2 * RAM allocation and memory access
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/madvise.h"
29 #include "hw/core/tcg-cpu-ops.h"
30 #endif /* CONFIG_TCG */
32 #include "exec/exec-all.h"
33 #include "exec/target_page.h"
34 #include "hw/qdev-core.h"
35 #include "hw/qdev-properties.h"
36 #include "hw/boards.h"
37 #include "hw/xen/xen.h"
38 #include "sysemu/kvm.h"
39 #include "sysemu/tcg.h"
40 #include "sysemu/qtest.h"
41 #include "qemu/timer.h"
42 #include "qemu/config-file.h"
43 #include "qemu/error-report.h"
44 #include "qemu/qemu-print.h"
46 #include "qemu/memalign.h"
47 #include "exec/memory.h"
48 #include "exec/ioport.h"
49 #include "sysemu/dma.h"
50 #include "sysemu/hostmem.h"
51 #include "sysemu/hw_accel.h"
52 #include "sysemu/xen-mapcache.h"
53 #include "trace/trace-root.h"
55 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
56 #include <linux/falloc.h>
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "exec/translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
67 #include "qemu/pmem.h"
69 #include "migration/vmstate.h"
71 #include "qemu/range.h"
73 #include "qemu/mmap-alloc.h"
76 #include "monitor/monitor.h"
78 #ifdef CONFIG_LIBDAXCTL
79 #include <daxctl/libdaxctl.h>
82 //#define DEBUG_SUBPAGE
84 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
85 * are protected by the ramlist lock.
87 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
89 static MemoryRegion
*system_memory
;
90 static MemoryRegion
*system_io
;
92 AddressSpace address_space_io
;
93 AddressSpace address_space_memory
;
95 static MemoryRegion io_mem_unassigned
;
97 typedef struct PhysPageEntry PhysPageEntry
;
99 struct PhysPageEntry
{
100 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
102 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
106 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
108 /* Size of the L2 (and L3, etc) page tables. */
109 #define ADDR_SPACE_BITS 64
112 #define P_L2_SIZE (1 << P_L2_BITS)
114 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
116 typedef PhysPageEntry Node
[P_L2_SIZE
];
118 typedef struct PhysPageMap
{
121 unsigned sections_nb
;
122 unsigned sections_nb_alloc
;
124 unsigned nodes_nb_alloc
;
126 MemoryRegionSection
*sections
;
129 struct AddressSpaceDispatch
{
130 MemoryRegionSection
*mru_section
;
131 /* This is a multi-level map on the physical address space.
132 * The bottom level has pointers to MemoryRegionSections.
134 PhysPageEntry phys_map
;
138 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
139 typedef struct subpage_t
{
143 uint16_t sub_section
[];
146 #define PHYS_SECTION_UNASSIGNED 0
148 static void io_mem_init(void);
149 static void memory_map_init(void);
150 static void tcg_log_global_after_sync(MemoryListener
*listener
);
151 static void tcg_commit(MemoryListener
*listener
);
154 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
155 * @cpu: the CPU whose AddressSpace this is
156 * @as: the AddressSpace itself
157 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
158 * @tcg_as_listener: listener for tracking changes to the AddressSpace
160 struct CPUAddressSpace
{
163 struct AddressSpaceDispatch
*memory_dispatch
;
164 MemoryListener tcg_as_listener
;
167 struct DirtyBitmapSnapshot
{
170 unsigned long dirty
[];
173 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
175 static unsigned alloc_hint
= 16;
176 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
177 map
->nodes_nb_alloc
= MAX(alloc_hint
, map
->nodes_nb
+ nodes
);
178 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
179 alloc_hint
= map
->nodes_nb_alloc
;
183 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
190 ret
= map
->nodes_nb
++;
192 assert(ret
!= PHYS_MAP_NODE_NIL
);
193 assert(ret
!= map
->nodes_nb_alloc
);
195 e
.skip
= leaf
? 0 : 1;
196 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
197 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
198 memcpy(&p
[i
], &e
, sizeof(e
));
203 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
204 hwaddr
*index
, uint64_t *nb
, uint16_t leaf
,
208 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
210 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
211 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
213 p
= map
->nodes
[lp
->ptr
];
214 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
216 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
217 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
223 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
229 static void phys_page_set(AddressSpaceDispatch
*d
,
230 hwaddr index
, uint64_t nb
,
233 /* Wildly overreserve - it doesn't matter much. */
234 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
236 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
239 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
240 * and update our entry so we can skip it and go directly to the destination.
242 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
244 unsigned valid_ptr
= P_L2_SIZE
;
249 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
254 for (i
= 0; i
< P_L2_SIZE
; i
++) {
255 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
262 phys_page_compact(&p
[i
], nodes
);
266 /* We can only compress if there's only one child. */
271 assert(valid_ptr
< P_L2_SIZE
);
273 /* Don't compress if it won't fit in the # of bits we have. */
274 if (P_L2_LEVELS
>= (1 << 6) &&
275 lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 6)) {
279 lp
->ptr
= p
[valid_ptr
].ptr
;
280 if (!p
[valid_ptr
].skip
) {
281 /* If our only child is a leaf, make this a leaf. */
282 /* By design, we should have made this node a leaf to begin with so we
283 * should never reach here.
284 * But since it's so simple to handle this, let's do it just in case we
289 lp
->skip
+= p
[valid_ptr
].skip
;
293 void address_space_dispatch_compact(AddressSpaceDispatch
*d
)
295 if (d
->phys_map
.skip
) {
296 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
300 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
303 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
304 * the section must cover the entire address space.
306 return int128_gethi(section
->size
) ||
307 range_covers_byte(section
->offset_within_address_space
,
308 int128_getlo(section
->size
), addr
);
311 static MemoryRegionSection
*phys_page_find(AddressSpaceDispatch
*d
, hwaddr addr
)
313 PhysPageEntry lp
= d
->phys_map
, *p
;
314 Node
*nodes
= d
->map
.nodes
;
315 MemoryRegionSection
*sections
= d
->map
.sections
;
316 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
319 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
320 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
321 return §ions
[PHYS_SECTION_UNASSIGNED
];
324 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
327 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
328 return §ions
[lp
.ptr
];
330 return §ions
[PHYS_SECTION_UNASSIGNED
];
334 /* Called from RCU critical section */
335 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
337 bool resolve_subpage
)
339 MemoryRegionSection
*section
= qatomic_read(&d
->mru_section
);
342 if (!section
|| section
== &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] ||
343 !section_covers_addr(section
, addr
)) {
344 section
= phys_page_find(d
, addr
);
345 qatomic_set(&d
->mru_section
, section
);
347 if (resolve_subpage
&& section
->mr
->subpage
) {
348 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
349 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
354 /* Called from RCU critical section */
355 static MemoryRegionSection
*
356 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
357 hwaddr
*plen
, bool resolve_subpage
)
359 MemoryRegionSection
*section
;
363 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
364 /* Compute offset within MemoryRegionSection */
365 addr
-= section
->offset_within_address_space
;
367 /* Compute offset within MemoryRegion */
368 *xlat
= addr
+ section
->offset_within_region
;
372 /* MMIO registers can be expected to perform full-width accesses based only
373 * on their address, without considering adjacent registers that could
374 * decode to completely different MemoryRegions. When such registers
375 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
376 * regions overlap wildly. For this reason we cannot clamp the accesses
379 * If the length is small (as is the case for address_space_ldl/stl),
380 * everything works fine. If the incoming length is large, however,
381 * the caller really has to do the clamping through memory_access_size.
383 if (memory_region_is_ram(mr
)) {
384 diff
= int128_sub(section
->size
, int128_make64(addr
));
385 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
391 * address_space_translate_iommu - translate an address through an IOMMU
392 * memory region and then through the target address space.
394 * @iommu_mr: the IOMMU memory region that we start the translation from
395 * @addr: the address to be translated through the MMU
396 * @xlat: the translated address offset within the destination memory region.
397 * It cannot be %NULL.
398 * @plen_out: valid read/write length of the translated address. It
400 * @page_mask_out: page mask for the translated address. This
401 * should only be meaningful for IOMMU translated
402 * addresses, since there may be huge pages that this bit
403 * would tell. It can be %NULL if we don't care about it.
404 * @is_write: whether the translation operation is for write
405 * @is_mmio: whether this can be MMIO, set true if it can
406 * @target_as: the address space targeted by the IOMMU
407 * @attrs: transaction attributes
409 * This function is called from RCU critical section. It is the common
410 * part of flatview_do_translate and address_space_translate_cached.
412 static MemoryRegionSection
address_space_translate_iommu(IOMMUMemoryRegion
*iommu_mr
,
415 hwaddr
*page_mask_out
,
418 AddressSpace
**target_as
,
421 MemoryRegionSection
*section
;
422 hwaddr page_mask
= (hwaddr
)-1;
426 IOMMUMemoryRegionClass
*imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
430 if (imrc
->attrs_to_index
) {
431 iommu_idx
= imrc
->attrs_to_index(iommu_mr
, attrs
);
434 iotlb
= imrc
->translate(iommu_mr
, addr
, is_write
?
435 IOMMU_WO
: IOMMU_RO
, iommu_idx
);
437 if (!(iotlb
.perm
& (1 << is_write
))) {
441 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
442 | (addr
& iotlb
.addr_mask
));
443 page_mask
&= iotlb
.addr_mask
;
444 *plen_out
= MIN(*plen_out
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
445 *target_as
= iotlb
.target_as
;
447 section
= address_space_translate_internal(
448 address_space_to_dispatch(iotlb
.target_as
), addr
, xlat
,
451 iommu_mr
= memory_region_get_iommu(section
->mr
);
452 } while (unlikely(iommu_mr
));
455 *page_mask_out
= page_mask
;
460 return (MemoryRegionSection
) { .mr
= &io_mem_unassigned
};
464 * flatview_do_translate - translate an address in FlatView
466 * @fv: the flat view that we want to translate on
467 * @addr: the address to be translated in above address space
468 * @xlat: the translated address offset within memory region. It
470 * @plen_out: valid read/write length of the translated address. It
471 * can be @NULL when we don't care about it.
472 * @page_mask_out: page mask for the translated address. This
473 * should only be meaningful for IOMMU translated
474 * addresses, since there may be huge pages that this bit
475 * would tell. It can be @NULL if we don't care about it.
476 * @is_write: whether the translation operation is for write
477 * @is_mmio: whether this can be MMIO, set true if it can
478 * @target_as: the address space targeted by the IOMMU
479 * @attrs: memory transaction attributes
481 * This function is called from RCU critical section
483 static MemoryRegionSection
flatview_do_translate(FlatView
*fv
,
487 hwaddr
*page_mask_out
,
490 AddressSpace
**target_as
,
493 MemoryRegionSection
*section
;
494 IOMMUMemoryRegion
*iommu_mr
;
495 hwaddr plen
= (hwaddr
)(-1);
501 section
= address_space_translate_internal(
502 flatview_to_dispatch(fv
), addr
, xlat
,
505 iommu_mr
= memory_region_get_iommu(section
->mr
);
506 if (unlikely(iommu_mr
)) {
507 return address_space_translate_iommu(iommu_mr
, xlat
,
508 plen_out
, page_mask_out
,
513 /* Not behind an IOMMU, use default page size. */
514 *page_mask_out
= ~TARGET_PAGE_MASK
;
520 /* Called from RCU critical section */
521 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
522 bool is_write
, MemTxAttrs attrs
)
524 MemoryRegionSection section
;
525 hwaddr xlat
, page_mask
;
528 * This can never be MMIO, and we don't really care about plen,
531 section
= flatview_do_translate(address_space_to_flatview(as
), addr
, &xlat
,
532 NULL
, &page_mask
, is_write
, false, &as
,
535 /* Illegal translation */
536 if (section
.mr
== &io_mem_unassigned
) {
540 /* Convert memory region offset into address space offset */
541 xlat
+= section
.offset_within_address_space
-
542 section
.offset_within_region
;
544 return (IOMMUTLBEntry
) {
546 .iova
= addr
& ~page_mask
,
547 .translated_addr
= xlat
& ~page_mask
,
548 .addr_mask
= page_mask
,
549 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
554 return (IOMMUTLBEntry
) {0};
557 /* Called from RCU critical section */
558 MemoryRegion
*flatview_translate(FlatView
*fv
, hwaddr addr
, hwaddr
*xlat
,
559 hwaddr
*plen
, bool is_write
,
563 MemoryRegionSection section
;
564 AddressSpace
*as
= NULL
;
566 /* This can be MMIO, so setup MMIO bit. */
567 section
= flatview_do_translate(fv
, addr
, xlat
, plen
, NULL
,
568 is_write
, true, &as
, attrs
);
571 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
572 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
573 *plen
= MIN(page
, *plen
);
579 typedef struct TCGIOMMUNotifier
{
587 static void tcg_iommu_unmap_notify(IOMMUNotifier
*n
, IOMMUTLBEntry
*iotlb
)
589 TCGIOMMUNotifier
*notifier
= container_of(n
, TCGIOMMUNotifier
, n
);
591 if (!notifier
->active
) {
594 tlb_flush(notifier
->cpu
);
595 notifier
->active
= false;
596 /* We leave the notifier struct on the list to avoid reallocating it later.
597 * Generally the number of IOMMUs a CPU deals with will be small.
598 * In any case we can't unregister the iommu notifier from a notify
603 static void tcg_register_iommu_notifier(CPUState
*cpu
,
604 IOMMUMemoryRegion
*iommu_mr
,
607 /* Make sure this CPU has an IOMMU notifier registered for this
608 * IOMMU/IOMMU index combination, so that we can flush its TLB
609 * when the IOMMU tells us the mappings we've cached have changed.
611 MemoryRegion
*mr
= MEMORY_REGION(iommu_mr
);
612 TCGIOMMUNotifier
*notifier
= NULL
;
615 for (i
= 0; i
< cpu
->iommu_notifiers
->len
; i
++) {
616 notifier
= g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
*, i
);
617 if (notifier
->mr
== mr
&& notifier
->iommu_idx
== iommu_idx
) {
621 if (i
== cpu
->iommu_notifiers
->len
) {
622 /* Not found, add a new entry at the end of the array */
623 cpu
->iommu_notifiers
= g_array_set_size(cpu
->iommu_notifiers
, i
+ 1);
624 notifier
= g_new0(TCGIOMMUNotifier
, 1);
625 g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
*, i
) = notifier
;
628 notifier
->iommu_idx
= iommu_idx
;
630 /* Rather than trying to register interest in the specific part
631 * of the iommu's address space that we've accessed and then
632 * expand it later as subsequent accesses touch more of it, we
633 * just register interest in the whole thing, on the assumption
634 * that iommu reconfiguration will be rare.
636 iommu_notifier_init(¬ifier
->n
,
637 tcg_iommu_unmap_notify
,
638 IOMMU_NOTIFIER_UNMAP
,
642 memory_region_register_iommu_notifier(notifier
->mr
, ¬ifier
->n
,
646 if (!notifier
->active
) {
647 notifier
->active
= true;
651 void tcg_iommu_free_notifier_list(CPUState
*cpu
)
653 /* Destroy the CPU's notifier list */
655 TCGIOMMUNotifier
*notifier
;
657 for (i
= 0; i
< cpu
->iommu_notifiers
->len
; i
++) {
658 notifier
= g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
*, i
);
659 memory_region_unregister_iommu_notifier(notifier
->mr
, ¬ifier
->n
);
662 g_array_free(cpu
->iommu_notifiers
, true);
665 void tcg_iommu_init_notifier_list(CPUState
*cpu
)
667 cpu
->iommu_notifiers
= g_array_new(false, true, sizeof(TCGIOMMUNotifier
*));
670 /* Called from RCU critical section */
671 MemoryRegionSection
*
672 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
673 hwaddr
*xlat
, hwaddr
*plen
,
674 MemTxAttrs attrs
, int *prot
)
676 MemoryRegionSection
*section
;
677 IOMMUMemoryRegion
*iommu_mr
;
678 IOMMUMemoryRegionClass
*imrc
;
681 AddressSpaceDispatch
*d
=
682 qatomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
685 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, false);
687 iommu_mr
= memory_region_get_iommu(section
->mr
);
692 imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
694 iommu_idx
= imrc
->attrs_to_index(iommu_mr
, attrs
);
695 tcg_register_iommu_notifier(cpu
, iommu_mr
, iommu_idx
);
696 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
697 * doesn't short-cut its translation table walk.
699 iotlb
= imrc
->translate(iommu_mr
, addr
, IOMMU_NONE
, iommu_idx
);
700 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
701 | (addr
& iotlb
.addr_mask
));
702 /* Update the caller's prot bits to remove permissions the IOMMU
703 * is giving us a failure response for. If we get down to no
704 * permissions left at all we can give up now.
706 if (!(iotlb
.perm
& IOMMU_RO
)) {
707 *prot
&= ~(PAGE_READ
| PAGE_EXEC
);
709 if (!(iotlb
.perm
& IOMMU_WO
)) {
710 *prot
&= ~PAGE_WRITE
;
717 d
= flatview_to_dispatch(address_space_to_flatview(iotlb
.target_as
));
720 assert(!memory_region_is_iommu(section
->mr
));
725 return &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
];
728 void cpu_address_space_init(CPUState
*cpu
, int asidx
,
729 const char *prefix
, MemoryRegion
*mr
)
731 CPUAddressSpace
*newas
;
732 AddressSpace
*as
= g_new0(AddressSpace
, 1);
736 as_name
= g_strdup_printf("%s-%d", prefix
, cpu
->cpu_index
);
737 address_space_init(as
, mr
, as_name
);
740 /* Target code should have set num_ases before calling us */
741 assert(asidx
< cpu
->num_ases
);
744 /* address space 0 gets the convenience alias */
748 /* KVM cannot currently support multiple address spaces. */
749 assert(asidx
== 0 || !kvm_enabled());
751 if (!cpu
->cpu_ases
) {
752 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
755 newas
= &cpu
->cpu_ases
[asidx
];
759 newas
->tcg_as_listener
.log_global_after_sync
= tcg_log_global_after_sync
;
760 newas
->tcg_as_listener
.commit
= tcg_commit
;
761 newas
->tcg_as_listener
.name
= "tcg";
762 memory_listener_register(&newas
->tcg_as_listener
, as
);
766 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
768 /* Return the AddressSpace corresponding to the specified index */
769 return cpu
->cpu_ases
[asidx
].as
;
772 /* Add a watchpoint. */
773 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
774 int flags
, CPUWatchpoint
**watchpoint
)
779 /* forbid ranges which are empty or run off the end of the address space */
780 if (len
== 0 || (addr
+ len
- 1) < addr
) {
781 error_report("tried to set invalid watchpoint at %"
782 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
785 wp
= g_malloc(sizeof(*wp
));
791 /* keep all GDB-injected watchpoints in front */
792 if (flags
& BP_GDB
) {
793 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
795 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
798 in_page
= -(addr
| TARGET_PAGE_MASK
);
799 if (len
<= in_page
) {
800 tlb_flush_page(cpu
, addr
);
810 /* Remove a specific watchpoint. */
811 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
816 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
817 if (addr
== wp
->vaddr
&& len
== wp
->len
818 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
819 cpu_watchpoint_remove_by_ref(cpu
, wp
);
826 /* Remove a specific watchpoint by reference. */
827 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
829 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
831 tlb_flush_page(cpu
, watchpoint
->vaddr
);
836 /* Remove all matching watchpoints. */
837 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
839 CPUWatchpoint
*wp
, *next
;
841 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
842 if (wp
->flags
& mask
) {
843 cpu_watchpoint_remove_by_ref(cpu
, wp
);
849 /* Return true if this watchpoint address matches the specified
850 * access (ie the address range covered by the watchpoint overlaps
851 * partially or completely with the address range covered by the
854 static inline bool watchpoint_address_matches(CPUWatchpoint
*wp
,
855 vaddr addr
, vaddr len
)
857 /* We know the lengths are non-zero, but a little caution is
858 * required to avoid errors in the case where the range ends
859 * exactly at the top of the address space and so addr + len
860 * wraps round to zero.
862 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
863 vaddr addrend
= addr
+ len
- 1;
865 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
868 /* Return flags for watchpoints that match addr + prot. */
869 int cpu_watchpoint_address_matches(CPUState
*cpu
, vaddr addr
, vaddr len
)
874 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
875 if (watchpoint_address_matches(wp
, addr
, len
)) {
882 /* Generate a debug exception if a watchpoint has been hit. */
883 void cpu_check_watchpoint(CPUState
*cpu
, vaddr addr
, vaddr len
,
884 MemTxAttrs attrs
, int flags
, uintptr_t ra
)
886 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
889 assert(tcg_enabled());
890 if (cpu
->watchpoint_hit
) {
892 * We re-entered the check after replacing the TB.
893 * Now raise the debug interrupt so that it will
894 * trigger after the current instruction.
896 qemu_mutex_lock_iothread();
897 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
898 qemu_mutex_unlock_iothread();
902 if (cc
->tcg_ops
->adjust_watchpoint_address
) {
903 /* this is currently used only by ARM BE32 */
904 addr
= cc
->tcg_ops
->adjust_watchpoint_address(cpu
, addr
, len
);
906 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
907 if (watchpoint_address_matches(wp
, addr
, len
)
908 && (wp
->flags
& flags
)) {
909 if (replay_running_debug()) {
911 * replay_breakpoint reads icount.
912 * Force recompile to succeed, because icount may
913 * be read only at the end of the block.
915 if (!cpu
->can_do_io
) {
916 /* Force execution of one insn next time. */
917 cpu
->cflags_next_tb
= 1 | CF_LAST_IO
| CF_NOIRQ
| curr_cflags(cpu
);
918 cpu_loop_exit_restore(cpu
, ra
);
921 * Don't process the watchpoints when we are
922 * in a reverse debugging operation.
927 if (flags
== BP_MEM_READ
) {
928 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
930 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
932 wp
->hitaddr
= MAX(addr
, wp
->vaddr
);
933 wp
->hitattrs
= attrs
;
935 if (wp
->flags
& BP_CPU
&& cc
->tcg_ops
->debug_check_watchpoint
&&
936 !cc
->tcg_ops
->debug_check_watchpoint(cpu
, wp
)) {
937 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
940 cpu
->watchpoint_hit
= wp
;
943 /* This call also restores vCPU state */
944 tb_check_watchpoint(cpu
, ra
);
945 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
946 cpu
->exception_index
= EXCP_DEBUG
;
950 /* Force execution of one insn next time. */
951 cpu
->cflags_next_tb
= 1 | CF_LAST_IO
| CF_NOIRQ
| curr_cflags(cpu
);
953 cpu_loop_exit_noexc(cpu
);
956 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
961 #endif /* CONFIG_TCG */
963 /* Called from RCU critical section */
964 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
968 block
= qatomic_rcu_read(&ram_list
.mru_block
);
969 if (block
&& addr
- block
->offset
< block
->max_length
) {
972 RAMBLOCK_FOREACH(block
) {
973 if (addr
- block
->offset
< block
->max_length
) {
978 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
982 /* It is safe to write mru_block outside the iothread lock. This
987 * xxx removed from list
991 * call_rcu(reclaim_ramblock, xxx);
994 * qatomic_rcu_set is not needed here. The block was already published
995 * when it was placed into the list. Here we're just making an extra
996 * copy of the pointer.
998 ram_list
.mru_block
= block
;
1002 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1009 assert(tcg_enabled());
1010 end
= TARGET_PAGE_ALIGN(start
+ length
);
1011 start
&= TARGET_PAGE_MASK
;
1013 RCU_READ_LOCK_GUARD();
1014 block
= qemu_get_ram_block(start
);
1015 assert(block
== qemu_get_ram_block(end
- 1));
1016 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1018 tlb_reset_dirty(cpu
, start1
, length
);
1022 /* Note: start and end must be within the same ram block. */
1023 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1027 DirtyMemoryBlocks
*blocks
;
1028 unsigned long end
, page
, start_page
;
1031 uint64_t mr_offset
, mr_size
;
1037 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1038 start_page
= start
>> TARGET_PAGE_BITS
;
1041 WITH_RCU_READ_LOCK_GUARD() {
1042 blocks
= qatomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1043 ramblock
= qemu_get_ram_block(start
);
1044 /* Range sanity check on the ramblock */
1045 assert(start
>= ramblock
->offset
&&
1046 start
+ length
<= ramblock
->offset
+ ramblock
->used_length
);
1048 while (page
< end
) {
1049 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1050 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1051 unsigned long num
= MIN(end
- page
,
1052 DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1054 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1059 mr_offset
= (ram_addr_t
)(start_page
<< TARGET_PAGE_BITS
) - ramblock
->offset
;
1060 mr_size
= (end
- start_page
) << TARGET_PAGE_BITS
;
1061 memory_region_clear_dirty_bitmap(ramblock
->mr
, mr_offset
, mr_size
);
1064 if (dirty
&& tcg_enabled()) {
1065 tlb_reset_dirty_range_all(start
, length
);
1071 DirtyBitmapSnapshot
*cpu_physical_memory_snapshot_and_clear_dirty
1072 (MemoryRegion
*mr
, hwaddr offset
, hwaddr length
, unsigned client
)
1074 DirtyMemoryBlocks
*blocks
;
1075 ram_addr_t start
= memory_region_get_ram_addr(mr
) + offset
;
1076 unsigned long align
= 1UL << (TARGET_PAGE_BITS
+ BITS_PER_LEVEL
);
1077 ram_addr_t first
= QEMU_ALIGN_DOWN(start
, align
);
1078 ram_addr_t last
= QEMU_ALIGN_UP(start
+ length
, align
);
1079 DirtyBitmapSnapshot
*snap
;
1080 unsigned long page
, end
, dest
;
1082 snap
= g_malloc0(sizeof(*snap
) +
1083 ((last
- first
) >> (TARGET_PAGE_BITS
+ 3)));
1084 snap
->start
= first
;
1087 page
= first
>> TARGET_PAGE_BITS
;
1088 end
= last
>> TARGET_PAGE_BITS
;
1091 WITH_RCU_READ_LOCK_GUARD() {
1092 blocks
= qatomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1094 while (page
< end
) {
1095 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1096 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1097 unsigned long num
= MIN(end
- page
,
1098 DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1100 assert(QEMU_IS_ALIGNED(offset
, (1 << BITS_PER_LEVEL
)));
1101 assert(QEMU_IS_ALIGNED(num
, (1 << BITS_PER_LEVEL
)));
1102 offset
>>= BITS_PER_LEVEL
;
1104 bitmap_copy_and_clear_atomic(snap
->dirty
+ dest
,
1105 blocks
->blocks
[idx
] + offset
,
1108 dest
+= num
>> BITS_PER_LEVEL
;
1112 if (tcg_enabled()) {
1113 tlb_reset_dirty_range_all(start
, length
);
1116 memory_region_clear_dirty_bitmap(mr
, offset
, length
);
1121 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot
*snap
,
1125 unsigned long page
, end
;
1127 assert(start
>= snap
->start
);
1128 assert(start
+ length
<= snap
->end
);
1130 end
= TARGET_PAGE_ALIGN(start
+ length
- snap
->start
) >> TARGET_PAGE_BITS
;
1131 page
= (start
- snap
->start
) >> TARGET_PAGE_BITS
;
1133 while (page
< end
) {
1134 if (test_bit(page
, snap
->dirty
)) {
1142 /* Called from RCU critical section */
1143 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1144 MemoryRegionSection
*section
)
1146 AddressSpaceDispatch
*d
= flatview_to_dispatch(section
->fv
);
1147 return section
- d
->map
.sections
;
1150 static int subpage_register(subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1152 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
);
1154 static uint16_t phys_section_add(PhysPageMap
*map
,
1155 MemoryRegionSection
*section
)
1157 /* The physical section number is ORed with a page-aligned
1158 * pointer to produce the iotlb entries. Thus it should
1159 * never overflow into the page-aligned value.
1161 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1163 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1164 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1165 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1166 map
->sections_nb_alloc
);
1168 map
->sections
[map
->sections_nb
] = *section
;
1169 memory_region_ref(section
->mr
);
1170 return map
->sections_nb
++;
1173 static void phys_section_destroy(MemoryRegion
*mr
)
1175 bool have_sub_page
= mr
->subpage
;
1177 memory_region_unref(mr
);
1179 if (have_sub_page
) {
1180 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1181 object_unref(OBJECT(&subpage
->iomem
));
1186 static void phys_sections_free(PhysPageMap
*map
)
1188 while (map
->sections_nb
> 0) {
1189 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1190 phys_section_destroy(section
->mr
);
1192 g_free(map
->sections
);
1196 static void register_subpage(FlatView
*fv
, MemoryRegionSection
*section
)
1198 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1200 hwaddr base
= section
->offset_within_address_space
1202 MemoryRegionSection
*existing
= phys_page_find(d
, base
);
1203 MemoryRegionSection subsection
= {
1204 .offset_within_address_space
= base
,
1205 .size
= int128_make64(TARGET_PAGE_SIZE
),
1209 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1211 if (!(existing
->mr
->subpage
)) {
1212 subpage
= subpage_init(fv
, base
);
1214 subsection
.mr
= &subpage
->iomem
;
1215 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1216 phys_section_add(&d
->map
, &subsection
));
1218 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1220 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1221 end
= start
+ int128_get64(section
->size
) - 1;
1222 subpage_register(subpage
, start
, end
,
1223 phys_section_add(&d
->map
, section
));
1227 static void register_multipage(FlatView
*fv
,
1228 MemoryRegionSection
*section
)
1230 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1231 hwaddr start_addr
= section
->offset_within_address_space
;
1232 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1233 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1237 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1241 * The range in *section* may look like this:
1245 * where s stands for subpage and P for page.
1247 void flatview_add_to_dispatch(FlatView
*fv
, MemoryRegionSection
*section
)
1249 MemoryRegionSection remain
= *section
;
1250 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1252 /* register first subpage */
1253 if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1254 uint64_t left
= TARGET_PAGE_ALIGN(remain
.offset_within_address_space
)
1255 - remain
.offset_within_address_space
;
1257 MemoryRegionSection now
= remain
;
1258 now
.size
= int128_min(int128_make64(left
), now
.size
);
1259 register_subpage(fv
, &now
);
1260 if (int128_eq(remain
.size
, now
.size
)) {
1263 remain
.size
= int128_sub(remain
.size
, now
.size
);
1264 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1265 remain
.offset_within_region
+= int128_get64(now
.size
);
1268 /* register whole pages */
1269 if (int128_ge(remain
.size
, page_size
)) {
1270 MemoryRegionSection now
= remain
;
1271 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1272 register_multipage(fv
, &now
);
1273 if (int128_eq(remain
.size
, now
.size
)) {
1276 remain
.size
= int128_sub(remain
.size
, now
.size
);
1277 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1278 remain
.offset_within_region
+= int128_get64(now
.size
);
1281 /* register last subpage */
1282 register_subpage(fv
, &remain
);
1285 void qemu_flush_coalesced_mmio_buffer(void)
1288 kvm_flush_coalesced_mmio_buffer();
1291 void qemu_mutex_lock_ramlist(void)
1293 qemu_mutex_lock(&ram_list
.mutex
);
1296 void qemu_mutex_unlock_ramlist(void)
1298 qemu_mutex_unlock(&ram_list
.mutex
);
1301 GString
*ram_block_format(void)
1305 GString
*buf
= g_string_new("");
1307 RCU_READ_LOCK_GUARD();
1308 g_string_append_printf(buf
, "%24s %8s %18s %18s %18s\n",
1309 "Block Name", "PSize", "Offset", "Used", "Total");
1310 RAMBLOCK_FOREACH(block
) {
1311 psize
= size_to_str(block
->page_size
);
1312 g_string_append_printf(buf
, "%24s %8s 0x%016" PRIx64
" 0x%016" PRIx64
1313 " 0x%016" PRIx64
"\n", block
->idstr
, psize
,
1314 (uint64_t)block
->offset
,
1315 (uint64_t)block
->used_length
,
1316 (uint64_t)block
->max_length
);
1325 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1326 * may or may not name the same files / on the same filesystem now as
1327 * when we actually open and map them. Iterate over the file
1328 * descriptors instead, and use qemu_fd_getpagesize().
1330 static int find_min_backend_pagesize(Object
*obj
, void *opaque
)
1332 long *hpsize_min
= opaque
;
1334 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1335 HostMemoryBackend
*backend
= MEMORY_BACKEND(obj
);
1336 long hpsize
= host_memory_backend_pagesize(backend
);
1338 if (host_memory_backend_is_mapped(backend
) && (hpsize
< *hpsize_min
)) {
1339 *hpsize_min
= hpsize
;
1346 static int find_max_backend_pagesize(Object
*obj
, void *opaque
)
1348 long *hpsize_max
= opaque
;
1350 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1351 HostMemoryBackend
*backend
= MEMORY_BACKEND(obj
);
1352 long hpsize
= host_memory_backend_pagesize(backend
);
1354 if (host_memory_backend_is_mapped(backend
) && (hpsize
> *hpsize_max
)) {
1355 *hpsize_max
= hpsize
;
1363 * TODO: We assume right now that all mapped host memory backends are
1364 * used as RAM, however some might be used for different purposes.
1366 long qemu_minrampagesize(void)
1368 long hpsize
= LONG_MAX
;
1369 Object
*memdev_root
= object_resolve_path("/objects", NULL
);
1371 object_child_foreach(memdev_root
, find_min_backend_pagesize
, &hpsize
);
1375 long qemu_maxrampagesize(void)
1378 Object
*memdev_root
= object_resolve_path("/objects", NULL
);
1380 object_child_foreach(memdev_root
, find_max_backend_pagesize
, &pagesize
);
1384 long qemu_minrampagesize(void)
1386 return qemu_real_host_page_size();
1388 long qemu_maxrampagesize(void)
1390 return qemu_real_host_page_size();
1395 static int64_t get_file_size(int fd
)
1398 #if defined(__linux__)
1401 if (fstat(fd
, &st
) < 0) {
1405 /* Special handling for devdax character devices */
1406 if (S_ISCHR(st
.st_mode
)) {
1407 g_autofree
char *subsystem_path
= NULL
;
1408 g_autofree
char *subsystem
= NULL
;
1410 subsystem_path
= g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1411 major(st
.st_rdev
), minor(st
.st_rdev
));
1412 subsystem
= g_file_read_link(subsystem_path
, NULL
);
1414 if (subsystem
&& g_str_has_suffix(subsystem
, "/dax")) {
1415 g_autofree
char *size_path
= NULL
;
1416 g_autofree
char *size_str
= NULL
;
1418 size_path
= g_strdup_printf("/sys/dev/char/%d:%d/size",
1419 major(st
.st_rdev
), minor(st
.st_rdev
));
1421 if (g_file_get_contents(size_path
, &size_str
, NULL
, NULL
)) {
1422 return g_ascii_strtoll(size_str
, NULL
, 0);
1426 #endif /* defined(__linux__) */
1428 /* st.st_size may be zero for special files yet lseek(2) works */
1429 size
= lseek(fd
, 0, SEEK_END
);
1436 static int64_t get_file_align(int fd
)
1439 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1442 if (fstat(fd
, &st
) < 0) {
1446 /* Special handling for devdax character devices */
1447 if (S_ISCHR(st
.st_mode
)) {
1448 g_autofree
char *path
= NULL
;
1449 g_autofree
char *rpath
= NULL
;
1450 struct daxctl_ctx
*ctx
;
1451 struct daxctl_region
*region
;
1454 path
= g_strdup_printf("/sys/dev/char/%d:%d",
1455 major(st
.st_rdev
), minor(st
.st_rdev
));
1456 rpath
= realpath(path
, NULL
);
1461 rc
= daxctl_new(&ctx
);
1466 daxctl_region_foreach(ctx
, region
) {
1467 if (strstr(rpath
, daxctl_region_get_path(region
))) {
1468 align
= daxctl_region_get_align(region
);
1474 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1479 static int file_ram_open(const char *path
,
1480 const char *region_name
,
1486 char *sanitized_name
;
1492 fd
= open(path
, readonly
? O_RDONLY
: O_RDWR
);
1494 /* @path names an existing file, use it */
1497 if (errno
== ENOENT
) {
1498 /* @path names a file that doesn't exist, create it */
1499 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1504 } else if (errno
== EISDIR
) {
1505 /* @path names a directory, create a file there */
1506 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1507 sanitized_name
= g_strdup(region_name
);
1508 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1514 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1516 g_free(sanitized_name
);
1518 fd
= mkstemp(filename
);
1526 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1527 error_setg_errno(errp
, errno
,
1528 "can't open backing store %s for guest RAM",
1533 * Try again on EINTR and EEXIST. The latter happens when
1534 * something else creates the file between our two open().
1541 static void *file_ram_alloc(RAMBlock
*block
,
1549 uint32_t qemu_map_flags
;
1552 block
->page_size
= qemu_fd_getpagesize(fd
);
1553 if (block
->mr
->align
% block
->page_size
) {
1554 error_setg(errp
, "alignment 0x%" PRIx64
1555 " must be multiples of page size 0x%zx",
1556 block
->mr
->align
, block
->page_size
);
1558 } else if (block
->mr
->align
&& !is_power_of_2(block
->mr
->align
)) {
1559 error_setg(errp
, "alignment 0x%" PRIx64
1560 " must be a power of two", block
->mr
->align
);
1563 block
->mr
->align
= MAX(block
->page_size
, block
->mr
->align
);
1564 #if defined(__s390x__)
1565 if (kvm_enabled()) {
1566 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1570 if (memory
< block
->page_size
) {
1571 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1572 "or larger than page size 0x%zx",
1573 memory
, block
->page_size
);
1577 memory
= ROUND_UP(memory
, block
->page_size
);
1580 * ftruncate is not supported by hugetlbfs in older
1581 * hosts, so don't bother bailing out on errors.
1582 * If anything goes wrong with it under other filesystems,
1585 * Do not truncate the non-empty backend file to avoid corrupting
1586 * the existing data in the file. Disabling shrinking is not
1587 * enough. For example, the current vNVDIMM implementation stores
1588 * the guest NVDIMM labels at the end of the backend file. If the
1589 * backend file is later extended, QEMU will not be able to find
1590 * those labels. Therefore, extending the non-empty backend file
1591 * is disabled as well.
1593 if (truncate
&& ftruncate(fd
, memory
)) {
1594 perror("ftruncate");
1597 qemu_map_flags
= readonly
? QEMU_MAP_READONLY
: 0;
1598 qemu_map_flags
|= (block
->flags
& RAM_SHARED
) ? QEMU_MAP_SHARED
: 0;
1599 qemu_map_flags
|= (block
->flags
& RAM_PMEM
) ? QEMU_MAP_SYNC
: 0;
1600 qemu_map_flags
|= (block
->flags
& RAM_NORESERVE
) ? QEMU_MAP_NORESERVE
: 0;
1601 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
, qemu_map_flags
, offset
);
1602 if (area
== MAP_FAILED
) {
1603 error_setg_errno(errp
, errno
,
1604 "unable to map backing store for guest RAM");
1613 /* Allocate space within the ram_addr_t space that governs the
1615 * Called with the ramlist lock held.
1617 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1619 RAMBlock
*block
, *next_block
;
1620 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1622 assert(size
!= 0); /* it would hand out same offset multiple times */
1624 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1628 RAMBLOCK_FOREACH(block
) {
1629 ram_addr_t candidate
, next
= RAM_ADDR_MAX
;
1631 /* Align blocks to start on a 'long' in the bitmap
1632 * which makes the bitmap sync'ing take the fast path.
1634 candidate
= block
->offset
+ block
->max_length
;
1635 candidate
= ROUND_UP(candidate
, BITS_PER_LONG
<< TARGET_PAGE_BITS
);
1637 /* Search for the closest following block
1640 RAMBLOCK_FOREACH(next_block
) {
1641 if (next_block
->offset
>= candidate
) {
1642 next
= MIN(next
, next_block
->offset
);
1646 /* If it fits remember our place and remember the size
1647 * of gap, but keep going so that we might find a smaller
1648 * gap to fill so avoiding fragmentation.
1650 if (next
- candidate
>= size
&& next
- candidate
< mingap
) {
1652 mingap
= next
- candidate
;
1655 trace_find_ram_offset_loop(size
, candidate
, offset
, next
, mingap
);
1658 if (offset
== RAM_ADDR_MAX
) {
1659 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1664 trace_find_ram_offset(size
, offset
);
1669 static unsigned long last_ram_page(void)
1672 ram_addr_t last
= 0;
1674 RCU_READ_LOCK_GUARD();
1675 RAMBLOCK_FOREACH(block
) {
1676 last
= MAX(last
, block
->offset
+ block
->max_length
);
1678 return last
>> TARGET_PAGE_BITS
;
1681 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1685 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1686 if (!machine_dump_guest_core(current_machine
)) {
1687 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1689 perror("qemu_madvise");
1690 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1691 "but dump_guest_core=off specified\n");
1696 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1701 void *qemu_ram_get_host_addr(RAMBlock
*rb
)
1706 ram_addr_t
qemu_ram_get_offset(RAMBlock
*rb
)
1711 ram_addr_t
qemu_ram_get_used_length(RAMBlock
*rb
)
1713 return rb
->used_length
;
1716 ram_addr_t
qemu_ram_get_max_length(RAMBlock
*rb
)
1718 return rb
->max_length
;
1721 bool qemu_ram_is_shared(RAMBlock
*rb
)
1723 return rb
->flags
& RAM_SHARED
;
1726 bool qemu_ram_is_noreserve(RAMBlock
*rb
)
1728 return rb
->flags
& RAM_NORESERVE
;
1731 /* Note: Only set at the start of postcopy */
1732 bool qemu_ram_is_uf_zeroable(RAMBlock
*rb
)
1734 return rb
->flags
& RAM_UF_ZEROPAGE
;
1737 void qemu_ram_set_uf_zeroable(RAMBlock
*rb
)
1739 rb
->flags
|= RAM_UF_ZEROPAGE
;
1742 bool qemu_ram_is_migratable(RAMBlock
*rb
)
1744 return rb
->flags
& RAM_MIGRATABLE
;
1747 void qemu_ram_set_migratable(RAMBlock
*rb
)
1749 rb
->flags
|= RAM_MIGRATABLE
;
1752 void qemu_ram_unset_migratable(RAMBlock
*rb
)
1754 rb
->flags
&= ~RAM_MIGRATABLE
;
1757 /* Called with iothread lock held. */
1758 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1763 assert(!new_block
->idstr
[0]);
1766 char *id
= qdev_get_dev_path(dev
);
1768 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1772 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1774 RCU_READ_LOCK_GUARD();
1775 RAMBLOCK_FOREACH(block
) {
1776 if (block
!= new_block
&&
1777 !strcmp(block
->idstr
, new_block
->idstr
)) {
1778 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1785 /* Called with iothread lock held. */
1786 void qemu_ram_unset_idstr(RAMBlock
*block
)
1788 /* FIXME: arch_init.c assumes that this is not called throughout
1789 * migration. Ignore the problem since hot-unplug during migration
1790 * does not work anyway.
1793 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1797 size_t qemu_ram_pagesize(RAMBlock
*rb
)
1799 return rb
->page_size
;
1802 /* Returns the largest size of page in use */
1803 size_t qemu_ram_pagesize_largest(void)
1808 RAMBLOCK_FOREACH(block
) {
1809 largest
= MAX(largest
, qemu_ram_pagesize(block
));
1815 static int memory_try_enable_merging(void *addr
, size_t len
)
1817 if (!machine_mem_merge(current_machine
)) {
1818 /* disabled by the user */
1822 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1826 * Resizing RAM while migrating can result in the migration being canceled.
1827 * Care has to be taken if the guest might have already detected the memory.
1829 * As memory core doesn't know how is memory accessed, it is up to
1830 * resize callback to update device state and/or add assertions to detect
1831 * misuse, if necessary.
1833 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1835 const ram_addr_t oldsize
= block
->used_length
;
1836 const ram_addr_t unaligned_size
= newsize
;
1840 newsize
= HOST_PAGE_ALIGN(newsize
);
1842 if (block
->used_length
== newsize
) {
1844 * We don't have to resize the ram block (which only knows aligned
1845 * sizes), however, we have to notify if the unaligned size changed.
1847 if (unaligned_size
!= memory_region_size(block
->mr
)) {
1848 memory_region_set_size(block
->mr
, unaligned_size
);
1849 if (block
->resized
) {
1850 block
->resized(block
->idstr
, unaligned_size
, block
->host
);
1856 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1857 error_setg_errno(errp
, EINVAL
,
1858 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1859 " != 0x" RAM_ADDR_FMT
, block
->idstr
,
1860 newsize
, block
->used_length
);
1864 if (block
->max_length
< newsize
) {
1865 error_setg_errno(errp
, EINVAL
,
1866 "Size too large: %s: 0x" RAM_ADDR_FMT
1867 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1868 newsize
, block
->max_length
);
1872 /* Notify before modifying the ram block and touching the bitmaps. */
1874 ram_block_notify_resize(block
->host
, oldsize
, newsize
);
1877 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1878 block
->used_length
= newsize
;
1879 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1881 memory_region_set_size(block
->mr
, unaligned_size
);
1882 if (block
->resized
) {
1883 block
->resized(block
->idstr
, unaligned_size
, block
->host
);
1889 * Trigger sync on the given ram block for range [start, start + length]
1890 * with the backing store if one is available.
1892 * @Note: this is supposed to be a synchronous op.
1894 void qemu_ram_msync(RAMBlock
*block
, ram_addr_t start
, ram_addr_t length
)
1896 /* The requested range should fit in within the block range */
1897 g_assert((start
+ length
) <= block
->used_length
);
1899 #ifdef CONFIG_LIBPMEM
1900 /* The lack of support for pmem should not block the sync */
1901 if (ramblock_is_pmem(block
)) {
1902 void *addr
= ramblock_ptr(block
, start
);
1903 pmem_persist(addr
, length
);
1907 if (block
->fd
>= 0) {
1909 * Case there is no support for PMEM or the memory has not been
1910 * specified as persistent (or is not one) - use the msync.
1911 * Less optimal but still achieves the same goal
1913 void *addr
= ramblock_ptr(block
, start
);
1914 if (qemu_msync(addr
, length
, block
->fd
)) {
1915 warn_report("%s: failed to sync memory range: start: "
1916 RAM_ADDR_FMT
" length: " RAM_ADDR_FMT
,
1917 __func__
, start
, length
);
1922 /* Called with ram_list.mutex held */
1923 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1924 ram_addr_t new_ram_size
)
1926 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1927 DIRTY_MEMORY_BLOCK_SIZE
);
1928 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1929 DIRTY_MEMORY_BLOCK_SIZE
);
1932 /* Only need to extend if block count increased */
1933 if (new_num_blocks
<= old_num_blocks
) {
1937 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1938 DirtyMemoryBlocks
*old_blocks
;
1939 DirtyMemoryBlocks
*new_blocks
;
1942 old_blocks
= qatomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1943 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1944 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1946 if (old_num_blocks
) {
1947 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1948 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1951 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1952 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1955 qatomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1958 g_free_rcu(old_blocks
, rcu
);
1963 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1965 const bool noreserve
= qemu_ram_is_noreserve(new_block
);
1966 const bool shared
= qemu_ram_is_shared(new_block
);
1968 RAMBlock
*last_block
= NULL
;
1969 ram_addr_t old_ram_size
, new_ram_size
;
1972 old_ram_size
= last_ram_page();
1974 qemu_mutex_lock_ramlist();
1975 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1977 if (!new_block
->host
) {
1978 if (xen_enabled()) {
1979 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1980 new_block
->mr
, &err
);
1982 error_propagate(errp
, err
);
1983 qemu_mutex_unlock_ramlist();
1987 new_block
->host
= qemu_anon_ram_alloc(new_block
->max_length
,
1988 &new_block
->mr
->align
,
1990 if (!new_block
->host
) {
1991 error_setg_errno(errp
, errno
,
1992 "cannot set up guest memory '%s'",
1993 memory_region_name(new_block
->mr
));
1994 qemu_mutex_unlock_ramlist();
1997 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
2001 new_ram_size
= MAX(old_ram_size
,
2002 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
2003 if (new_ram_size
> old_ram_size
) {
2004 dirty_memory_extend(old_ram_size
, new_ram_size
);
2006 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2007 * QLIST (which has an RCU-friendly variant) does not have insertion at
2008 * tail, so save the last element in last_block.
2010 RAMBLOCK_FOREACH(block
) {
2012 if (block
->max_length
< new_block
->max_length
) {
2017 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
2018 } else if (last_block
) {
2019 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
2020 } else { /* list is empty */
2021 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
2023 ram_list
.mru_block
= NULL
;
2025 /* Write list before version */
2028 qemu_mutex_unlock_ramlist();
2030 cpu_physical_memory_set_dirty_range(new_block
->offset
,
2031 new_block
->used_length
,
2034 if (new_block
->host
) {
2035 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
2036 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
2038 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2039 * Configure it unless the machine is a qtest server, in which case
2040 * KVM is not used and it may be forked (eg for fuzzing purposes).
2042 if (!qtest_enabled()) {
2043 qemu_madvise(new_block
->host
, new_block
->max_length
,
2044 QEMU_MADV_DONTFORK
);
2046 ram_block_notify_add(new_block
->host
, new_block
->used_length
,
2047 new_block
->max_length
);
2052 RAMBlock
*qemu_ram_alloc_from_fd(ram_addr_t size
, MemoryRegion
*mr
,
2053 uint32_t ram_flags
, int fd
, off_t offset
,
2054 bool readonly
, Error
**errp
)
2056 RAMBlock
*new_block
;
2057 Error
*local_err
= NULL
;
2058 int64_t file_size
, file_align
;
2060 /* Just support these ram flags by now. */
2061 assert((ram_flags
& ~(RAM_SHARED
| RAM_PMEM
| RAM_NORESERVE
|
2062 RAM_PROTECTED
)) == 0);
2064 if (xen_enabled()) {
2065 error_setg(errp
, "-mem-path not supported with Xen");
2069 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2071 "host lacks kvm mmu notifiers, -mem-path unsupported");
2075 size
= HOST_PAGE_ALIGN(size
);
2076 file_size
= get_file_size(fd
);
2077 if (file_size
> 0 && file_size
< size
) {
2078 error_setg(errp
, "backing store size 0x%" PRIx64
2079 " does not match 'size' option 0x" RAM_ADDR_FMT
,
2084 file_align
= get_file_align(fd
);
2085 if (file_align
> 0 && file_align
> mr
->align
) {
2086 error_setg(errp
, "backing store align 0x%" PRIx64
2087 " is larger than 'align' option 0x%" PRIx64
,
2088 file_align
, mr
->align
);
2092 new_block
= g_malloc0(sizeof(*new_block
));
2094 new_block
->used_length
= size
;
2095 new_block
->max_length
= size
;
2096 new_block
->flags
= ram_flags
;
2097 new_block
->host
= file_ram_alloc(new_block
, size
, fd
, readonly
,
2098 !file_size
, offset
, errp
);
2099 if (!new_block
->host
) {
2104 ram_block_add(new_block
, &local_err
);
2107 error_propagate(errp
, local_err
);
2115 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
2116 uint32_t ram_flags
, const char *mem_path
,
2117 bool readonly
, Error
**errp
)
2123 fd
= file_ram_open(mem_path
, memory_region_name(mr
), readonly
, &created
,
2129 block
= qemu_ram_alloc_from_fd(size
, mr
, ram_flags
, fd
, 0, readonly
, errp
);
2143 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
2144 void (*resized
)(const char*,
2147 void *host
, uint32_t ram_flags
,
2148 MemoryRegion
*mr
, Error
**errp
)
2150 RAMBlock
*new_block
;
2151 Error
*local_err
= NULL
;
2153 assert((ram_flags
& ~(RAM_SHARED
| RAM_RESIZEABLE
| RAM_PREALLOC
|
2154 RAM_NORESERVE
)) == 0);
2155 assert(!host
^ (ram_flags
& RAM_PREALLOC
));
2157 size
= HOST_PAGE_ALIGN(size
);
2158 max_size
= HOST_PAGE_ALIGN(max_size
);
2159 new_block
= g_malloc0(sizeof(*new_block
));
2161 new_block
->resized
= resized
;
2162 new_block
->used_length
= size
;
2163 new_block
->max_length
= max_size
;
2164 assert(max_size
>= size
);
2166 new_block
->page_size
= qemu_real_host_page_size();
2167 new_block
->host
= host
;
2168 new_block
->flags
= ram_flags
;
2169 ram_block_add(new_block
, &local_err
);
2172 error_propagate(errp
, local_err
);
2178 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2179 MemoryRegion
*mr
, Error
**errp
)
2181 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, RAM_PREALLOC
, mr
,
2185 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, uint32_t ram_flags
,
2186 MemoryRegion
*mr
, Error
**errp
)
2188 assert((ram_flags
& ~(RAM_SHARED
| RAM_NORESERVE
)) == 0);
2189 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, ram_flags
, mr
, errp
);
2192 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
2193 void (*resized
)(const char*,
2196 MemoryRegion
*mr
, Error
**errp
)
2198 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
,
2199 RAM_RESIZEABLE
, mr
, errp
);
2202 static void reclaim_ramblock(RAMBlock
*block
)
2204 if (block
->flags
& RAM_PREALLOC
) {
2206 } else if (xen_enabled()) {
2207 xen_invalidate_map_cache_entry(block
->host
);
2209 } else if (block
->fd
>= 0) {
2210 qemu_ram_munmap(block
->fd
, block
->host
, block
->max_length
);
2214 qemu_anon_ram_free(block
->host
, block
->max_length
);
2219 void qemu_ram_free(RAMBlock
*block
)
2226 ram_block_notify_remove(block
->host
, block
->used_length
,
2230 qemu_mutex_lock_ramlist();
2231 QLIST_REMOVE_RCU(block
, next
);
2232 ram_list
.mru_block
= NULL
;
2233 /* Write list before version */
2236 call_rcu(block
, reclaim_ramblock
, rcu
);
2237 qemu_mutex_unlock_ramlist();
2241 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2248 RAMBLOCK_FOREACH(block
) {
2249 offset
= addr
- block
->offset
;
2250 if (offset
< block
->max_length
) {
2251 vaddr
= ramblock_ptr(block
, offset
);
2252 if (block
->flags
& RAM_PREALLOC
) {
2254 } else if (xen_enabled()) {
2258 flags
|= block
->flags
& RAM_SHARED
?
2259 MAP_SHARED
: MAP_PRIVATE
;
2260 flags
|= block
->flags
& RAM_NORESERVE
? MAP_NORESERVE
: 0;
2261 if (block
->fd
>= 0) {
2262 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2263 flags
, block
->fd
, offset
);
2265 flags
|= MAP_ANONYMOUS
;
2266 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2269 if (area
!= vaddr
) {
2270 error_report("Could not remap addr: "
2271 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"",
2275 memory_try_enable_merging(vaddr
, length
);
2276 qemu_ram_setup_dump(vaddr
, length
);
2281 #endif /* !_WIN32 */
2283 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2284 * This should not be used for general purpose DMA. Use address_space_map
2285 * or address_space_rw instead. For local memory (e.g. video ram) that the
2286 * device owns, use memory_region_get_ram_ptr.
2288 * Called within RCU critical section.
2290 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
2292 RAMBlock
*block
= ram_block
;
2294 if (block
== NULL
) {
2295 block
= qemu_get_ram_block(addr
);
2296 addr
-= block
->offset
;
2299 if (xen_enabled() && block
->host
== NULL
) {
2300 /* We need to check if the requested address is in the RAM
2301 * because we don't want to map the entire memory in QEMU.
2302 * In that case just map until the end of the page.
2304 if (block
->offset
== 0) {
2305 return xen_map_cache(addr
, 0, 0, false);
2308 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, false);
2310 return ramblock_ptr(block
, addr
);
2313 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2314 * but takes a size argument.
2316 * Called within RCU critical section.
2318 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
2319 hwaddr
*size
, bool lock
)
2321 RAMBlock
*block
= ram_block
;
2326 if (block
== NULL
) {
2327 block
= qemu_get_ram_block(addr
);
2328 addr
-= block
->offset
;
2330 *size
= MIN(*size
, block
->max_length
- addr
);
2332 if (xen_enabled() && block
->host
== NULL
) {
2333 /* We need to check if the requested address is in the RAM
2334 * because we don't want to map the entire memory in QEMU.
2335 * In that case just map the requested area.
2337 if (block
->offset
== 0) {
2338 return xen_map_cache(addr
, *size
, lock
, lock
);
2341 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, lock
);
2344 return ramblock_ptr(block
, addr
);
2347 /* Return the offset of a hostpointer within a ramblock */
2348 ram_addr_t
qemu_ram_block_host_offset(RAMBlock
*rb
, void *host
)
2350 ram_addr_t res
= (uint8_t *)host
- (uint8_t *)rb
->host
;
2351 assert((uintptr_t)host
>= (uintptr_t)rb
->host
);
2352 assert(res
< rb
->max_length
);
2358 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2361 * ptr: Host pointer to look up
2362 * round_offset: If true round the result offset down to a page boundary
2363 * *ram_addr: set to result ram_addr
2364 * *offset: set to result offset within the RAMBlock
2366 * Returns: RAMBlock (or NULL if not found)
2368 * By the time this function returns, the returned pointer is not protected
2369 * by RCU anymore. If the caller is not within an RCU critical section and
2370 * does not hold the iothread lock, it must have other means of protecting the
2371 * pointer, such as a reference to the region that includes the incoming
2374 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
2378 uint8_t *host
= ptr
;
2380 if (xen_enabled()) {
2381 ram_addr_t ram_addr
;
2382 RCU_READ_LOCK_GUARD();
2383 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2384 block
= qemu_get_ram_block(ram_addr
);
2386 *offset
= ram_addr
- block
->offset
;
2391 RCU_READ_LOCK_GUARD();
2392 block
= qatomic_rcu_read(&ram_list
.mru_block
);
2393 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
2397 RAMBLOCK_FOREACH(block
) {
2398 /* This case append when the block is not mapped. */
2399 if (block
->host
== NULL
) {
2402 if (host
- block
->host
< block
->max_length
) {
2410 *offset
= (host
- block
->host
);
2412 *offset
&= TARGET_PAGE_MASK
;
2418 * Finds the named RAMBlock
2420 * name: The name of RAMBlock to find
2422 * Returns: RAMBlock (or NULL if not found)
2424 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2428 RAMBLOCK_FOREACH(block
) {
2429 if (!strcmp(name
, block
->idstr
)) {
2437 /* Some of the softmmu routines need to translate from a host pointer
2438 (typically a TLB entry) back to a ram offset. */
2439 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2444 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2446 return RAM_ADDR_INVALID
;
2449 return block
->offset
+ offset
;
2452 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
2453 MemTxAttrs attrs
, void *buf
, hwaddr len
);
2454 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
2455 const void *buf
, hwaddr len
);
2456 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, hwaddr len
,
2457 bool is_write
, MemTxAttrs attrs
);
2459 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2460 unsigned len
, MemTxAttrs attrs
)
2462 subpage_t
*subpage
= opaque
;
2466 #if defined(DEBUG_SUBPAGE)
2467 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2468 subpage
, len
, addr
);
2470 res
= flatview_read(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2474 *data
= ldn_p(buf
, len
);
2478 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2479 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2481 subpage_t
*subpage
= opaque
;
2484 #if defined(DEBUG_SUBPAGE)
2485 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2486 " value %"PRIx64
"\n",
2487 __func__
, subpage
, len
, addr
, value
);
2489 stn_p(buf
, len
, value
);
2490 return flatview_write(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2493 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2494 unsigned len
, bool is_write
,
2497 subpage_t
*subpage
= opaque
;
2498 #if defined(DEBUG_SUBPAGE)
2499 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2500 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2503 return flatview_access_valid(subpage
->fv
, addr
+ subpage
->base
,
2504 len
, is_write
, attrs
);
2507 static const MemoryRegionOps subpage_ops
= {
2508 .read_with_attrs
= subpage_read
,
2509 .write_with_attrs
= subpage_write
,
2510 .impl
.min_access_size
= 1,
2511 .impl
.max_access_size
= 8,
2512 .valid
.min_access_size
= 1,
2513 .valid
.max_access_size
= 8,
2514 .valid
.accepts
= subpage_accepts
,
2515 .endianness
= DEVICE_NATIVE_ENDIAN
,
2518 static int subpage_register(subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2523 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2525 idx
= SUBPAGE_IDX(start
);
2526 eidx
= SUBPAGE_IDX(end
);
2527 #if defined(DEBUG_SUBPAGE)
2528 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2529 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2531 for (; idx
<= eidx
; idx
++) {
2532 mmio
->sub_section
[idx
] = section
;
2538 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
)
2542 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2543 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2546 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2547 NULL
, TARGET_PAGE_SIZE
);
2548 mmio
->iomem
.subpage
= true;
2549 #if defined(DEBUG_SUBPAGE)
2550 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2551 mmio
, base
, TARGET_PAGE_SIZE
);
2557 static uint16_t dummy_section(PhysPageMap
*map
, FlatView
*fv
, MemoryRegion
*mr
)
2560 MemoryRegionSection section
= {
2563 .offset_within_address_space
= 0,
2564 .offset_within_region
= 0,
2565 .size
= int128_2_64(),
2568 return phys_section_add(map
, §ion
);
2571 MemoryRegionSection
*iotlb_to_section(CPUState
*cpu
,
2572 hwaddr index
, MemTxAttrs attrs
)
2574 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2575 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2576 AddressSpaceDispatch
*d
= qatomic_rcu_read(&cpuas
->memory_dispatch
);
2577 MemoryRegionSection
*sections
= d
->map
.sections
;
2579 return §ions
[index
& ~TARGET_PAGE_MASK
];
2582 static void io_mem_init(void)
2584 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2588 AddressSpaceDispatch
*address_space_dispatch_new(FlatView
*fv
)
2590 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2593 n
= dummy_section(&d
->map
, fv
, &io_mem_unassigned
);
2594 assert(n
== PHYS_SECTION_UNASSIGNED
);
2596 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2601 void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2603 phys_sections_free(&d
->map
);
2607 static void do_nothing(CPUState
*cpu
, run_on_cpu_data d
)
2611 static void tcg_log_global_after_sync(MemoryListener
*listener
)
2613 CPUAddressSpace
*cpuas
;
2615 /* Wait for the CPU to end the current TB. This avoids the following
2619 * ---------------------- -------------------------
2620 * TLB check -> slow path
2621 * notdirty_mem_write
2625 * TLB check -> fast path
2629 * by pushing the migration thread's memory read after the vCPU thread has
2630 * written the memory.
2632 if (replay_mode
== REPLAY_MODE_NONE
) {
2634 * VGA can make calls to this function while updating the screen.
2635 * In record/replay mode this causes a deadlock, because
2636 * run_on_cpu waits for rr mutex. Therefore no races are possible
2637 * in this case and no need for making run_on_cpu when
2638 * record/replay is enabled.
2640 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2641 run_on_cpu(cpuas
->cpu
, do_nothing
, RUN_ON_CPU_NULL
);
2645 static void tcg_commit(MemoryListener
*listener
)
2647 CPUAddressSpace
*cpuas
;
2648 AddressSpaceDispatch
*d
;
2650 assert(tcg_enabled());
2651 /* since each CPU stores ram addresses in its TLB cache, we must
2652 reset the modified entries */
2653 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2654 cpu_reloading_memory_map();
2655 /* The CPU and TLB are protected by the iothread lock.
2656 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2657 * may have split the RCU critical section.
2659 d
= address_space_to_dispatch(cpuas
->as
);
2660 qatomic_rcu_set(&cpuas
->memory_dispatch
, d
);
2661 tlb_flush(cpuas
->cpu
);
2664 static void memory_map_init(void)
2666 system_memory
= g_malloc(sizeof(*system_memory
));
2668 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2669 address_space_init(&address_space_memory
, system_memory
, "memory");
2671 system_io
= g_malloc(sizeof(*system_io
));
2672 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2674 address_space_init(&address_space_io
, system_io
, "I/O");
2677 MemoryRegion
*get_system_memory(void)
2679 return system_memory
;
2682 MemoryRegion
*get_system_io(void)
2687 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2690 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2691 addr
+= memory_region_get_ram_addr(mr
);
2693 /* No early return if dirty_log_mask is or becomes 0, because
2694 * cpu_physical_memory_set_dirty_range will still call
2695 * xen_modified_memory.
2697 if (dirty_log_mask
) {
2699 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2701 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2702 assert(tcg_enabled());
2703 tb_invalidate_phys_range(addr
, addr
+ length
);
2704 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2706 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2709 void memory_region_flush_rom_device(MemoryRegion
*mr
, hwaddr addr
, hwaddr size
)
2712 * In principle this function would work on other memory region types too,
2713 * but the ROM device use case is the only one where this operation is
2714 * necessary. Other memory regions should use the
2715 * address_space_read/write() APIs.
2717 assert(memory_region_is_romd(mr
));
2719 invalidate_and_set_dirty(mr
, addr
, size
);
2722 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2724 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2726 /* Regions are assumed to support 1-4 byte accesses unless
2727 otherwise specified. */
2728 if (access_size_max
== 0) {
2729 access_size_max
= 4;
2732 /* Bound the maximum access by the alignment of the address. */
2733 if (!mr
->ops
->impl
.unaligned
) {
2734 unsigned align_size_max
= addr
& -addr
;
2735 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2736 access_size_max
= align_size_max
;
2740 /* Don't attempt accesses larger than the maximum. */
2741 if (l
> access_size_max
) {
2742 l
= access_size_max
;
2749 static bool prepare_mmio_access(MemoryRegion
*mr
)
2751 bool release_lock
= false;
2753 if (!qemu_mutex_iothread_locked()) {
2754 qemu_mutex_lock_iothread();
2755 release_lock
= true;
2757 if (mr
->flush_coalesced_mmio
) {
2758 qemu_flush_coalesced_mmio_buffer();
2761 return release_lock
;
2765 * flatview_access_allowed
2766 * @mr: #MemoryRegion to be accessed
2767 * @attrs: memory transaction attributes
2768 * @addr: address within that memory region
2769 * @len: the number of bytes to access
2771 * Check if a memory transaction is allowed.
2773 * Returns: true if transaction is allowed, false if denied.
2775 static bool flatview_access_allowed(MemoryRegion
*mr
, MemTxAttrs attrs
,
2776 hwaddr addr
, hwaddr len
)
2778 if (likely(!attrs
.memory
)) {
2781 if (memory_region_is_ram(mr
)) {
2784 qemu_log_mask(LOG_GUEST_ERROR
,
2785 "Invalid access to non-RAM device at "
2786 "addr 0x%" HWADDR_PRIX
", size %" HWADDR_PRIu
", "
2787 "region '%s'\n", addr
, len
, memory_region_name(mr
));
2791 /* Called within RCU critical section. */
2792 static MemTxResult
flatview_write_continue(FlatView
*fv
, hwaddr addr
,
2795 hwaddr len
, hwaddr addr1
,
2796 hwaddr l
, MemoryRegion
*mr
)
2800 MemTxResult result
= MEMTX_OK
;
2801 bool release_lock
= false;
2802 const uint8_t *buf
= ptr
;
2805 if (!flatview_access_allowed(mr
, attrs
, addr1
, l
)) {
2806 result
|= MEMTX_ACCESS_ERROR
;
2808 } else if (!memory_access_is_direct(mr
, true)) {
2809 release_lock
|= prepare_mmio_access(mr
);
2810 l
= memory_access_size(mr
, l
, addr1
);
2811 /* XXX: could force current_cpu to NULL to avoid
2813 val
= ldn_he_p(buf
, l
);
2814 result
|= memory_region_dispatch_write(mr
, addr1
, val
,
2815 size_memop(l
), attrs
);
2818 ram_ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
2819 memcpy(ram_ptr
, buf
, l
);
2820 invalidate_and_set_dirty(mr
, addr1
, l
);
2824 qemu_mutex_unlock_iothread();
2825 release_lock
= false;
2837 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true, attrs
);
2843 /* Called from RCU critical section. */
2844 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
2845 const void *buf
, hwaddr len
)
2852 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true, attrs
);
2853 if (!flatview_access_allowed(mr
, attrs
, addr
, len
)) {
2854 return MEMTX_ACCESS_ERROR
;
2856 return flatview_write_continue(fv
, addr
, attrs
, buf
, len
,
2860 /* Called within RCU critical section. */
2861 MemTxResult
flatview_read_continue(FlatView
*fv
, hwaddr addr
,
2862 MemTxAttrs attrs
, void *ptr
,
2863 hwaddr len
, hwaddr addr1
, hwaddr l
,
2868 MemTxResult result
= MEMTX_OK
;
2869 bool release_lock
= false;
2872 fuzz_dma_read_cb(addr
, len
, mr
);
2874 if (!flatview_access_allowed(mr
, attrs
, addr1
, l
)) {
2875 result
|= MEMTX_ACCESS_ERROR
;
2877 } else if (!memory_access_is_direct(mr
, false)) {
2879 release_lock
|= prepare_mmio_access(mr
);
2880 l
= memory_access_size(mr
, l
, addr1
);
2881 result
|= memory_region_dispatch_read(mr
, addr1
, &val
,
2882 size_memop(l
), attrs
);
2883 stn_he_p(buf
, l
, val
);
2886 ram_ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
2887 memcpy(buf
, ram_ptr
, l
);
2891 qemu_mutex_unlock_iothread();
2892 release_lock
= false;
2904 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false, attrs
);
2910 /* Called from RCU critical section. */
2911 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
2912 MemTxAttrs attrs
, void *buf
, hwaddr len
)
2919 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false, attrs
);
2920 if (!flatview_access_allowed(mr
, attrs
, addr
, len
)) {
2921 return MEMTX_ACCESS_ERROR
;
2923 return flatview_read_continue(fv
, addr
, attrs
, buf
, len
,
2927 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
2928 MemTxAttrs attrs
, void *buf
, hwaddr len
)
2930 MemTxResult result
= MEMTX_OK
;
2934 RCU_READ_LOCK_GUARD();
2935 fv
= address_space_to_flatview(as
);
2936 result
= flatview_read(fv
, addr
, attrs
, buf
, len
);
2942 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
,
2944 const void *buf
, hwaddr len
)
2946 MemTxResult result
= MEMTX_OK
;
2950 RCU_READ_LOCK_GUARD();
2951 fv
= address_space_to_flatview(as
);
2952 result
= flatview_write(fv
, addr
, attrs
, buf
, len
);
2958 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2959 void *buf
, hwaddr len
, bool is_write
)
2962 return address_space_write(as
, addr
, attrs
, buf
, len
);
2964 return address_space_read_full(as
, addr
, attrs
, buf
, len
);
2968 MemTxResult
address_space_set(AddressSpace
*as
, hwaddr addr
,
2969 uint8_t c
, hwaddr len
, MemTxAttrs attrs
)
2971 #define FILLBUF_SIZE 512
2972 uint8_t fillbuf
[FILLBUF_SIZE
];
2974 MemTxResult error
= MEMTX_OK
;
2976 memset(fillbuf
, c
, FILLBUF_SIZE
);
2978 l
= len
< FILLBUF_SIZE
? len
: FILLBUF_SIZE
;
2979 error
|= address_space_write(as
, addr
, attrs
, fillbuf
, l
);
2987 void cpu_physical_memory_rw(hwaddr addr
, void *buf
,
2988 hwaddr len
, bool is_write
)
2990 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
2991 buf
, len
, is_write
);
2994 enum write_rom_type
{
2999 static inline MemTxResult
address_space_write_rom_internal(AddressSpace
*as
,
3004 enum write_rom_type type
)
3010 const uint8_t *buf
= ptr
;
3012 RCU_READ_LOCK_GUARD();
3015 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true, attrs
);
3017 if (!(memory_region_is_ram(mr
) ||
3018 memory_region_is_romd(mr
))) {
3019 l
= memory_access_size(mr
, l
, addr1
);
3022 ram_ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3025 memcpy(ram_ptr
, buf
, l
);
3026 invalidate_and_set_dirty(mr
, addr1
, l
);
3029 flush_idcache_range((uintptr_t)ram_ptr
, (uintptr_t)ram_ptr
, l
);
3040 /* used for ROM loading : can write in RAM and ROM */
3041 MemTxResult
address_space_write_rom(AddressSpace
*as
, hwaddr addr
,
3043 const void *buf
, hwaddr len
)
3045 return address_space_write_rom_internal(as
, addr
, attrs
,
3046 buf
, len
, WRITE_DATA
);
3049 void cpu_flush_icache_range(hwaddr start
, hwaddr len
)
3052 * This function should do the same thing as an icache flush that was
3053 * triggered from within the guest. For TCG we are always cache coherent,
3054 * so there is no need to flush anything. For KVM / Xen we need to flush
3055 * the host's instruction cache at least.
3057 if (tcg_enabled()) {
3061 address_space_write_rom_internal(&address_space_memory
,
3062 start
, MEMTXATTRS_UNSPECIFIED
,
3063 NULL
, len
, FLUSH_CACHE
);
3074 static BounceBuffer bounce
;
3076 typedef struct MapClient
{
3078 QLIST_ENTRY(MapClient
) link
;
3081 QemuMutex map_client_list_lock
;
3082 static QLIST_HEAD(, MapClient
) map_client_list
3083 = QLIST_HEAD_INITIALIZER(map_client_list
);
3085 static void cpu_unregister_map_client_do(MapClient
*client
)
3087 QLIST_REMOVE(client
, link
);
3091 static void cpu_notify_map_clients_locked(void)
3095 while (!QLIST_EMPTY(&map_client_list
)) {
3096 client
= QLIST_FIRST(&map_client_list
);
3097 qemu_bh_schedule(client
->bh
);
3098 cpu_unregister_map_client_do(client
);
3102 void cpu_register_map_client(QEMUBH
*bh
)
3104 MapClient
*client
= g_malloc(sizeof(*client
));
3106 qemu_mutex_lock(&map_client_list_lock
);
3108 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3109 if (!qatomic_read(&bounce
.in_use
)) {
3110 cpu_notify_map_clients_locked();
3112 qemu_mutex_unlock(&map_client_list_lock
);
3115 void cpu_exec_init_all(void)
3117 qemu_mutex_init(&ram_list
.mutex
);
3118 /* The data structures we set up here depend on knowing the page size,
3119 * so no more changes can be made after this point.
3120 * In an ideal world, nothing we did before we had finished the
3121 * machine setup would care about the target page size, and we could
3122 * do this much later, rather than requiring board models to state
3123 * up front what their requirements are.
3125 finalize_target_page_bits();
3128 qemu_mutex_init(&map_client_list_lock
);
3131 void cpu_unregister_map_client(QEMUBH
*bh
)
3135 qemu_mutex_lock(&map_client_list_lock
);
3136 QLIST_FOREACH(client
, &map_client_list
, link
) {
3137 if (client
->bh
== bh
) {
3138 cpu_unregister_map_client_do(client
);
3142 qemu_mutex_unlock(&map_client_list_lock
);
3145 static void cpu_notify_map_clients(void)
3147 qemu_mutex_lock(&map_client_list_lock
);
3148 cpu_notify_map_clients_locked();
3149 qemu_mutex_unlock(&map_client_list_lock
);
3152 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, hwaddr len
,
3153 bool is_write
, MemTxAttrs attrs
)
3160 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
, attrs
);
3161 if (!memory_access_is_direct(mr
, is_write
)) {
3162 l
= memory_access_size(mr
, l
, addr
);
3163 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
, attrs
)) {
3174 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
,
3175 hwaddr len
, bool is_write
,
3180 RCU_READ_LOCK_GUARD();
3181 fv
= address_space_to_flatview(as
);
3182 return flatview_access_valid(fv
, addr
, len
, is_write
, attrs
);
3186 flatview_extend_translation(FlatView
*fv
, hwaddr addr
,
3188 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
3189 bool is_write
, MemTxAttrs attrs
)
3193 MemoryRegion
*this_mr
;
3199 if (target_len
== 0) {
3204 this_mr
= flatview_translate(fv
, addr
, &xlat
,
3205 &len
, is_write
, attrs
);
3206 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3212 /* Map a physical memory region into a host virtual address.
3213 * May map a subset of the requested range, given by and returned in *plen.
3214 * May return NULL if resources needed to perform the mapping are exhausted.
3215 * Use only for reads OR writes - not for read-modify-write operations.
3216 * Use cpu_register_map_client() to know when retrying the map operation is
3217 * likely to succeed.
3219 void *address_space_map(AddressSpace
*as
,
3236 RCU_READ_LOCK_GUARD();
3237 fv
= address_space_to_flatview(as
);
3238 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
, attrs
);
3240 if (!memory_access_is_direct(mr
, is_write
)) {
3241 if (qatomic_xchg(&bounce
.in_use
, true)) {
3245 /* Avoid unbounded allocations */
3246 l
= MIN(l
, TARGET_PAGE_SIZE
);
3247 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3251 memory_region_ref(mr
);
3254 flatview_read(fv
, addr
, MEMTXATTRS_UNSPECIFIED
,
3259 return bounce
.buffer
;
3263 memory_region_ref(mr
);
3264 *plen
= flatview_extend_translation(fv
, addr
, len
, mr
, xlat
,
3265 l
, is_write
, attrs
);
3266 fuzz_dma_read_cb(addr
, *plen
, mr
);
3267 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
, true);
3272 /* Unmaps a memory region previously mapped by address_space_map().
3273 * Will also mark the memory as dirty if is_write is true. access_len gives
3274 * the amount of memory that was actually read or written by the caller.
3276 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3277 bool is_write
, hwaddr access_len
)
3279 if (buffer
!= bounce
.buffer
) {
3283 mr
= memory_region_from_host(buffer
, &addr1
);
3286 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3288 if (xen_enabled()) {
3289 xen_invalidate_map_cache_entry(buffer
);
3291 memory_region_unref(mr
);
3295 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3296 bounce
.buffer
, access_len
);
3298 qemu_vfree(bounce
.buffer
);
3299 bounce
.buffer
= NULL
;
3300 memory_region_unref(bounce
.mr
);
3301 qatomic_mb_set(&bounce
.in_use
, false);
3302 cpu_notify_map_clients();
3305 void *cpu_physical_memory_map(hwaddr addr
,
3309 return address_space_map(&address_space_memory
, addr
, plen
, is_write
,
3310 MEMTXATTRS_UNSPECIFIED
);
3313 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3314 bool is_write
, hwaddr access_len
)
3316 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3319 #define ARG1_DECL AddressSpace *as
3322 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3323 #define RCU_READ_LOCK(...) rcu_read_lock()
3324 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3325 #include "memory_ldst.c.inc"
3327 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3333 AddressSpaceDispatch
*d
;
3341 cache
->fv
= address_space_get_flatview(as
);
3342 d
= flatview_to_dispatch(cache
->fv
);
3343 cache
->mrs
= *address_space_translate_internal(d
, addr
, &cache
->xlat
, &l
, true);
3346 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3347 * Take that into account to compute how many bytes are there between
3348 * cache->xlat and the end of the section.
3350 diff
= int128_sub(cache
->mrs
.size
,
3351 int128_make64(cache
->xlat
- cache
->mrs
.offset_within_region
));
3352 l
= int128_get64(int128_min(diff
, int128_make64(l
)));
3355 memory_region_ref(mr
);
3356 if (memory_access_is_direct(mr
, is_write
)) {
3357 /* We don't care about the memory attributes here as we're only
3358 * doing this if we found actual RAM, which behaves the same
3359 * regardless of attributes; so UNSPECIFIED is fine.
3361 l
= flatview_extend_translation(cache
->fv
, addr
, len
, mr
,
3362 cache
->xlat
, l
, is_write
,
3363 MEMTXATTRS_UNSPECIFIED
);
3364 cache
->ptr
= qemu_ram_ptr_length(mr
->ram_block
, cache
->xlat
, &l
, true);
3370 cache
->is_write
= is_write
;
3374 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3378 assert(cache
->is_write
);
3379 if (likely(cache
->ptr
)) {
3380 invalidate_and_set_dirty(cache
->mrs
.mr
, addr
+ cache
->xlat
, access_len
);
3384 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3386 if (!cache
->mrs
.mr
) {
3390 if (xen_enabled()) {
3391 xen_invalidate_map_cache_entry(cache
->ptr
);
3393 memory_region_unref(cache
->mrs
.mr
);
3394 flatview_unref(cache
->fv
);
3395 cache
->mrs
.mr
= NULL
;
3399 /* Called from RCU critical section. This function has the same
3400 * semantics as address_space_translate, but it only works on a
3401 * predefined range of a MemoryRegion that was mapped with
3402 * address_space_cache_init.
3404 static inline MemoryRegion
*address_space_translate_cached(
3405 MemoryRegionCache
*cache
, hwaddr addr
, hwaddr
*xlat
,
3406 hwaddr
*plen
, bool is_write
, MemTxAttrs attrs
)
3408 MemoryRegionSection section
;
3410 IOMMUMemoryRegion
*iommu_mr
;
3411 AddressSpace
*target_as
;
3413 assert(!cache
->ptr
);
3414 *xlat
= addr
+ cache
->xlat
;
3417 iommu_mr
= memory_region_get_iommu(mr
);
3423 section
= address_space_translate_iommu(iommu_mr
, xlat
, plen
,
3424 NULL
, is_write
, true,
3429 /* Called from RCU critical section. address_space_read_cached uses this
3430 * out of line function when the target is an MMIO or IOMMU region.
3433 address_space_read_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3434 void *buf
, hwaddr len
)
3440 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, false,
3441 MEMTXATTRS_UNSPECIFIED
);
3442 return flatview_read_continue(cache
->fv
,
3443 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3447 /* Called from RCU critical section. address_space_write_cached uses this
3448 * out of line function when the target is an MMIO or IOMMU region.
3451 address_space_write_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3452 const void *buf
, hwaddr len
)
3458 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, true,
3459 MEMTXATTRS_UNSPECIFIED
);
3460 return flatview_write_continue(cache
->fv
,
3461 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3465 #define ARG1_DECL MemoryRegionCache *cache
3467 #define SUFFIX _cached_slow
3468 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3469 #define RCU_READ_LOCK() ((void)0)
3470 #define RCU_READ_UNLOCK() ((void)0)
3471 #include "memory_ldst.c.inc"
3473 /* virtual memory access for debug (includes writing to ROM) */
3474 int cpu_memory_rw_debug(CPUState
*cpu
, vaddr addr
,
3475 void *ptr
, size_t len
, bool is_write
)
3481 cpu_synchronize_state(cpu
);
3487 page
= addr
& TARGET_PAGE_MASK
;
3488 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3489 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3490 /* if no physical page mapped, return an error */
3491 if (phys_addr
== -1)
3493 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3496 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3498 res
= address_space_write_rom(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3501 res
= address_space_read(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3504 if (res
!= MEMTX_OK
) {
3515 * Allows code that needs to deal with migration bitmaps etc to still be built
3516 * target independent.
3518 size_t qemu_target_page_size(void)
3520 return TARGET_PAGE_SIZE
;
3523 int qemu_target_page_bits(void)
3525 return TARGET_PAGE_BITS
;
3528 int qemu_target_page_bits_min(void)
3530 return TARGET_PAGE_BITS_MIN
;
3533 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3539 RCU_READ_LOCK_GUARD();
3540 mr
= address_space_translate(&address_space_memory
,
3541 phys_addr
, &phys_addr
, &l
, false,
3542 MEMTXATTRS_UNSPECIFIED
);
3544 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3548 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3553 RCU_READ_LOCK_GUARD();
3554 RAMBLOCK_FOREACH(block
) {
3555 ret
= func(block
, opaque
);
3564 * Unmap pages of memory from start to start+length such that
3565 * they a) read as 0, b) Trigger whatever fault mechanism
3566 * the OS provides for postcopy.
3567 * The pages must be unmapped by the end of the function.
3568 * Returns: 0 on success, none-0 on failure
3571 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
)
3575 uint8_t *host_startaddr
= rb
->host
+ start
;
3577 if (!QEMU_PTR_IS_ALIGNED(host_startaddr
, rb
->page_size
)) {
3578 error_report("ram_block_discard_range: Unaligned start address: %p",
3583 if ((start
+ length
) <= rb
->max_length
) {
3584 bool need_madvise
, need_fallocate
;
3585 if (!QEMU_IS_ALIGNED(length
, rb
->page_size
)) {
3586 error_report("ram_block_discard_range: Unaligned length: %zx",
3591 errno
= ENOTSUP
; /* If we are missing MADVISE etc */
3593 /* The logic here is messy;
3594 * madvise DONTNEED fails for hugepages
3595 * fallocate works on hugepages and shmem
3596 * shared anonymous memory requires madvise REMOVE
3598 need_madvise
= (rb
->page_size
== qemu_host_page_size
);
3599 need_fallocate
= rb
->fd
!= -1;
3600 if (need_fallocate
) {
3601 /* For a file, this causes the area of the file to be zero'd
3602 * if read, and for hugetlbfs also causes it to be unmapped
3603 * so a userfault will trigger.
3605 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3606 ret
= fallocate(rb
->fd
, FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
3610 error_report("ram_block_discard_range: Failed to fallocate "
3611 "%s:%" PRIx64
" +%zx (%d)",
3612 rb
->idstr
, start
, length
, ret
);
3617 error_report("ram_block_discard_range: fallocate not available/file"
3618 "%s:%" PRIx64
" +%zx (%d)",
3619 rb
->idstr
, start
, length
, ret
);
3624 /* For normal RAM this causes it to be unmapped,
3625 * for shared memory it causes the local mapping to disappear
3626 * and to fall back on the file contents (which we just
3627 * fallocate'd away).
3629 #if defined(CONFIG_MADVISE)
3630 if (qemu_ram_is_shared(rb
) && rb
->fd
< 0) {
3631 ret
= madvise(host_startaddr
, length
, QEMU_MADV_REMOVE
);
3633 ret
= madvise(host_startaddr
, length
, QEMU_MADV_DONTNEED
);
3637 error_report("ram_block_discard_range: Failed to discard range "
3638 "%s:%" PRIx64
" +%zx (%d)",
3639 rb
->idstr
, start
, length
, ret
);
3644 error_report("ram_block_discard_range: MADVISE not available"
3645 "%s:%" PRIx64
" +%zx (%d)",
3646 rb
->idstr
, start
, length
, ret
);
3650 trace_ram_block_discard_range(rb
->idstr
, host_startaddr
, length
,
3651 need_madvise
, need_fallocate
, ret
);
3653 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3654 "/%zx/" RAM_ADDR_FMT
")",
3655 rb
->idstr
, start
, length
, rb
->max_length
);
3662 bool ramblock_is_pmem(RAMBlock
*rb
)
3664 return rb
->flags
& RAM_PMEM
;
3667 static void mtree_print_phys_entries(int start
, int end
, int skip
, int ptr
)
3669 if (start
== end
- 1) {
3670 qemu_printf("\t%3d ", start
);
3672 qemu_printf("\t%3d..%-3d ", start
, end
- 1);
3674 qemu_printf(" skip=%d ", skip
);
3675 if (ptr
== PHYS_MAP_NODE_NIL
) {
3676 qemu_printf(" ptr=NIL");
3678 qemu_printf(" ptr=#%d", ptr
);
3680 qemu_printf(" ptr=[%d]", ptr
);
3685 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3686 int128_sub((size), int128_one())) : 0)
3688 void mtree_print_dispatch(AddressSpaceDispatch
*d
, MemoryRegion
*root
)
3692 qemu_printf(" Dispatch\n");
3693 qemu_printf(" Physical sections\n");
3695 for (i
= 0; i
< d
->map
.sections_nb
; ++i
) {
3696 MemoryRegionSection
*s
= d
->map
.sections
+ i
;
3697 const char *names
[] = { " [unassigned]", " [not dirty]",
3698 " [ROM]", " [watch]" };
3700 qemu_printf(" #%d @" TARGET_FMT_plx
".." TARGET_FMT_plx
3703 s
->offset_within_address_space
,
3704 s
->offset_within_address_space
+ MR_SIZE(s
->mr
->size
),
3705 s
->mr
->name
? s
->mr
->name
: "(noname)",
3706 i
< ARRAY_SIZE(names
) ? names
[i
] : "",
3707 s
->mr
== root
? " [ROOT]" : "",
3708 s
== d
->mru_section
? " [MRU]" : "",
3709 s
->mr
->is_iommu
? " [iommu]" : "");
3712 qemu_printf(" alias=%s", s
->mr
->alias
->name
?
3713 s
->mr
->alias
->name
: "noname");
3718 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3719 P_L2_BITS
, P_L2_LEVELS
, d
->phys_map
.ptr
, d
->phys_map
.skip
);
3720 for (i
= 0; i
< d
->map
.nodes_nb
; ++i
) {
3723 Node
*n
= d
->map
.nodes
+ i
;
3725 qemu_printf(" [%d]\n", i
);
3727 for (j
= 0, jprev
= 0, prev
= *n
[0]; j
< ARRAY_SIZE(*n
); ++j
) {
3728 PhysPageEntry
*pe
= *n
+ j
;
3730 if (pe
->ptr
== prev
.ptr
&& pe
->skip
== prev
.skip
) {
3734 mtree_print_phys_entries(jprev
, j
, prev
.skip
, prev
.ptr
);
3740 if (jprev
!= ARRAY_SIZE(*n
)) {
3741 mtree_print_phys_entries(jprev
, j
, prev
.skip
, prev
.ptr
);
3746 /* Require any discards to work. */
3747 static unsigned int ram_block_discard_required_cnt
;
3748 /* Require only coordinated discards to work. */
3749 static unsigned int ram_block_coordinated_discard_required_cnt
;
3750 /* Disable any discards. */
3751 static unsigned int ram_block_discard_disabled_cnt
;
3752 /* Disable only uncoordinated discards. */
3753 static unsigned int ram_block_uncoordinated_discard_disabled_cnt
;
3754 static QemuMutex ram_block_discard_disable_mutex
;
3756 static void ram_block_discard_disable_mutex_lock(void)
3758 static gsize initialized
;
3760 if (g_once_init_enter(&initialized
)) {
3761 qemu_mutex_init(&ram_block_discard_disable_mutex
);
3762 g_once_init_leave(&initialized
, 1);
3764 qemu_mutex_lock(&ram_block_discard_disable_mutex
);
3767 static void ram_block_discard_disable_mutex_unlock(void)
3769 qemu_mutex_unlock(&ram_block_discard_disable_mutex
);
3772 int ram_block_discard_disable(bool state
)
3776 ram_block_discard_disable_mutex_lock();
3778 ram_block_discard_disabled_cnt
--;
3779 } else if (ram_block_discard_required_cnt
||
3780 ram_block_coordinated_discard_required_cnt
) {
3783 ram_block_discard_disabled_cnt
++;
3785 ram_block_discard_disable_mutex_unlock();
3789 int ram_block_uncoordinated_discard_disable(bool state
)
3793 ram_block_discard_disable_mutex_lock();
3795 ram_block_uncoordinated_discard_disabled_cnt
--;
3796 } else if (ram_block_discard_required_cnt
) {
3799 ram_block_uncoordinated_discard_disabled_cnt
++;
3801 ram_block_discard_disable_mutex_unlock();
3805 int ram_block_discard_require(bool state
)
3809 ram_block_discard_disable_mutex_lock();
3811 ram_block_discard_required_cnt
--;
3812 } else if (ram_block_discard_disabled_cnt
||
3813 ram_block_uncoordinated_discard_disabled_cnt
) {
3816 ram_block_discard_required_cnt
++;
3818 ram_block_discard_disable_mutex_unlock();
3822 int ram_block_coordinated_discard_require(bool state
)
3826 ram_block_discard_disable_mutex_lock();
3828 ram_block_coordinated_discard_required_cnt
--;
3829 } else if (ram_block_discard_disabled_cnt
) {
3832 ram_block_coordinated_discard_required_cnt
++;
3834 ram_block_discard_disable_mutex_unlock();
3838 bool ram_block_discard_is_disabled(void)
3840 return qatomic_read(&ram_block_discard_disabled_cnt
) ||
3841 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt
);
3844 bool ram_block_discard_is_required(void)
3846 return qatomic_read(&ram_block_discard_required_cnt
) ||
3847 qatomic_read(&ram_block_coordinated_discard_required_cnt
);