1 /* This is the Linux kernel elf-loading code, ported into user space */
11 #include <sys/resource.h>
17 #include "disas/disas.h"
29 #define ELF_OSABI ELFOSABI_SYSV
31 /* from personality.h */
34 * Flags for bug emulation.
36 * These occupy the top three bytes.
39 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
40 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to
41 descriptors (signal handling) */
42 MMAP_PAGE_ZERO
= 0x0100000,
43 ADDR_COMPAT_LAYOUT
= 0x0200000,
44 READ_IMPLIES_EXEC
= 0x0400000,
45 ADDR_LIMIT_32BIT
= 0x0800000,
46 SHORT_INODE
= 0x1000000,
47 WHOLE_SECONDS
= 0x2000000,
48 STICKY_TIMEOUTS
= 0x4000000,
49 ADDR_LIMIT_3GB
= 0x8000000,
55 * These go in the low byte. Avoid using the top bit, it will
56 * conflict with error returns.
60 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
61 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
62 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
63 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
64 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
| SHORT_INODE
,
65 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
66 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
67 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
69 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
70 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
72 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
73 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
74 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
75 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
77 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
78 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
79 PER_OSF4
= 0x000f, /* OSF/1 v4 */
85 * Return the base personality without flags.
87 #define personality(pers) (pers & PER_MASK)
89 /* this flag is uneffective under linux too, should be deleted */
91 #define MAP_DENYWRITE 0
94 /* should probably go in elf.h */
99 #ifdef TARGET_WORDS_BIGENDIAN
100 #define ELF_DATA ELFDATA2MSB
102 #define ELF_DATA ELFDATA2LSB
105 #ifdef TARGET_ABI_MIPSN32
106 typedef abi_ullong target_elf_greg_t
;
107 #define tswapreg(ptr) tswap64(ptr)
109 typedef abi_ulong target_elf_greg_t
;
110 #define tswapreg(ptr) tswapal(ptr)
114 typedef abi_ushort target_uid_t
;
115 typedef abi_ushort target_gid_t
;
117 typedef abi_uint target_uid_t
;
118 typedef abi_uint target_gid_t
;
120 typedef abi_int target_pid_t
;
124 #define ELF_PLATFORM get_elf_platform()
126 static const char *get_elf_platform(void)
128 static char elf_platform
[] = "i386";
129 int family
= object_property_get_int(OBJECT(thread_cpu
), "family", NULL
);
133 elf_platform
[1] = '0' + family
;
137 #define ELF_HWCAP get_elf_hwcap()
139 static uint32_t get_elf_hwcap(void)
141 X86CPU
*cpu
= X86_CPU(thread_cpu
);
143 return cpu
->env
.features
[FEAT_1_EDX
];
147 #define ELF_START_MMAP 0x2aaaaab000ULL
148 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
150 #define ELF_CLASS ELFCLASS64
151 #define ELF_ARCH EM_X86_64
153 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
156 regs
->rsp
= infop
->start_stack
;
157 regs
->rip
= infop
->entry
;
161 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
164 * Note that ELF_NREG should be 29 as there should be place for
165 * TRAPNO and ERR "registers" as well but linux doesn't dump
168 * See linux kernel: arch/x86/include/asm/elf.h
170 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
172 (*regs
)[0] = env
->regs
[15];
173 (*regs
)[1] = env
->regs
[14];
174 (*regs
)[2] = env
->regs
[13];
175 (*regs
)[3] = env
->regs
[12];
176 (*regs
)[4] = env
->regs
[R_EBP
];
177 (*regs
)[5] = env
->regs
[R_EBX
];
178 (*regs
)[6] = env
->regs
[11];
179 (*regs
)[7] = env
->regs
[10];
180 (*regs
)[8] = env
->regs
[9];
181 (*regs
)[9] = env
->regs
[8];
182 (*regs
)[10] = env
->regs
[R_EAX
];
183 (*regs
)[11] = env
->regs
[R_ECX
];
184 (*regs
)[12] = env
->regs
[R_EDX
];
185 (*regs
)[13] = env
->regs
[R_ESI
];
186 (*regs
)[14] = env
->regs
[R_EDI
];
187 (*regs
)[15] = env
->regs
[R_EAX
]; /* XXX */
188 (*regs
)[16] = env
->eip
;
189 (*regs
)[17] = env
->segs
[R_CS
].selector
& 0xffff;
190 (*regs
)[18] = env
->eflags
;
191 (*regs
)[19] = env
->regs
[R_ESP
];
192 (*regs
)[20] = env
->segs
[R_SS
].selector
& 0xffff;
193 (*regs
)[21] = env
->segs
[R_FS
].selector
& 0xffff;
194 (*regs
)[22] = env
->segs
[R_GS
].selector
& 0xffff;
195 (*regs
)[23] = env
->segs
[R_DS
].selector
& 0xffff;
196 (*regs
)[24] = env
->segs
[R_ES
].selector
& 0xffff;
197 (*regs
)[25] = env
->segs
[R_FS
].selector
& 0xffff;
198 (*regs
)[26] = env
->segs
[R_GS
].selector
& 0xffff;
203 #define ELF_START_MMAP 0x80000000
206 * This is used to ensure we don't load something for the wrong architecture.
208 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
211 * These are used to set parameters in the core dumps.
213 #define ELF_CLASS ELFCLASS32
214 #define ELF_ARCH EM_386
216 static inline void init_thread(struct target_pt_regs
*regs
,
217 struct image_info
*infop
)
219 regs
->esp
= infop
->start_stack
;
220 regs
->eip
= infop
->entry
;
222 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
223 starts %edx contains a pointer to a function which might be
224 registered using `atexit'. This provides a mean for the
225 dynamic linker to call DT_FINI functions for shared libraries
226 that have been loaded before the code runs.
228 A value of 0 tells we have no such handler. */
233 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
236 * Note that ELF_NREG should be 19 as there should be place for
237 * TRAPNO and ERR "registers" as well but linux doesn't dump
240 * See linux kernel: arch/x86/include/asm/elf.h
242 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
244 (*regs
)[0] = env
->regs
[R_EBX
];
245 (*regs
)[1] = env
->regs
[R_ECX
];
246 (*regs
)[2] = env
->regs
[R_EDX
];
247 (*regs
)[3] = env
->regs
[R_ESI
];
248 (*regs
)[4] = env
->regs
[R_EDI
];
249 (*regs
)[5] = env
->regs
[R_EBP
];
250 (*regs
)[6] = env
->regs
[R_EAX
];
251 (*regs
)[7] = env
->segs
[R_DS
].selector
& 0xffff;
252 (*regs
)[8] = env
->segs
[R_ES
].selector
& 0xffff;
253 (*regs
)[9] = env
->segs
[R_FS
].selector
& 0xffff;
254 (*regs
)[10] = env
->segs
[R_GS
].selector
& 0xffff;
255 (*regs
)[11] = env
->regs
[R_EAX
]; /* XXX */
256 (*regs
)[12] = env
->eip
;
257 (*regs
)[13] = env
->segs
[R_CS
].selector
& 0xffff;
258 (*regs
)[14] = env
->eflags
;
259 (*regs
)[15] = env
->regs
[R_ESP
];
260 (*regs
)[16] = env
->segs
[R_SS
].selector
& 0xffff;
264 #define USE_ELF_CORE_DUMP
265 #define ELF_EXEC_PAGESIZE 4096
271 #ifndef TARGET_AARCH64
272 /* 32 bit ARM definitions */
274 #define ELF_START_MMAP 0x80000000
276 #define elf_check_arch(x) ((x) == ELF_MACHINE)
278 #define ELF_ARCH ELF_MACHINE
279 #define ELF_CLASS ELFCLASS32
281 static inline void init_thread(struct target_pt_regs
*regs
,
282 struct image_info
*infop
)
284 abi_long stack
= infop
->start_stack
;
285 memset(regs
, 0, sizeof(*regs
));
287 regs
->ARM_cpsr
= 0x10;
288 if (infop
->entry
& 1)
289 regs
->ARM_cpsr
|= CPSR_T
;
290 regs
->ARM_pc
= infop
->entry
& 0xfffffffe;
291 regs
->ARM_sp
= infop
->start_stack
;
292 /* FIXME - what to for failure of get_user()? */
293 get_user_ual(regs
->ARM_r2
, stack
+ 8); /* envp */
294 get_user_ual(regs
->ARM_r1
, stack
+ 4); /* envp */
295 /* XXX: it seems that r0 is zeroed after ! */
297 /* For uClinux PIC binaries. */
298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
299 regs
->ARM_r10
= infop
->start_data
;
303 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
305 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUARMState
*env
)
307 (*regs
)[0] = tswapreg(env
->regs
[0]);
308 (*regs
)[1] = tswapreg(env
->regs
[1]);
309 (*regs
)[2] = tswapreg(env
->regs
[2]);
310 (*regs
)[3] = tswapreg(env
->regs
[3]);
311 (*regs
)[4] = tswapreg(env
->regs
[4]);
312 (*regs
)[5] = tswapreg(env
->regs
[5]);
313 (*regs
)[6] = tswapreg(env
->regs
[6]);
314 (*regs
)[7] = tswapreg(env
->regs
[7]);
315 (*regs
)[8] = tswapreg(env
->regs
[8]);
316 (*regs
)[9] = tswapreg(env
->regs
[9]);
317 (*regs
)[10] = tswapreg(env
->regs
[10]);
318 (*regs
)[11] = tswapreg(env
->regs
[11]);
319 (*regs
)[12] = tswapreg(env
->regs
[12]);
320 (*regs
)[13] = tswapreg(env
->regs
[13]);
321 (*regs
)[14] = tswapreg(env
->regs
[14]);
322 (*regs
)[15] = tswapreg(env
->regs
[15]);
324 (*regs
)[16] = tswapreg(cpsr_read((CPUARMState
*)env
));
325 (*regs
)[17] = tswapreg(env
->regs
[0]); /* XXX */
328 #define USE_ELF_CORE_DUMP
329 #define ELF_EXEC_PAGESIZE 4096
333 ARM_HWCAP_ARM_SWP
= 1 << 0,
334 ARM_HWCAP_ARM_HALF
= 1 << 1,
335 ARM_HWCAP_ARM_THUMB
= 1 << 2,
336 ARM_HWCAP_ARM_26BIT
= 1 << 3,
337 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
338 ARM_HWCAP_ARM_FPA
= 1 << 5,
339 ARM_HWCAP_ARM_VFP
= 1 << 6,
340 ARM_HWCAP_ARM_EDSP
= 1 << 7,
341 ARM_HWCAP_ARM_JAVA
= 1 << 8,
342 ARM_HWCAP_ARM_IWMMXT
= 1 << 9,
343 ARM_HWCAP_ARM_CRUNCH
= 1 << 10,
344 ARM_HWCAP_ARM_THUMBEE
= 1 << 11,
345 ARM_HWCAP_ARM_NEON
= 1 << 12,
346 ARM_HWCAP_ARM_VFPv3
= 1 << 13,
347 ARM_HWCAP_ARM_VFPv3D16
= 1 << 14,
348 ARM_HWCAP_ARM_TLS
= 1 << 15,
349 ARM_HWCAP_ARM_VFPv4
= 1 << 16,
350 ARM_HWCAP_ARM_IDIVA
= 1 << 17,
351 ARM_HWCAP_ARM_IDIVT
= 1 << 18,
352 ARM_HWCAP_ARM_VFPD32
= 1 << 19,
353 ARM_HWCAP_ARM_LPAE
= 1 << 20,
354 ARM_HWCAP_ARM_EVTSTRM
= 1 << 21,
358 ARM_HWCAP2_ARM_AES
= 1 << 0,
359 ARM_HWCAP2_ARM_PMULL
= 1 << 1,
360 ARM_HWCAP2_ARM_SHA1
= 1 << 2,
361 ARM_HWCAP2_ARM_SHA2
= 1 << 3,
362 ARM_HWCAP2_ARM_CRC32
= 1 << 4,
365 /* The commpage only exists for 32 bit kernels */
367 #define TARGET_HAS_VALIDATE_GUEST_SPACE
368 /* Return 1 if the proposed guest space is suitable for the guest.
369 * Return 0 if the proposed guest space isn't suitable, but another
370 * address space should be tried.
371 * Return -1 if there is no way the proposed guest space can be
372 * valid regardless of the base.
373 * The guest code may leave a page mapped and populate it if the
374 * address is suitable.
376 static int validate_guest_space(unsigned long guest_base
,
377 unsigned long guest_size
)
379 unsigned long real_start
, test_page_addr
;
381 /* We need to check that we can force a fault on access to the
382 * commpage at 0xffff0fxx
384 test_page_addr
= guest_base
+ (0xffff0f00 & qemu_host_page_mask
);
386 /* If the commpage lies within the already allocated guest space,
387 * then there is no way we can allocate it.
389 if (test_page_addr
>= guest_base
390 && test_page_addr
<= (guest_base
+ guest_size
)) {
394 /* Note it needs to be writeable to let us initialise it */
395 real_start
= (unsigned long)
396 mmap((void *)test_page_addr
, qemu_host_page_size
,
397 PROT_READ
| PROT_WRITE
,
398 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
400 /* If we can't map it then try another address */
401 if (real_start
== -1ul) {
405 if (real_start
!= test_page_addr
) {
406 /* OS didn't put the page where we asked - unmap and reject */
407 munmap((void *)real_start
, qemu_host_page_size
);
411 /* Leave the page mapped
412 * Populate it (mmap should have left it all 0'd)
415 /* Kernel helper versions */
416 __put_user(5, (uint32_t *)g2h(0xffff0ffcul
));
418 /* Now it's populated make it RO */
419 if (mprotect((void *)test_page_addr
, qemu_host_page_size
, PROT_READ
)) {
420 perror("Protecting guest commpage");
424 return 1; /* All good */
427 #define ELF_HWCAP get_elf_hwcap()
428 #define ELF_HWCAP2 get_elf_hwcap2()
430 static uint32_t get_elf_hwcap(void)
432 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
435 hwcaps
|= ARM_HWCAP_ARM_SWP
;
436 hwcaps
|= ARM_HWCAP_ARM_HALF
;
437 hwcaps
|= ARM_HWCAP_ARM_THUMB
;
438 hwcaps
|= ARM_HWCAP_ARM_FAST_MULT
;
440 /* probe for the extra features */
441 #define GET_FEATURE(feat, hwcap) \
442 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
443 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
444 GET_FEATURE(ARM_FEATURE_V5
, ARM_HWCAP_ARM_EDSP
);
445 GET_FEATURE(ARM_FEATURE_VFP
, ARM_HWCAP_ARM_VFP
);
446 GET_FEATURE(ARM_FEATURE_IWMMXT
, ARM_HWCAP_ARM_IWMMXT
);
447 GET_FEATURE(ARM_FEATURE_THUMB2EE
, ARM_HWCAP_ARM_THUMBEE
);
448 GET_FEATURE(ARM_FEATURE_NEON
, ARM_HWCAP_ARM_NEON
);
449 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPv3
);
450 GET_FEATURE(ARM_FEATURE_V6K
, ARM_HWCAP_ARM_TLS
);
451 GET_FEATURE(ARM_FEATURE_VFP4
, ARM_HWCAP_ARM_VFPv4
);
452 GET_FEATURE(ARM_FEATURE_ARM_DIV
, ARM_HWCAP_ARM_IDIVA
);
453 GET_FEATURE(ARM_FEATURE_THUMB_DIV
, ARM_HWCAP_ARM_IDIVT
);
454 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
455 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
456 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
457 * to our VFP_FP16 feature bit.
459 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPD32
);
460 GET_FEATURE(ARM_FEATURE_LPAE
, ARM_HWCAP_ARM_LPAE
);
465 static uint32_t get_elf_hwcap2(void)
467 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
470 GET_FEATURE(ARM_FEATURE_V8_AES
, ARM_HWCAP2_ARM_AES
);
471 GET_FEATURE(ARM_FEATURE_V8_PMULL
, ARM_HWCAP2_ARM_PMULL
);
472 GET_FEATURE(ARM_FEATURE_V8_SHA1
, ARM_HWCAP2_ARM_SHA1
);
473 GET_FEATURE(ARM_FEATURE_V8_SHA256
, ARM_HWCAP2_ARM_SHA2
);
474 GET_FEATURE(ARM_FEATURE_CRC
, ARM_HWCAP2_ARM_CRC32
);
481 /* 64 bit ARM definitions */
482 #define ELF_START_MMAP 0x80000000
484 #define elf_check_arch(x) ((x) == ELF_MACHINE)
486 #define ELF_ARCH ELF_MACHINE
487 #define ELF_CLASS ELFCLASS64
488 #define ELF_PLATFORM "aarch64"
490 static inline void init_thread(struct target_pt_regs
*regs
,
491 struct image_info
*infop
)
493 abi_long stack
= infop
->start_stack
;
494 memset(regs
, 0, sizeof(*regs
));
496 regs
->pc
= infop
->entry
& ~0x3ULL
;
501 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
503 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
504 const CPUARMState
*env
)
508 for (i
= 0; i
< 32; i
++) {
509 (*regs
)[i
] = tswapreg(env
->xregs
[i
]);
511 (*regs
)[32] = tswapreg(env
->pc
);
512 (*regs
)[33] = tswapreg(pstate_read((CPUARMState
*)env
));
515 #define USE_ELF_CORE_DUMP
516 #define ELF_EXEC_PAGESIZE 4096
519 ARM_HWCAP_A64_FP
= 1 << 0,
520 ARM_HWCAP_A64_ASIMD
= 1 << 1,
521 ARM_HWCAP_A64_EVTSTRM
= 1 << 2,
522 ARM_HWCAP_A64_AES
= 1 << 3,
523 ARM_HWCAP_A64_PMULL
= 1 << 4,
524 ARM_HWCAP_A64_SHA1
= 1 << 5,
525 ARM_HWCAP_A64_SHA2
= 1 << 6,
526 ARM_HWCAP_A64_CRC32
= 1 << 7,
529 #define ELF_HWCAP get_elf_hwcap()
531 static uint32_t get_elf_hwcap(void)
533 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
536 hwcaps
|= ARM_HWCAP_A64_FP
;
537 hwcaps
|= ARM_HWCAP_A64_ASIMD
;
539 /* probe for the extra features */
540 #define GET_FEATURE(feat, hwcap) \
541 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
542 GET_FEATURE(ARM_FEATURE_V8_AES
, ARM_HWCAP_A64_AES
);
543 GET_FEATURE(ARM_FEATURE_V8_PMULL
, ARM_HWCAP_A64_PMULL
);
544 GET_FEATURE(ARM_FEATURE_V8_SHA1
, ARM_HWCAP_A64_SHA1
);
545 GET_FEATURE(ARM_FEATURE_V8_SHA256
, ARM_HWCAP_A64_SHA2
);
546 GET_FEATURE(ARM_FEATURE_CRC
, ARM_HWCAP_A64_CRC32
);
552 #endif /* not TARGET_AARCH64 */
553 #endif /* TARGET_ARM */
555 #ifdef TARGET_UNICORE32
557 #define ELF_START_MMAP 0x80000000
559 #define elf_check_arch(x) ((x) == EM_UNICORE32)
561 #define ELF_CLASS ELFCLASS32
562 #define ELF_DATA ELFDATA2LSB
563 #define ELF_ARCH EM_UNICORE32
565 static inline void init_thread(struct target_pt_regs
*regs
,
566 struct image_info
*infop
)
568 abi_long stack
= infop
->start_stack
;
569 memset(regs
, 0, sizeof(*regs
));
570 regs
->UC32_REG_asr
= 0x10;
571 regs
->UC32_REG_pc
= infop
->entry
& 0xfffffffe;
572 regs
->UC32_REG_sp
= infop
->start_stack
;
573 /* FIXME - what to for failure of get_user()? */
574 get_user_ual(regs
->UC32_REG_02
, stack
+ 8); /* envp */
575 get_user_ual(regs
->UC32_REG_01
, stack
+ 4); /* envp */
576 /* XXX: it seems that r0 is zeroed after ! */
577 regs
->UC32_REG_00
= 0;
581 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
583 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUUniCore32State
*env
)
585 (*regs
)[0] = env
->regs
[0];
586 (*regs
)[1] = env
->regs
[1];
587 (*regs
)[2] = env
->regs
[2];
588 (*regs
)[3] = env
->regs
[3];
589 (*regs
)[4] = env
->regs
[4];
590 (*regs
)[5] = env
->regs
[5];
591 (*regs
)[6] = env
->regs
[6];
592 (*regs
)[7] = env
->regs
[7];
593 (*regs
)[8] = env
->regs
[8];
594 (*regs
)[9] = env
->regs
[9];
595 (*regs
)[10] = env
->regs
[10];
596 (*regs
)[11] = env
->regs
[11];
597 (*regs
)[12] = env
->regs
[12];
598 (*regs
)[13] = env
->regs
[13];
599 (*regs
)[14] = env
->regs
[14];
600 (*regs
)[15] = env
->regs
[15];
601 (*regs
)[16] = env
->regs
[16];
602 (*regs
)[17] = env
->regs
[17];
603 (*regs
)[18] = env
->regs
[18];
604 (*regs
)[19] = env
->regs
[19];
605 (*regs
)[20] = env
->regs
[20];
606 (*regs
)[21] = env
->regs
[21];
607 (*regs
)[22] = env
->regs
[22];
608 (*regs
)[23] = env
->regs
[23];
609 (*regs
)[24] = env
->regs
[24];
610 (*regs
)[25] = env
->regs
[25];
611 (*regs
)[26] = env
->regs
[26];
612 (*regs
)[27] = env
->regs
[27];
613 (*regs
)[28] = env
->regs
[28];
614 (*regs
)[29] = env
->regs
[29];
615 (*regs
)[30] = env
->regs
[30];
616 (*regs
)[31] = env
->regs
[31];
618 (*regs
)[32] = cpu_asr_read((CPUUniCore32State
*)env
);
619 (*regs
)[33] = env
->regs
[0]; /* XXX */
622 #define USE_ELF_CORE_DUMP
623 #define ELF_EXEC_PAGESIZE 4096
625 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
630 #ifdef TARGET_SPARC64
632 #define ELF_START_MMAP 0x80000000
633 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
634 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
636 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
638 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
641 #define ELF_CLASS ELFCLASS64
642 #define ELF_ARCH EM_SPARCV9
644 #define STACK_BIAS 2047
646 static inline void init_thread(struct target_pt_regs
*regs
,
647 struct image_info
*infop
)
652 regs
->pc
= infop
->entry
;
653 regs
->npc
= regs
->pc
+ 4;
656 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
658 if (personality(infop
->personality
) == PER_LINUX32
)
659 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
661 regs
->u_regs
[14] = infop
->start_stack
- 16 * 8 - STACK_BIAS
;
666 #define ELF_START_MMAP 0x80000000
667 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
668 | HWCAP_SPARC_MULDIV)
669 #define elf_check_arch(x) ( (x) == EM_SPARC )
671 #define ELF_CLASS ELFCLASS32
672 #define ELF_ARCH EM_SPARC
674 static inline void init_thread(struct target_pt_regs
*regs
,
675 struct image_info
*infop
)
678 regs
->pc
= infop
->entry
;
679 regs
->npc
= regs
->pc
+ 4;
681 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
689 #define ELF_START_MMAP 0x80000000
691 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
693 #define elf_check_arch(x) ( (x) == EM_PPC64 )
695 #define ELF_CLASS ELFCLASS64
699 #define elf_check_arch(x) ( (x) == EM_PPC )
701 #define ELF_CLASS ELFCLASS32
705 #define ELF_ARCH EM_PPC
707 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
708 See arch/powerpc/include/asm/cputable.h. */
710 QEMU_PPC_FEATURE_32
= 0x80000000,
711 QEMU_PPC_FEATURE_64
= 0x40000000,
712 QEMU_PPC_FEATURE_601_INSTR
= 0x20000000,
713 QEMU_PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
714 QEMU_PPC_FEATURE_HAS_FPU
= 0x08000000,
715 QEMU_PPC_FEATURE_HAS_MMU
= 0x04000000,
716 QEMU_PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
717 QEMU_PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
718 QEMU_PPC_FEATURE_HAS_SPE
= 0x00800000,
719 QEMU_PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
720 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
721 QEMU_PPC_FEATURE_NO_TB
= 0x00100000,
722 QEMU_PPC_FEATURE_POWER4
= 0x00080000,
723 QEMU_PPC_FEATURE_POWER5
= 0x00040000,
724 QEMU_PPC_FEATURE_POWER5_PLUS
= 0x00020000,
725 QEMU_PPC_FEATURE_CELL
= 0x00010000,
726 QEMU_PPC_FEATURE_BOOKE
= 0x00008000,
727 QEMU_PPC_FEATURE_SMT
= 0x00004000,
728 QEMU_PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
729 QEMU_PPC_FEATURE_ARCH_2_05
= 0x00001000,
730 QEMU_PPC_FEATURE_PA6T
= 0x00000800,
731 QEMU_PPC_FEATURE_HAS_DFP
= 0x00000400,
732 QEMU_PPC_FEATURE_POWER6_EXT
= 0x00000200,
733 QEMU_PPC_FEATURE_ARCH_2_06
= 0x00000100,
734 QEMU_PPC_FEATURE_HAS_VSX
= 0x00000080,
735 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
737 QEMU_PPC_FEATURE_TRUE_LE
= 0x00000002,
738 QEMU_PPC_FEATURE_PPC_LE
= 0x00000001,
740 /* Feature definitions in AT_HWCAP2. */
741 QEMU_PPC_FEATURE2_ARCH_2_07
= 0x80000000, /* ISA 2.07 */
742 QEMU_PPC_FEATURE2_HAS_HTM
= 0x40000000, /* Hardware Transactional Memory */
743 QEMU_PPC_FEATURE2_HAS_DSCR
= 0x20000000, /* Data Stream Control Register */
744 QEMU_PPC_FEATURE2_HAS_EBB
= 0x10000000, /* Event Base Branching */
745 QEMU_PPC_FEATURE2_HAS_ISEL
= 0x08000000, /* Integer Select */
746 QEMU_PPC_FEATURE2_HAS_TAR
= 0x04000000, /* Target Address Register */
749 #define ELF_HWCAP get_elf_hwcap()
751 static uint32_t get_elf_hwcap(void)
753 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
754 uint32_t features
= 0;
756 /* We don't have to be terribly complete here; the high points are
757 Altivec/FP/SPE support. Anything else is just a bonus. */
758 #define GET_FEATURE(flag, feature) \
759 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
760 #define GET_FEATURE2(flag, feature) \
761 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
762 GET_FEATURE(PPC_64B
, QEMU_PPC_FEATURE_64
);
763 GET_FEATURE(PPC_FLOAT
, QEMU_PPC_FEATURE_HAS_FPU
);
764 GET_FEATURE(PPC_ALTIVEC
, QEMU_PPC_FEATURE_HAS_ALTIVEC
);
765 GET_FEATURE(PPC_SPE
, QEMU_PPC_FEATURE_HAS_SPE
);
766 GET_FEATURE(PPC_SPE_SINGLE
, QEMU_PPC_FEATURE_HAS_EFP_SINGLE
);
767 GET_FEATURE(PPC_SPE_DOUBLE
, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
);
768 GET_FEATURE(PPC_BOOKE
, QEMU_PPC_FEATURE_BOOKE
);
769 GET_FEATURE(PPC_405_MAC
, QEMU_PPC_FEATURE_HAS_4xxMAC
);
770 GET_FEATURE2(PPC2_DFP
, QEMU_PPC_FEATURE_HAS_DFP
);
771 GET_FEATURE2(PPC2_VSX
, QEMU_PPC_FEATURE_HAS_VSX
);
772 GET_FEATURE2((PPC2_PERM_ISA206
| PPC2_DIVE_ISA206
| PPC2_ATOMIC_ISA206
|
773 PPC2_FP_CVT_ISA206
| PPC2_FP_TST_ISA206
),
774 QEMU_PPC_FEATURE_ARCH_2_06
);
781 #define ELF_HWCAP2 get_elf_hwcap2()
783 static uint32_t get_elf_hwcap2(void)
785 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
786 uint32_t features
= 0;
788 #define GET_FEATURE(flag, feature) \
789 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
790 #define GET_FEATURE2(flag, feature) \
791 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
793 GET_FEATURE(PPC_ISEL
, QEMU_PPC_FEATURE2_HAS_ISEL
);
794 GET_FEATURE2(PPC2_BCTAR_ISA207
, QEMU_PPC_FEATURE2_HAS_TAR
);
795 GET_FEATURE2((PPC2_BCTAR_ISA207
| PPC2_LSQ_ISA207
| PPC2_ALTIVEC_207
|
796 PPC2_ISA207S
), QEMU_PPC_FEATURE2_ARCH_2_07
);
805 * The requirements here are:
806 * - keep the final alignment of sp (sp & 0xf)
807 * - make sure the 32-bit value at the first 16 byte aligned position of
808 * AUXV is greater than 16 for glibc compatibility.
809 * AT_IGNOREPPC is used for that.
810 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
811 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
813 #define DLINFO_ARCH_ITEMS 5
814 #define ARCH_DLINFO \
816 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
817 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
818 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
819 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
821 * Now handle glibc compatibility. \
823 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
824 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
827 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
829 _regs
->gpr
[1] = infop
->start_stack
;
830 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
831 if (get_ppc64_abi(infop
) < 2) {
833 get_user_u64(val
, infop
->entry
+ 8);
834 _regs
->gpr
[2] = val
+ infop
->load_bias
;
835 get_user_u64(val
, infop
->entry
);
836 infop
->entry
= val
+ infop
->load_bias
;
838 _regs
->gpr
[12] = infop
->entry
; /* r12 set to global entry address */
841 _regs
->nip
= infop
->entry
;
844 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
846 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
848 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUPPCState
*env
)
851 target_ulong ccr
= 0;
853 for (i
= 0; i
< ARRAY_SIZE(env
->gpr
); i
++) {
854 (*regs
)[i
] = tswapreg(env
->gpr
[i
]);
857 (*regs
)[32] = tswapreg(env
->nip
);
858 (*regs
)[33] = tswapreg(env
->msr
);
859 (*regs
)[35] = tswapreg(env
->ctr
);
860 (*regs
)[36] = tswapreg(env
->lr
);
861 (*regs
)[37] = tswapreg(env
->xer
);
863 for (i
= 0; i
< ARRAY_SIZE(env
->crf
); i
++) {
864 ccr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
866 (*regs
)[38] = tswapreg(ccr
);
869 #define USE_ELF_CORE_DUMP
870 #define ELF_EXEC_PAGESIZE 4096
876 #define ELF_START_MMAP 0x80000000
878 #define elf_check_arch(x) ( (x) == EM_MIPS )
881 #define ELF_CLASS ELFCLASS64
883 #define ELF_CLASS ELFCLASS32
885 #define ELF_ARCH EM_MIPS
887 static inline void init_thread(struct target_pt_regs
*regs
,
888 struct image_info
*infop
)
890 regs
->cp0_status
= 2 << CP0St_KSU
;
891 regs
->cp0_epc
= infop
->entry
;
892 regs
->regs
[29] = infop
->start_stack
;
895 /* See linux kernel: arch/mips/include/asm/elf.h. */
897 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
899 /* See linux kernel: arch/mips/include/asm/reg.h. */
906 TARGET_EF_R26
= TARGET_EF_R0
+ 26,
907 TARGET_EF_R27
= TARGET_EF_R0
+ 27,
908 TARGET_EF_LO
= TARGET_EF_R0
+ 32,
909 TARGET_EF_HI
= TARGET_EF_R0
+ 33,
910 TARGET_EF_CP0_EPC
= TARGET_EF_R0
+ 34,
911 TARGET_EF_CP0_BADVADDR
= TARGET_EF_R0
+ 35,
912 TARGET_EF_CP0_STATUS
= TARGET_EF_R0
+ 36,
913 TARGET_EF_CP0_CAUSE
= TARGET_EF_R0
+ 37
916 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
917 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMIPSState
*env
)
921 for (i
= 0; i
< TARGET_EF_R0
; i
++) {
924 (*regs
)[TARGET_EF_R0
] = 0;
926 for (i
= 1; i
< ARRAY_SIZE(env
->active_tc
.gpr
); i
++) {
927 (*regs
)[TARGET_EF_R0
+ i
] = tswapreg(env
->active_tc
.gpr
[i
]);
930 (*regs
)[TARGET_EF_R26
] = 0;
931 (*regs
)[TARGET_EF_R27
] = 0;
932 (*regs
)[TARGET_EF_LO
] = tswapreg(env
->active_tc
.LO
[0]);
933 (*regs
)[TARGET_EF_HI
] = tswapreg(env
->active_tc
.HI
[0]);
934 (*regs
)[TARGET_EF_CP0_EPC
] = tswapreg(env
->active_tc
.PC
);
935 (*regs
)[TARGET_EF_CP0_BADVADDR
] = tswapreg(env
->CP0_BadVAddr
);
936 (*regs
)[TARGET_EF_CP0_STATUS
] = tswapreg(env
->CP0_Status
);
937 (*regs
)[TARGET_EF_CP0_CAUSE
] = tswapreg(env
->CP0_Cause
);
940 #define USE_ELF_CORE_DUMP
941 #define ELF_EXEC_PAGESIZE 4096
943 #endif /* TARGET_MIPS */
945 #ifdef TARGET_MICROBLAZE
947 #define ELF_START_MMAP 0x80000000
949 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
951 #define ELF_CLASS ELFCLASS32
952 #define ELF_ARCH EM_MICROBLAZE
954 static inline void init_thread(struct target_pt_regs
*regs
,
955 struct image_info
*infop
)
957 regs
->pc
= infop
->entry
;
958 regs
->r1
= infop
->start_stack
;
962 #define ELF_EXEC_PAGESIZE 4096
964 #define USE_ELF_CORE_DUMP
966 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
968 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
969 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMBState
*env
)
973 for (i
= 0; i
< 32; i
++) {
974 (*regs
)[pos
++] = tswapreg(env
->regs
[i
]);
977 for (i
= 0; i
< 6; i
++) {
978 (*regs
)[pos
++] = tswapreg(env
->sregs
[i
]);
982 #endif /* TARGET_MICROBLAZE */
984 #ifdef TARGET_OPENRISC
986 #define ELF_START_MMAP 0x08000000
988 #define elf_check_arch(x) ((x) == EM_OPENRISC)
990 #define ELF_ARCH EM_OPENRISC
991 #define ELF_CLASS ELFCLASS32
992 #define ELF_DATA ELFDATA2MSB
994 static inline void init_thread(struct target_pt_regs
*regs
,
995 struct image_info
*infop
)
997 regs
->pc
= infop
->entry
;
998 regs
->gpr
[1] = infop
->start_stack
;
1001 #define USE_ELF_CORE_DUMP
1002 #define ELF_EXEC_PAGESIZE 8192
1004 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1005 #define ELF_NREG 34 /* gprs and pc, sr */
1006 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1008 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1009 const CPUOpenRISCState
*env
)
1013 for (i
= 0; i
< 32; i
++) {
1014 (*regs
)[i
] = tswapreg(env
->gpr
[i
]);
1017 (*regs
)[32] = tswapreg(env
->pc
);
1018 (*regs
)[33] = tswapreg(env
->sr
);
1021 #define ELF_PLATFORM NULL
1023 #endif /* TARGET_OPENRISC */
1027 #define ELF_START_MMAP 0x80000000
1029 #define elf_check_arch(x) ( (x) == EM_SH )
1031 #define ELF_CLASS ELFCLASS32
1032 #define ELF_ARCH EM_SH
1034 static inline void init_thread(struct target_pt_regs
*regs
,
1035 struct image_info
*infop
)
1037 /* Check other registers XXXXX */
1038 regs
->pc
= infop
->entry
;
1039 regs
->regs
[15] = infop
->start_stack
;
1042 /* See linux kernel: arch/sh/include/asm/elf.h. */
1044 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1046 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1051 TARGET_REG_GBR
= 19,
1052 TARGET_REG_MACH
= 20,
1053 TARGET_REG_MACL
= 21,
1054 TARGET_REG_SYSCALL
= 22
1057 static inline void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1058 const CPUSH4State
*env
)
1062 for (i
= 0; i
< 16; i
++) {
1063 (*regs
[i
]) = tswapreg(env
->gregs
[i
]);
1066 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1067 (*regs
)[TARGET_REG_PR
] = tswapreg(env
->pr
);
1068 (*regs
)[TARGET_REG_SR
] = tswapreg(env
->sr
);
1069 (*regs
)[TARGET_REG_GBR
] = tswapreg(env
->gbr
);
1070 (*regs
)[TARGET_REG_MACH
] = tswapreg(env
->mach
);
1071 (*regs
)[TARGET_REG_MACL
] = tswapreg(env
->macl
);
1072 (*regs
)[TARGET_REG_SYSCALL
] = 0; /* FIXME */
1075 #define USE_ELF_CORE_DUMP
1076 #define ELF_EXEC_PAGESIZE 4096
1082 #define ELF_START_MMAP 0x80000000
1084 #define elf_check_arch(x) ( (x) == EM_CRIS )
1086 #define ELF_CLASS ELFCLASS32
1087 #define ELF_ARCH EM_CRIS
1089 static inline void init_thread(struct target_pt_regs
*regs
,
1090 struct image_info
*infop
)
1092 regs
->erp
= infop
->entry
;
1095 #define ELF_EXEC_PAGESIZE 8192
1101 #define ELF_START_MMAP 0x80000000
1103 #define elf_check_arch(x) ( (x) == EM_68K )
1105 #define ELF_CLASS ELFCLASS32
1106 #define ELF_ARCH EM_68K
1108 /* ??? Does this need to do anything?
1109 #define ELF_PLAT_INIT(_r) */
1111 static inline void init_thread(struct target_pt_regs
*regs
,
1112 struct image_info
*infop
)
1114 regs
->usp
= infop
->start_stack
;
1116 regs
->pc
= infop
->entry
;
1119 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1121 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1123 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUM68KState
*env
)
1125 (*regs
)[0] = tswapreg(env
->dregs
[1]);
1126 (*regs
)[1] = tswapreg(env
->dregs
[2]);
1127 (*regs
)[2] = tswapreg(env
->dregs
[3]);
1128 (*regs
)[3] = tswapreg(env
->dregs
[4]);
1129 (*regs
)[4] = tswapreg(env
->dregs
[5]);
1130 (*regs
)[5] = tswapreg(env
->dregs
[6]);
1131 (*regs
)[6] = tswapreg(env
->dregs
[7]);
1132 (*regs
)[7] = tswapreg(env
->aregs
[0]);
1133 (*regs
)[8] = tswapreg(env
->aregs
[1]);
1134 (*regs
)[9] = tswapreg(env
->aregs
[2]);
1135 (*regs
)[10] = tswapreg(env
->aregs
[3]);
1136 (*regs
)[11] = tswapreg(env
->aregs
[4]);
1137 (*regs
)[12] = tswapreg(env
->aregs
[5]);
1138 (*regs
)[13] = tswapreg(env
->aregs
[6]);
1139 (*regs
)[14] = tswapreg(env
->dregs
[0]);
1140 (*regs
)[15] = tswapreg(env
->aregs
[7]);
1141 (*regs
)[16] = tswapreg(env
->dregs
[0]); /* FIXME: orig_d0 */
1142 (*regs
)[17] = tswapreg(env
->sr
);
1143 (*regs
)[18] = tswapreg(env
->pc
);
1144 (*regs
)[19] = 0; /* FIXME: regs->format | regs->vector */
1147 #define USE_ELF_CORE_DUMP
1148 #define ELF_EXEC_PAGESIZE 8192
1154 #define ELF_START_MMAP (0x30000000000ULL)
1156 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1158 #define ELF_CLASS ELFCLASS64
1159 #define ELF_ARCH EM_ALPHA
1161 static inline void init_thread(struct target_pt_regs
*regs
,
1162 struct image_info
*infop
)
1164 regs
->pc
= infop
->entry
;
1166 regs
->usp
= infop
->start_stack
;
1169 #define ELF_EXEC_PAGESIZE 8192
1171 #endif /* TARGET_ALPHA */
1175 #define ELF_START_MMAP (0x20000000000ULL)
1177 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1179 #define ELF_CLASS ELFCLASS64
1180 #define ELF_DATA ELFDATA2MSB
1181 #define ELF_ARCH EM_S390
1183 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1185 regs
->psw
.addr
= infop
->entry
;
1186 regs
->psw
.mask
= PSW_MASK_64
| PSW_MASK_32
;
1187 regs
->gprs
[15] = infop
->start_stack
;
1190 #endif /* TARGET_S390X */
1192 #ifndef ELF_PLATFORM
1193 #define ELF_PLATFORM (NULL)
1202 #define ELF_CLASS ELFCLASS32
1204 #define bswaptls(ptr) bswap32s(ptr)
1211 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
1212 unsigned int a_text
; /* length of text, in bytes */
1213 unsigned int a_data
; /* length of data, in bytes */
1214 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
1215 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
1216 unsigned int a_entry
; /* start address */
1217 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
1218 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
1222 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1228 /* Necessary parameters */
1229 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1230 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
1231 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1233 #define DLINFO_ITEMS 14
1235 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
1237 memcpy(to
, from
, n
);
1241 static void bswap_ehdr(struct elfhdr
*ehdr
)
1243 bswap16s(&ehdr
->e_type
); /* Object file type */
1244 bswap16s(&ehdr
->e_machine
); /* Architecture */
1245 bswap32s(&ehdr
->e_version
); /* Object file version */
1246 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
1247 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
1248 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
1249 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
1250 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
1251 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
1252 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
1253 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
1254 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
1255 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
1258 static void bswap_phdr(struct elf_phdr
*phdr
, int phnum
)
1261 for (i
= 0; i
< phnum
; ++i
, ++phdr
) {
1262 bswap32s(&phdr
->p_type
); /* Segment type */
1263 bswap32s(&phdr
->p_flags
); /* Segment flags */
1264 bswaptls(&phdr
->p_offset
); /* Segment file offset */
1265 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
1266 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
1267 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
1268 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
1269 bswaptls(&phdr
->p_align
); /* Segment alignment */
1273 static void bswap_shdr(struct elf_shdr
*shdr
, int shnum
)
1276 for (i
= 0; i
< shnum
; ++i
, ++shdr
) {
1277 bswap32s(&shdr
->sh_name
);
1278 bswap32s(&shdr
->sh_type
);
1279 bswaptls(&shdr
->sh_flags
);
1280 bswaptls(&shdr
->sh_addr
);
1281 bswaptls(&shdr
->sh_offset
);
1282 bswaptls(&shdr
->sh_size
);
1283 bswap32s(&shdr
->sh_link
);
1284 bswap32s(&shdr
->sh_info
);
1285 bswaptls(&shdr
->sh_addralign
);
1286 bswaptls(&shdr
->sh_entsize
);
1290 static void bswap_sym(struct elf_sym
*sym
)
1292 bswap32s(&sym
->st_name
);
1293 bswaptls(&sym
->st_value
);
1294 bswaptls(&sym
->st_size
);
1295 bswap16s(&sym
->st_shndx
);
1298 static inline void bswap_ehdr(struct elfhdr
*ehdr
) { }
1299 static inline void bswap_phdr(struct elf_phdr
*phdr
, int phnum
) { }
1300 static inline void bswap_shdr(struct elf_shdr
*shdr
, int shnum
) { }
1301 static inline void bswap_sym(struct elf_sym
*sym
) { }
1304 #ifdef USE_ELF_CORE_DUMP
1305 static int elf_core_dump(int, const CPUArchState
*);
1306 #endif /* USE_ELF_CORE_DUMP */
1307 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
);
1309 /* Verify the portions of EHDR within E_IDENT for the target.
1310 This can be performed before bswapping the entire header. */
1311 static bool elf_check_ident(struct elfhdr
*ehdr
)
1313 return (ehdr
->e_ident
[EI_MAG0
] == ELFMAG0
1314 && ehdr
->e_ident
[EI_MAG1
] == ELFMAG1
1315 && ehdr
->e_ident
[EI_MAG2
] == ELFMAG2
1316 && ehdr
->e_ident
[EI_MAG3
] == ELFMAG3
1317 && ehdr
->e_ident
[EI_CLASS
] == ELF_CLASS
1318 && ehdr
->e_ident
[EI_DATA
] == ELF_DATA
1319 && ehdr
->e_ident
[EI_VERSION
] == EV_CURRENT
);
1322 /* Verify the portions of EHDR outside of E_IDENT for the target.
1323 This has to wait until after bswapping the header. */
1324 static bool elf_check_ehdr(struct elfhdr
*ehdr
)
1326 return (elf_check_arch(ehdr
->e_machine
)
1327 && ehdr
->e_ehsize
== sizeof(struct elfhdr
)
1328 && ehdr
->e_phentsize
== sizeof(struct elf_phdr
)
1329 && (ehdr
->e_type
== ET_EXEC
|| ehdr
->e_type
== ET_DYN
));
1333 * 'copy_elf_strings()' copies argument/envelope strings from user
1334 * memory to free pages in kernel mem. These are in a format ready
1335 * to be put directly into the top of new user memory.
1338 static abi_ulong
copy_elf_strings(int argc
,char ** argv
, void **page
,
1341 char *tmp
, *tmp1
, *pag
= NULL
;
1342 int len
, offset
= 0;
1345 return 0; /* bullet-proofing */
1347 while (argc
-- > 0) {
1350 fprintf(stderr
, "VFS: argc is wrong");
1356 if (p
< len
) { /* this shouldn't happen - 128kB */
1362 offset
= p
% TARGET_PAGE_SIZE
;
1363 pag
= (char *)page
[p
/TARGET_PAGE_SIZE
];
1365 pag
= g_try_malloc0(TARGET_PAGE_SIZE
);
1366 page
[p
/TARGET_PAGE_SIZE
] = pag
;
1371 if (len
== 0 || offset
== 0) {
1372 *(pag
+ offset
) = *tmp
;
1375 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
1376 tmp
-= bytes_to_copy
;
1378 offset
-= bytes_to_copy
;
1379 len
-= bytes_to_copy
;
1380 memcpy_fromfs(pag
+ offset
, tmp
, bytes_to_copy
+ 1);
1387 static abi_ulong
setup_arg_pages(abi_ulong p
, struct linux_binprm
*bprm
,
1388 struct image_info
*info
)
1390 abi_ulong stack_base
, size
, error
, guard
;
1393 /* Create enough stack to hold everything. If we don't use
1394 it for args, we'll use it for something else. */
1395 size
= guest_stack_size
;
1396 if (size
< MAX_ARG_PAGES
*TARGET_PAGE_SIZE
) {
1397 size
= MAX_ARG_PAGES
*TARGET_PAGE_SIZE
;
1399 guard
= TARGET_PAGE_SIZE
;
1400 if (guard
< qemu_real_host_page_size
) {
1401 guard
= qemu_real_host_page_size
;
1404 error
= target_mmap(0, size
+ guard
, PROT_READ
| PROT_WRITE
,
1405 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1407 perror("mmap stack");
1411 /* We reserve one extra page at the top of the stack as guard. */
1412 target_mprotect(error
, guard
, PROT_NONE
);
1414 info
->stack_limit
= error
+ guard
;
1415 stack_base
= info
->stack_limit
+ size
- MAX_ARG_PAGES
*TARGET_PAGE_SIZE
;
1418 for (i
= 0 ; i
< MAX_ARG_PAGES
; i
++) {
1419 if (bprm
->page
[i
]) {
1421 /* FIXME - check return value of memcpy_to_target() for failure */
1422 memcpy_to_target(stack_base
, bprm
->page
[i
], TARGET_PAGE_SIZE
);
1423 g_free(bprm
->page
[i
]);
1425 stack_base
+= TARGET_PAGE_SIZE
;
1430 /* Map and zero the bss. We need to explicitly zero any fractional pages
1431 after the data section (i.e. bss). */
1432 static void zero_bss(abi_ulong elf_bss
, abi_ulong last_bss
, int prot
)
1434 uintptr_t host_start
, host_map_start
, host_end
;
1436 last_bss
= TARGET_PAGE_ALIGN(last_bss
);
1438 /* ??? There is confusion between qemu_real_host_page_size and
1439 qemu_host_page_size here and elsewhere in target_mmap, which
1440 may lead to the end of the data section mapping from the file
1441 not being mapped. At least there was an explicit test and
1442 comment for that here, suggesting that "the file size must
1443 be known". The comment probably pre-dates the introduction
1444 of the fstat system call in target_mmap which does in fact
1445 find out the size. What isn't clear is if the workaround
1446 here is still actually needed. For now, continue with it,
1447 but merge it with the "normal" mmap that would allocate the bss. */
1449 host_start
= (uintptr_t) g2h(elf_bss
);
1450 host_end
= (uintptr_t) g2h(last_bss
);
1451 host_map_start
= (host_start
+ qemu_real_host_page_size
- 1);
1452 host_map_start
&= -qemu_real_host_page_size
;
1454 if (host_map_start
< host_end
) {
1455 void *p
= mmap((void *)host_map_start
, host_end
- host_map_start
,
1456 prot
, MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1457 if (p
== MAP_FAILED
) {
1458 perror("cannot mmap brk");
1463 /* Ensure that the bss page(s) are valid */
1464 if ((page_get_flags(last_bss
-1) & prot
) != prot
) {
1465 page_set_flags(elf_bss
& TARGET_PAGE_MASK
, last_bss
, prot
| PAGE_VALID
);
1468 if (host_start
< host_map_start
) {
1469 memset((void *)host_start
, 0, host_map_start
- host_start
);
1473 #ifdef CONFIG_USE_FDPIC
1474 static abi_ulong
loader_build_fdpic_loadmap(struct image_info
*info
, abi_ulong sp
)
1477 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
;
1479 /* elf32_fdpic_loadseg */
1483 put_user_u32(loadsegs
[n
].addr
, sp
+0);
1484 put_user_u32(loadsegs
[n
].p_vaddr
, sp
+4);
1485 put_user_u32(loadsegs
[n
].p_memsz
, sp
+8);
1488 /* elf32_fdpic_loadmap */
1490 put_user_u16(0, sp
+0); /* version */
1491 put_user_u16(info
->nsegs
, sp
+2); /* nsegs */
1493 info
->personality
= PER_LINUX_FDPIC
;
1494 info
->loadmap_addr
= sp
;
1500 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
1501 struct elfhdr
*exec
,
1502 struct image_info
*info
,
1503 struct image_info
*interp_info
)
1509 abi_ulong u_rand_bytes
;
1510 uint8_t k_rand_bytes
[16];
1511 abi_ulong u_platform
;
1512 const char *k_platform
;
1513 const int n
= sizeof(elf_addr_t
);
1517 #ifdef CONFIG_USE_FDPIC
1518 /* Needs to be before we load the env/argc/... */
1519 if (elf_is_fdpic(exec
)) {
1520 /* Need 4 byte alignment for these structs */
1522 sp
= loader_build_fdpic_loadmap(info
, sp
);
1523 info
->other_info
= interp_info
;
1525 interp_info
->other_info
= info
;
1526 sp
= loader_build_fdpic_loadmap(interp_info
, sp
);
1532 k_platform
= ELF_PLATFORM
;
1534 size_t len
= strlen(k_platform
) + 1;
1535 sp
-= (len
+ n
- 1) & ~(n
- 1);
1537 /* FIXME - check return value of memcpy_to_target() for failure */
1538 memcpy_to_target(sp
, k_platform
, len
);
1542 * Generate 16 random bytes for userspace PRNG seeding (not
1543 * cryptically secure but it's not the aim of QEMU).
1545 for (i
= 0; i
< 16; i
++) {
1546 k_rand_bytes
[i
] = rand();
1550 /* FIXME - check return value of memcpy_to_target() for failure */
1551 memcpy_to_target(sp
, k_rand_bytes
, 16);
1554 * Force 16 byte _final_ alignment here for generality.
1556 sp
= sp
&~ (abi_ulong
)15;
1557 size
= (DLINFO_ITEMS
+ 1) * 2;
1560 #ifdef DLINFO_ARCH_ITEMS
1561 size
+= DLINFO_ARCH_ITEMS
* 2;
1566 size
+= envc
+ argc
+ 2;
1567 size
+= 1; /* argc itself */
1570 sp
-= 16 - (size
& 15);
1572 /* This is correct because Linux defines
1573 * elf_addr_t as Elf32_Off / Elf64_Off
1575 #define NEW_AUX_ENT(id, val) do { \
1576 sp -= n; put_user_ual(val, sp); \
1577 sp -= n; put_user_ual(id, sp); \
1581 NEW_AUX_ENT (AT_NULL
, 0);
1583 /* There must be exactly DLINFO_ITEMS entries here. */
1584 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(info
->load_addr
+ exec
->e_phoff
));
1585 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
1586 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
1587 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(MAX(TARGET_PAGE_SIZE
, getpagesize())));
1588 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_info
? interp_info
->load_addr
: 0));
1589 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
1590 NEW_AUX_ENT(AT_ENTRY
, info
->entry
);
1591 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
1592 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
1593 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
1594 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
1595 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
1596 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
1597 NEW_AUX_ENT(AT_RANDOM
, (abi_ulong
) u_rand_bytes
);
1600 NEW_AUX_ENT(AT_HWCAP2
, (abi_ulong
) ELF_HWCAP2
);
1604 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
1607 * ARCH_DLINFO must come last so platform specific code can enforce
1608 * special alignment requirements on the AUXV if necessary (eg. PPC).
1614 info
->saved_auxv
= sp
;
1615 info
->auxv_len
= sp_auxv
- sp
;
1617 sp
= loader_build_argptr(envc
, argc
, sp
, p
, 0);
1618 /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1619 assert(sp_auxv
- sp
== size
);
1623 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1624 /* If the guest doesn't have a validation function just agree */
1625 static int validate_guest_space(unsigned long guest_base
,
1626 unsigned long guest_size
)
1632 unsigned long init_guest_space(unsigned long host_start
,
1633 unsigned long host_size
,
1634 unsigned long guest_start
,
1637 unsigned long current_start
, real_start
;
1640 assert(host_start
|| host_size
);
1642 /* If just a starting address is given, then just verify that
1644 if (host_start
&& !host_size
) {
1645 if (validate_guest_space(host_start
, host_size
) == 1) {
1648 return (unsigned long)-1;
1652 /* Setup the initial flags and start address. */
1653 current_start
= host_start
& qemu_host_page_mask
;
1654 flags
= MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
;
1659 /* Otherwise, a non-zero size region of memory needs to be mapped
1662 unsigned long real_size
= host_size
;
1664 /* Do not use mmap_find_vma here because that is limited to the
1665 * guest address space. We are going to make the
1666 * guest address space fit whatever we're given.
1668 real_start
= (unsigned long)
1669 mmap((void *)current_start
, host_size
, PROT_NONE
, flags
, -1, 0);
1670 if (real_start
== (unsigned long)-1) {
1671 return (unsigned long)-1;
1674 /* Ensure the address is properly aligned. */
1675 if (real_start
& ~qemu_host_page_mask
) {
1676 munmap((void *)real_start
, host_size
);
1677 real_size
= host_size
+ qemu_host_page_size
;
1678 real_start
= (unsigned long)
1679 mmap((void *)real_start
, real_size
, PROT_NONE
, flags
, -1, 0);
1680 if (real_start
== (unsigned long)-1) {
1681 return (unsigned long)-1;
1683 real_start
= HOST_PAGE_ALIGN(real_start
);
1686 /* Check to see if the address is valid. */
1687 if (!host_start
|| real_start
== current_start
) {
1688 int valid
= validate_guest_space(real_start
- guest_start
,
1692 } else if (valid
== -1) {
1693 return (unsigned long)-1;
1695 /* valid == 0, so try again. */
1698 /* That address didn't work. Unmap and try a different one.
1699 * The address the host picked because is typically right at
1700 * the top of the host address space and leaves the guest with
1701 * no usable address space. Resort to a linear search. We
1702 * already compensated for mmap_min_addr, so this should not
1703 * happen often. Probably means we got unlucky and host
1704 * address space randomization put a shared library somewhere
1707 munmap((void *)real_start
, host_size
);
1708 current_start
+= qemu_host_page_size
;
1709 if (host_start
== current_start
) {
1710 /* Theoretically possible if host doesn't have any suitably
1711 * aligned areas. Normally the first mmap will fail.
1713 return (unsigned long)-1;
1717 qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size
);
1722 static void probe_guest_base(const char *image_name
,
1723 abi_ulong loaddr
, abi_ulong hiaddr
)
1725 /* Probe for a suitable guest base address, if the user has not set
1726 * it explicitly, and set guest_base appropriately.
1727 * In case of error we will print a suitable message and exit.
1729 #if defined(CONFIG_USE_GUEST_BASE)
1731 if (!have_guest_base
&& !reserved_va
) {
1732 unsigned long host_start
, real_start
, host_size
;
1734 /* Round addresses to page boundaries. */
1735 loaddr
&= qemu_host_page_mask
;
1736 hiaddr
= HOST_PAGE_ALIGN(hiaddr
);
1738 if (loaddr
< mmap_min_addr
) {
1739 host_start
= HOST_PAGE_ALIGN(mmap_min_addr
);
1741 host_start
= loaddr
;
1742 if (host_start
!= loaddr
) {
1743 errmsg
= "Address overflow loading ELF binary";
1747 host_size
= hiaddr
- loaddr
;
1749 /* Setup the initial guest memory space with ranges gleaned from
1750 * the ELF image that is being loaded.
1752 real_start
= init_guest_space(host_start
, host_size
, loaddr
, false);
1753 if (real_start
== (unsigned long)-1) {
1754 errmsg
= "Unable to find space for application";
1757 guest_base
= real_start
- loaddr
;
1759 qemu_log("Relocating guest address space from 0x"
1760 TARGET_ABI_FMT_lx
" to 0x%lx\n",
1761 loaddr
, real_start
);
1766 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
1772 /* Load an ELF image into the address space.
1774 IMAGE_NAME is the filename of the image, to use in error messages.
1775 IMAGE_FD is the open file descriptor for the image.
1777 BPRM_BUF is a copy of the beginning of the file; this of course
1778 contains the elf file header at offset 0. It is assumed that this
1779 buffer is sufficiently aligned to present no problems to the host
1780 in accessing data at aligned offsets within the buffer.
1782 On return: INFO values will be filled in, as necessary or available. */
1784 static void load_elf_image(const char *image_name
, int image_fd
,
1785 struct image_info
*info
, char **pinterp_name
,
1786 char bprm_buf
[BPRM_BUF_SIZE
])
1788 struct elfhdr
*ehdr
= (struct elfhdr
*)bprm_buf
;
1789 struct elf_phdr
*phdr
;
1790 abi_ulong load_addr
, load_bias
, loaddr
, hiaddr
, error
;
1794 /* First of all, some simple consistency checks */
1795 errmsg
= "Invalid ELF image for this architecture";
1796 if (!elf_check_ident(ehdr
)) {
1800 if (!elf_check_ehdr(ehdr
)) {
1804 i
= ehdr
->e_phnum
* sizeof(struct elf_phdr
);
1805 if (ehdr
->e_phoff
+ i
<= BPRM_BUF_SIZE
) {
1806 phdr
= (struct elf_phdr
*)(bprm_buf
+ ehdr
->e_phoff
);
1808 phdr
= (struct elf_phdr
*) alloca(i
);
1809 retval
= pread(image_fd
, phdr
, i
, ehdr
->e_phoff
);
1814 bswap_phdr(phdr
, ehdr
->e_phnum
);
1816 #ifdef CONFIG_USE_FDPIC
1818 info
->pt_dynamic_addr
= 0;
1821 /* Find the maximum size of the image and allocate an appropriate
1822 amount of memory to handle that. */
1823 loaddr
= -1, hiaddr
= 0;
1824 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
1825 if (phdr
[i
].p_type
== PT_LOAD
) {
1826 abi_ulong a
= phdr
[i
].p_vaddr
- phdr
[i
].p_offset
;
1830 a
= phdr
[i
].p_vaddr
+ phdr
[i
].p_memsz
;
1834 #ifdef CONFIG_USE_FDPIC
1841 if (ehdr
->e_type
== ET_DYN
) {
1842 /* The image indicates that it can be loaded anywhere. Find a
1843 location that can hold the memory space required. If the
1844 image is pre-linked, LOADDR will be non-zero. Since we do
1845 not supply MAP_FIXED here we'll use that address if and
1846 only if it remains available. */
1847 load_addr
= target_mmap(loaddr
, hiaddr
- loaddr
, PROT_NONE
,
1848 MAP_PRIVATE
| MAP_ANON
| MAP_NORESERVE
,
1850 if (load_addr
== -1) {
1853 } else if (pinterp_name
!= NULL
) {
1854 /* This is the main executable. Make sure that the low
1855 address does not conflict with MMAP_MIN_ADDR or the
1856 QEMU application itself. */
1857 probe_guest_base(image_name
, loaddr
, hiaddr
);
1859 load_bias
= load_addr
- loaddr
;
1861 #ifdef CONFIG_USE_FDPIC
1863 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
=
1864 g_malloc(sizeof(*loadsegs
) * info
->nsegs
);
1866 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
1867 switch (phdr
[i
].p_type
) {
1869 info
->pt_dynamic_addr
= phdr
[i
].p_vaddr
+ load_bias
;
1872 loadsegs
->addr
= phdr
[i
].p_vaddr
+ load_bias
;
1873 loadsegs
->p_vaddr
= phdr
[i
].p_vaddr
;
1874 loadsegs
->p_memsz
= phdr
[i
].p_memsz
;
1882 info
->load_bias
= load_bias
;
1883 info
->load_addr
= load_addr
;
1884 info
->entry
= ehdr
->e_entry
+ load_bias
;
1885 info
->start_code
= -1;
1887 info
->start_data
= -1;
1890 info
->elf_flags
= ehdr
->e_flags
;
1892 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
1893 struct elf_phdr
*eppnt
= phdr
+ i
;
1894 if (eppnt
->p_type
== PT_LOAD
) {
1895 abi_ulong vaddr
, vaddr_po
, vaddr_ps
, vaddr_ef
, vaddr_em
;
1898 if (eppnt
->p_flags
& PF_R
) elf_prot
= PROT_READ
;
1899 if (eppnt
->p_flags
& PF_W
) elf_prot
|= PROT_WRITE
;
1900 if (eppnt
->p_flags
& PF_X
) elf_prot
|= PROT_EXEC
;
1902 vaddr
= load_bias
+ eppnt
->p_vaddr
;
1903 vaddr_po
= TARGET_ELF_PAGEOFFSET(vaddr
);
1904 vaddr_ps
= TARGET_ELF_PAGESTART(vaddr
);
1906 error
= target_mmap(vaddr_ps
, eppnt
->p_filesz
+ vaddr_po
,
1907 elf_prot
, MAP_PRIVATE
| MAP_FIXED
,
1908 image_fd
, eppnt
->p_offset
- vaddr_po
);
1913 vaddr_ef
= vaddr
+ eppnt
->p_filesz
;
1914 vaddr_em
= vaddr
+ eppnt
->p_memsz
;
1916 /* If the load segment requests extra zeros (e.g. bss), map it. */
1917 if (vaddr_ef
< vaddr_em
) {
1918 zero_bss(vaddr_ef
, vaddr_em
, elf_prot
);
1921 /* Find the full program boundaries. */
1922 if (elf_prot
& PROT_EXEC
) {
1923 if (vaddr
< info
->start_code
) {
1924 info
->start_code
= vaddr
;
1926 if (vaddr_ef
> info
->end_code
) {
1927 info
->end_code
= vaddr_ef
;
1930 if (elf_prot
& PROT_WRITE
) {
1931 if (vaddr
< info
->start_data
) {
1932 info
->start_data
= vaddr
;
1934 if (vaddr_ef
> info
->end_data
) {
1935 info
->end_data
= vaddr_ef
;
1937 if (vaddr_em
> info
->brk
) {
1938 info
->brk
= vaddr_em
;
1941 } else if (eppnt
->p_type
== PT_INTERP
&& pinterp_name
) {
1944 if (*pinterp_name
) {
1945 errmsg
= "Multiple PT_INTERP entries";
1948 interp_name
= malloc(eppnt
->p_filesz
);
1953 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
1954 memcpy(interp_name
, bprm_buf
+ eppnt
->p_offset
,
1957 retval
= pread(image_fd
, interp_name
, eppnt
->p_filesz
,
1959 if (retval
!= eppnt
->p_filesz
) {
1963 if (interp_name
[eppnt
->p_filesz
- 1] != 0) {
1964 errmsg
= "Invalid PT_INTERP entry";
1967 *pinterp_name
= interp_name
;
1971 if (info
->end_data
== 0) {
1972 info
->start_data
= info
->end_code
;
1973 info
->end_data
= info
->end_code
;
1974 info
->brk
= info
->end_code
;
1977 if (qemu_log_enabled()) {
1978 load_symbols(ehdr
, image_fd
, load_bias
);
1986 errmsg
= "Incomplete read of file header";
1990 errmsg
= strerror(errno
);
1992 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
1996 static void load_elf_interp(const char *filename
, struct image_info
*info
,
1997 char bprm_buf
[BPRM_BUF_SIZE
])
2001 fd
= open(path(filename
), O_RDONLY
);
2006 retval
= read(fd
, bprm_buf
, BPRM_BUF_SIZE
);
2010 if (retval
< BPRM_BUF_SIZE
) {
2011 memset(bprm_buf
+ retval
, 0, BPRM_BUF_SIZE
- retval
);
2014 load_elf_image(filename
, fd
, info
, NULL
, bprm_buf
);
2018 fprintf(stderr
, "%s: %s\n", filename
, strerror(errno
));
2022 static int symfind(const void *s0
, const void *s1
)
2024 target_ulong addr
= *(target_ulong
*)s0
;
2025 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
2027 if (addr
< sym
->st_value
) {
2029 } else if (addr
>= sym
->st_value
+ sym
->st_size
) {
2035 static const char *lookup_symbolxx(struct syminfo
*s
, target_ulong orig_addr
)
2037 #if ELF_CLASS == ELFCLASS32
2038 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
2040 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
2044 struct elf_sym
*sym
;
2046 sym
= bsearch(&orig_addr
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
2048 return s
->disas_strtab
+ sym
->st_name
;
2054 /* FIXME: This should use elf_ops.h */
2055 static int symcmp(const void *s0
, const void *s1
)
2057 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
2058 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
2059 return (sym0
->st_value
< sym1
->st_value
)
2061 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
2064 /* Best attempt to load symbols from this ELF object. */
2065 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
)
2067 int i
, shnum
, nsyms
, sym_idx
= 0, str_idx
= 0;
2068 struct elf_shdr
*shdr
;
2069 char *strings
= NULL
;
2070 struct syminfo
*s
= NULL
;
2071 struct elf_sym
*new_syms
, *syms
= NULL
;
2073 shnum
= hdr
->e_shnum
;
2074 i
= shnum
* sizeof(struct elf_shdr
);
2075 shdr
= (struct elf_shdr
*)alloca(i
);
2076 if (pread(fd
, shdr
, i
, hdr
->e_shoff
) != i
) {
2080 bswap_shdr(shdr
, shnum
);
2081 for (i
= 0; i
< shnum
; ++i
) {
2082 if (shdr
[i
].sh_type
== SHT_SYMTAB
) {
2084 str_idx
= shdr
[i
].sh_link
;
2089 /* There will be no symbol table if the file was stripped. */
2093 /* Now know where the strtab and symtab are. Snarf them. */
2094 s
= malloc(sizeof(*s
));
2099 i
= shdr
[str_idx
].sh_size
;
2100 s
->disas_strtab
= strings
= malloc(i
);
2101 if (!strings
|| pread(fd
, strings
, i
, shdr
[str_idx
].sh_offset
) != i
) {
2105 i
= shdr
[sym_idx
].sh_size
;
2107 if (!syms
|| pread(fd
, syms
, i
, shdr
[sym_idx
].sh_offset
) != i
) {
2111 nsyms
= i
/ sizeof(struct elf_sym
);
2112 for (i
= 0; i
< nsyms
; ) {
2113 bswap_sym(syms
+ i
);
2114 /* Throw away entries which we do not need. */
2115 if (syms
[i
].st_shndx
== SHN_UNDEF
2116 || syms
[i
].st_shndx
>= SHN_LORESERVE
2117 || ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
2119 syms
[i
] = syms
[nsyms
];
2122 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2123 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2124 syms
[i
].st_value
&= ~(target_ulong
)1;
2126 syms
[i
].st_value
+= load_bias
;
2131 /* No "useful" symbol. */
2136 /* Attempt to free the storage associated with the local symbols
2137 that we threw away. Whether or not this has any effect on the
2138 memory allocation depends on the malloc implementation and how
2139 many symbols we managed to discard. */
2140 new_syms
= realloc(syms
, nsyms
* sizeof(*syms
));
2141 if (new_syms
== NULL
) {
2146 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
2148 s
->disas_num_syms
= nsyms
;
2149 #if ELF_CLASS == ELFCLASS32
2150 s
->disas_symtab
.elf32
= syms
;
2152 s
->disas_symtab
.elf64
= syms
;
2154 s
->lookup_symbol
= lookup_symbolxx
;
2166 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
)
2168 struct image_info interp_info
;
2169 struct elfhdr elf_ex
;
2170 char *elf_interpreter
= NULL
;
2172 info
->start_mmap
= (abi_ulong
)ELF_START_MMAP
;
2176 load_elf_image(bprm
->filename
, bprm
->fd
, info
,
2177 &elf_interpreter
, bprm
->buf
);
2179 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2180 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2181 when we load the interpreter. */
2182 elf_ex
= *(struct elfhdr
*)bprm
->buf
;
2184 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, bprm
->page
, bprm
->p
);
2185 bprm
->p
= copy_elf_strings(bprm
->envc
,bprm
->envp
,bprm
->page
,bprm
->p
);
2186 bprm
->p
= copy_elf_strings(bprm
->argc
,bprm
->argv
,bprm
->page
,bprm
->p
);
2188 fprintf(stderr
, "%s: %s\n", bprm
->filename
, strerror(E2BIG
));
2192 /* Do this so that we can load the interpreter, if need be. We will
2193 change some of these later */
2194 bprm
->p
= setup_arg_pages(bprm
->p
, bprm
, info
);
2196 if (elf_interpreter
) {
2197 load_elf_interp(elf_interpreter
, &interp_info
, bprm
->buf
);
2199 /* If the program interpreter is one of these two, then assume
2200 an iBCS2 image. Otherwise assume a native linux image. */
2202 if (strcmp(elf_interpreter
, "/usr/lib/libc.so.1") == 0
2203 || strcmp(elf_interpreter
, "/usr/lib/ld.so.1") == 0) {
2204 info
->personality
= PER_SVR4
;
2206 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2207 and some applications "depend" upon this behavior. Since
2208 we do not have the power to recompile these, we emulate
2209 the SVr4 behavior. Sigh. */
2210 target_mmap(0, qemu_host_page_size
, PROT_READ
| PROT_EXEC
,
2211 MAP_FIXED
| MAP_PRIVATE
, -1, 0);
2215 bprm
->p
= create_elf_tables(bprm
->p
, bprm
->argc
, bprm
->envc
, &elf_ex
,
2216 info
, (elf_interpreter
? &interp_info
: NULL
));
2217 info
->start_stack
= bprm
->p
;
2219 /* If we have an interpreter, set that as the program's entry point.
2220 Copy the load_bias as well, to help PPC64 interpret the entry
2221 point as a function descriptor. Do this after creating elf tables
2222 so that we copy the original program entry point into the AUXV. */
2223 if (elf_interpreter
) {
2224 info
->load_bias
= interp_info
.load_bias
;
2225 info
->entry
= interp_info
.entry
;
2226 free(elf_interpreter
);
2229 #ifdef USE_ELF_CORE_DUMP
2230 bprm
->core_dump
= &elf_core_dump
;
2236 #ifdef USE_ELF_CORE_DUMP
2238 * Definitions to generate Intel SVR4-like core files.
2239 * These mostly have the same names as the SVR4 types with "target_elf_"
2240 * tacked on the front to prevent clashes with linux definitions,
2241 * and the typedef forms have been avoided. This is mostly like
2242 * the SVR4 structure, but more Linuxy, with things that Linux does
2243 * not support and which gdb doesn't really use excluded.
2245 * Fields we don't dump (their contents is zero) in linux-user qemu
2246 * are marked with XXX.
2248 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2250 * Porting ELF coredump for target is (quite) simple process. First you
2251 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2252 * the target resides):
2254 * #define USE_ELF_CORE_DUMP
2256 * Next you define type of register set used for dumping. ELF specification
2257 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2259 * typedef <target_regtype> target_elf_greg_t;
2260 * #define ELF_NREG <number of registers>
2261 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2263 * Last step is to implement target specific function that copies registers
2264 * from given cpu into just specified register set. Prototype is:
2266 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2267 * const CPUArchState *env);
2270 * regs - copy register values into here (allocated and zeroed by caller)
2271 * env - copy registers from here
2273 * Example for ARM target is provided in this file.
2276 /* An ELF note in memory */
2280 size_t namesz_rounded
;
2283 size_t datasz_rounded
;
2288 struct target_elf_siginfo
{
2289 abi_int si_signo
; /* signal number */
2290 abi_int si_code
; /* extra code */
2291 abi_int si_errno
; /* errno */
2294 struct target_elf_prstatus
{
2295 struct target_elf_siginfo pr_info
; /* Info associated with signal */
2296 abi_short pr_cursig
; /* Current signal */
2297 abi_ulong pr_sigpend
; /* XXX */
2298 abi_ulong pr_sighold
; /* XXX */
2299 target_pid_t pr_pid
;
2300 target_pid_t pr_ppid
;
2301 target_pid_t pr_pgrp
;
2302 target_pid_t pr_sid
;
2303 struct target_timeval pr_utime
; /* XXX User time */
2304 struct target_timeval pr_stime
; /* XXX System time */
2305 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
2306 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
2307 target_elf_gregset_t pr_reg
; /* GP registers */
2308 abi_int pr_fpvalid
; /* XXX */
2311 #define ELF_PRARGSZ (80) /* Number of chars for args */
2313 struct target_elf_prpsinfo
{
2314 char pr_state
; /* numeric process state */
2315 char pr_sname
; /* char for pr_state */
2316 char pr_zomb
; /* zombie */
2317 char pr_nice
; /* nice val */
2318 abi_ulong pr_flag
; /* flags */
2319 target_uid_t pr_uid
;
2320 target_gid_t pr_gid
;
2321 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
2323 char pr_fname
[16]; /* filename of executable */
2324 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
2327 /* Here is the structure in which status of each thread is captured. */
2328 struct elf_thread_status
{
2329 QTAILQ_ENTRY(elf_thread_status
) ets_link
;
2330 struct target_elf_prstatus prstatus
; /* NT_PRSTATUS */
2332 elf_fpregset_t fpu
; /* NT_PRFPREG */
2333 struct task_struct
*thread
;
2334 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
2336 struct memelfnote notes
[1];
2340 struct elf_note_info
{
2341 struct memelfnote
*notes
;
2342 struct target_elf_prstatus
*prstatus
; /* NT_PRSTATUS */
2343 struct target_elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
2345 QTAILQ_HEAD(thread_list_head
, elf_thread_status
) thread_list
;
2348 * Current version of ELF coredump doesn't support
2349 * dumping fp regs etc.
2351 elf_fpregset_t
*fpu
;
2352 elf_fpxregset_t
*xfpu
;
2353 int thread_status_size
;
2359 struct vm_area_struct
{
2360 target_ulong vma_start
; /* start vaddr of memory region */
2361 target_ulong vma_end
; /* end vaddr of memory region */
2362 abi_ulong vma_flags
; /* protection etc. flags for the region */
2363 QTAILQ_ENTRY(vm_area_struct
) vma_link
;
2367 QTAILQ_HEAD(, vm_area_struct
) mm_mmap
;
2368 int mm_count
; /* number of mappings */
2371 static struct mm_struct
*vma_init(void);
2372 static void vma_delete(struct mm_struct
*);
2373 static int vma_add_mapping(struct mm_struct
*, target_ulong
,
2374 target_ulong
, abi_ulong
);
2375 static int vma_get_mapping_count(const struct mm_struct
*);
2376 static struct vm_area_struct
*vma_first(const struct mm_struct
*);
2377 static struct vm_area_struct
*vma_next(struct vm_area_struct
*);
2378 static abi_ulong
vma_dump_size(const struct vm_area_struct
*);
2379 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
2380 unsigned long flags
);
2382 static void fill_elf_header(struct elfhdr
*, int, uint16_t, uint32_t);
2383 static void fill_note(struct memelfnote
*, const char *, int,
2384 unsigned int, void *);
2385 static void fill_prstatus(struct target_elf_prstatus
*, const TaskState
*, int);
2386 static int fill_psinfo(struct target_elf_prpsinfo
*, const TaskState
*);
2387 static void fill_auxv_note(struct memelfnote
*, const TaskState
*);
2388 static void fill_elf_note_phdr(struct elf_phdr
*, int, off_t
);
2389 static size_t note_size(const struct memelfnote
*);
2390 static void free_note_info(struct elf_note_info
*);
2391 static int fill_note_info(struct elf_note_info
*, long, const CPUArchState
*);
2392 static void fill_thread_info(struct elf_note_info
*, const CPUArchState
*);
2393 static int core_dump_filename(const TaskState
*, char *, size_t);
2395 static int dump_write(int, const void *, size_t);
2396 static int write_note(struct memelfnote
*, int);
2397 static int write_note_info(struct elf_note_info
*, int);
2400 static void bswap_prstatus(struct target_elf_prstatus
*prstatus
)
2402 prstatus
->pr_info
.si_signo
= tswap32(prstatus
->pr_info
.si_signo
);
2403 prstatus
->pr_info
.si_code
= tswap32(prstatus
->pr_info
.si_code
);
2404 prstatus
->pr_info
.si_errno
= tswap32(prstatus
->pr_info
.si_errno
);
2405 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
2406 prstatus
->pr_sigpend
= tswapal(prstatus
->pr_sigpend
);
2407 prstatus
->pr_sighold
= tswapal(prstatus
->pr_sighold
);
2408 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
2409 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
2410 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
2411 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
2412 /* cpu times are not filled, so we skip them */
2413 /* regs should be in correct format already */
2414 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
2417 static void bswap_psinfo(struct target_elf_prpsinfo
*psinfo
)
2419 psinfo
->pr_flag
= tswapal(psinfo
->pr_flag
);
2420 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
2421 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
2422 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
2423 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
2424 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
2425 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
2428 static void bswap_note(struct elf_note
*en
)
2430 bswap32s(&en
->n_namesz
);
2431 bswap32s(&en
->n_descsz
);
2432 bswap32s(&en
->n_type
);
2435 static inline void bswap_prstatus(struct target_elf_prstatus
*p
) { }
2436 static inline void bswap_psinfo(struct target_elf_prpsinfo
*p
) {}
2437 static inline void bswap_note(struct elf_note
*en
) { }
2438 #endif /* BSWAP_NEEDED */
2441 * Minimal support for linux memory regions. These are needed
2442 * when we are finding out what memory exactly belongs to
2443 * emulated process. No locks needed here, as long as
2444 * thread that received the signal is stopped.
2447 static struct mm_struct
*vma_init(void)
2449 struct mm_struct
*mm
;
2451 if ((mm
= g_malloc(sizeof (*mm
))) == NULL
)
2455 QTAILQ_INIT(&mm
->mm_mmap
);
2460 static void vma_delete(struct mm_struct
*mm
)
2462 struct vm_area_struct
*vma
;
2464 while ((vma
= vma_first(mm
)) != NULL
) {
2465 QTAILQ_REMOVE(&mm
->mm_mmap
, vma
, vma_link
);
2471 static int vma_add_mapping(struct mm_struct
*mm
, target_ulong start
,
2472 target_ulong end
, abi_ulong flags
)
2474 struct vm_area_struct
*vma
;
2476 if ((vma
= g_malloc0(sizeof (*vma
))) == NULL
)
2479 vma
->vma_start
= start
;
2481 vma
->vma_flags
= flags
;
2483 QTAILQ_INSERT_TAIL(&mm
->mm_mmap
, vma
, vma_link
);
2489 static struct vm_area_struct
*vma_first(const struct mm_struct
*mm
)
2491 return (QTAILQ_FIRST(&mm
->mm_mmap
));
2494 static struct vm_area_struct
*vma_next(struct vm_area_struct
*vma
)
2496 return (QTAILQ_NEXT(vma
, vma_link
));
2499 static int vma_get_mapping_count(const struct mm_struct
*mm
)
2501 return (mm
->mm_count
);
2505 * Calculate file (dump) size of given memory region.
2507 static abi_ulong
vma_dump_size(const struct vm_area_struct
*vma
)
2509 /* if we cannot even read the first page, skip it */
2510 if (!access_ok(VERIFY_READ
, vma
->vma_start
, TARGET_PAGE_SIZE
))
2514 * Usually we don't dump executable pages as they contain
2515 * non-writable code that debugger can read directly from
2516 * target library etc. However, thread stacks are marked
2517 * also executable so we read in first page of given region
2518 * and check whether it contains elf header. If there is
2519 * no elf header, we dump it.
2521 if (vma
->vma_flags
& PROT_EXEC
) {
2522 char page
[TARGET_PAGE_SIZE
];
2524 copy_from_user(page
, vma
->vma_start
, sizeof (page
));
2525 if ((page
[EI_MAG0
] == ELFMAG0
) &&
2526 (page
[EI_MAG1
] == ELFMAG1
) &&
2527 (page
[EI_MAG2
] == ELFMAG2
) &&
2528 (page
[EI_MAG3
] == ELFMAG3
)) {
2530 * Mappings are possibly from ELF binary. Don't dump
2537 return (vma
->vma_end
- vma
->vma_start
);
2540 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
2541 unsigned long flags
)
2543 struct mm_struct
*mm
= (struct mm_struct
*)priv
;
2545 vma_add_mapping(mm
, start
, end
, flags
);
2549 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
2550 unsigned int sz
, void *data
)
2552 unsigned int namesz
;
2554 namesz
= strlen(name
) + 1;
2556 note
->namesz
= namesz
;
2557 note
->namesz_rounded
= roundup(namesz
, sizeof (int32_t));
2560 note
->datasz_rounded
= roundup(sz
, sizeof (int32_t));
2565 * We calculate rounded up note size here as specified by
2568 note
->notesz
= sizeof (struct elf_note
) +
2569 note
->namesz_rounded
+ note
->datasz_rounded
;
2572 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
2575 (void) memset(elf
, 0, sizeof(*elf
));
2577 (void) memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
2578 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
2579 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
2580 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
2581 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
2583 elf
->e_type
= ET_CORE
;
2584 elf
->e_machine
= machine
;
2585 elf
->e_version
= EV_CURRENT
;
2586 elf
->e_phoff
= sizeof(struct elfhdr
);
2587 elf
->e_flags
= flags
;
2588 elf
->e_ehsize
= sizeof(struct elfhdr
);
2589 elf
->e_phentsize
= sizeof(struct elf_phdr
);
2590 elf
->e_phnum
= segs
;
2595 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, off_t offset
)
2597 phdr
->p_type
= PT_NOTE
;
2598 phdr
->p_offset
= offset
;
2601 phdr
->p_filesz
= sz
;
2606 bswap_phdr(phdr
, 1);
2609 static size_t note_size(const struct memelfnote
*note
)
2611 return (note
->notesz
);
2614 static void fill_prstatus(struct target_elf_prstatus
*prstatus
,
2615 const TaskState
*ts
, int signr
)
2617 (void) memset(prstatus
, 0, sizeof (*prstatus
));
2618 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
2619 prstatus
->pr_pid
= ts
->ts_tid
;
2620 prstatus
->pr_ppid
= getppid();
2621 prstatus
->pr_pgrp
= getpgrp();
2622 prstatus
->pr_sid
= getsid(0);
2624 bswap_prstatus(prstatus
);
2627 static int fill_psinfo(struct target_elf_prpsinfo
*psinfo
, const TaskState
*ts
)
2629 char *base_filename
;
2630 unsigned int i
, len
;
2632 (void) memset(psinfo
, 0, sizeof (*psinfo
));
2634 len
= ts
->info
->arg_end
- ts
->info
->arg_start
;
2635 if (len
>= ELF_PRARGSZ
)
2636 len
= ELF_PRARGSZ
- 1;
2637 if (copy_from_user(&psinfo
->pr_psargs
, ts
->info
->arg_start
, len
))
2639 for (i
= 0; i
< len
; i
++)
2640 if (psinfo
->pr_psargs
[i
] == 0)
2641 psinfo
->pr_psargs
[i
] = ' ';
2642 psinfo
->pr_psargs
[len
] = 0;
2644 psinfo
->pr_pid
= getpid();
2645 psinfo
->pr_ppid
= getppid();
2646 psinfo
->pr_pgrp
= getpgrp();
2647 psinfo
->pr_sid
= getsid(0);
2648 psinfo
->pr_uid
= getuid();
2649 psinfo
->pr_gid
= getgid();
2651 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
2653 * Using strncpy here is fine: at max-length,
2654 * this field is not NUL-terminated.
2656 (void) strncpy(psinfo
->pr_fname
, base_filename
,
2657 sizeof(psinfo
->pr_fname
));
2659 g_free(base_filename
);
2660 bswap_psinfo(psinfo
);
2664 static void fill_auxv_note(struct memelfnote
*note
, const TaskState
*ts
)
2666 elf_addr_t auxv
= (elf_addr_t
)ts
->info
->saved_auxv
;
2667 elf_addr_t orig_auxv
= auxv
;
2669 int len
= ts
->info
->auxv_len
;
2672 * Auxiliary vector is stored in target process stack. It contains
2673 * {type, value} pairs that we need to dump into note. This is not
2674 * strictly necessary but we do it here for sake of completeness.
2677 /* read in whole auxv vector and copy it to memelfnote */
2678 ptr
= lock_user(VERIFY_READ
, orig_auxv
, len
, 0);
2680 fill_note(note
, "CORE", NT_AUXV
, len
, ptr
);
2681 unlock_user(ptr
, auxv
, len
);
2686 * Constructs name of coredump file. We have following convention
2688 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2690 * Returns 0 in case of success, -1 otherwise (errno is set).
2692 static int core_dump_filename(const TaskState
*ts
, char *buf
,
2696 char *filename
= NULL
;
2697 char *base_filename
= NULL
;
2701 assert(bufsize
>= PATH_MAX
);
2703 if (gettimeofday(&tv
, NULL
) < 0) {
2704 (void) fprintf(stderr
, "unable to get current timestamp: %s",
2709 filename
= strdup(ts
->bprm
->filename
);
2710 base_filename
= strdup(basename(filename
));
2711 (void) strftime(timestamp
, sizeof (timestamp
), "%Y%m%d-%H%M%S",
2712 localtime_r(&tv
.tv_sec
, &tm
));
2713 (void) snprintf(buf
, bufsize
, "qemu_%s_%s_%d.core",
2714 base_filename
, timestamp
, (int)getpid());
2715 free(base_filename
);
2721 static int dump_write(int fd
, const void *ptr
, size_t size
)
2723 const char *bufp
= (const char *)ptr
;
2724 ssize_t bytes_written
, bytes_left
;
2725 struct rlimit dumpsize
;
2729 getrlimit(RLIMIT_CORE
, &dumpsize
);
2730 if ((pos
= lseek(fd
, 0, SEEK_CUR
))==-1) {
2731 if (errno
== ESPIPE
) { /* not a seekable stream */
2737 if (dumpsize
.rlim_cur
<= pos
) {
2739 } else if (dumpsize
.rlim_cur
== RLIM_INFINITY
) {
2742 size_t limit_left
=dumpsize
.rlim_cur
- pos
;
2743 bytes_left
= limit_left
>= size
? size
: limit_left
;
2748 * In normal conditions, single write(2) should do but
2749 * in case of socket etc. this mechanism is more portable.
2752 bytes_written
= write(fd
, bufp
, bytes_left
);
2753 if (bytes_written
< 0) {
2757 } else if (bytes_written
== 0) { /* eof */
2760 bufp
+= bytes_written
;
2761 bytes_left
-= bytes_written
;
2762 } while (bytes_left
> 0);
2767 static int write_note(struct memelfnote
*men
, int fd
)
2771 en
.n_namesz
= men
->namesz
;
2772 en
.n_type
= men
->type
;
2773 en
.n_descsz
= men
->datasz
;
2777 if (dump_write(fd
, &en
, sizeof(en
)) != 0)
2779 if (dump_write(fd
, men
->name
, men
->namesz_rounded
) != 0)
2781 if (dump_write(fd
, men
->data
, men
->datasz_rounded
) != 0)
2787 static void fill_thread_info(struct elf_note_info
*info
, const CPUArchState
*env
)
2789 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
2790 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
2791 struct elf_thread_status
*ets
;
2793 ets
= g_malloc0(sizeof (*ets
));
2794 ets
->num_notes
= 1; /* only prstatus is dumped */
2795 fill_prstatus(&ets
->prstatus
, ts
, 0);
2796 elf_core_copy_regs(&ets
->prstatus
.pr_reg
, env
);
2797 fill_note(&ets
->notes
[0], "CORE", NT_PRSTATUS
, sizeof (ets
->prstatus
),
2800 QTAILQ_INSERT_TAIL(&info
->thread_list
, ets
, ets_link
);
2802 info
->notes_size
+= note_size(&ets
->notes
[0]);
2805 static void init_note_info(struct elf_note_info
*info
)
2807 /* Initialize the elf_note_info structure so that it is at
2808 * least safe to call free_note_info() on it. Must be
2809 * called before calling fill_note_info().
2811 memset(info
, 0, sizeof (*info
));
2812 QTAILQ_INIT(&info
->thread_list
);
2815 static int fill_note_info(struct elf_note_info
*info
,
2816 long signr
, const CPUArchState
*env
)
2819 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
2820 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
2823 info
->notes
= g_malloc0(NUMNOTES
* sizeof (struct memelfnote
));
2824 if (info
->notes
== NULL
)
2826 info
->prstatus
= g_malloc0(sizeof (*info
->prstatus
));
2827 if (info
->prstatus
== NULL
)
2829 info
->psinfo
= g_malloc0(sizeof (*info
->psinfo
));
2830 if (info
->prstatus
== NULL
)
2834 * First fill in status (and registers) of current thread
2835 * including process info & aux vector.
2837 fill_prstatus(info
->prstatus
, ts
, signr
);
2838 elf_core_copy_regs(&info
->prstatus
->pr_reg
, env
);
2839 fill_note(&info
->notes
[0], "CORE", NT_PRSTATUS
,
2840 sizeof (*info
->prstatus
), info
->prstatus
);
2841 fill_psinfo(info
->psinfo
, ts
);
2842 fill_note(&info
->notes
[1], "CORE", NT_PRPSINFO
,
2843 sizeof (*info
->psinfo
), info
->psinfo
);
2844 fill_auxv_note(&info
->notes
[2], ts
);
2847 info
->notes_size
= 0;
2848 for (i
= 0; i
< info
->numnote
; i
++)
2849 info
->notes_size
+= note_size(&info
->notes
[i
]);
2851 /* read and fill status of all threads */
2854 if (cpu
== thread_cpu
) {
2857 fill_thread_info(info
, (CPUArchState
*)cpu
->env_ptr
);
2864 static void free_note_info(struct elf_note_info
*info
)
2866 struct elf_thread_status
*ets
;
2868 while (!QTAILQ_EMPTY(&info
->thread_list
)) {
2869 ets
= QTAILQ_FIRST(&info
->thread_list
);
2870 QTAILQ_REMOVE(&info
->thread_list
, ets
, ets_link
);
2874 g_free(info
->prstatus
);
2875 g_free(info
->psinfo
);
2876 g_free(info
->notes
);
2879 static int write_note_info(struct elf_note_info
*info
, int fd
)
2881 struct elf_thread_status
*ets
;
2884 /* write prstatus, psinfo and auxv for current thread */
2885 for (i
= 0; i
< info
->numnote
; i
++)
2886 if ((error
= write_note(&info
->notes
[i
], fd
)) != 0)
2889 /* write prstatus for each thread */
2890 QTAILQ_FOREACH(ets
, &info
->thread_list
, ets_link
) {
2891 if ((error
= write_note(&ets
->notes
[0], fd
)) != 0)
2899 * Write out ELF coredump.
2901 * See documentation of ELF object file format in:
2902 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2904 * Coredump format in linux is following:
2906 * 0 +----------------------+ \
2907 * | ELF header | ET_CORE |
2908 * +----------------------+ |
2909 * | ELF program headers | |--- headers
2910 * | - NOTE section | |
2911 * | - PT_LOAD sections | |
2912 * +----------------------+ /
2917 * +----------------------+ <-- aligned to target page
2918 * | Process memory dump |
2923 * +----------------------+
2925 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2926 * NT_PRSINFO -> struct elf_prpsinfo
2927 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2929 * Format follows System V format as close as possible. Current
2930 * version limitations are as follows:
2931 * - no floating point registers are dumped
2933 * Function returns 0 in case of success, negative errno otherwise.
2935 * TODO: make this work also during runtime: it should be
2936 * possible to force coredump from running process and then
2937 * continue processing. For example qemu could set up SIGUSR2
2938 * handler (provided that target process haven't registered
2939 * handler for that) that does the dump when signal is received.
2941 static int elf_core_dump(int signr
, const CPUArchState
*env
)
2943 const CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
2944 const TaskState
*ts
= (const TaskState
*)cpu
->opaque
;
2945 struct vm_area_struct
*vma
= NULL
;
2946 char corefile
[PATH_MAX
];
2947 struct elf_note_info info
;
2949 struct elf_phdr phdr
;
2950 struct rlimit dumpsize
;
2951 struct mm_struct
*mm
= NULL
;
2952 off_t offset
= 0, data_offset
= 0;
2956 init_note_info(&info
);
2959 getrlimit(RLIMIT_CORE
, &dumpsize
);
2960 if (dumpsize
.rlim_cur
== 0)
2963 if (core_dump_filename(ts
, corefile
, sizeof (corefile
)) < 0)
2966 if ((fd
= open(corefile
, O_WRONLY
| O_CREAT
,
2967 S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH
)) < 0)
2971 * Walk through target process memory mappings and
2972 * set up structure containing this information. After
2973 * this point vma_xxx functions can be used.
2975 if ((mm
= vma_init()) == NULL
)
2978 walk_memory_regions(mm
, vma_walker
);
2979 segs
= vma_get_mapping_count(mm
);
2982 * Construct valid coredump ELF header. We also
2983 * add one more segment for notes.
2985 fill_elf_header(&elf
, segs
+ 1, ELF_MACHINE
, 0);
2986 if (dump_write(fd
, &elf
, sizeof (elf
)) != 0)
2989 /* fill in in-memory version of notes */
2990 if (fill_note_info(&info
, signr
, env
) < 0)
2993 offset
+= sizeof (elf
); /* elf header */
2994 offset
+= (segs
+ 1) * sizeof (struct elf_phdr
); /* program headers */
2996 /* write out notes program header */
2997 fill_elf_note_phdr(&phdr
, info
.notes_size
, offset
);
2999 offset
+= info
.notes_size
;
3000 if (dump_write(fd
, &phdr
, sizeof (phdr
)) != 0)
3004 * ELF specification wants data to start at page boundary so
3007 data_offset
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
3010 * Write program headers for memory regions mapped in
3011 * the target process.
3013 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3014 (void) memset(&phdr
, 0, sizeof (phdr
));
3016 phdr
.p_type
= PT_LOAD
;
3017 phdr
.p_offset
= offset
;
3018 phdr
.p_vaddr
= vma
->vma_start
;
3020 phdr
.p_filesz
= vma_dump_size(vma
);
3021 offset
+= phdr
.p_filesz
;
3022 phdr
.p_memsz
= vma
->vma_end
- vma
->vma_start
;
3023 phdr
.p_flags
= vma
->vma_flags
& PROT_READ
? PF_R
: 0;
3024 if (vma
->vma_flags
& PROT_WRITE
)
3025 phdr
.p_flags
|= PF_W
;
3026 if (vma
->vma_flags
& PROT_EXEC
)
3027 phdr
.p_flags
|= PF_X
;
3028 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
3030 bswap_phdr(&phdr
, 1);
3031 dump_write(fd
, &phdr
, sizeof (phdr
));
3035 * Next we write notes just after program headers. No
3036 * alignment needed here.
3038 if (write_note_info(&info
, fd
) < 0)
3041 /* align data to page boundary */
3042 if (lseek(fd
, data_offset
, SEEK_SET
) != data_offset
)
3046 * Finally we can dump process memory into corefile as well.
3048 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3052 end
= vma
->vma_start
+ vma_dump_size(vma
);
3054 for (addr
= vma
->vma_start
; addr
< end
;
3055 addr
+= TARGET_PAGE_SIZE
) {
3056 char page
[TARGET_PAGE_SIZE
];
3060 * Read in page from target process memory and
3061 * write it to coredump file.
3063 error
= copy_from_user(page
, addr
, sizeof (page
));
3065 (void) fprintf(stderr
, "unable to dump " TARGET_ABI_FMT_lx
"\n",
3070 if (dump_write(fd
, page
, TARGET_PAGE_SIZE
) < 0)
3076 free_note_info(&info
);
3085 #endif /* USE_ELF_CORE_DUMP */
3087 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
3089 init_thread(regs
, infop
);