cputlb: Move most of iotlb code out of line
[qemu.git] / softmmu_template.h
blob035ffc8be6bf5552dbdba14f337e6e9e25216688
1 /*
2 * Software MMU support
4 * Generate helpers used by TCG for qemu_ld/st ops and code load
5 * functions.
7 * Included from target op helpers and exec.c.
9 * Copyright (c) 2003 Fabrice Bellard
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or (at your option) any later version.
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #if DATA_SIZE == 8
25 #define SUFFIX q
26 #define LSUFFIX q
27 #define SDATA_TYPE int64_t
28 #define DATA_TYPE uint64_t
29 #elif DATA_SIZE == 4
30 #define SUFFIX l
31 #define LSUFFIX l
32 #define SDATA_TYPE int32_t
33 #define DATA_TYPE uint32_t
34 #elif DATA_SIZE == 2
35 #define SUFFIX w
36 #define LSUFFIX uw
37 #define SDATA_TYPE int16_t
38 #define DATA_TYPE uint16_t
39 #elif DATA_SIZE == 1
40 #define SUFFIX b
41 #define LSUFFIX ub
42 #define SDATA_TYPE int8_t
43 #define DATA_TYPE uint8_t
44 #else
45 #error unsupported data size
46 #endif
49 /* For the benefit of TCG generated code, we want to avoid the complication
50 of ABI-specific return type promotion and always return a value extended
51 to the register size of the host. This is tcg_target_long, except in the
52 case of a 32-bit host and 64-bit data, and for that we always have
53 uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
54 #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
55 # define WORD_TYPE DATA_TYPE
56 # define USUFFIX SUFFIX
57 #else
58 # define WORD_TYPE tcg_target_ulong
59 # define USUFFIX glue(u, SUFFIX)
60 # define SSUFFIX glue(s, SUFFIX)
61 #endif
63 #ifdef SOFTMMU_CODE_ACCESS
64 #define READ_ACCESS_TYPE MMU_INST_FETCH
65 #define ADDR_READ addr_code
66 #else
67 #define READ_ACCESS_TYPE MMU_DATA_LOAD
68 #define ADDR_READ addr_read
69 #endif
71 #if DATA_SIZE == 8
72 # define BSWAP(X) bswap64(X)
73 #elif DATA_SIZE == 4
74 # define BSWAP(X) bswap32(X)
75 #elif DATA_SIZE == 2
76 # define BSWAP(X) bswap16(X)
77 #else
78 # define BSWAP(X) (X)
79 #endif
81 #ifdef TARGET_WORDS_BIGENDIAN
82 # define TGT_BE(X) (X)
83 # define TGT_LE(X) BSWAP(X)
84 #else
85 # define TGT_BE(X) BSWAP(X)
86 # define TGT_LE(X) (X)
87 #endif
89 #if DATA_SIZE == 1
90 # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
91 # define helper_be_ld_name helper_le_ld_name
92 # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
93 # define helper_be_lds_name helper_le_lds_name
94 # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
95 # define helper_be_st_name helper_le_st_name
96 #else
97 # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
98 # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
99 # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
100 # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
101 # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
102 # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
103 #endif
105 #ifdef TARGET_WORDS_BIGENDIAN
106 # define helper_te_ld_name helper_be_ld_name
107 # define helper_te_st_name helper_be_st_name
108 #else
109 # define helper_te_ld_name helper_le_ld_name
110 # define helper_te_st_name helper_le_st_name
111 #endif
113 #ifndef SOFTMMU_CODE_ACCESS
114 static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
115 size_t mmu_idx, size_t index,
116 target_ulong addr,
117 uintptr_t retaddr)
119 CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
120 return io_readx(env, iotlbentry, addr, retaddr, DATA_SIZE);
122 #endif
124 WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr,
125 TCGMemOpIdx oi, uintptr_t retaddr)
127 unsigned mmu_idx = get_mmuidx(oi);
128 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
129 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
130 unsigned a_bits = get_alignment_bits(get_memop(oi));
131 uintptr_t haddr;
132 DATA_TYPE res;
134 if (addr & ((1 << a_bits) - 1)) {
135 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
136 mmu_idx, retaddr);
139 /* If the TLB entry is for a different page, reload and try again. */
140 if ((addr & TARGET_PAGE_MASK)
141 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
142 if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
143 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
144 mmu_idx, retaddr);
146 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
149 /* Handle an IO access. */
150 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
151 if ((addr & (DATA_SIZE - 1)) != 0) {
152 goto do_unaligned_access;
155 /* ??? Note that the io helpers always read data in the target
156 byte ordering. We should push the LE/BE request down into io. */
157 res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr);
158 res = TGT_LE(res);
159 return res;
162 /* Handle slow unaligned access (it spans two pages or IO). */
163 if (DATA_SIZE > 1
164 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
165 >= TARGET_PAGE_SIZE)) {
166 target_ulong addr1, addr2;
167 DATA_TYPE res1, res2;
168 unsigned shift;
169 do_unaligned_access:
170 addr1 = addr & ~(DATA_SIZE - 1);
171 addr2 = addr1 + DATA_SIZE;
172 res1 = helper_le_ld_name(env, addr1, oi, retaddr);
173 res2 = helper_le_ld_name(env, addr2, oi, retaddr);
174 shift = (addr & (DATA_SIZE - 1)) * 8;
176 /* Little-endian combine. */
177 res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
178 return res;
181 haddr = addr + env->tlb_table[mmu_idx][index].addend;
182 #if DATA_SIZE == 1
183 res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
184 #else
185 res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
186 #endif
187 return res;
190 #if DATA_SIZE > 1
191 WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr,
192 TCGMemOpIdx oi, uintptr_t retaddr)
194 unsigned mmu_idx = get_mmuidx(oi);
195 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
196 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
197 unsigned a_bits = get_alignment_bits(get_memop(oi));
198 uintptr_t haddr;
199 DATA_TYPE res;
201 if (addr & ((1 << a_bits) - 1)) {
202 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
203 mmu_idx, retaddr);
206 /* If the TLB entry is for a different page, reload and try again. */
207 if ((addr & TARGET_PAGE_MASK)
208 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
209 if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
210 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
211 mmu_idx, retaddr);
213 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
216 /* Handle an IO access. */
217 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
218 if ((addr & (DATA_SIZE - 1)) != 0) {
219 goto do_unaligned_access;
222 /* ??? Note that the io helpers always read data in the target
223 byte ordering. We should push the LE/BE request down into io. */
224 res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr);
225 res = TGT_BE(res);
226 return res;
229 /* Handle slow unaligned access (it spans two pages or IO). */
230 if (DATA_SIZE > 1
231 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
232 >= TARGET_PAGE_SIZE)) {
233 target_ulong addr1, addr2;
234 DATA_TYPE res1, res2;
235 unsigned shift;
236 do_unaligned_access:
237 addr1 = addr & ~(DATA_SIZE - 1);
238 addr2 = addr1 + DATA_SIZE;
239 res1 = helper_be_ld_name(env, addr1, oi, retaddr);
240 res2 = helper_be_ld_name(env, addr2, oi, retaddr);
241 shift = (addr & (DATA_SIZE - 1)) * 8;
243 /* Big-endian combine. */
244 res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
245 return res;
248 haddr = addr + env->tlb_table[mmu_idx][index].addend;
249 res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
250 return res;
252 #endif /* DATA_SIZE > 1 */
254 #ifndef SOFTMMU_CODE_ACCESS
256 /* Provide signed versions of the load routines as well. We can of course
257 avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
258 #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
259 WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
260 TCGMemOpIdx oi, uintptr_t retaddr)
262 return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr);
265 # if DATA_SIZE > 1
266 WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
267 TCGMemOpIdx oi, uintptr_t retaddr)
269 return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr);
271 # endif
272 #endif
274 static inline void glue(io_write, SUFFIX)(CPUArchState *env,
275 size_t mmu_idx, size_t index,
276 DATA_TYPE val,
277 target_ulong addr,
278 uintptr_t retaddr)
280 CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
281 return io_writex(env, iotlbentry, val, addr, retaddr, DATA_SIZE);
284 void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
285 TCGMemOpIdx oi, uintptr_t retaddr)
287 unsigned mmu_idx = get_mmuidx(oi);
288 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
289 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
290 unsigned a_bits = get_alignment_bits(get_memop(oi));
291 uintptr_t haddr;
293 if (addr & ((1 << a_bits) - 1)) {
294 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
295 mmu_idx, retaddr);
298 /* If the TLB entry is for a different page, reload and try again. */
299 if ((addr & TARGET_PAGE_MASK)
300 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
301 if (!VICTIM_TLB_HIT(addr_write, addr)) {
302 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
304 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
307 /* Handle an IO access. */
308 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
309 if ((addr & (DATA_SIZE - 1)) != 0) {
310 goto do_unaligned_access;
313 /* ??? Note that the io helpers always read data in the target
314 byte ordering. We should push the LE/BE request down into io. */
315 val = TGT_LE(val);
316 glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr);
317 return;
320 /* Handle slow unaligned access (it spans two pages or IO). */
321 if (DATA_SIZE > 1
322 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
323 >= TARGET_PAGE_SIZE)) {
324 int i, index2;
325 target_ulong page2, tlb_addr2;
326 do_unaligned_access:
327 /* Ensure the second page is in the TLB. Note that the first page
328 is already guaranteed to be filled, and that the second page
329 cannot evict the first. */
330 page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
331 index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
332 tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write;
333 if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK))
334 && !VICTIM_TLB_HIT(addr_write, page2)) {
335 tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE,
336 mmu_idx, retaddr);
339 /* XXX: not efficient, but simple. */
340 /* This loop must go in the forward direction to avoid issues
341 with self-modifying code in Windows 64-bit. */
342 for (i = 0; i < DATA_SIZE; ++i) {
343 /* Little-endian extract. */
344 uint8_t val8 = val >> (i * 8);
345 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
346 oi, retaddr);
348 return;
351 haddr = addr + env->tlb_table[mmu_idx][index].addend;
352 #if DATA_SIZE == 1
353 glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
354 #else
355 glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
356 #endif
359 #if DATA_SIZE > 1
360 void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
361 TCGMemOpIdx oi, uintptr_t retaddr)
363 unsigned mmu_idx = get_mmuidx(oi);
364 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
365 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
366 unsigned a_bits = get_alignment_bits(get_memop(oi));
367 uintptr_t haddr;
369 if (addr & ((1 << a_bits) - 1)) {
370 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
371 mmu_idx, retaddr);
374 /* If the TLB entry is for a different page, reload and try again. */
375 if ((addr & TARGET_PAGE_MASK)
376 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
377 if (!VICTIM_TLB_HIT(addr_write, addr)) {
378 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
380 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
383 /* Handle an IO access. */
384 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
385 if ((addr & (DATA_SIZE - 1)) != 0) {
386 goto do_unaligned_access;
389 /* ??? Note that the io helpers always read data in the target
390 byte ordering. We should push the LE/BE request down into io. */
391 val = TGT_BE(val);
392 glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr);
393 return;
396 /* Handle slow unaligned access (it spans two pages or IO). */
397 if (DATA_SIZE > 1
398 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
399 >= TARGET_PAGE_SIZE)) {
400 int i, index2;
401 target_ulong page2, tlb_addr2;
402 do_unaligned_access:
403 /* Ensure the second page is in the TLB. Note that the first page
404 is already guaranteed to be filled, and that the second page
405 cannot evict the first. */
406 page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
407 index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
408 tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write;
409 if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK))
410 && !VICTIM_TLB_HIT(addr_write, page2)) {
411 tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE,
412 mmu_idx, retaddr);
415 /* XXX: not efficient, but simple */
416 /* This loop must go in the forward direction to avoid issues
417 with self-modifying code. */
418 for (i = 0; i < DATA_SIZE; ++i) {
419 /* Big-endian extract. */
420 uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
421 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
422 oi, retaddr);
424 return;
427 haddr = addr + env->tlb_table[mmu_idx][index].addend;
428 glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
430 #endif /* DATA_SIZE > 1 */
431 #endif /* !defined(SOFTMMU_CODE_ACCESS) */
433 #undef READ_ACCESS_TYPE
434 #undef DATA_TYPE
435 #undef SUFFIX
436 #undef LSUFFIX
437 #undef DATA_SIZE
438 #undef ADDR_READ
439 #undef WORD_TYPE
440 #undef SDATA_TYPE
441 #undef USUFFIX
442 #undef SSUFFIX
443 #undef BSWAP
444 #undef TGT_BE
445 #undef TGT_LE
446 #undef CPU_BE
447 #undef CPU_LE
448 #undef helper_le_ld_name
449 #undef helper_be_ld_name
450 #undef helper_le_lds_name
451 #undef helper_be_lds_name
452 #undef helper_le_st_name
453 #undef helper_be_st_name
454 #undef helper_te_ld_name
455 #undef helper_te_st_name