target/arm: Implement bfloat16 matrix multiply accumulate
[qemu.git] / target / arm / internals.h
blob886db56b580066660f4c71d06765efd8effafd29
1 /*
2 * QEMU ARM CPU -- internal functions and types
4 * Copyright (c) 2014 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC 1
35 #define BANK_ABT 2
36 #define BANK_UND 3
37 #define BANK_IRQ 4
38 #define BANK_FIQ 5
39 #define BANK_HYP 6
40 #define BANK_MON 7
42 static inline bool excp_is_internal(int excp)
44 /* Return true if this exception number represents a QEMU-internal
45 * exception that will not be passed to the guest.
47 return excp == EXCP_INTERRUPT
48 || excp == EXCP_HLT
49 || excp == EXCP_DEBUG
50 || excp == EXCP_HALTED
51 || excp == EXCP_EXCEPTION_EXIT
52 || excp == EXCP_KERNEL_TRAP
53 || excp == EXCP_SEMIHOST;
56 /* Scale factor for generic timers, ie number of ns per tick.
57 * This gives a 62.5MHz timer.
59 #define GTIMER_SCALE 16
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80 * when using v8M security extension
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
84 /* We use a few fake FSR values for internal purposes in M profile.
85 * M profile cores don't have A/R format FSRs, but currently our
86 * get_phys_addr() code assumes A/R profile and reports failures via
87 * an A/R format FSR value. We then translate that into the proper
88 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
89 * Mostly the FSR values we use for this are those defined for v7PMSA,
90 * since we share some of that codepath. A few kinds of fault are
91 * only for M profile and have no A/R equivalent, though, so we have
92 * to pick a value from the reserved range (which we never otherwise
93 * generate) to use for these.
94 * These values will never be visible to the guest.
96 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
97 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
99 /**
100 * raise_exception: Raise the specified exception.
101 * Raise a guest exception with the specified value, syndrome register
102 * and target exception level. This should be called from helper functions,
103 * and never returns because we will longjump back up to the CPU main loop.
105 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
106 uint32_t syndrome, uint32_t target_el);
109 * Similarly, but also use unwinding to restore cpu state.
111 void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
112 uint32_t syndrome, uint32_t target_el,
113 uintptr_t ra);
116 * For AArch64, map a given EL to an index in the banked_spsr array.
117 * Note that this mapping and the AArch32 mapping defined in bank_number()
118 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
119 * mandated mapping between each other.
121 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
123 static const unsigned int map[4] = {
124 [1] = BANK_SVC, /* EL1. */
125 [2] = BANK_HYP, /* EL2. */
126 [3] = BANK_MON, /* EL3. */
128 assert(el >= 1 && el <= 3);
129 return map[el];
132 /* Map CPU modes onto saved register banks. */
133 static inline int bank_number(int mode)
135 switch (mode) {
136 case ARM_CPU_MODE_USR:
137 case ARM_CPU_MODE_SYS:
138 return BANK_USRSYS;
139 case ARM_CPU_MODE_SVC:
140 return BANK_SVC;
141 case ARM_CPU_MODE_ABT:
142 return BANK_ABT;
143 case ARM_CPU_MODE_UND:
144 return BANK_UND;
145 case ARM_CPU_MODE_IRQ:
146 return BANK_IRQ;
147 case ARM_CPU_MODE_FIQ:
148 return BANK_FIQ;
149 case ARM_CPU_MODE_HYP:
150 return BANK_HYP;
151 case ARM_CPU_MODE_MON:
152 return BANK_MON;
154 g_assert_not_reached();
158 * r14_bank_number: Map CPU mode onto register bank for r14
160 * Given an AArch32 CPU mode, return the index into the saved register
161 * banks to use for the R14 (LR) in that mode. This is the same as
162 * bank_number(), except for the special case of Hyp mode, where
163 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
164 * This should be used as the index into env->banked_r14[], and
165 * bank_number() used for the index into env->banked_r13[] and
166 * env->banked_spsr[].
168 static inline int r14_bank_number(int mode)
170 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
173 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
174 void arm_translate_init(void);
176 #ifdef CONFIG_TCG
177 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
178 #endif /* CONFIG_TCG */
181 enum arm_fprounding {
182 FPROUNDING_TIEEVEN,
183 FPROUNDING_POSINF,
184 FPROUNDING_NEGINF,
185 FPROUNDING_ZERO,
186 FPROUNDING_TIEAWAY,
187 FPROUNDING_ODD
190 int arm_rmode_to_sf(int rmode);
192 static inline void aarch64_save_sp(CPUARMState *env, int el)
194 if (env->pstate & PSTATE_SP) {
195 env->sp_el[el] = env->xregs[31];
196 } else {
197 env->sp_el[0] = env->xregs[31];
201 static inline void aarch64_restore_sp(CPUARMState *env, int el)
203 if (env->pstate & PSTATE_SP) {
204 env->xregs[31] = env->sp_el[el];
205 } else {
206 env->xregs[31] = env->sp_el[0];
210 static inline void update_spsel(CPUARMState *env, uint32_t imm)
212 unsigned int cur_el = arm_current_el(env);
213 /* Update PSTATE SPSel bit; this requires us to update the
214 * working stack pointer in xregs[31].
216 if (!((imm ^ env->pstate) & PSTATE_SP)) {
217 return;
219 aarch64_save_sp(env, cur_el);
220 env->pstate = deposit32(env->pstate, 0, 1, imm);
222 /* We rely on illegal updates to SPsel from EL0 to get trapped
223 * at translation time.
225 assert(cur_el >= 1 && cur_el <= 3);
226 aarch64_restore_sp(env, cur_el);
230 * arm_pamax
231 * @cpu: ARMCPU
233 * Returns the implementation defined bit-width of physical addresses.
234 * The ARMv8 reference manuals refer to this as PAMax().
236 static inline unsigned int arm_pamax(ARMCPU *cpu)
238 static const unsigned int pamax_map[] = {
239 [0] = 32,
240 [1] = 36,
241 [2] = 40,
242 [3] = 42,
243 [4] = 44,
244 [5] = 48,
246 unsigned int parange =
247 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
249 /* id_aa64mmfr0 is a read-only register so values outside of the
250 * supported mappings can be considered an implementation error. */
251 assert(parange < ARRAY_SIZE(pamax_map));
252 return pamax_map[parange];
255 /* Return true if extended addresses are enabled.
256 * This is always the case if our translation regime is 64 bit,
257 * but depends on TTBCR.EAE for 32 bit.
259 static inline bool extended_addresses_enabled(CPUARMState *env)
261 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
262 return arm_el_is_aa64(env, 1) ||
263 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
266 /* Update a QEMU watchpoint based on the information the guest has set in the
267 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
269 void hw_watchpoint_update(ARMCPU *cpu, int n);
270 /* Update the QEMU watchpoints for every guest watchpoint. This does a
271 * complete delete-and-reinstate of the QEMU watchpoint list and so is
272 * suitable for use after migration or on reset.
274 void hw_watchpoint_update_all(ARMCPU *cpu);
275 /* Update a QEMU breakpoint based on the information the guest has set in the
276 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
278 void hw_breakpoint_update(ARMCPU *cpu, int n);
279 /* Update the QEMU breakpoints for every guest breakpoint. This does a
280 * complete delete-and-reinstate of the QEMU breakpoint list and so is
281 * suitable for use after migration or on reset.
283 void hw_breakpoint_update_all(ARMCPU *cpu);
285 /* Callback function for checking if a watchpoint should trigger. */
286 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
288 /* Adjust addresses (in BE32 mode) before testing against watchpoint
289 * addresses.
291 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
293 /* Callback function for when a watchpoint or breakpoint triggers. */
294 void arm_debug_excp_handler(CPUState *cs);
296 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
297 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
299 return false;
301 static inline void arm_handle_psci_call(ARMCPU *cpu)
303 g_assert_not_reached();
305 #else
306 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
307 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
308 /* Actually handle a PSCI call */
309 void arm_handle_psci_call(ARMCPU *cpu);
310 #endif
313 * arm_clear_exclusive: clear the exclusive monitor
314 * @env: CPU env
315 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
317 static inline void arm_clear_exclusive(CPUARMState *env)
319 env->exclusive_addr = -1;
323 * ARMFaultType: type of an ARM MMU fault
324 * This corresponds to the v8A pseudocode's Fault enumeration,
325 * with extensions for QEMU internal conditions.
327 typedef enum ARMFaultType {
328 ARMFault_None,
329 ARMFault_AccessFlag,
330 ARMFault_Alignment,
331 ARMFault_Background,
332 ARMFault_Domain,
333 ARMFault_Permission,
334 ARMFault_Translation,
335 ARMFault_AddressSize,
336 ARMFault_SyncExternal,
337 ARMFault_SyncExternalOnWalk,
338 ARMFault_SyncParity,
339 ARMFault_SyncParityOnWalk,
340 ARMFault_AsyncParity,
341 ARMFault_AsyncExternal,
342 ARMFault_Debug,
343 ARMFault_TLBConflict,
344 ARMFault_Lockdown,
345 ARMFault_Exclusive,
346 ARMFault_ICacheMaint,
347 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
348 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
349 } ARMFaultType;
352 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
353 * @type: Type of fault
354 * @level: Table walk level (for translation, access flag and permission faults)
355 * @domain: Domain of the fault address (for non-LPAE CPUs only)
356 * @s2addr: Address that caused a fault at stage 2
357 * @stage2: True if we faulted at stage 2
358 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
359 * @s1ns: True if we faulted on a non-secure IPA while in secure state
360 * @ea: True if we should set the EA (external abort type) bit in syndrome
362 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
363 struct ARMMMUFaultInfo {
364 ARMFaultType type;
365 target_ulong s2addr;
366 int level;
367 int domain;
368 bool stage2;
369 bool s1ptw;
370 bool s1ns;
371 bool ea;
375 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
376 * Compare pseudocode EncodeSDFSC(), though unlike that function
377 * we set up a whole FSR-format code including domain field and
378 * putting the high bit of the FSC into bit 10.
380 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
382 uint32_t fsc;
384 switch (fi->type) {
385 case ARMFault_None:
386 return 0;
387 case ARMFault_AccessFlag:
388 fsc = fi->level == 1 ? 0x3 : 0x6;
389 break;
390 case ARMFault_Alignment:
391 fsc = 0x1;
392 break;
393 case ARMFault_Permission:
394 fsc = fi->level == 1 ? 0xd : 0xf;
395 break;
396 case ARMFault_Domain:
397 fsc = fi->level == 1 ? 0x9 : 0xb;
398 break;
399 case ARMFault_Translation:
400 fsc = fi->level == 1 ? 0x5 : 0x7;
401 break;
402 case ARMFault_SyncExternal:
403 fsc = 0x8 | (fi->ea << 12);
404 break;
405 case ARMFault_SyncExternalOnWalk:
406 fsc = fi->level == 1 ? 0xc : 0xe;
407 fsc |= (fi->ea << 12);
408 break;
409 case ARMFault_SyncParity:
410 fsc = 0x409;
411 break;
412 case ARMFault_SyncParityOnWalk:
413 fsc = fi->level == 1 ? 0x40c : 0x40e;
414 break;
415 case ARMFault_AsyncParity:
416 fsc = 0x408;
417 break;
418 case ARMFault_AsyncExternal:
419 fsc = 0x406 | (fi->ea << 12);
420 break;
421 case ARMFault_Debug:
422 fsc = 0x2;
423 break;
424 case ARMFault_TLBConflict:
425 fsc = 0x400;
426 break;
427 case ARMFault_Lockdown:
428 fsc = 0x404;
429 break;
430 case ARMFault_Exclusive:
431 fsc = 0x405;
432 break;
433 case ARMFault_ICacheMaint:
434 fsc = 0x4;
435 break;
436 case ARMFault_Background:
437 fsc = 0x0;
438 break;
439 case ARMFault_QEMU_NSCExec:
440 fsc = M_FAKE_FSR_NSC_EXEC;
441 break;
442 case ARMFault_QEMU_SFault:
443 fsc = M_FAKE_FSR_SFAULT;
444 break;
445 default:
446 /* Other faults can't occur in a context that requires a
447 * short-format status code.
449 g_assert_not_reached();
452 fsc |= (fi->domain << 4);
453 return fsc;
457 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
458 * Compare pseudocode EncodeLDFSC(), though unlike that function
459 * we fill in also the LPAE bit 9 of a DFSR format.
461 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
463 uint32_t fsc;
465 switch (fi->type) {
466 case ARMFault_None:
467 return 0;
468 case ARMFault_AddressSize:
469 fsc = fi->level & 3;
470 break;
471 case ARMFault_AccessFlag:
472 fsc = (fi->level & 3) | (0x2 << 2);
473 break;
474 case ARMFault_Permission:
475 fsc = (fi->level & 3) | (0x3 << 2);
476 break;
477 case ARMFault_Translation:
478 fsc = (fi->level & 3) | (0x1 << 2);
479 break;
480 case ARMFault_SyncExternal:
481 fsc = 0x10 | (fi->ea << 12);
482 break;
483 case ARMFault_SyncExternalOnWalk:
484 fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
485 break;
486 case ARMFault_SyncParity:
487 fsc = 0x18;
488 break;
489 case ARMFault_SyncParityOnWalk:
490 fsc = (fi->level & 3) | (0x7 << 2);
491 break;
492 case ARMFault_AsyncParity:
493 fsc = 0x19;
494 break;
495 case ARMFault_AsyncExternal:
496 fsc = 0x11 | (fi->ea << 12);
497 break;
498 case ARMFault_Alignment:
499 fsc = 0x21;
500 break;
501 case ARMFault_Debug:
502 fsc = 0x22;
503 break;
504 case ARMFault_TLBConflict:
505 fsc = 0x30;
506 break;
507 case ARMFault_Lockdown:
508 fsc = 0x34;
509 break;
510 case ARMFault_Exclusive:
511 fsc = 0x35;
512 break;
513 default:
514 /* Other faults can't occur in a context that requires a
515 * long-format status code.
517 g_assert_not_reached();
520 fsc |= 1 << 9;
521 return fsc;
524 static inline bool arm_extabort_type(MemTxResult result)
526 /* The EA bit in syndromes and fault status registers is an
527 * IMPDEF classification of external aborts. ARM implementations
528 * usually use this to indicate AXI bus Decode error (0) or
529 * Slave error (1); in QEMU we follow that.
531 return result != MEMTX_DECODE_ERROR;
534 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
535 MMUAccessType access_type, int mmu_idx,
536 bool probe, uintptr_t retaddr);
538 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
540 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
543 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
545 if (arm_feature(env, ARM_FEATURE_M)) {
546 return mmu_idx | ARM_MMU_IDX_M;
547 } else {
548 return mmu_idx | ARM_MMU_IDX_A;
552 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
554 /* AArch64 is always a-profile. */
555 return mmu_idx | ARM_MMU_IDX_A;
558 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
561 * Return the MMU index for a v7M CPU with all relevant information
562 * manually specified.
564 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
565 bool secstate, bool priv, bool negpri);
568 * Return the MMU index for a v7M CPU in the specified security and
569 * privilege state.
571 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
572 bool secstate, bool priv);
574 /* Return the MMU index for a v7M CPU in the specified security state */
575 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
577 /* Return true if the stage 1 translation regime is using LPAE format page
578 * tables */
579 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
581 /* Raise a data fault alignment exception for the specified virtual address */
582 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
583 MMUAccessType access_type,
584 int mmu_idx, uintptr_t retaddr);
586 /* arm_cpu_do_transaction_failed: handle a memory system error response
587 * (eg "no device/memory present at address") by raising an external abort
588 * exception
590 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
591 vaddr addr, unsigned size,
592 MMUAccessType access_type,
593 int mmu_idx, MemTxAttrs attrs,
594 MemTxResult response, uintptr_t retaddr);
596 /* Call any registered EL change hooks */
597 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
599 ARMELChangeHook *hook, *next;
600 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
601 hook->hook(cpu, hook->opaque);
604 static inline void arm_call_el_change_hook(ARMCPU *cpu)
606 ARMELChangeHook *hook, *next;
607 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
608 hook->hook(cpu, hook->opaque);
612 /* Return true if this address translation regime has two ranges. */
613 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
615 switch (mmu_idx) {
616 case ARMMMUIdx_Stage1_E0:
617 case ARMMMUIdx_Stage1_E1:
618 case ARMMMUIdx_Stage1_E1_PAN:
619 case ARMMMUIdx_Stage1_SE0:
620 case ARMMMUIdx_Stage1_SE1:
621 case ARMMMUIdx_Stage1_SE1_PAN:
622 case ARMMMUIdx_E10_0:
623 case ARMMMUIdx_E10_1:
624 case ARMMMUIdx_E10_1_PAN:
625 case ARMMMUIdx_E20_0:
626 case ARMMMUIdx_E20_2:
627 case ARMMMUIdx_E20_2_PAN:
628 case ARMMMUIdx_SE10_0:
629 case ARMMMUIdx_SE10_1:
630 case ARMMMUIdx_SE10_1_PAN:
631 case ARMMMUIdx_SE20_0:
632 case ARMMMUIdx_SE20_2:
633 case ARMMMUIdx_SE20_2_PAN:
634 return true;
635 default:
636 return false;
640 /* Return true if this address translation regime is secure */
641 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
643 switch (mmu_idx) {
644 case ARMMMUIdx_E10_0:
645 case ARMMMUIdx_E10_1:
646 case ARMMMUIdx_E10_1_PAN:
647 case ARMMMUIdx_E20_0:
648 case ARMMMUIdx_E20_2:
649 case ARMMMUIdx_E20_2_PAN:
650 case ARMMMUIdx_Stage1_E0:
651 case ARMMMUIdx_Stage1_E1:
652 case ARMMMUIdx_Stage1_E1_PAN:
653 case ARMMMUIdx_E2:
654 case ARMMMUIdx_Stage2:
655 case ARMMMUIdx_MPrivNegPri:
656 case ARMMMUIdx_MUserNegPri:
657 case ARMMMUIdx_MPriv:
658 case ARMMMUIdx_MUser:
659 return false;
660 case ARMMMUIdx_SE3:
661 case ARMMMUIdx_SE10_0:
662 case ARMMMUIdx_SE10_1:
663 case ARMMMUIdx_SE10_1_PAN:
664 case ARMMMUIdx_SE20_0:
665 case ARMMMUIdx_SE20_2:
666 case ARMMMUIdx_SE20_2_PAN:
667 case ARMMMUIdx_Stage1_SE0:
668 case ARMMMUIdx_Stage1_SE1:
669 case ARMMMUIdx_Stage1_SE1_PAN:
670 case ARMMMUIdx_SE2:
671 case ARMMMUIdx_Stage2_S:
672 case ARMMMUIdx_MSPrivNegPri:
673 case ARMMMUIdx_MSUserNegPri:
674 case ARMMMUIdx_MSPriv:
675 case ARMMMUIdx_MSUser:
676 return true;
677 default:
678 g_assert_not_reached();
682 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
684 switch (mmu_idx) {
685 case ARMMMUIdx_Stage1_E1_PAN:
686 case ARMMMUIdx_Stage1_SE1_PAN:
687 case ARMMMUIdx_E10_1_PAN:
688 case ARMMMUIdx_E20_2_PAN:
689 case ARMMMUIdx_SE10_1_PAN:
690 case ARMMMUIdx_SE20_2_PAN:
691 return true;
692 default:
693 return false;
697 /* Return the exception level which controls this address translation regime */
698 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
700 switch (mmu_idx) {
701 case ARMMMUIdx_SE20_0:
702 case ARMMMUIdx_SE20_2:
703 case ARMMMUIdx_SE20_2_PAN:
704 case ARMMMUIdx_E20_0:
705 case ARMMMUIdx_E20_2:
706 case ARMMMUIdx_E20_2_PAN:
707 case ARMMMUIdx_Stage2:
708 case ARMMMUIdx_Stage2_S:
709 case ARMMMUIdx_SE2:
710 case ARMMMUIdx_E2:
711 return 2;
712 case ARMMMUIdx_SE3:
713 return 3;
714 case ARMMMUIdx_SE10_0:
715 case ARMMMUIdx_Stage1_SE0:
716 return arm_el_is_aa64(env, 3) ? 1 : 3;
717 case ARMMMUIdx_SE10_1:
718 case ARMMMUIdx_SE10_1_PAN:
719 case ARMMMUIdx_Stage1_E0:
720 case ARMMMUIdx_Stage1_E1:
721 case ARMMMUIdx_Stage1_E1_PAN:
722 case ARMMMUIdx_Stage1_SE1:
723 case ARMMMUIdx_Stage1_SE1_PAN:
724 case ARMMMUIdx_E10_0:
725 case ARMMMUIdx_E10_1:
726 case ARMMMUIdx_E10_1_PAN:
727 case ARMMMUIdx_MPrivNegPri:
728 case ARMMMUIdx_MUserNegPri:
729 case ARMMMUIdx_MPriv:
730 case ARMMMUIdx_MUser:
731 case ARMMMUIdx_MSPrivNegPri:
732 case ARMMMUIdx_MSUserNegPri:
733 case ARMMMUIdx_MSPriv:
734 case ARMMMUIdx_MSUser:
735 return 1;
736 default:
737 g_assert_not_reached();
741 /* Return the TCR controlling this translation regime */
742 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
744 if (mmu_idx == ARMMMUIdx_Stage2) {
745 return &env->cp15.vtcr_el2;
747 if (mmu_idx == ARMMMUIdx_Stage2_S) {
749 * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but
750 * those are not currently used by QEMU, so just return VSTCR_EL2.
752 return &env->cp15.vstcr_el2;
754 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
757 /* Return the FSR value for a debug exception (watchpoint, hardware
758 * breakpoint or BKPT insn) targeting the specified exception level.
760 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
762 ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
763 int target_el = arm_debug_target_el(env);
764 bool using_lpae = false;
766 if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
767 using_lpae = true;
768 } else {
769 if (arm_feature(env, ARM_FEATURE_LPAE) &&
770 (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
771 using_lpae = true;
775 if (using_lpae) {
776 return arm_fi_to_lfsc(&fi);
777 } else {
778 return arm_fi_to_sfsc(&fi);
783 * arm_num_brps: Return number of implemented breakpoints.
784 * Note that the ID register BRPS field is "number of bps - 1",
785 * and we return the actual number of breakpoints.
787 static inline int arm_num_brps(ARMCPU *cpu)
789 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
790 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
791 } else {
792 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
797 * arm_num_wrps: Return number of implemented watchpoints.
798 * Note that the ID register WRPS field is "number of wps - 1",
799 * and we return the actual number of watchpoints.
801 static inline int arm_num_wrps(ARMCPU *cpu)
803 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
804 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
805 } else {
806 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
811 * arm_num_ctx_cmps: Return number of implemented context comparators.
812 * Note that the ID register CTX_CMPS field is "number of cmps - 1",
813 * and we return the actual number of comparators.
815 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
817 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
818 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
819 } else {
820 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
825 * v7m_using_psp: Return true if using process stack pointer
826 * Return true if the CPU is currently using the process stack
827 * pointer, or false if it is using the main stack pointer.
829 static inline bool v7m_using_psp(CPUARMState *env)
831 /* Handler mode always uses the main stack; for thread mode
832 * the CONTROL.SPSEL bit determines the answer.
833 * Note that in v7M it is not possible to be in Handler mode with
834 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
836 return !arm_v7m_is_handler_mode(env) &&
837 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
841 * v7m_sp_limit: Return SP limit for current CPU state
842 * Return the SP limit value for the current CPU security state
843 * and stack pointer.
845 static inline uint32_t v7m_sp_limit(CPUARMState *env)
847 if (v7m_using_psp(env)) {
848 return env->v7m.psplim[env->v7m.secure];
849 } else {
850 return env->v7m.msplim[env->v7m.secure];
855 * v7m_cpacr_pass:
856 * Return true if the v7M CPACR permits access to the FPU for the specified
857 * security state and privilege level.
859 static inline bool v7m_cpacr_pass(CPUARMState *env,
860 bool is_secure, bool is_priv)
862 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
863 case 0:
864 case 2: /* UNPREDICTABLE: we treat like 0 */
865 return false;
866 case 1:
867 return is_priv;
868 case 3:
869 return true;
870 default:
871 g_assert_not_reached();
876 * aarch32_mode_name(): Return name of the AArch32 CPU mode
877 * @psr: Program Status Register indicating CPU mode
879 * Returns, for debug logging purposes, a printable representation
880 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
881 * the low bits of the specified PSR.
883 static inline const char *aarch32_mode_name(uint32_t psr)
885 static const char cpu_mode_names[16][4] = {
886 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
887 "???", "???", "hyp", "und", "???", "???", "???", "sys"
890 return cpu_mode_names[psr & 0xf];
894 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
896 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
897 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
898 * Must be called with the iothread lock held.
900 void arm_cpu_update_virq(ARMCPU *cpu);
903 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
905 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
906 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
907 * Must be called with the iothread lock held.
909 void arm_cpu_update_vfiq(ARMCPU *cpu);
912 * arm_mmu_idx_el:
913 * @env: The cpu environment
914 * @el: The EL to use.
916 * Return the full ARMMMUIdx for the translation regime for EL.
918 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
921 * arm_mmu_idx:
922 * @env: The cpu environment
924 * Return the full ARMMMUIdx for the current translation regime.
926 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
929 * arm_stage1_mmu_idx:
930 * @env: The cpu environment
932 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
934 #ifdef CONFIG_USER_ONLY
935 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
937 return ARMMMUIdx_Stage1_E0;
939 #else
940 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
941 #endif
944 * arm_mmu_idx_is_stage1_of_2:
945 * @mmu_idx: The ARMMMUIdx to test
947 * Return true if @mmu_idx is a NOTLB mmu_idx that is the
948 * first stage of a two stage regime.
950 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
952 switch (mmu_idx) {
953 case ARMMMUIdx_Stage1_E0:
954 case ARMMMUIdx_Stage1_E1:
955 case ARMMMUIdx_Stage1_E1_PAN:
956 case ARMMMUIdx_Stage1_SE0:
957 case ARMMMUIdx_Stage1_SE1:
958 case ARMMMUIdx_Stage1_SE1_PAN:
959 return true;
960 default:
961 return false;
965 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
966 const ARMISARegisters *id)
968 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
970 if ((features >> ARM_FEATURE_V4T) & 1) {
971 valid |= CPSR_T;
973 if ((features >> ARM_FEATURE_V5) & 1) {
974 valid |= CPSR_Q; /* V5TE in reality*/
976 if ((features >> ARM_FEATURE_V6) & 1) {
977 valid |= CPSR_E | CPSR_GE;
979 if ((features >> ARM_FEATURE_THUMB2) & 1) {
980 valid |= CPSR_IT;
982 if (isar_feature_aa32_jazelle(id)) {
983 valid |= CPSR_J;
985 if (isar_feature_aa32_pan(id)) {
986 valid |= CPSR_PAN;
988 if (isar_feature_aa32_dit(id)) {
989 valid |= CPSR_DIT;
991 if (isar_feature_aa32_ssbs(id)) {
992 valid |= CPSR_SSBS;
995 return valid;
998 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1000 uint32_t valid;
1002 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1003 if (isar_feature_aa64_bti(id)) {
1004 valid |= PSTATE_BTYPE;
1006 if (isar_feature_aa64_pan(id)) {
1007 valid |= PSTATE_PAN;
1009 if (isar_feature_aa64_uao(id)) {
1010 valid |= PSTATE_UAO;
1012 if (isar_feature_aa64_dit(id)) {
1013 valid |= PSTATE_DIT;
1015 if (isar_feature_aa64_ssbs(id)) {
1016 valid |= PSTATE_SSBS;
1018 if (isar_feature_aa64_mte(id)) {
1019 valid |= PSTATE_TCO;
1022 return valid;
1026 * Parameters of a given virtual address, as extracted from the
1027 * translation control register (TCR) for a given regime.
1029 typedef struct ARMVAParameters {
1030 unsigned tsz : 8;
1031 unsigned select : 1;
1032 bool tbi : 1;
1033 bool epd : 1;
1034 bool hpd : 1;
1035 bool using16k : 1;
1036 bool using64k : 1;
1037 } ARMVAParameters;
1039 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1040 ARMMMUIdx mmu_idx, bool data);
1042 static inline int exception_target_el(CPUARMState *env)
1044 int target_el = MAX(1, arm_current_el(env));
1047 * No such thing as secure EL1 if EL3 is aarch32,
1048 * so update the target EL to EL3 in this case.
1050 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
1051 target_el = 3;
1054 return target_el;
1057 /* Determine if allocation tags are available. */
1058 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1059 uint64_t sctlr)
1061 if (el < 3
1062 && arm_feature(env, ARM_FEATURE_EL3)
1063 && !(env->cp15.scr_el3 & SCR_ATA)) {
1064 return false;
1066 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
1067 uint64_t hcr = arm_hcr_el2_eff(env);
1068 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1069 return false;
1072 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1073 return sctlr != 0;
1076 #ifndef CONFIG_USER_ONLY
1078 /* Security attributes for an address, as returned by v8m_security_lookup. */
1079 typedef struct V8M_SAttributes {
1080 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1081 bool ns;
1082 bool nsc;
1083 uint8_t sregion;
1084 bool srvalid;
1085 uint8_t iregion;
1086 bool irvalid;
1087 } V8M_SAttributes;
1089 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1090 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1091 V8M_SAttributes *sattrs);
1093 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1094 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1095 hwaddr *phys_ptr, MemTxAttrs *txattrs,
1096 int *prot, bool *is_subpage,
1097 ARMMMUFaultInfo *fi, uint32_t *mregion);
1099 /* Cacheability and shareability attributes for a memory access */
1100 typedef struct ARMCacheAttrs {
1101 unsigned int attrs:8; /* as in the MAIR register encoding */
1102 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1103 } ARMCacheAttrs;
1105 bool get_phys_addr(CPUARMState *env, target_ulong address,
1106 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1107 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
1108 target_ulong *page_size,
1109 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
1110 __attribute__((nonnull));
1112 void arm_log_exception(int idx);
1114 #endif /* !CONFIG_USER_ONLY */
1117 * The log2 of the words in the tag block, for GMID_EL1.BS.
1118 * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1120 #define GMID_EL1_BS 6
1122 /* We associate one allocation tag per 16 bytes, the minimum. */
1123 #define LOG2_TAG_GRANULE 4
1124 #define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
1127 * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1128 * the same simd_desc() encoding due to restrictions on size.
1129 * Use these instead.
1131 FIELD(PREDDESC, OPRSZ, 0, 6)
1132 FIELD(PREDDESC, ESZ, 6, 2)
1133 FIELD(PREDDESC, DATA, 8, 24)
1136 * The SVE simd_data field, for memory ops, contains either
1137 * rd (5 bits) or a shift count (2 bits).
1139 #define SVE_MTEDESC_SHIFT 5
1141 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1142 FIELD(MTEDESC, MIDX, 0, 4)
1143 FIELD(MTEDESC, TBI, 4, 2)
1144 FIELD(MTEDESC, TCMA, 6, 2)
1145 FIELD(MTEDESC, WRITE, 8, 1)
1146 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9) /* size - 1 */
1148 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1149 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1151 static inline int allocation_tag_from_addr(uint64_t ptr)
1153 return extract64(ptr, 56, 4);
1156 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1158 return deposit64(ptr, 56, 4, rtag);
1161 /* Return true if tbi bits mean that the access is checked. */
1162 static inline bool tbi_check(uint32_t desc, int bit55)
1164 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1167 /* Return true if tcma bits mean that the access is unchecked. */
1168 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1171 * We had extracted bit55 and ptr_tag for other reasons, so fold
1172 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1174 bool match = ((ptr_tag + bit55) & 0xf) == 0;
1175 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1176 return tcma && match;
1180 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
1181 * for the tag to be present in the FAR_ELx register. But for user-only
1182 * mode, we do not have a TLB with which to implement this, so we must
1183 * remove the top byte.
1185 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1187 #ifdef CONFIG_USER_ONLY
1188 /* TBI0 is known to be enabled, while TBI1 is disabled. */
1189 ptr &= sextract64(ptr, 0, 56);
1190 #endif
1191 return ptr;
1194 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1196 #ifdef CONFIG_USER_ONLY
1197 int64_t clean_ptr = sextract64(ptr, 0, 56);
1198 if (tbi_check(desc, clean_ptr < 0)) {
1199 ptr = clean_ptr;
1201 #endif
1202 return ptr;
1205 #endif