is
2724 * used, so this can be used to define some generic registers and
2725 * then override them with implementation specific variations.
2726 * At least one of the original and the second definition should
2727 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
2728 * against accidental use.
2730 * The state field defines whether the register is to be
2731 * visible in the AArch32 or AArch64 execution state. If the
2732 * state is set to ARM_CP_STATE_BOTH then we synthesise a
2733 * reginfo structure for the AArch32 view, which sees the lower
2734 * 32 bits of the 64 bit register.
2736 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
2737 * be wildcarded. AArch64 registers are always considered to be 64
2738 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
2739 * the register, if any.
2741 int crm
, opc1
, opc2
, state
;
2742 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
2743 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
2744 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
2745 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
2746 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
2747 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
2748 /* 64 bit registers have only CRm and Opc1 fields */
2749 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
2750 /* op0 only exists in the AArch64 encodings */
2751 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
2752 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
2753 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
2754 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
2755 * encodes a minimum access level for the register. We roll this
2756 * runtime check into our general permission check code, so check
2757 * here that the reginfo's specified permissions are strict enough
2758 * to encompass the generic architectural permission check.
2760 if (r
->state
!= ARM_CP_STATE_AA32
) {
2763 case 0: case 1: case 2:
2776 /* unallocated encoding, so not possible */
2784 /* min_EL EL1, secure mode only (we don't check the latter) */
2788 /* broken reginfo with out-of-range opc1 */
2792 /* assert our permissions are not too lax (stricter is fine) */
2793 assert((r
->access
& ~mask
) == 0);
2796 /* Check that the register definition has enough info to handle
2797 * reads and writes if they are permitted.
2799 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
2800 if (r
->access
& PL3_R
) {
2801 assert(r
->fieldoffset
|| r
->readfn
);
2803 if (r
->access
& PL3_W
) {
2804 assert(r
->fieldoffset
|| r
->writefn
);
2807 /* Bad type field probably means missing sentinel at end of reg list */
2808 assert(cptype_valid(r
->type
));
2809 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
2810 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
2811 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
2812 for (state
= ARM_CP_STATE_AA32
;
2813 state
<= ARM_CP_STATE_AA64
; state
++) {
2814 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
2817 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
2825 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
2826 const ARMCPRegInfo
*regs
, void *opaque
)
2828 /* Define a whole list of registers */
2829 const ARMCPRegInfo
*r
;
2830 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
2831 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
2835 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
2837 return g_hash_table_lookup(cpregs
, &encoded_cp
);
2840 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2843 /* Helper coprocessor write function for write-ignore registers */
2846 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2848 /* Helper coprocessor write function for read-as-zero registers */
2852 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
2854 /* Helper coprocessor reset function for do-nothing-on-reset registers */
2857 static int bad_mode_switch(CPUARMState
*env
, int mode
)
2859 /* Return true if it is not valid for us to switch to
2860 * this CPU mode (ie all the UNPREDICTABLE cases in
2861 * the ARM ARM CPSRWriteByInstr pseudocode).
2864 case ARM_CPU_MODE_USR
:
2865 case ARM_CPU_MODE_SYS
:
2866 case ARM_CPU_MODE_SVC
:
2867 case ARM_CPU_MODE_ABT
:
2868 case ARM_CPU_MODE_UND
:
2869 case ARM_CPU_MODE_IRQ
:
2870 case ARM_CPU_MODE_FIQ
:
2877 uint32_t cpsr_read(CPUARMState
*env
)
2880 ZF
= (env
->ZF
== 0);
2881 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
2882 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
2883 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
2884 | ((env
->condexec_bits
& 0xfc) << 8)
2885 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
2888 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
2890 if (mask
& CPSR_NZCV
) {
2891 env
->ZF
= (~val
) & CPSR_Z
;
2893 env
->CF
= (val
>> 29) & 1;
2894 env
->VF
= (val
<< 3) & 0x80000000;
2897 env
->QF
= ((val
& CPSR_Q
) != 0);
2899 env
->thumb
= ((val
& CPSR_T
) != 0);
2900 if (mask
& CPSR_IT_0_1
) {
2901 env
->condexec_bits
&= ~3;
2902 env
->condexec_bits
|= (val
>> 25) & 3;
2904 if (mask
& CPSR_IT_2_7
) {
2905 env
->condexec_bits
&= 3;
2906 env
->condexec_bits
|= (val
>> 8) & 0xfc;
2908 if (mask
& CPSR_GE
) {
2909 env
->GE
= (val
>> 16) & 0xf;
2912 env
->daif
&= ~(CPSR_AIF
& mask
);
2913 env
->daif
|= val
& CPSR_AIF
& mask
;
2915 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
2916 if (bad_mode_switch(env
, val
& CPSR_M
)) {
2917 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
2918 * We choose to ignore the attempt and leave the CPSR M field
2923 switch_mode(env
, val
& CPSR_M
);
2926 mask
&= ~CACHED_CPSR_BITS
;
2927 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
2930 /* Sign/zero extend */
2931 uint32_t HELPER(sxtb16
)(uint32_t x
)
2934 res
= (uint16_t)(int8_t)x
;
2935 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
2939 uint32_t HELPER(uxtb16
)(uint32_t x
)
2942 res
= (uint16_t)(uint8_t)x
;
2943 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
2947 uint32_t HELPER(clz
)(uint32_t x
)
2952 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
2956 if (num
== INT_MIN
&& den
== -1)
2961 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
2968 uint32_t HELPER(rbit
)(uint32_t x
)
2970 x
= ((x
& 0xff000000) >> 24)
2971 | ((x
& 0x00ff0000) >> 8)
2972 | ((x
& 0x0000ff00) << 8)
2973 | ((x
& 0x000000ff) << 24);
2974 x
= ((x
& 0xf0f0f0f0) >> 4)
2975 | ((x
& 0x0f0f0f0f) << 4);
2976 x
= ((x
& 0x88888888) >> 3)
2977 | ((x
& 0x44444444) >> 1)
2978 | ((x
& 0x22222222) << 1)
2979 | ((x
& 0x11111111) << 3);
2983 #if defined(CONFIG_USER_ONLY)
2985 void arm_cpu_do_interrupt(CPUState
*cs
)
2987 cs
->exception_index
= -1;
2990 int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
, int rw
,
2993 ARMCPU
*cpu
= ARM_CPU(cs
);
2994 CPUARMState
*env
= &cpu
->env
;
2996 env
->exception
.vaddress
= address
;
2998 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
3000 cs
->exception_index
= EXCP_DATA_ABORT
;
3005 /* These should probably raise undefined insn exceptions. */
3006 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
3008 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3010 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
3013 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
3015 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3017 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
3021 void switch_mode(CPUARMState
*env
, int mode
)
3023 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3025 if (mode
!= ARM_CPU_MODE_USR
) {
3026 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
3030 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
3032 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3034 cpu_abort(CPU(cpu
), "banked r13 write\n");
3037 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
3039 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3041 cpu_abort(CPU(cpu
), "banked r13 read\n");
3047 /* Map CPU modes onto saved register banks. */
3048 int bank_number(int mode
)
3051 case ARM_CPU_MODE_USR
:
3052 case ARM_CPU_MODE_SYS
:
3054 case ARM_CPU_MODE_SVC
:
3056 case ARM_CPU_MODE_ABT
:
3058 case ARM_CPU_MODE_UND
:
3060 case ARM_CPU_MODE_IRQ
:
3062 case ARM_CPU_MODE_FIQ
:
3065 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode
);
3068 void switch_mode(CPUARMState
*env
, int mode
)
3073 old_mode
= env
->uncached_cpsr
& CPSR_M
;
3074 if (mode
== old_mode
)
3077 if (old_mode
== ARM_CPU_MODE_FIQ
) {
3078 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
3079 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
3080 } else if (mode
== ARM_CPU_MODE_FIQ
) {
3081 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
3082 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
3085 i
= bank_number(old_mode
);
3086 env
->banked_r13
[i
] = env
->regs
[13];
3087 env
->banked_r14
[i
] = env
->regs
[14];
3088 env
->banked_spsr
[i
] = env
->spsr
;
3090 i
= bank_number(mode
);
3091 env
->regs
[13] = env
->banked_r13
[i
];
3092 env
->regs
[14] = env
->banked_r14
[i
];
3093 env
->spsr
= env
->banked_spsr
[i
];
3096 static void v7m_push(CPUARMState
*env
, uint32_t val
)
3098 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3101 stl_phys(cs
->as
, env
->regs
[13], val
);
3104 static uint32_t v7m_pop(CPUARMState
*env
)
3106 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3109 val
= ldl_phys(cs
->as
, env
->regs
[13]);
3114 /* Switch to V7M main or process stack pointer. */
3115 static void switch_v7m_sp(CPUARMState
*env
, int process
)
3118 if (env
->v7m
.current_sp
!= process
) {
3119 tmp
= env
->v7m
.other_sp
;
3120 env
->v7m
.other_sp
= env
->regs
[13];
3121 env
->regs
[13] = tmp
;
3122 env
->v7m
.current_sp
= process
;
3126 static void do_v7m_exception_exit(CPUARMState
*env
)
3131 type
= env
->regs
[15];
3132 if (env
->v7m
.exception
!= 0)
3133 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
3135 /* Switch to the target stack. */
3136 switch_v7m_sp(env
, (type
& 4) != 0);
3137 /* Pop registers. */
3138 env
->regs
[0] = v7m_pop(env
);
3139 env
->regs
[1] = v7m_pop(env
);
3140 env
->regs
[2] = v7m_pop(env
);
3141 env
->regs
[3] = v7m_pop(env
);
3142 env
->regs
[12] = v7m_pop(env
);
3143 env
->regs
[14] = v7m_pop(env
);
3144 env
->regs
[15] = v7m_pop(env
);
3145 xpsr
= v7m_pop(env
);
3146 xpsr_write(env
, xpsr
, 0xfffffdff);
3147 /* Undo stack alignment. */
3150 /* ??? The exception return type specifies Thread/Handler mode. However
3151 this is also implied by the xPSR value. Not sure what to do
3152 if there is a mismatch. */
3153 /* ??? Likewise for mismatches between the CONTROL register and the stack
3157 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
3159 ARMCPU
*cpu
= ARM_CPU(cs
);
3160 CPUARMState
*env
= &cpu
->env
;
3161 uint32_t xpsr
= xpsr_read(env
);
3165 arm_log_exception(cs
->exception_index
);
3168 if (env
->v7m
.current_sp
)
3170 if (env
->v7m
.exception
== 0)
3173 /* For exceptions we just mark as pending on the NVIC, and let that
3175 /* TODO: Need to escalate if the current priority is higher than the
3176 one we're raising. */
3177 switch (cs
->exception_index
) {
3179 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
3182 /* The PC already points to the next instruction. */
3183 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
3185 case EXCP_PREFETCH_ABORT
:
3186 case EXCP_DATA_ABORT
:
3187 /* TODO: if we implemented the MPU registers, this is where we
3188 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
3190 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
3193 if (semihosting_enabled
) {
3195 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
3198 env
->regs
[0] = do_arm_semihosting(env
);
3199 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
3203 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
3206 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
3208 case EXCP_EXCEPTION_EXIT
:
3209 do_v7m_exception_exit(env
);
3212 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
3213 return; /* Never happens. Keep compiler happy. */
3216 /* Align stack pointer. */
3217 /* ??? Should only do this if Configuration Control Register
3218 STACKALIGN bit is set. */
3219 if (env
->regs
[13] & 4) {
3223 /* Switch to the handler mode. */
3224 v7m_push(env
, xpsr
);
3225 v7m_push(env
, env
->regs
[15]);
3226 v7m_push(env
, env
->regs
[14]);
3227 v7m_push(env
, env
->regs
[12]);
3228 v7m_push(env
, env
->regs
[3]);
3229 v7m_push(env
, env
->regs
[2]);
3230 v7m_push(env
, env
->regs
[1]);
3231 v7m_push(env
, env
->regs
[0]);
3232 switch_v7m_sp(env
, 0);
3234 env
->condexec_bits
= 0;
3236 addr
= ldl_phys(cs
->as
, env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
3237 env
->regs
[15] = addr
& 0xfffffffe;
3238 env
->thumb
= addr
& 1;
3241 /* Handle a CPU exception. */
3242 void arm_cpu_do_interrupt(CPUState
*cs
)
3244 ARMCPU
*cpu
= ARM_CPU(cs
);
3245 CPUARMState
*env
= &cpu
->env
;
3253 arm_log_exception(cs
->exception_index
);
3255 /* TODO: Vectored interrupt controller. */
3256 switch (cs
->exception_index
) {
3258 new_mode
= ARM_CPU_MODE_UND
;
3267 if (semihosting_enabled
) {
3268 /* Check for semihosting interrupt. */
3270 mask
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
3273 mask
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
3276 /* Only intercept calls from privileged modes, to provide some
3277 semblance of security. */
3278 if (((mask
== 0x123456 && !env
->thumb
)
3279 || (mask
== 0xab && env
->thumb
))
3280 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
3281 env
->regs
[0] = do_arm_semihosting(env
);
3282 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
3286 new_mode
= ARM_CPU_MODE_SVC
;
3289 /* The PC already points to the next instruction. */
3293 /* See if this is a semihosting syscall. */
3294 if (env
->thumb
&& semihosting_enabled
) {
3295 mask
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
3297 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
3299 env
->regs
[0] = do_arm_semihosting(env
);
3300 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
3304 env
->exception
.fsr
= 2;
3305 /* Fall through to prefetch abort. */
3306 case EXCP_PREFETCH_ABORT
:
3307 env
->cp15
.ifsr_el2
= env
->exception
.fsr
;
3308 env
->cp15
.far_el1
= deposit64(env
->cp15
.far_el1
, 32, 32,
3309 env
->exception
.vaddress
);
3310 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
3311 env
->cp15
.ifsr_el2
, (uint32_t)env
->exception
.vaddress
);
3312 new_mode
= ARM_CPU_MODE_ABT
;
3314 mask
= CPSR_A
| CPSR_I
;
3317 case EXCP_DATA_ABORT
:
3318 env
->cp15
.esr_el1
= env
->exception
.fsr
;
3319 env
->cp15
.far_el1
= deposit64(env
->cp15
.far_el1
, 0, 32,
3320 env
->exception
.vaddress
);
3321 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
3322 (uint32_t)env
->cp15
.esr_el1
,
3323 (uint32_t)env
->exception
.vaddress
);
3324 new_mode
= ARM_CPU_MODE_ABT
;
3326 mask
= CPSR_A
| CPSR_I
;
3330 new_mode
= ARM_CPU_MODE_IRQ
;
3332 /* Disable IRQ and imprecise data aborts. */
3333 mask
= CPSR_A
| CPSR_I
;
3337 new_mode
= ARM_CPU_MODE_FIQ
;
3339 /* Disable FIQ, IRQ and imprecise data aborts. */
3340 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
3344 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
3345 return; /* Never happens. Keep compiler happy. */
3348 if (env
->cp15
.c1_sys
& SCTLR_V
) {
3349 /* when enabled, base address cannot be remapped. */
3352 /* ARM v7 architectures provide a vector base address register to remap
3353 * the interrupt vector table.
3354 * This register is only followed in non-monitor mode, and has a secure
3355 * and un-secure copy. Since the cpu is always in a un-secure operation
3356 * and is never in monitor mode this feature is always active.
3357 * Note: only bits 31:5 are valid.
3359 addr
+= env
->cp15
.c12_vbar
;
3361 switch_mode (env
, new_mode
);
3362 env
->spsr
= cpsr_read(env
);
3363 /* Clear IT bits. */
3364 env
->condexec_bits
= 0;
3365 /* Switch to the new mode, and to the correct instruction set. */
3366 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
3368 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
3369 * and we should just guard the thumb mode on V4 */
3370 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
3371 env
->thumb
= (env
->cp15
.c1_sys
& SCTLR_TE
) != 0;
3373 env
->regs
[14] = env
->regs
[15] + offset
;
3374 env
->regs
[15] = addr
;
3375 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
3378 /* Check section/page access permissions.
3379 Returns the page protection flags, or zero if the access is not
3381 static inline int check_ap(CPUARMState
*env
, int ap
, int domain_prot
,
3382 int access_type
, int is_user
)
3386 if (domain_prot
== 3) {
3387 return PAGE_READ
| PAGE_WRITE
;
3390 if (access_type
== 1)
3393 prot_ro
= PAGE_READ
;
3397 if (arm_feature(env
, ARM_FEATURE_V7
)) {
3400 if (access_type
== 1)
3402 switch (env
->cp15
.c1_sys
& (SCTLR_S
| SCTLR_R
)) {
3404 return is_user
? 0 : PAGE_READ
;
3411 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
3416 return PAGE_READ
| PAGE_WRITE
;
3418 return PAGE_READ
| PAGE_WRITE
;
3419 case 4: /* Reserved. */
3422 return is_user
? 0 : prot_ro
;
3426 if (!arm_feature (env
, ARM_FEATURE_V6K
))
3434 static uint32_t get_level1_table_address(CPUARMState
*env
, uint32_t address
)
3438 if (address
& env
->cp15
.c2_mask
)
3439 table
= env
->cp15
.ttbr1_el1
& 0xffffc000;
3441 table
= env
->cp15
.ttbr0_el1
& env
->cp15
.c2_base_mask
;
3443 table
|= (address
>> 18) & 0x3ffc;
3447 static int get_phys_addr_v5(CPUARMState
*env
, uint32_t address
, int access_type
,
3448 int is_user
, hwaddr
*phys_ptr
,
3449 int *prot
, target_ulong
*page_size
)
3451 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3461 /* Pagetable walk. */
3462 /* Lookup l1 descriptor. */
3463 table
= get_level1_table_address(env
, address
);
3464 desc
= ldl_phys(cs
->as
, table
);
3466 domain
= (desc
>> 5) & 0x0f;
3467 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
3469 /* Section translation fault. */
3473 if (domain_prot
== 0 || domain_prot
== 2) {
3475 code
= 9; /* Section domain fault. */
3477 code
= 11; /* Page domain fault. */
3482 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
3483 ap
= (desc
>> 10) & 3;
3485 *page_size
= 1024 * 1024;
3487 /* Lookup l2 entry. */
3489 /* Coarse pagetable. */
3490 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
3492 /* Fine pagetable. */
3493 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
3495 desc
= ldl_phys(cs
->as
, table
);
3497 case 0: /* Page translation fault. */
3500 case 1: /* 64k page. */
3501 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
3502 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
3503 *page_size
= 0x10000;
3505 case 2: /* 4k page. */
3506 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
3507 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
3508 *page_size
= 0x1000;
3510 case 3: /* 1k page. */
3512 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
3513 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
3515 /* Page translation fault. */
3520 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
3522 ap
= (desc
>> 4) & 3;
3526 /* Never happens, but compiler isn't smart enough to tell. */
3531 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
3533 /* Access permission fault. */
3537 *phys_ptr
= phys_addr
;
3540 return code
| (domain
<< 4);
3543 static int get_phys_addr_v6(CPUARMState
*env
, uint32_t address
, int access_type
,
3544 int is_user
, hwaddr
*phys_ptr
,
3545 int *prot
, target_ulong
*page_size
)
3547 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3559 /* Pagetable walk. */
3560 /* Lookup l1 descriptor. */
3561 table
= get_level1_table_address(env
, address
);
3562 desc
= ldl_phys(cs
->as
, table
);
3564 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
3565 /* Section translation fault, or attempt to use the encoding
3566 * which is Reserved on implementations without PXN.
3571 if ((type
== 1) || !(desc
& (1 << 18))) {
3572 /* Page or Section. */
3573 domain
= (desc
>> 5) & 0x0f;
3575 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
3576 if (domain_prot
== 0 || domain_prot
== 2) {
3578 code
= 9; /* Section domain fault. */
3580 code
= 11; /* Page domain fault. */
3585 if (desc
& (1 << 18)) {
3587 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
3588 *page_size
= 0x1000000;
3591 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
3592 *page_size
= 0x100000;
3594 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
3595 xn
= desc
& (1 << 4);
3599 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
3600 pxn
= (desc
>> 2) & 1;
3602 /* Lookup l2 entry. */
3603 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
3604 desc
= ldl_phys(cs
->as
, table
);
3605 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
3607 case 0: /* Page translation fault. */
3610 case 1: /* 64k page. */
3611 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
3612 xn
= desc
& (1 << 15);
3613 *page_size
= 0x10000;
3615 case 2: case 3: /* 4k page. */
3616 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
3618 *page_size
= 0x1000;
3621 /* Never happens, but compiler isn't smart enough to tell. */
3626 if (domain_prot
== 3) {
3627 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
3629 if (pxn
&& !is_user
) {
3632 if (xn
&& access_type
== 2)
3635 /* The simplified model uses AP[0] as an access control bit. */
3636 if ((env
->cp15
.c1_sys
& SCTLR_AFE
) && (ap
& 1) == 0) {
3637 /* Access flag fault. */
3638 code
= (code
== 15) ? 6 : 3;
3641 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
3643 /* Access permission fault. */
3650 *phys_ptr
= phys_addr
;
3653 return code
| (domain
<< 4);
3656 /* Fault type for long-descriptor MMU fault reporting; this corresponds
3657 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
3660 translation_fault
= 1,
3662 permission_fault
= 3,
3665 static int get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
3666 int access_type
, int is_user
,
3667 hwaddr
*phys_ptr
, int *prot
,
3668 target_ulong
*page_size_ptr
)
3670 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3671 /* Read an LPAE long-descriptor translation table. */
3672 MMUFaultType fault_type
= translation_fault
;
3679 hwaddr descaddr
, descmask
;
3680 uint32_t tableattrs
;
3681 target_ulong page_size
;
3683 int32_t granule_sz
= 9;
3684 int32_t va_size
= 32;
3687 if (arm_el_is_aa64(env
, 1)) {
3689 if (extract64(address
, 55, 1))
3690 tbi
= extract64(env
->cp15
.c2_control
, 38, 1);
3692 tbi
= extract64(env
->cp15
.c2_control
, 37, 1);
3696 /* Determine whether this address is in the region controlled by
3697 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
3698 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
3699 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
3701 uint32_t t0sz
= extract32(env
->cp15
.c2_control
, 0, 6);
3702 if (arm_el_is_aa64(env
, 1)) {
3703 t0sz
= MIN(t0sz
, 39);
3704 t0sz
= MAX(t0sz
, 16);
3706 uint32_t t1sz
= extract32(env
->cp15
.c2_control
, 16, 6);
3707 if (arm_el_is_aa64(env
, 1)) {
3708 t1sz
= MIN(t1sz
, 39);
3709 t1sz
= MAX(t1sz
, 16);
3711 if (t0sz
&& !extract64(address
, va_size
- t0sz
, t0sz
- tbi
)) {
3712 /* there is a ttbr0 region and we are in it (high bits all zero) */
3714 } else if (t1sz
&& !extract64(~address
, va_size
- t1sz
, t1sz
- tbi
)) {
3715 /* there is a ttbr1 region and we are in it (high bits all one) */
3718 /* ttbr0 region is "everything not in the ttbr1 region" */
3721 /* ttbr1 region is "everything not in the ttbr0 region" */
3724 /* in the gap between the two regions, this is a Translation fault */
3725 fault_type
= translation_fault
;
3729 /* Note that QEMU ignores shareability and cacheability attributes,
3730 * so we don't need to do anything with the SH, ORGN, IRGN fields
3731 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
3732 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
3733 * implement any ASID-like capability so we can ignore it (instead
3734 * we will always flush the TLB any time the ASID is changed).
3736 if (ttbr_select
== 0) {
3737 ttbr
= env
->cp15
.ttbr0_el1
;
3738 epd
= extract32(env
->cp15
.c2_control
, 7, 1);
3741 tg
= extract32(env
->cp15
.c2_control
, 14, 2);
3742 if (tg
== 1) { /* 64KB pages */
3745 if (tg
== 2) { /* 16KB pages */
3749 ttbr
= env
->cp15
.ttbr1_el1
;
3750 epd
= extract32(env
->cp15
.c2_control
, 23, 1);
3753 tg
= extract32(env
->cp15
.c2_control
, 30, 2);
3754 if (tg
== 3) { /* 64KB pages */
3757 if (tg
== 1) { /* 16KB pages */
3763 /* Translation table walk disabled => Translation fault on TLB miss */
3767 /* The starting level depends on the virtual address size which can be
3768 * up to 48-bits and the translation granule size.
3770 if ((va_size
- tsz
) > (granule_sz
* 4 + 3)) {
3772 } else if ((va_size
- tsz
) > (granule_sz
* 3 + 3)) {
3778 /* Clear the vaddr bits which aren't part of the within-region address,
3779 * so that we don't have to special case things when calculating the
3780 * first descriptor address.
3783 address
&= (1ULL << (va_size
- tsz
)) - 1;
3786 descmask
= (1ULL << (granule_sz
+ 3)) - 1;
3788 /* Now we can extract the actual base address from the TTBR */
3789 descaddr
= extract64(ttbr
, 0, 48);
3790 descaddr
&= ~((1ULL << (va_size
- tsz
- (granule_sz
* (4 - level
)))) - 1);
3794 uint64_t descriptor
;
3796 descaddr
|= (address
>> (granule_sz
* (4 - level
))) & descmask
;
3798 descriptor
= ldq_phys(cs
->as
, descaddr
);
3799 if (!(descriptor
& 1) ||
3800 (!(descriptor
& 2) && (level
== 3))) {
3801 /* Invalid, or the Reserved level 3 encoding */
3804 descaddr
= descriptor
& 0xfffffff000ULL
;
3806 if ((descriptor
& 2) && (level
< 3)) {
3807 /* Table entry. The top five bits are attributes which may
3808 * propagate down through lower levels of the table (and
3809 * which are all arranged so that 0 means "no effect", so
3810 * we can gather them up by ORing in the bits at each level).
3812 tableattrs
|= extract64(descriptor
, 59, 5);
3816 /* Block entry at level 1 or 2, or page entry at level 3.
3817 * These are basically the same thing, although the number
3818 * of bits we pull in from the vaddr varies.
3820 page_size
= (1 << ((granule_sz
* (4 - level
)) + 3));
3821 descaddr
|= (address
& (page_size
- 1));
3822 /* Extract attributes from the descriptor and merge with table attrs */
3823 if (arm_feature(env
, ARM_FEATURE_V8
)) {
3824 attrs
= extract64(descriptor
, 2, 10)
3825 | (extract64(descriptor
, 53, 11) << 10);
3827 attrs
= extract64(descriptor
, 2, 10)
3828 | (extract64(descriptor
, 52, 12) << 10);
3830 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
3831 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
3832 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
3833 * means "force PL1 access only", which means forcing AP[1] to 0.
3835 if (extract32(tableattrs
, 2, 1)) {
3838 /* Since we're always in the Non-secure state, NSTable is ignored. */
3841 /* Here descaddr is the final physical address, and attributes
3844 fault_type
= access_fault
;
3845 if ((attrs
& (1 << 8)) == 0) {
3849 fault_type
= permission_fault
;
3850 if (is_user
&& !(attrs
& (1 << 4))) {
3851 /* Unprivileged access not enabled */
3854 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
3855 if (attrs
& (1 << 12) || (!is_user
&& (attrs
& (1 << 11)))) {
3857 if (access_type
== 2) {
3860 *prot
&= ~PAGE_EXEC
;
3862 if (attrs
& (1 << 5)) {
3863 /* Write access forbidden */
3864 if (access_type
== 1) {
3867 *prot
&= ~PAGE_WRITE
;
3870 *phys_ptr
= descaddr
;
3871 *page_size_ptr
= page_size
;
3875 /* Long-descriptor format IFSR/DFSR value */
3876 return (1 << 9) | (fault_type
<< 2) | level
;
3879 static int get_phys_addr_mpu(CPUARMState
*env
, uint32_t address
,
3880 int access_type
, int is_user
,
3881 hwaddr
*phys_ptr
, int *prot
)
3887 *phys_ptr
= address
;
3888 for (n
= 7; n
>= 0; n
--) {
3889 base
= env
->cp15
.c6_region
[n
];
3890 if ((base
& 1) == 0)
3892 mask
= 1 << ((base
>> 1) & 0x1f);
3893 /* Keep this shift separate from the above to avoid an
3894 (undefined) << 32. */
3895 mask
= (mask
<< 1) - 1;
3896 if (((base
^ address
) & ~mask
) == 0)
3902 if (access_type
== 2) {
3903 mask
= env
->cp15
.pmsav5_insn_ap
;
3905 mask
= env
->cp15
.pmsav5_data_ap
;
3907 mask
= (mask
>> (n
* 4)) & 0xf;
3914 *prot
= PAGE_READ
| PAGE_WRITE
;
3919 *prot
|= PAGE_WRITE
;
3922 *prot
= PAGE_READ
| PAGE_WRITE
;
3933 /* Bad permission. */
3940 /* get_phys_addr - get the physical address for this virtual address
3942 * Find the physical address corresponding to the given virtual address,
3943 * by doing a translation table walk on MMU based systems or using the
3944 * MPU state on MPU based systems.
3946 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
3947 * prot and page_size are not filled in, and the return value provides
3948 * information on why the translation aborted, in the format of a
3949 * DFSR/IFSR fault register, with the following caveats:
3950 * * we honour the short vs long DFSR format differences.
3951 * * the WnR bit is never set (the caller must do this).
3952 * * for MPU based systems we don't bother to return a full FSR format
3956 * @address: virtual address to get physical address for
3957 * @access_type: 0 for read, 1 for write, 2 for execute
3958 * @is_user: 0 for privileged access, 1 for user
3959 * @phys_ptr: set to the physical address corresponding to the virtual address
3960 * @prot: set to the permissions for the page containing phys_ptr
3961 * @page_size: set to the size of the page containing phys_ptr
3963 static inline int get_phys_addr(CPUARMState
*env
, target_ulong address
,
3964 int access_type
, int is_user
,
3965 hwaddr
*phys_ptr
, int *prot
,
3966 target_ulong
*page_size
)
3968 /* Fast Context Switch Extension. */
3969 if (address
< 0x02000000)
3970 address
+= env
->cp15
.c13_fcse
;
3972 if ((env
->cp15
.c1_sys
& SCTLR_M
) == 0) {
3973 /* MMU/MPU disabled. */
3974 *phys_ptr
= address
;
3975 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
3976 *page_size
= TARGET_PAGE_SIZE
;
3978 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
3979 *page_size
= TARGET_PAGE_SIZE
;
3980 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
3982 } else if (extended_addresses_enabled(env
)) {
3983 return get_phys_addr_lpae(env
, address
, access_type
, is_user
, phys_ptr
,
3985 } else if (env
->cp15
.c1_sys
& SCTLR_XP
) {
3986 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
3989 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
3994 int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
,
3995 int access_type
, int mmu_idx
)
3997 ARMCPU
*cpu
= ARM_CPU(cs
);
3998 CPUARMState
*env
= &cpu
->env
;
4000 target_ulong page_size
;
4004 bool same_el
= (arm_current_pl(env
) != 0);
4006 is_user
= mmu_idx
== MMU_USER_IDX
;
4007 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
,
4010 /* Map a single [sub]page. */
4011 phys_addr
&= ~(hwaddr
)0x3ff;
4012 address
&= ~(target_ulong
)0x3ff;
4013 tlb_set_page(cs
, address
, phys_addr
, prot
, mmu_idx
, page_size
);
4017 /* AArch64 syndrome does not have an LPAE bit */
4018 syn
= ret
& ~(1 << 9);
4020 /* For insn and data aborts we assume there is no instruction syndrome
4021 * information; this is always true for exceptions reported to EL1.
4023 if (access_type
== 2) {
4024 syn
= syn_insn_abort(same_el
, 0, 0, syn
);
4025 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
4027 syn
= syn_data_abort(same_el
, 0, 0, 0, access_type
== 1, syn
);
4028 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
4031 cs
->exception_index
= EXCP_DATA_ABORT
;
4034 env
->exception
.syndrome
= syn
;
4035 env
->exception
.vaddress
= address
;
4036 env
->exception
.fsr
= ret
;
4040 hwaddr
arm_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
4042 ARMCPU
*cpu
= ARM_CPU(cs
);
4044 target_ulong page_size
;
4048 ret
= get_phys_addr(&cpu
->env
, addr
, 0, 0, &phys_addr
, &prot
, &page_size
);
4057 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
4059 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
4060 env
->regs
[13] = val
;
4062 env
->banked_r13
[bank_number(mode
)] = val
;
4066 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
4068 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
4069 return env
->regs
[13];
4071 return env
->banked_r13
[bank_number(mode
)];
4075 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
4077 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4081 return xpsr_read(env
) & 0xf8000000;
4083 return xpsr_read(env
) & 0xf80001ff;
4085 return xpsr_read(env
) & 0xff00fc00;
4087 return xpsr_read(env
) & 0xff00fdff;
4089 return xpsr_read(env
) & 0x000001ff;
4091 return xpsr_read(env
) & 0x0700fc00;
4093 return xpsr_read(env
) & 0x0700edff;
4095 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
4097 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
4098 case 16: /* PRIMASK */
4099 return (env
->daif
& PSTATE_I
) != 0;
4100 case 17: /* BASEPRI */
4101 case 18: /* BASEPRI_MAX */
4102 return env
->v7m
.basepri
;
4103 case 19: /* FAULTMASK */
4104 return (env
->daif
& PSTATE_F
) != 0;
4105 case 20: /* CONTROL */
4106 return env
->v7m
.control
;
4108 /* ??? For debugging only. */
4109 cpu_abort(CPU(cpu
), "Unimplemented system register read (%d)\n", reg
);
4114 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
4116 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4120 xpsr_write(env
, val
, 0xf8000000);
4123 xpsr_write(env
, val
, 0xf8000000);
4126 xpsr_write(env
, val
, 0xfe00fc00);
4129 xpsr_write(env
, val
, 0xfe00fc00);
4132 /* IPSR bits are readonly. */
4135 xpsr_write(env
, val
, 0x0600fc00);
4138 xpsr_write(env
, val
, 0x0600fc00);
4141 if (env
->v7m
.current_sp
)
4142 env
->v7m
.other_sp
= val
;
4144 env
->regs
[13] = val
;
4147 if (env
->v7m
.current_sp
)
4148 env
->regs
[13] = val
;
4150 env
->v7m
.other_sp
= val
;
4152 case 16: /* PRIMASK */
4154 env
->daif
|= PSTATE_I
;
4156 env
->daif
&= ~PSTATE_I
;
4159 case 17: /* BASEPRI */
4160 env
->v7m
.basepri
= val
& 0xff;
4162 case 18: /* BASEPRI_MAX */
4164 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
4165 env
->v7m
.basepri
= val
;
4167 case 19: /* FAULTMASK */
4169 env
->daif
|= PSTATE_F
;
4171 env
->daif
&= ~PSTATE_F
;
4174 case 20: /* CONTROL */
4175 env
->v7m
.control
= val
& 3;
4176 switch_v7m_sp(env
, (val
& 2) != 0);
4179 /* ??? For debugging only. */
4180 cpu_abort(CPU(cpu
), "Unimplemented system register write (%d)\n", reg
);
4187 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
4189 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
4190 * Note that we do not implement the (architecturally mandated)
4191 * alignment fault for attempts to use this on Device memory
4192 * (which matches the usual QEMU behaviour of not implementing either
4193 * alignment faults or any memory attribute handling).
4196 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4197 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
4198 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
4200 #ifndef CONFIG_USER_ONLY
4202 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
4203 * the block size so we might have to do more than one TLB lookup.
4204 * We know that in fact for any v8 CPU the page size is at least 4K
4205 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
4206 * 1K as an artefact of legacy v5 subpage support being present in the
4207 * same QEMU executable.
4209 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
4210 void *hostaddr
[maxidx
];
4213 for (try = 0; try < 2; try++) {
4215 for (i
= 0; i
< maxidx
; i
++) {
4216 hostaddr
[i
] = tlb_vaddr_to_host(env
,
4217 vaddr
+ TARGET_PAGE_SIZE
* i
,
4218 1, cpu_mmu_index(env
));
4224 /* If it's all in the TLB it's fair game for just writing to;
4225 * we know we don't need to update dirty status, etc.
4227 for (i
= 0; i
< maxidx
- 1; i
++) {
4228 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
4230 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
4233 /* OK, try a store and see if we can populate the tlb. This
4234 * might cause an exception if the memory isn't writable,
4235 * in which case we will longjmp out of here. We must for
4236 * this purpose use the actual register value passed to us
4237 * so that we get the fault address right.
4239 helper_ret_stb_mmu(env
, vaddr_in
, 0, cpu_mmu_index(env
), GETRA());
4240 /* Now we can populate the other TLB entries, if any */
4241 for (i
= 0; i
< maxidx
; i
++) {
4242 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
4243 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
4244 helper_ret_stb_mmu(env
, va
, 0, cpu_mmu_index(env
), GETRA());
4249 /* Slow path (probably attempt to do this to an I/O device or
4250 * similar, or clearing of a block of code we have translations
4251 * cached for). Just do a series of byte writes as the architecture
4252 * demands. It's not worth trying to use a cpu_physical_memory_map(),
4253 * memset(), unmap() sequence here because:
4254 * + we'd need to account for the blocksize being larger than a page
4255 * + the direct-RAM access case is almost always going to be dealt
4256 * with in the fastpath code above, so there's no speed benefit
4257 * + we would have to deal with the map returning NULL because the
4258 * bounce buffer was in use
4260 for (i
= 0; i
< blocklen
; i
++) {
4261 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, cpu_mmu_index(env
), GETRA());
4265 memset(g2h(vaddr
), 0, blocklen
);
4269 /* Note that signed overflow is undefined in C. The following routines are
4270 careful to use unsigned types where modulo arithmetic is required.
4271 Failure to do so _will_ break on newer gcc. */
4273 /* Signed saturating arithmetic. */
4275 /* Perform 16-bit signed saturating addition. */
4276 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
4281 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
4290 /* Perform 8-bit signed saturating addition. */
4291 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
4296 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
4305 /* Perform 16-bit signed saturating subtraction. */
4306 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
4311 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
4320 /* Perform 8-bit signed saturating subtraction. */
4321 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
4326 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
4335 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
4336 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
4337 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
4338 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
4341 #include "op_addsub.h"
4343 /* Unsigned saturating arithmetic. */
4344 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
4353 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
4361 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
4370 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
4378 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
4379 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
4380 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
4381 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
4384 #include "op_addsub.h"
4386 /* Signed modulo arithmetic. */
4387 #define SARITH16(a, b, n, op) do { \
4389 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
4390 RESULT(sum, n, 16); \
4392 ge |= 3 << (n * 2); \
4395 #define SARITH8(a, b, n, op) do { \
4397 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
4398 RESULT(sum, n, 8); \
4404 #define ADD16(a, b, n) SARITH16(a, b, n, +)
4405 #define SUB16(a, b, n) SARITH16(a, b, n, -)
4406 #define ADD8(a, b, n) SARITH8(a, b, n, +)
4407 #define SUB8(a, b, n) SARITH8(a, b, n, -)
4411 #include "op_addsub.h"
4413 /* Unsigned modulo arithmetic. */
4414 #define ADD16(a, b, n) do { \
4416 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
4417 RESULT(sum, n, 16); \
4418 if ((sum >> 16) == 1) \
4419 ge |= 3 << (n * 2); \
4422 #define ADD8(a, b, n) do { \
4424 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
4425 RESULT(sum, n, 8); \
4426 if ((sum >> 8) == 1) \
4430 #define SUB16(a, b, n) do { \
4432 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
4433 RESULT(sum, n, 16); \
4434 if ((sum >> 16) == 0) \
4435 ge |= 3 << (n * 2); \
4438 #define SUB8(a, b, n) do { \
4440 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
4441 RESULT(sum, n, 8); \
4442 if ((sum >> 8) == 0) \
4449 #include "op_addsub.h"
4451 /* Halved signed arithmetic. */
4452 #define ADD16(a, b, n) \
4453 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
4454 #define SUB16(a, b, n) \
4455 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
4456 #define ADD8(a, b, n) \
4457 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
4458 #define SUB8(a, b, n) \
4459 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
4462 #include "op_addsub.h"
4464 /* Halved unsigned arithmetic. */
4465 #define ADD16(a, b, n) \
4466 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4467 #define SUB16(a, b, n) \
4468 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4469 #define ADD8(a, b, n) \
4470 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4471 #define SUB8(a, b, n) \
4472 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4475 #include "op_addsub.h"
4477 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
4485 /* Unsigned sum of absolute byte differences. */
4486 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
4489 sum
= do_usad(a
, b
);
4490 sum
+= do_usad(a
>> 8, b
>> 8);
4491 sum
+= do_usad(a
>> 16, b
>>16);
4492 sum
+= do_usad(a
>> 24, b
>> 24);
4496 /* For ARMv6 SEL instruction. */
4497 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
4510 return (a
& mask
) | (b
& ~mask
);
4513 /* VFP support. We follow the convention used for VFP instructions:
4514 Single precision routines have a "s" suffix, double precision a
4517 /* Convert host exception flags to vfp form. */
4518 static inline int vfp_exceptbits_from_host(int host_bits
)
4520 int target_bits
= 0;
4522 if (host_bits
& float_flag_invalid
)
4524 if (host_bits
& float_flag_divbyzero
)
4526 if (host_bits
& float_flag_overflow
)
4528 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
4530 if (host_bits
& float_flag_inexact
)
4531 target_bits
|= 0x10;
4532 if (host_bits
& float_flag_input_denormal
)
4533 target_bits
|= 0x80;
4537 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
4542 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
4543 | (env
->vfp
.vec_len
<< 16)
4544 | (env
->vfp
.vec_stride
<< 20);
4545 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
4546 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
4547 fpscr
|= vfp_exceptbits_from_host(i
);
4551 uint32_t vfp_get_fpscr(CPUARMState
*env
)
4553 return HELPER(vfp_get_fpscr
)(env
);
4556 /* Convert vfp exception flags to target form. */
4557 static inline int vfp_exceptbits_to_host(int target_bits
)
4561 if (target_bits
& 1)
4562 host_bits
|= float_flag_invalid
;
4563 if (target_bits
& 2)
4564 host_bits
|= float_flag_divbyzero
;
4565 if (target_bits
& 4)
4566 host_bits
|= float_flag_overflow
;
4567 if (target_bits
& 8)
4568 host_bits
|= float_flag_underflow
;
4569 if (target_bits
& 0x10)
4570 host_bits
|= float_flag_inexact
;
4571 if (target_bits
& 0x80)
4572 host_bits
|= float_flag_input_denormal
;
4576 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
4581 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
4582 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
4583 env
->vfp
.vec_len
= (val
>> 16) & 7;
4584 env
->vfp
.vec_stride
= (val
>> 20) & 3;
4587 if (changed
& (3 << 22)) {
4588 i
= (val
>> 22) & 3;
4590 case FPROUNDING_TIEEVEN
:
4591 i
= float_round_nearest_even
;
4593 case FPROUNDING_POSINF
:
4596 case FPROUNDING_NEGINF
:
4597 i
= float_round_down
;
4599 case FPROUNDING_ZERO
:
4600 i
= float_round_to_zero
;
4603 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
4605 if (changed
& (1 << 24)) {
4606 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
4607 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
4609 if (changed
& (1 << 25))
4610 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
4612 i
= vfp_exceptbits_to_host(val
);
4613 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
4614 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
4617 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
4619 HELPER(vfp_set_fpscr
)(env
, val
);
4622 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
4624 #define VFP_BINOP(name) \
4625 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4627 float_status *fpst = fpstp; \
4628 return float32_ ## name(a, b, fpst); \
4630 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4632 float_status *fpst = fpstp; \
4633 return float64_ ## name(a, b, fpst); \
4645 float32
VFP_HELPER(neg
, s
)(float32 a
)
4647 return float32_chs(a
);
4650 float64
VFP_HELPER(neg
, d
)(float64 a
)
4652 return float64_chs(a
);
4655 float32
VFP_HELPER(abs
, s
)(float32 a
)
4657 return float32_abs(a
);
4660 float64
VFP_HELPER(abs
, d
)(float64 a
)
4662 return float64_abs(a
);
4665 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
4667 return float32_sqrt(a
, &env
->vfp
.fp_status
);
4670 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
4672 return float64_sqrt(a
, &env
->vfp
.fp_status
);
4675 /* XXX: check quiet/signaling case */
4676 #define DO_VFP_cmp(p, type) \
4677 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4680 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
4681 case 0: flags = 0x6; break; \
4682 case -1: flags = 0x8; break; \
4683 case 1: flags = 0x2; break; \
4684 default: case 2: flags = 0x3; break; \
4686 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4687 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4689 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4692 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
4693 case 0: flags = 0x6; break; \
4694 case -1: flags = 0x8; break; \
4695 case 1: flags = 0x2; break; \
4696 default: case 2: flags = 0x3; break; \
4698 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4699 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4701 DO_VFP_cmp(s
, float32
)
4702 DO_VFP_cmp(d
, float64
)
4705 /* Integer to float and float to integer conversions */
4707 #define CONV_ITOF(name, fsz, sign) \
4708 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
4710 float_status *fpst = fpstp; \
4711 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4714 #define CONV_FTOI(name, fsz, sign, round) \
4715 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
4717 float_status *fpst = fpstp; \
4718 if (float##fsz##_is_any_nan(x)) { \
4719 float_raise(float_flag_invalid, fpst); \
4722 return float##fsz##_to_##sign##int32##round(x, fpst); \
4725 #define FLOAT_CONVS(name, p, fsz, sign) \
4726 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
4727 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
4728 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4730 FLOAT_CONVS(si
, s
, 32, )
4731 FLOAT_CONVS(si
, d
, 64, )
4732 FLOAT_CONVS(ui
, s
, 32, u
)
4733 FLOAT_CONVS(ui
, d
, 64, u
)
4739 /* floating point conversion */
4740 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
4742 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
4743 /* ARM requires that S<->D conversion of any kind of NaN generates
4744 * a quiet NaN by forcing the most significant frac bit to 1.
4746 return float64_maybe_silence_nan(r
);
4749 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
4751 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
4752 /* ARM requires that S<->D conversion of any kind of NaN generates
4753 * a quiet NaN by forcing the most significant frac bit to 1.
4755 return float32_maybe_silence_nan(r
);
4758 /* VFP3 fixed point conversion. */
4759 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4760 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
4763 float_status *fpst = fpstp; \
4765 tmp = itype##_to_##float##fsz(x, fpst); \
4766 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
4769 /* Notice that we want only input-denormal exception flags from the
4770 * scalbn operation: the other possible flags (overflow+inexact if
4771 * we overflow to infinity, output-denormal) aren't correct for the
4772 * complete scale-and-convert operation.
4774 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
4775 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
4779 float_status *fpst = fpstp; \
4780 int old_exc_flags = get_float_exception_flags(fpst); \
4782 if (float##fsz##_is_any_nan(x)) { \
4783 float_raise(float_flag_invalid, fpst); \
4786 tmp = float##fsz##_scalbn(x, shift, fpst); \
4787 old_exc_flags |= get_float_exception_flags(fpst) \
4788 & float_flag_input_denormal; \
4789 set_float_exception_flags(old_exc_flags, fpst); \
4790 return float##fsz##_to_##itype##round(tmp, fpst); \
4793 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
4794 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4795 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
4796 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4798 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
4799 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4800 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4802 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
4803 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
4804 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
4805 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
4806 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
4807 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
4808 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
4809 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
4810 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
4811 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
4812 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
4813 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
4815 #undef VFP_CONV_FIX_FLOAT
4816 #undef VFP_CONV_FLOAT_FIX_ROUND
4818 /* Set the current fp rounding mode and return the old one.
4819 * The argument is a softfloat float_round_ value.
4821 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
4823 float_status
*fp_status
= &env
->vfp
.fp_status
;
4825 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
4826 set_float_rounding_mode(rmode
, fp_status
);
4831 /* Set the current fp rounding mode in the standard fp status and return
4832 * the old one. This is for NEON instructions that need to change the
4833 * rounding mode but wish to use the standard FPSCR values for everything
4834 * else. Always set the rounding mode back to the correct value after
4836 * The argument is a softfloat float_round_ value.
4838 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
4840 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
4842 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
4843 set_float_rounding_mode(rmode
, fp_status
);
4848 /* Half precision conversions. */
4849 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
4851 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
4852 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
4854 return float32_maybe_silence_nan(r
);
4859 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
4861 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
4862 float16 r
= float32_to_float16(a
, ieee
, s
);
4864 r
= float16_maybe_silence_nan(r
);
4866 return float16_val(r
);
4869 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
4871 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
4874 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
4876 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
4879 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
4881 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
4884 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
4886 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
4889 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
4891 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
4892 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
4894 return float64_maybe_silence_nan(r
);
4899 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
4901 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
4902 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
4904 r
= float16_maybe_silence_nan(r
);
4906 return float16_val(r
);
4909 #define float32_two make_float32(0x40000000)
4910 #define float32_three make_float32(0x40400000)
4911 #define float32_one_point_five make_float32(0x3fc00000)
4913 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
4915 float_status
*s
= &env
->vfp
.standard_fp_status
;
4916 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
4917 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
4918 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
4919 float_raise(float_flag_input_denormal
, s
);
4923 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
4926 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
4928 float_status
*s
= &env
->vfp
.standard_fp_status
;
4930 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
4931 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
4932 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
4933 float_raise(float_flag_input_denormal
, s
);
4935 return float32_one_point_five
;
4937 product
= float32_mul(a
, b
, s
);
4938 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
4943 /* Constants 256 and 512 are used in some helpers; we avoid relying on
4944 * int->float conversions at run-time. */
4945 #define float64_256 make_float64(0x4070000000000000LL)
4946 #define float64_512 make_float64(0x4080000000000000LL)
4947 #define float32_maxnorm make_float32(0x7f7fffff)
4948 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
4950 /* Reciprocal functions
4952 * The algorithm that must be used to calculate the estimate
4953 * is specified by the ARM ARM, see FPRecipEstimate()
4956 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
4958 /* These calculations mustn't set any fp exception flags,
4959 * so we use a local copy of the fp_status.
4961 float_status dummy_status
= *real_fp_status
;
4962 float_status
*s
= &dummy_status
;
4963 /* q = (int)(a * 512.0) */
4964 float64 q
= float64_mul(float64_512
, a
, s
);
4965 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
4967 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
4968 q
= int64_to_float64(q_int
, s
);
4969 q
= float64_add(q
, float64_half
, s
);
4970 q
= float64_div(q
, float64_512
, s
);
4971 q
= float64_div(float64_one
, q
, s
);
4973 /* s = (int)(256.0 * r + 0.5) */
4974 q
= float64_mul(q
, float64_256
, s
);
4975 q
= float64_add(q
, float64_half
, s
);
4976 q_int
= float64_to_int64_round_to_zero(q
, s
);
4978 /* return (double)s / 256.0 */
4979 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
4982 /* Common wrapper to call recip_estimate */
4983 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
4985 uint64_t val64
= float64_val(num
);
4986 uint64_t frac
= extract64(val64
, 0, 52);
4987 int64_t exp
= extract64(val64
, 52, 11);
4989 float64 scaled
, estimate
;
4991 /* Generate the scaled number for the estimate function */
4993 if (extract64(frac
, 51, 1) == 0) {
4995 frac
= extract64(frac
, 0, 50) << 2;
4997 frac
= extract64(frac
, 0, 51) << 1;
5001 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
5002 scaled
= make_float64((0x3feULL
<< 52)
5003 | extract64(frac
, 44, 8) << 44);
5005 estimate
= recip_estimate(scaled
, fpst
);
5007 /* Build new result */
5008 val64
= float64_val(estimate
);
5009 sbit
= 0x8000000000000000ULL
& val64
;
5011 frac
= extract64(val64
, 0, 52);
5014 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
5015 } else if (exp
== -1) {
5016 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
5020 return make_float64(sbit
| (exp
<< 52) | frac
);
5023 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
5025 switch (fpst
->float_rounding_mode
) {
5026 case float_round_nearest_even
: /* Round to Nearest */
5028 case float_round_up
: /* Round to +Inf */
5030 case float_round_down
: /* Round to -Inf */
5032 case float_round_to_zero
: /* Round to Zero */
5036 g_assert_not_reached();
5039 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
5041 float_status
*fpst
= fpstp
;
5042 float32 f32
= float32_squash_input_denormal(input
, fpst
);
5043 uint32_t f32_val
= float32_val(f32
);
5044 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
5045 int32_t f32_exp
= extract32(f32_val
, 23, 8);
5046 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
5052 if (float32_is_any_nan(f32
)) {
5054 if (float32_is_signaling_nan(f32
)) {
5055 float_raise(float_flag_invalid
, fpst
);
5056 nan
= float32_maybe_silence_nan(f32
);
5058 if (fpst
->default_nan_mode
) {
5059 nan
= float32_default_nan
;
5062 } else if (float32_is_infinity(f32
)) {
5063 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
5064 } else if (float32_is_zero(f32
)) {
5065 float_raise(float_flag_divbyzero
, fpst
);
5066 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
5067 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
5068 /* Abs(value) < 2.0^-128 */
5069 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
5070 if (round_to_inf(fpst
, f32_sbit
)) {
5071 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
5073 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
5075 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
5076 float_raise(float_flag_underflow
, fpst
);
5077 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
5081 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
5082 r64
= call_recip_estimate(f64
, 253, fpst
);
5083 r64_val
= float64_val(r64
);
5084 r64_exp
= extract64(r64_val
, 52, 11);
5085 r64_frac
= extract64(r64_val
, 0, 52);
5087 /* result = sign : result_exp<7:0> : fraction<51:29>; */
5088 return make_float32(f32_sbit
|
5089 (r64_exp
& 0xff) << 23 |
5090 extract64(r64_frac
, 29, 24));
5093 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
5095 float_status
*fpst
= fpstp
;
5096 float64 f64
= float64_squash_input_denormal(input
, fpst
);
5097 uint64_t f64_val
= float64_val(f64
);
5098 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
5099 int64_t f64_exp
= extract64(f64_val
, 52, 11);
5105 /* Deal with any special cases */
5106 if (float64_is_any_nan(f64
)) {
5108 if (float64_is_signaling_nan(f64
)) {
5109 float_raise(float_flag_invalid
, fpst
);
5110 nan
= float64_maybe_silence_nan(f64
);
5112 if (fpst
->default_nan_mode
) {
5113 nan
= float64_default_nan
;
5116 } else if (float64_is_infinity(f64
)) {
5117 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
5118 } else if (float64_is_zero(f64
)) {
5119 float_raise(float_flag_divbyzero
, fpst
);
5120 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
5121 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
5122 /* Abs(value) < 2.0^-1024 */
5123 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
5124 if (round_to_inf(fpst
, f64_sbit
)) {
5125 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
5127 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
5129 } else if (f64_exp
>= 1023 && fpst
->flush_to_zero
) {
5130 float_raise(float_flag_underflow
, fpst
);
5131 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
5134 r64
= call_recip_estimate(f64
, 2045, fpst
);
5135 r64_val
= float64_val(r64
);
5136 r64_exp
= extract64(r64_val
, 52, 11);
5137 r64_frac
= extract64(r64_val
, 0, 52);
5139 /* result = sign : result_exp<10:0> : fraction<51:0> */
5140 return make_float64(f64_sbit
|
5141 ((r64_exp
& 0x7ff) << 52) |
5145 /* The algorithm that must be used to calculate the estimate
5146 * is specified by the ARM ARM.
5148 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
5150 /* These calculations mustn't set any fp exception flags,
5151 * so we use a local copy of the fp_status.
5153 float_status dummy_status
= *real_fp_status
;
5154 float_status
*s
= &dummy_status
;
5158 if (float64_lt(a
, float64_half
, s
)) {
5159 /* range 0.25 <= a < 0.5 */
5161 /* a in units of 1/512 rounded down */
5162 /* q0 = (int)(a * 512.0); */
5163 q
= float64_mul(float64_512
, a
, s
);
5164 q_int
= float64_to_int64_round_to_zero(q
, s
);
5166 /* reciprocal root r */
5167 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
5168 q
= int64_to_float64(q_int
, s
);
5169 q
= float64_add(q
, float64_half
, s
);
5170 q
= float64_div(q
, float64_512
, s
);
5171 q
= float64_sqrt(q
, s
);
5172 q
= float64_div(float64_one
, q
, s
);
5174 /* range 0.5 <= a < 1.0 */
5176 /* a in units of 1/256 rounded down */
5177 /* q1 = (int)(a * 256.0); */
5178 q
= float64_mul(float64_256
, a
, s
);
5179 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
5181 /* reciprocal root r */
5182 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
5183 q
= int64_to_float64(q_int
, s
);
5184 q
= float64_add(q
, float64_half
, s
);
5185 q
= float64_div(q
, float64_256
, s
);
5186 q
= float64_sqrt(q
, s
);
5187 q
= float64_div(float64_one
, q
, s
);
5189 /* r in units of 1/256 rounded to nearest */
5190 /* s = (int)(256.0 * r + 0.5); */
5192 q
= float64_mul(q
, float64_256
,s
);
5193 q
= float64_add(q
, float64_half
, s
);
5194 q_int
= float64_to_int64_round_to_zero(q
, s
);
5196 /* return (double)s / 256.0;*/
5197 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
5200 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
5202 float_status
*s
= fpstp
;
5203 float32 f32
= float32_squash_input_denormal(input
, s
);
5204 uint32_t val
= float32_val(f32
);
5205 uint32_t f32_sbit
= 0x80000000 & val
;
5206 int32_t f32_exp
= extract32(val
, 23, 8);
5207 uint32_t f32_frac
= extract32(val
, 0, 23);
5213 if (float32_is_any_nan(f32
)) {
5215 if (float32_is_signaling_nan(f32
)) {
5216 float_raise(float_flag_invalid
, s
);
5217 nan
= float32_maybe_silence_nan(f32
);
5219 if (s
->default_nan_mode
) {
5220 nan
= float32_default_nan
;
5223 } else if (float32_is_zero(f32
)) {
5224 float_raise(float_flag_divbyzero
, s
);
5225 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
5226 } else if (float32_is_neg(f32
)) {
5227 float_raise(float_flag_invalid
, s
);
5228 return float32_default_nan
;
5229 } else if (float32_is_infinity(f32
)) {
5230 return float32_zero
;
5233 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
5234 * preserving the parity of the exponent. */
5236 f64_frac
= ((uint64_t) f32_frac
) << 29;
5238 while (extract64(f64_frac
, 51, 1) == 0) {
5239 f64_frac
= f64_frac
<< 1;
5240 f32_exp
= f32_exp
-1;
5242 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
5245 if (extract64(f32_exp
, 0, 1) == 0) {
5246 f64
= make_float64(((uint64_t) f32_sbit
) << 32
5250 f64
= make_float64(((uint64_t) f32_sbit
) << 32
5255 result_exp
= (380 - f32_exp
) / 2;
5257 f64
= recip_sqrt_estimate(f64
, s
);
5259 val64
= float64_val(f64
);
5261 val
= ((result_exp
& 0xff) << 23)
5262 | ((val64
>> 29) & 0x7fffff);
5263 return make_float32(val
);
5266 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
5268 float_status
*s
= fpstp
;
5269 float64 f64
= float64_squash_input_denormal(input
, s
);
5270 uint64_t val
= float64_val(f64
);
5271 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
5272 int64_t f64_exp
= extract64(val
, 52, 11);
5273 uint64_t f64_frac
= extract64(val
, 0, 52);
5275 uint64_t result_frac
;
5277 if (float64_is_any_nan(f64
)) {
5279 if (float64_is_signaling_nan(f64
)) {
5280 float_raise(float_flag_invalid
, s
);
5281 nan
= float64_maybe_silence_nan(f64
);
5283 if (s
->default_nan_mode
) {
5284 nan
= float64_default_nan
;
5287 } else if (float64_is_zero(f64
)) {
5288 float_raise(float_flag_divbyzero
, s
);
5289 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
5290 } else if (float64_is_neg(f64
)) {
5291 float_raise(float_flag_invalid
, s
);
5292 return float64_default_nan
;
5293 } else if (float64_is_infinity(f64
)) {
5294 return float64_zero
;
5297 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
5298 * preserving the parity of the exponent. */
5301 while (extract64(f64_frac
, 51, 1) == 0) {
5302 f64_frac
= f64_frac
<< 1;
5303 f64_exp
= f64_exp
- 1;
5305 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
5308 if (extract64(f64_exp
, 0, 1) == 0) {
5309 f64
= make_float64(f64_sbit
5313 f64
= make_float64(f64_sbit
5318 result_exp
= (3068 - f64_exp
) / 2;
5320 f64
= recip_sqrt_estimate(f64
, s
);
5322 result_frac
= extract64(float64_val(f64
), 0, 52);
5324 return make_float64(f64_sbit
|
5325 ((result_exp
& 0x7ff) << 52) |
5329 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
5331 float_status
*s
= fpstp
;
5334 if ((a
& 0x80000000) == 0) {
5338 f64
= make_float64((0x3feULL
<< 52)
5339 | ((int64_t)(a
& 0x7fffffff) << 21));
5341 f64
= recip_estimate(f64
, s
);
5343 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
5346 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
5348 float_status
*fpst
= fpstp
;
5351 if ((a
& 0xc0000000) == 0) {
5355 if (a
& 0x80000000) {
5356 f64
= make_float64((0x3feULL
<< 52)
5357 | ((uint64_t)(a
& 0x7fffffff) << 21));
5358 } else { /* bits 31-30 == '01' */
5359 f64
= make_float64((0x3fdULL
<< 52)
5360 | ((uint64_t)(a
& 0x3fffffff) << 22));
5363 f64
= recip_sqrt_estimate(f64
, fpst
);
5365 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
5368 /* VFPv4 fused multiply-accumulate */
5369 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
5371 float_status
*fpst
= fpstp
;
5372 return float32_muladd(a
, b
, c
, 0, fpst
);
5375 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
5377 float_status
*fpst
= fpstp
;
5378 return float64_muladd(a
, b
, c
, 0, fpst
);
5381 /* ARMv8 round to integral */
5382 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
5384 return float32_round_to_int(x
, fp_status
);
5387 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
5389 return float64_round_to_int(x
, fp_status
);
5392 float32
HELPER(rints
)(float32 x
, void *fp_status
)
5394 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
5397 ret
= float32_round_to_int(x
, fp_status
);
5399 /* Suppress any inexact exceptions the conversion produced */
5400 if (!(old_flags
& float_flag_inexact
)) {
5401 new_flags
= get_float_exception_flags(fp_status
);
5402 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
5408 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
5410 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
5413 ret
= float64_round_to_int(x
, fp_status
);
5415 new_flags
= get_float_exception_flags(fp_status
);
5417 /* Suppress any inexact exceptions the conversion produced */
5418 if (!(old_flags
& float_flag_inexact
)) {
5419 new_flags
= get_float_exception_flags(fp_status
);
5420 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
5426 /* Convert ARM rounding mode to softfloat */
5427 int arm_rmode_to_sf(int rmode
)
5430 case FPROUNDING_TIEAWAY
:
5431 rmode
= float_round_ties_away
;
5433 case FPROUNDING_ODD
:
5434 /* FIXME: add support for TIEAWAY and ODD */
5435 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
5437 case FPROUNDING_TIEEVEN
:
5439 rmode
= float_round_nearest_even
;
5441 case FPROUNDING_POSINF
:
5442 rmode
= float_round_up
;
5444 case FPROUNDING_NEGINF
:
5445 rmode
= float_round_down
;
5447 case FPROUNDING_ZERO
:
5448 rmode
= float_round_to_zero
;
5454 static void crc_init_buffer(uint8_t *buf
, uint32_t val
, uint32_t bytes
)
5459 buf
[0] = val
& 0xff;
5460 } else if (bytes
== 2) {
5461 buf
[0] = val
& 0xff;
5462 buf
[1] = (val
>> 8) & 0xff;
5464 buf
[0] = val
& 0xff;
5465 buf
[1] = (val
>> 8) & 0xff;
5466 buf
[2] = (val
>> 16) & 0xff;
5467 buf
[3] = (val
>> 24) & 0xff;
5471 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
5475 crc_init_buffer(buf
, val
, bytes
);
5477 /* zlib crc32 converts the accumulator and output to one's complement. */
5478 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
5481 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
5485 crc_init_buffer(buf
, val
, bytes
);
5487 /* Linux crc32c converts the output to one's complement. */
5488 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;