4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm_int.h"
28 #include "exec/gdbstub.h"
29 #include "qemu/host-utils.h"
30 #include "qemu/config-file.h"
31 #include "qemu/error-report.h"
32 #include "hw/i386/pc.h"
33 #include "hw/i386/apic.h"
34 #include "hw/i386/apic_internal.h"
35 #include "hw/i386/apic-msidef.h"
36 #include "exec/ioport.h"
37 #include "standard-headers/asm-x86/hyperv.h"
38 #include "hw/pci/pci.h"
39 #include "migration/migration.h"
40 #include "exec/memattrs.h"
45 #define DPRINTF(fmt, ...) \
46 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
48 #define DPRINTF(fmt, ...) \
52 #define MSR_KVM_WALL_CLOCK 0x11
53 #define MSR_KVM_SYSTEM_TIME 0x12
56 #define BUS_MCEERR_AR 4
59 #define BUS_MCEERR_AO 5
62 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
63 KVM_CAP_INFO(SET_TSS_ADDR
),
64 KVM_CAP_INFO(EXT_CPUID
),
65 KVM_CAP_INFO(MP_STATE
),
69 static bool has_msr_star
;
70 static bool has_msr_hsave_pa
;
71 static bool has_msr_tsc_aux
;
72 static bool has_msr_tsc_adjust
;
73 static bool has_msr_tsc_deadline
;
74 static bool has_msr_feature_control
;
75 static bool has_msr_async_pf_en
;
76 static bool has_msr_pv_eoi_en
;
77 static bool has_msr_misc_enable
;
78 static bool has_msr_smbase
;
79 static bool has_msr_bndcfgs
;
80 static bool has_msr_kvm_steal_time
;
81 static int lm_capable_kernel
;
82 static bool has_msr_hv_hypercall
;
83 static bool has_msr_hv_vapic
;
84 static bool has_msr_hv_tsc
;
85 static bool has_msr_hv_crash
;
86 static bool has_msr_hv_reset
;
87 static bool has_msr_hv_vpindex
;
88 static bool has_msr_hv_runtime
;
89 static bool has_msr_mtrr
;
90 static bool has_msr_xss
;
92 static bool has_msr_architectural_pmu
;
93 static uint32_t num_architectural_pmu_counters
;
97 static int has_pit_state2
;
99 int kvm_has_pit_state2(void)
101 return has_pit_state2
;
104 bool kvm_has_smm(void)
106 return kvm_check_extension(kvm_state
, KVM_CAP_X86_SMM
);
109 bool kvm_allows_irq0_override(void)
111 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
114 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
116 struct kvm_cpuid2
*cpuid
;
119 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
120 cpuid
= g_malloc0(size
);
122 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
123 if (r
== 0 && cpuid
->nent
>= max
) {
131 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
139 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
142 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
144 struct kvm_cpuid2
*cpuid
;
146 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
152 static const struct kvm_para_features
{
155 } para_features
[] = {
156 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
157 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
158 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
159 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
162 static int get_para_features(KVMState
*s
)
166 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
167 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
168 features
|= (1 << para_features
[i
].feature
);
176 /* Returns the value for a specific register on the cpuid entry
178 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
198 /* Find matching entry for function/index on kvm_cpuid2 struct
200 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
205 for (i
= 0; i
< cpuid
->nent
; ++i
) {
206 if (cpuid
->entries
[i
].function
== function
&&
207 cpuid
->entries
[i
].index
== index
) {
208 return &cpuid
->entries
[i
];
215 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
216 uint32_t index
, int reg
)
218 struct kvm_cpuid2
*cpuid
;
220 uint32_t cpuid_1_edx
;
223 cpuid
= get_supported_cpuid(s
);
225 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
228 ret
= cpuid_entry_get_reg(entry
, reg
);
231 /* Fixups for the data returned by KVM, below */
233 if (function
== 1 && reg
== R_EDX
) {
234 /* KVM before 2.6.30 misreports the following features */
235 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
236 } else if (function
== 1 && reg
== R_ECX
) {
237 /* We can set the hypervisor flag, even if KVM does not return it on
238 * GET_SUPPORTED_CPUID
240 ret
|= CPUID_EXT_HYPERVISOR
;
241 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
242 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
243 * and the irqchip is in the kernel.
245 if (kvm_irqchip_in_kernel() &&
246 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
247 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
250 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
251 * without the in-kernel irqchip
253 if (!kvm_irqchip_in_kernel()) {
254 ret
&= ~CPUID_EXT_X2APIC
;
256 } else if (function
== 6 && reg
== R_EAX
) {
257 ret
|= CPUID_6_EAX_ARAT
; /* safe to allow because of emulated APIC */
258 } else if (function
== 0x80000001 && reg
== R_EDX
) {
259 /* On Intel, kvm returns cpuid according to the Intel spec,
260 * so add missing bits according to the AMD spec:
262 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
263 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
268 /* fallback for older kernels */
269 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
270 ret
= get_para_features(s
);
276 typedef struct HWPoisonPage
{
278 QLIST_ENTRY(HWPoisonPage
) list
;
281 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
282 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
284 static void kvm_unpoison_all(void *param
)
286 HWPoisonPage
*page
, *next_page
;
288 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
289 QLIST_REMOVE(page
, list
);
290 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
295 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
299 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
300 if (page
->ram_addr
== ram_addr
) {
304 page
= g_new(HWPoisonPage
, 1);
305 page
->ram_addr
= ram_addr
;
306 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
309 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
314 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
317 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
322 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
324 CPUX86State
*env
= &cpu
->env
;
325 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
326 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
327 uint64_t mcg_status
= MCG_STATUS_MCIP
;
329 if (code
== BUS_MCEERR_AR
) {
330 status
|= MCI_STATUS_AR
| 0x134;
331 mcg_status
|= MCG_STATUS_EIPV
;
334 mcg_status
|= MCG_STATUS_RIPV
;
336 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
337 (MCM_ADDR_PHYS
<< 6) | 0xc,
338 cpu_x86_support_mca_broadcast(env
) ?
339 MCE_INJECT_BROADCAST
: 0);
342 static void hardware_memory_error(void)
344 fprintf(stderr
, "Hardware memory error!\n");
348 int kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
350 X86CPU
*cpu
= X86_CPU(c
);
351 CPUX86State
*env
= &cpu
->env
;
355 if ((env
->mcg_cap
& MCG_SER_P
) && addr
356 && (code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
)) {
357 if (qemu_ram_addr_from_host(addr
, &ram_addr
) == NULL
||
358 !kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
359 fprintf(stderr
, "Hardware memory error for memory used by "
360 "QEMU itself instead of guest system!\n");
361 /* Hope we are lucky for AO MCE */
362 if (code
== BUS_MCEERR_AO
) {
365 hardware_memory_error();
368 kvm_hwpoison_page_add(ram_addr
);
369 kvm_mce_inject(cpu
, paddr
, code
);
371 if (code
== BUS_MCEERR_AO
) {
373 } else if (code
== BUS_MCEERR_AR
) {
374 hardware_memory_error();
382 int kvm_arch_on_sigbus(int code
, void *addr
)
384 X86CPU
*cpu
= X86_CPU(first_cpu
);
386 if ((cpu
->env
.mcg_cap
& MCG_SER_P
) && addr
&& code
== BUS_MCEERR_AO
) {
390 /* Hope we are lucky for AO MCE */
391 if (qemu_ram_addr_from_host(addr
, &ram_addr
) == NULL
||
392 !kvm_physical_memory_addr_from_host(first_cpu
->kvm_state
,
394 fprintf(stderr
, "Hardware memory error for memory used by "
395 "QEMU itself instead of guest system!: %p\n", addr
);
398 kvm_hwpoison_page_add(ram_addr
);
399 kvm_mce_inject(X86_CPU(first_cpu
), paddr
, code
);
401 if (code
== BUS_MCEERR_AO
) {
403 } else if (code
== BUS_MCEERR_AR
) {
404 hardware_memory_error();
412 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
414 CPUX86State
*env
= &cpu
->env
;
416 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
417 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
418 struct kvm_x86_mce mce
;
420 env
->exception_injected
= -1;
423 * There must be at least one bank in use if an MCE is pending.
424 * Find it and use its values for the event injection.
426 for (bank
= 0; bank
< bank_num
; bank
++) {
427 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
431 assert(bank
< bank_num
);
434 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
435 mce
.mcg_status
= env
->mcg_status
;
436 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
437 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
439 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
444 static void cpu_update_state(void *opaque
, int running
, RunState state
)
446 CPUX86State
*env
= opaque
;
449 env
->tsc_valid
= false;
453 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
455 X86CPU
*cpu
= X86_CPU(cs
);
459 #ifndef KVM_CPUID_SIGNATURE_NEXT
460 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
463 static bool hyperv_hypercall_available(X86CPU
*cpu
)
465 return cpu
->hyperv_vapic
||
466 (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
);
469 static bool hyperv_enabled(X86CPU
*cpu
)
471 CPUState
*cs
= CPU(cpu
);
472 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
473 (hyperv_hypercall_available(cpu
) ||
475 cpu
->hyperv_relaxed_timing
||
478 cpu
->hyperv_vpindex
||
479 cpu
->hyperv_runtime
);
482 static Error
*invtsc_mig_blocker
;
484 #define KVM_MAX_CPUID_ENTRIES 100
486 int kvm_arch_init_vcpu(CPUState
*cs
)
489 struct kvm_cpuid2 cpuid
;
490 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
491 } QEMU_PACKED cpuid_data
;
492 X86CPU
*cpu
= X86_CPU(cs
);
493 CPUX86State
*env
= &cpu
->env
;
494 uint32_t limit
, i
, j
, cpuid_i
;
496 struct kvm_cpuid_entry2
*c
;
497 uint32_t signature
[3];
498 int kvm_base
= KVM_CPUID_SIGNATURE
;
501 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
505 /* Paravirtualization CPUIDs */
506 if (hyperv_enabled(cpu
)) {
507 c
= &cpuid_data
.entries
[cpuid_i
++];
508 c
->function
= HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
509 if (!cpu
->hyperv_vendor_id
) {
510 memcpy(signature
, "Microsoft Hv", 12);
512 size_t len
= strlen(cpu
->hyperv_vendor_id
);
515 error_report("hv-vendor-id truncated to 12 characters");
518 memset(signature
, 0, 12);
519 memcpy(signature
, cpu
->hyperv_vendor_id
, len
);
521 c
->eax
= HYPERV_CPUID_MIN
;
522 c
->ebx
= signature
[0];
523 c
->ecx
= signature
[1];
524 c
->edx
= signature
[2];
526 c
= &cpuid_data
.entries
[cpuid_i
++];
527 c
->function
= HYPERV_CPUID_INTERFACE
;
528 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
529 c
->eax
= signature
[0];
534 c
= &cpuid_data
.entries
[cpuid_i
++];
535 c
->function
= HYPERV_CPUID_VERSION
;
539 c
= &cpuid_data
.entries
[cpuid_i
++];
540 c
->function
= HYPERV_CPUID_FEATURES
;
541 if (cpu
->hyperv_relaxed_timing
) {
542 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
544 if (cpu
->hyperv_vapic
) {
545 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
546 c
->eax
|= HV_X64_MSR_APIC_ACCESS_AVAILABLE
;
547 has_msr_hv_vapic
= true;
549 if (cpu
->hyperv_time
&&
550 kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) > 0) {
551 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
552 c
->eax
|= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE
;
554 has_msr_hv_tsc
= true;
556 if (cpu
->hyperv_crash
&& has_msr_hv_crash
) {
557 c
->edx
|= HV_X64_GUEST_CRASH_MSR_AVAILABLE
;
559 if (cpu
->hyperv_reset
&& has_msr_hv_reset
) {
560 c
->eax
|= HV_X64_MSR_RESET_AVAILABLE
;
562 if (cpu
->hyperv_vpindex
&& has_msr_hv_vpindex
) {
563 c
->eax
|= HV_X64_MSR_VP_INDEX_AVAILABLE
;
565 if (cpu
->hyperv_runtime
&& has_msr_hv_runtime
) {
566 c
->eax
|= HV_X64_MSR_VP_RUNTIME_AVAILABLE
;
568 c
= &cpuid_data
.entries
[cpuid_i
++];
569 c
->function
= HYPERV_CPUID_ENLIGHTMENT_INFO
;
570 if (cpu
->hyperv_relaxed_timing
) {
571 c
->eax
|= HV_X64_RELAXED_TIMING_RECOMMENDED
;
573 if (has_msr_hv_vapic
) {
574 c
->eax
|= HV_X64_APIC_ACCESS_RECOMMENDED
;
576 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
578 c
= &cpuid_data
.entries
[cpuid_i
++];
579 c
->function
= HYPERV_CPUID_IMPLEMENT_LIMITS
;
583 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
584 has_msr_hv_hypercall
= true;
587 if (cpu
->expose_kvm
) {
588 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
589 c
= &cpuid_data
.entries
[cpuid_i
++];
590 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
591 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
592 c
->ebx
= signature
[0];
593 c
->ecx
= signature
[1];
594 c
->edx
= signature
[2];
596 c
= &cpuid_data
.entries
[cpuid_i
++];
597 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
598 c
->eax
= env
->features
[FEAT_KVM
];
600 has_msr_async_pf_en
= c
->eax
& (1 << KVM_FEATURE_ASYNC_PF
);
602 has_msr_pv_eoi_en
= c
->eax
& (1 << KVM_FEATURE_PV_EOI
);
604 has_msr_kvm_steal_time
= c
->eax
& (1 << KVM_FEATURE_STEAL_TIME
);
607 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
609 for (i
= 0; i
<= limit
; i
++) {
610 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
611 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
614 c
= &cpuid_data
.entries
[cpuid_i
++];
618 /* Keep reading function 2 till all the input is received */
622 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
623 KVM_CPUID_FLAG_STATE_READ_NEXT
;
624 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
625 times
= c
->eax
& 0xff;
627 for (j
= 1; j
< times
; ++j
) {
628 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
629 fprintf(stderr
, "cpuid_data is full, no space for "
630 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
633 c
= &cpuid_data
.entries
[cpuid_i
++];
635 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
636 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
644 if (i
== 0xd && j
== 64) {
648 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
650 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
652 if (i
== 4 && c
->eax
== 0) {
655 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
658 if (i
== 0xd && c
->eax
== 0) {
661 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
662 fprintf(stderr
, "cpuid_data is full, no space for "
663 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
666 c
= &cpuid_data
.entries
[cpuid_i
++];
672 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
680 cpu_x86_cpuid(env
, 0x0a, 0, &ver
, &unused
, &unused
, &unused
);
681 if ((ver
& 0xff) > 0) {
682 has_msr_architectural_pmu
= true;
683 num_architectural_pmu_counters
= (ver
& 0xff00) >> 8;
685 /* Shouldn't be more than 32, since that's the number of bits
686 * available in EBX to tell us _which_ counters are available.
689 if (num_architectural_pmu_counters
> MAX_GP_COUNTERS
) {
690 num_architectural_pmu_counters
= MAX_GP_COUNTERS
;
695 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
697 for (i
= 0x80000000; i
<= limit
; i
++) {
698 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
699 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
702 c
= &cpuid_data
.entries
[cpuid_i
++];
706 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
709 /* Call Centaur's CPUID instructions they are supported. */
710 if (env
->cpuid_xlevel2
> 0) {
711 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
713 for (i
= 0xC0000000; i
<= limit
; i
++) {
714 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
715 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
718 c
= &cpuid_data
.entries
[cpuid_i
++];
722 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
726 cpuid_data
.cpuid
.nent
= cpuid_i
;
728 if (((env
->cpuid_version
>> 8)&0xF) >= 6
729 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
730 (CPUID_MCE
| CPUID_MCA
)
731 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
736 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
738 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
742 if (banks
> MCE_BANKS_DEF
) {
743 banks
= MCE_BANKS_DEF
;
745 mcg_cap
&= MCE_CAP_DEF
;
747 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &mcg_cap
);
749 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
753 env
->mcg_cap
= mcg_cap
;
756 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
758 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
760 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
761 !!(c
->ecx
& CPUID_EXT_SMX
);
764 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 0x80000007, 0);
765 if (c
&& (c
->edx
& 1<<8) && invtsc_mig_blocker
== NULL
) {
767 error_setg(&invtsc_mig_blocker
,
768 "State blocked by non-migratable CPU device"
770 migrate_add_blocker(invtsc_mig_blocker
);
772 vmstate_x86_cpu
.unmigratable
= 1;
775 cpuid_data
.cpuid
.padding
= 0;
776 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
781 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
);
782 if (r
&& env
->tsc_khz
) {
783 r
= kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
);
785 fprintf(stderr
, "KVM_SET_TSC_KHZ failed\n");
791 env
->kvm_xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
794 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
801 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
803 CPUX86State
*env
= &cpu
->env
;
805 env
->exception_injected
= -1;
806 env
->interrupt_injected
= -1;
808 if (kvm_irqchip_in_kernel()) {
809 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
810 KVM_MP_STATE_UNINITIALIZED
;
812 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
816 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
818 CPUX86State
*env
= &cpu
->env
;
820 /* APs get directly into wait-for-SIPI state. */
821 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
822 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
826 static int kvm_get_supported_msrs(KVMState
*s
)
828 static int kvm_supported_msrs
;
832 if (kvm_supported_msrs
== 0) {
833 struct kvm_msr_list msr_list
, *kvm_msr_list
;
835 kvm_supported_msrs
= -1;
837 /* Obtain MSR list from KVM. These are the MSRs that we must
840 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
841 if (ret
< 0 && ret
!= -E2BIG
) {
844 /* Old kernel modules had a bug and could write beyond the provided
845 memory. Allocate at least a safe amount of 1K. */
846 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
848 sizeof(msr_list
.indices
[0])));
850 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
851 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
855 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
856 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
860 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
) {
861 has_msr_hsave_pa
= true;
864 if (kvm_msr_list
->indices
[i
] == MSR_TSC_AUX
) {
865 has_msr_tsc_aux
= true;
868 if (kvm_msr_list
->indices
[i
] == MSR_TSC_ADJUST
) {
869 has_msr_tsc_adjust
= true;
872 if (kvm_msr_list
->indices
[i
] == MSR_IA32_TSCDEADLINE
) {
873 has_msr_tsc_deadline
= true;
876 if (kvm_msr_list
->indices
[i
] == MSR_IA32_SMBASE
) {
877 has_msr_smbase
= true;
880 if (kvm_msr_list
->indices
[i
] == MSR_IA32_MISC_ENABLE
) {
881 has_msr_misc_enable
= true;
884 if (kvm_msr_list
->indices
[i
] == MSR_IA32_BNDCFGS
) {
885 has_msr_bndcfgs
= true;
888 if (kvm_msr_list
->indices
[i
] == MSR_IA32_XSS
) {
892 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_CRASH_CTL
) {
893 has_msr_hv_crash
= true;
896 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_RESET
) {
897 has_msr_hv_reset
= true;
900 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_INDEX
) {
901 has_msr_hv_vpindex
= true;
904 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_RUNTIME
) {
905 has_msr_hv_runtime
= true;
911 g_free(kvm_msr_list
);
917 static Notifier smram_machine_done
;
918 static KVMMemoryListener smram_listener
;
919 static AddressSpace smram_address_space
;
920 static MemoryRegion smram_as_root
;
921 static MemoryRegion smram_as_mem
;
923 static void register_smram_listener(Notifier
*n
, void *unused
)
925 MemoryRegion
*smram
=
926 (MemoryRegion
*) object_resolve_path("/machine/smram", NULL
);
928 /* Outer container... */
929 memory_region_init(&smram_as_root
, OBJECT(kvm_state
), "mem-container-smram", ~0ull);
930 memory_region_set_enabled(&smram_as_root
, true);
932 /* ... with two regions inside: normal system memory with low
935 memory_region_init_alias(&smram_as_mem
, OBJECT(kvm_state
), "mem-smram",
936 get_system_memory(), 0, ~0ull);
937 memory_region_add_subregion_overlap(&smram_as_root
, 0, &smram_as_mem
, 0);
938 memory_region_set_enabled(&smram_as_mem
, true);
941 /* ... SMRAM with higher priority */
942 memory_region_add_subregion_overlap(&smram_as_root
, 0, smram
, 10);
943 memory_region_set_enabled(smram
, true);
946 address_space_init(&smram_address_space
, &smram_as_root
, "KVM-SMRAM");
947 kvm_memory_listener_register(kvm_state
, &smram_listener
,
948 &smram_address_space
, 1);
951 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
953 uint64_t identity_base
= 0xfffbc000;
956 struct utsname utsname
;
959 has_xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
963 has_xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
966 #ifdef KVM_CAP_PIT_STATE2
967 has_pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
970 ret
= kvm_get_supported_msrs(s
);
976 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
979 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
980 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
981 * Since these must be part of guest physical memory, we need to allocate
982 * them, both by setting their start addresses in the kernel and by
983 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
985 * Older KVM versions may not support setting the identity map base. In
986 * that case we need to stick with the default, i.e. a 256K maximum BIOS
989 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
990 /* Allows up to 16M BIOSes. */
991 identity_base
= 0xfeffc000;
993 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
999 /* Set TSS base one page after EPT identity map. */
1000 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
1005 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1006 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
1008 fprintf(stderr
, "e820_add_entry() table is full\n");
1011 qemu_register_reset(kvm_unpoison_all
, NULL
);
1013 shadow_mem
= machine_kvm_shadow_mem(ms
);
1014 if (shadow_mem
!= -1) {
1016 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
1022 if (kvm_check_extension(s
, KVM_CAP_X86_SMM
)) {
1023 smram_machine_done
.notify
= register_smram_listener
;
1024 qemu_add_machine_init_done_notifier(&smram_machine_done
);
1029 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1031 lhs
->selector
= rhs
->selector
;
1032 lhs
->base
= rhs
->base
;
1033 lhs
->limit
= rhs
->limit
;
1045 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1047 unsigned flags
= rhs
->flags
;
1048 lhs
->selector
= rhs
->selector
;
1049 lhs
->base
= rhs
->base
;
1050 lhs
->limit
= rhs
->limit
;
1051 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
1052 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
1053 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
1054 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
1055 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
1056 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
1057 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
1058 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
1063 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
1065 lhs
->selector
= rhs
->selector
;
1066 lhs
->base
= rhs
->base
;
1067 lhs
->limit
= rhs
->limit
;
1068 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
1069 (rhs
->present
* DESC_P_MASK
) |
1070 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
1071 (rhs
->db
<< DESC_B_SHIFT
) |
1072 (rhs
->s
* DESC_S_MASK
) |
1073 (rhs
->l
<< DESC_L_SHIFT
) |
1074 (rhs
->g
* DESC_G_MASK
) |
1075 (rhs
->avl
* DESC_AVL_MASK
);
1078 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
1081 *kvm_reg
= *qemu_reg
;
1083 *qemu_reg
= *kvm_reg
;
1087 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
1089 CPUX86State
*env
= &cpu
->env
;
1090 struct kvm_regs regs
;
1094 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
1100 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
1101 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
1102 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
1103 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
1104 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
1105 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
1106 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
1107 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
1108 #ifdef TARGET_X86_64
1109 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
1110 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
1111 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
1112 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
1113 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
1114 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
1115 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
1116 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
1119 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
1120 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
1123 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
1129 static int kvm_put_fpu(X86CPU
*cpu
)
1131 CPUX86State
*env
= &cpu
->env
;
1135 memset(&fpu
, 0, sizeof fpu
);
1136 fpu
.fsw
= env
->fpus
& ~(7 << 11);
1137 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
1138 fpu
.fcw
= env
->fpuc
;
1139 fpu
.last_opcode
= env
->fpop
;
1140 fpu
.last_ip
= env
->fpip
;
1141 fpu
.last_dp
= env
->fpdp
;
1142 for (i
= 0; i
< 8; ++i
) {
1143 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
1145 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
1146 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1147 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].XMM_Q(0));
1148 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].XMM_Q(1));
1150 fpu
.mxcsr
= env
->mxcsr
;
1152 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
1155 #define XSAVE_FCW_FSW 0
1156 #define XSAVE_FTW_FOP 1
1157 #define XSAVE_CWD_RIP 2
1158 #define XSAVE_CWD_RDP 4
1159 #define XSAVE_MXCSR 6
1160 #define XSAVE_ST_SPACE 8
1161 #define XSAVE_XMM_SPACE 40
1162 #define XSAVE_XSTATE_BV 128
1163 #define XSAVE_YMMH_SPACE 144
1164 #define XSAVE_BNDREGS 240
1165 #define XSAVE_BNDCSR 256
1166 #define XSAVE_OPMASK 272
1167 #define XSAVE_ZMM_Hi256 288
1168 #define XSAVE_Hi16_ZMM 416
1170 static int kvm_put_xsave(X86CPU
*cpu
)
1172 CPUX86State
*env
= &cpu
->env
;
1173 struct kvm_xsave
* xsave
= env
->kvm_xsave_buf
;
1174 uint16_t cwd
, swd
, twd
;
1175 uint8_t *xmm
, *ymmh
, *zmmh
;
1179 return kvm_put_fpu(cpu
);
1182 memset(xsave
, 0, sizeof(struct kvm_xsave
));
1184 swd
= env
->fpus
& ~(7 << 11);
1185 swd
|= (env
->fpstt
& 7) << 11;
1187 for (i
= 0; i
< 8; ++i
) {
1188 twd
|= (!env
->fptags
[i
]) << i
;
1190 xsave
->region
[XSAVE_FCW_FSW
] = (uint32_t)(swd
<< 16) + cwd
;
1191 xsave
->region
[XSAVE_FTW_FOP
] = (uint32_t)(env
->fpop
<< 16) + twd
;
1192 memcpy(&xsave
->region
[XSAVE_CWD_RIP
], &env
->fpip
, sizeof(env
->fpip
));
1193 memcpy(&xsave
->region
[XSAVE_CWD_RDP
], &env
->fpdp
, sizeof(env
->fpdp
));
1194 memcpy(&xsave
->region
[XSAVE_ST_SPACE
], env
->fpregs
,
1195 sizeof env
->fpregs
);
1196 xsave
->region
[XSAVE_MXCSR
] = env
->mxcsr
;
1197 *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
] = env
->xstate_bv
;
1198 memcpy(&xsave
->region
[XSAVE_BNDREGS
], env
->bnd_regs
,
1199 sizeof env
->bnd_regs
);
1200 memcpy(&xsave
->region
[XSAVE_BNDCSR
], &env
->bndcs_regs
,
1201 sizeof(env
->bndcs_regs
));
1202 memcpy(&xsave
->region
[XSAVE_OPMASK
], env
->opmask_regs
,
1203 sizeof env
->opmask_regs
);
1205 xmm
= (uint8_t *)&xsave
->region
[XSAVE_XMM_SPACE
];
1206 ymmh
= (uint8_t *)&xsave
->region
[XSAVE_YMMH_SPACE
];
1207 zmmh
= (uint8_t *)&xsave
->region
[XSAVE_ZMM_Hi256
];
1208 for (i
= 0; i
< CPU_NB_REGS
; i
++, xmm
+= 16, ymmh
+= 16, zmmh
+= 32) {
1209 stq_p(xmm
, env
->xmm_regs
[i
].XMM_Q(0));
1210 stq_p(xmm
+8, env
->xmm_regs
[i
].XMM_Q(1));
1211 stq_p(ymmh
, env
->xmm_regs
[i
].XMM_Q(2));
1212 stq_p(ymmh
+8, env
->xmm_regs
[i
].XMM_Q(3));
1213 stq_p(zmmh
, env
->xmm_regs
[i
].XMM_Q(4));
1214 stq_p(zmmh
+8, env
->xmm_regs
[i
].XMM_Q(5));
1215 stq_p(zmmh
+16, env
->xmm_regs
[i
].XMM_Q(6));
1216 stq_p(zmmh
+24, env
->xmm_regs
[i
].XMM_Q(7));
1219 #ifdef TARGET_X86_64
1220 memcpy(&xsave
->region
[XSAVE_Hi16_ZMM
], &env
->xmm_regs
[16],
1221 16 * sizeof env
->xmm_regs
[16]);
1223 r
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
1227 static int kvm_put_xcrs(X86CPU
*cpu
)
1229 CPUX86State
*env
= &cpu
->env
;
1230 struct kvm_xcrs xcrs
= {};
1238 xcrs
.xcrs
[0].xcr
= 0;
1239 xcrs
.xcrs
[0].value
= env
->xcr0
;
1240 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
1243 static int kvm_put_sregs(X86CPU
*cpu
)
1245 CPUX86State
*env
= &cpu
->env
;
1246 struct kvm_sregs sregs
;
1248 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
1249 if (env
->interrupt_injected
>= 0) {
1250 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
1251 (uint64_t)1 << (env
->interrupt_injected
% 64);
1254 if ((env
->eflags
& VM_MASK
)) {
1255 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1256 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1257 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1258 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1259 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1260 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1262 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1263 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1264 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1265 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1266 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1267 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1270 set_seg(&sregs
.tr
, &env
->tr
);
1271 set_seg(&sregs
.ldt
, &env
->ldt
);
1273 sregs
.idt
.limit
= env
->idt
.limit
;
1274 sregs
.idt
.base
= env
->idt
.base
;
1275 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
1276 sregs
.gdt
.limit
= env
->gdt
.limit
;
1277 sregs
.gdt
.base
= env
->gdt
.base
;
1278 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
1280 sregs
.cr0
= env
->cr
[0];
1281 sregs
.cr2
= env
->cr
[2];
1282 sregs
.cr3
= env
->cr
[3];
1283 sregs
.cr4
= env
->cr
[4];
1285 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
1286 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
1288 sregs
.efer
= env
->efer
;
1290 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
1293 static void kvm_msr_entry_set(struct kvm_msr_entry
*entry
,
1294 uint32_t index
, uint64_t value
)
1296 entry
->index
= index
;
1297 entry
->reserved
= 0;
1298 entry
->data
= value
;
1301 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
1303 CPUX86State
*env
= &cpu
->env
;
1305 struct kvm_msrs info
;
1306 struct kvm_msr_entry entries
[1];
1308 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1310 if (!has_msr_tsc_deadline
) {
1314 kvm_msr_entry_set(&msrs
[0], MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
1316 msr_data
.info
= (struct kvm_msrs
) {
1320 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1324 * Provide a separate write service for the feature control MSR in order to
1325 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1326 * before writing any other state because forcibly leaving nested mode
1327 * invalidates the VCPU state.
1329 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
1332 struct kvm_msrs info
;
1333 struct kvm_msr_entry entry
;
1336 kvm_msr_entry_set(&msr_data
.entry
, MSR_IA32_FEATURE_CONTROL
,
1337 cpu
->env
.msr_ia32_feature_control
);
1339 msr_data
.info
= (struct kvm_msrs
) {
1343 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1346 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
1348 CPUX86State
*env
= &cpu
->env
;
1350 struct kvm_msrs info
;
1351 struct kvm_msr_entry entries
[150];
1353 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1356 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
1357 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
1358 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
1359 kvm_msr_entry_set(&msrs
[n
++], MSR_PAT
, env
->pat
);
1361 kvm_msr_entry_set(&msrs
[n
++], MSR_STAR
, env
->star
);
1363 if (has_msr_hsave_pa
) {
1364 kvm_msr_entry_set(&msrs
[n
++], MSR_VM_HSAVE_PA
, env
->vm_hsave
);
1366 if (has_msr_tsc_aux
) {
1367 kvm_msr_entry_set(&msrs
[n
++], MSR_TSC_AUX
, env
->tsc_aux
);
1369 if (has_msr_tsc_adjust
) {
1370 kvm_msr_entry_set(&msrs
[n
++], MSR_TSC_ADJUST
, env
->tsc_adjust
);
1372 if (has_msr_misc_enable
) {
1373 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_MISC_ENABLE
,
1374 env
->msr_ia32_misc_enable
);
1376 if (has_msr_smbase
) {
1377 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SMBASE
, env
->smbase
);
1379 if (has_msr_bndcfgs
) {
1380 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
1383 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_XSS
, env
->xss
);
1385 #ifdef TARGET_X86_64
1386 if (lm_capable_kernel
) {
1387 kvm_msr_entry_set(&msrs
[n
++], MSR_CSTAR
, env
->cstar
);
1388 kvm_msr_entry_set(&msrs
[n
++], MSR_KERNELGSBASE
, env
->kernelgsbase
);
1389 kvm_msr_entry_set(&msrs
[n
++], MSR_FMASK
, env
->fmask
);
1390 kvm_msr_entry_set(&msrs
[n
++], MSR_LSTAR
, env
->lstar
);
1394 * The following MSRs have side effects on the guest or are too heavy
1395 * for normal writeback. Limit them to reset or full state updates.
1397 if (level
>= KVM_PUT_RESET_STATE
) {
1398 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_TSC
, env
->tsc
);
1399 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_SYSTEM_TIME
,
1400 env
->system_time_msr
);
1401 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
1402 if (has_msr_async_pf_en
) {
1403 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_ASYNC_PF_EN
,
1404 env
->async_pf_en_msr
);
1406 if (has_msr_pv_eoi_en
) {
1407 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_PV_EOI_EN
,
1408 env
->pv_eoi_en_msr
);
1410 if (has_msr_kvm_steal_time
) {
1411 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_STEAL_TIME
,
1412 env
->steal_time_msr
);
1414 if (has_msr_architectural_pmu
) {
1415 /* Stop the counter. */
1416 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
1417 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1419 /* Set the counter values. */
1420 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1421 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR0
+ i
,
1422 env
->msr_fixed_counters
[i
]);
1424 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1425 kvm_msr_entry_set(&msrs
[n
++], MSR_P6_PERFCTR0
+ i
,
1426 env
->msr_gp_counters
[i
]);
1427 kvm_msr_entry_set(&msrs
[n
++], MSR_P6_EVNTSEL0
+ i
,
1428 env
->msr_gp_evtsel
[i
]);
1430 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_STATUS
,
1431 env
->msr_global_status
);
1432 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
1433 env
->msr_global_ovf_ctrl
);
1435 /* Now start the PMU. */
1436 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR_CTRL
,
1437 env
->msr_fixed_ctr_ctrl
);
1438 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_CTRL
,
1439 env
->msr_global_ctrl
);
1441 if (has_msr_hv_hypercall
) {
1442 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_GUEST_OS_ID
,
1443 env
->msr_hv_guest_os_id
);
1444 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_HYPERCALL
,
1445 env
->msr_hv_hypercall
);
1447 if (has_msr_hv_vapic
) {
1448 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_APIC_ASSIST_PAGE
,
1451 if (has_msr_hv_tsc
) {
1452 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_REFERENCE_TSC
,
1455 if (has_msr_hv_crash
) {
1458 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++)
1459 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_CRASH_P0
+ j
,
1460 env
->msr_hv_crash_params
[j
]);
1462 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_CRASH_CTL
,
1463 HV_X64_MSR_CRASH_CTL_NOTIFY
);
1465 if (has_msr_hv_runtime
) {
1466 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_VP_RUNTIME
,
1467 env
->msr_hv_runtime
);
1470 kvm_msr_entry_set(&msrs
[n
++], MSR_MTRRdefType
, env
->mtrr_deftype
);
1471 kvm_msr_entry_set(&msrs
[n
++],
1472 MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
1473 kvm_msr_entry_set(&msrs
[n
++],
1474 MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
1475 kvm_msr_entry_set(&msrs
[n
++],
1476 MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
1477 kvm_msr_entry_set(&msrs
[n
++],
1478 MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
1479 kvm_msr_entry_set(&msrs
[n
++],
1480 MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
1481 kvm_msr_entry_set(&msrs
[n
++],
1482 MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
1483 kvm_msr_entry_set(&msrs
[n
++],
1484 MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
1485 kvm_msr_entry_set(&msrs
[n
++],
1486 MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
1487 kvm_msr_entry_set(&msrs
[n
++],
1488 MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
1489 kvm_msr_entry_set(&msrs
[n
++],
1490 MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
1491 kvm_msr_entry_set(&msrs
[n
++],
1492 MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
1493 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1494 kvm_msr_entry_set(&msrs
[n
++],
1495 MSR_MTRRphysBase(i
), env
->mtrr_var
[i
].base
);
1496 kvm_msr_entry_set(&msrs
[n
++],
1497 MSR_MTRRphysMask(i
), env
->mtrr_var
[i
].mask
);
1501 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1502 * kvm_put_msr_feature_control. */
1507 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_STATUS
, env
->mcg_status
);
1508 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_CTL
, env
->mcg_ctl
);
1509 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1510 kvm_msr_entry_set(&msrs
[n
++], MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
1514 msr_data
.info
= (struct kvm_msrs
) {
1518 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1523 static int kvm_get_fpu(X86CPU
*cpu
)
1525 CPUX86State
*env
= &cpu
->env
;
1529 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
1534 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
1535 env
->fpus
= fpu
.fsw
;
1536 env
->fpuc
= fpu
.fcw
;
1537 env
->fpop
= fpu
.last_opcode
;
1538 env
->fpip
= fpu
.last_ip
;
1539 env
->fpdp
= fpu
.last_dp
;
1540 for (i
= 0; i
< 8; ++i
) {
1541 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
1543 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
1544 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1545 env
->xmm_regs
[i
].XMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
1546 env
->xmm_regs
[i
].XMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
1548 env
->mxcsr
= fpu
.mxcsr
;
1553 static int kvm_get_xsave(X86CPU
*cpu
)
1555 CPUX86State
*env
= &cpu
->env
;
1556 struct kvm_xsave
* xsave
= env
->kvm_xsave_buf
;
1558 const uint8_t *xmm
, *ymmh
, *zmmh
;
1559 uint16_t cwd
, swd
, twd
;
1562 return kvm_get_fpu(cpu
);
1565 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
1570 cwd
= (uint16_t)xsave
->region
[XSAVE_FCW_FSW
];
1571 swd
= (uint16_t)(xsave
->region
[XSAVE_FCW_FSW
] >> 16);
1572 twd
= (uint16_t)xsave
->region
[XSAVE_FTW_FOP
];
1573 env
->fpop
= (uint16_t)(xsave
->region
[XSAVE_FTW_FOP
] >> 16);
1574 env
->fpstt
= (swd
>> 11) & 7;
1577 for (i
= 0; i
< 8; ++i
) {
1578 env
->fptags
[i
] = !((twd
>> i
) & 1);
1580 memcpy(&env
->fpip
, &xsave
->region
[XSAVE_CWD_RIP
], sizeof(env
->fpip
));
1581 memcpy(&env
->fpdp
, &xsave
->region
[XSAVE_CWD_RDP
], sizeof(env
->fpdp
));
1582 env
->mxcsr
= xsave
->region
[XSAVE_MXCSR
];
1583 memcpy(env
->fpregs
, &xsave
->region
[XSAVE_ST_SPACE
],
1584 sizeof env
->fpregs
);
1585 env
->xstate_bv
= *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
];
1586 memcpy(env
->bnd_regs
, &xsave
->region
[XSAVE_BNDREGS
],
1587 sizeof env
->bnd_regs
);
1588 memcpy(&env
->bndcs_regs
, &xsave
->region
[XSAVE_BNDCSR
],
1589 sizeof(env
->bndcs_regs
));
1590 memcpy(env
->opmask_regs
, &xsave
->region
[XSAVE_OPMASK
],
1591 sizeof env
->opmask_regs
);
1593 xmm
= (const uint8_t *)&xsave
->region
[XSAVE_XMM_SPACE
];
1594 ymmh
= (const uint8_t *)&xsave
->region
[XSAVE_YMMH_SPACE
];
1595 zmmh
= (const uint8_t *)&xsave
->region
[XSAVE_ZMM_Hi256
];
1596 for (i
= 0; i
< CPU_NB_REGS
; i
++, xmm
+= 16, ymmh
+= 16, zmmh
+= 32) {
1597 env
->xmm_regs
[i
].XMM_Q(0) = ldq_p(xmm
);
1598 env
->xmm_regs
[i
].XMM_Q(1) = ldq_p(xmm
+8);
1599 env
->xmm_regs
[i
].XMM_Q(2) = ldq_p(ymmh
);
1600 env
->xmm_regs
[i
].XMM_Q(3) = ldq_p(ymmh
+8);
1601 env
->xmm_regs
[i
].XMM_Q(4) = ldq_p(zmmh
);
1602 env
->xmm_regs
[i
].XMM_Q(5) = ldq_p(zmmh
+8);
1603 env
->xmm_regs
[i
].XMM_Q(6) = ldq_p(zmmh
+16);
1604 env
->xmm_regs
[i
].XMM_Q(7) = ldq_p(zmmh
+24);
1607 #ifdef TARGET_X86_64
1608 memcpy(&env
->xmm_regs
[16], &xsave
->region
[XSAVE_Hi16_ZMM
],
1609 16 * sizeof env
->xmm_regs
[16]);
1614 static int kvm_get_xcrs(X86CPU
*cpu
)
1616 CPUX86State
*env
= &cpu
->env
;
1618 struct kvm_xcrs xcrs
;
1624 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
1629 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
1630 /* Only support xcr0 now */
1631 if (xcrs
.xcrs
[i
].xcr
== 0) {
1632 env
->xcr0
= xcrs
.xcrs
[i
].value
;
1639 static int kvm_get_sregs(X86CPU
*cpu
)
1641 CPUX86State
*env
= &cpu
->env
;
1642 struct kvm_sregs sregs
;
1646 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1651 /* There can only be one pending IRQ set in the bitmap at a time, so try
1652 to find it and save its number instead (-1 for none). */
1653 env
->interrupt_injected
= -1;
1654 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
1655 if (sregs
.interrupt_bitmap
[i
]) {
1656 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
1657 env
->interrupt_injected
= i
* 64 + bit
;
1662 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
1663 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
1664 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
1665 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
1666 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
1667 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
1669 get_seg(&env
->tr
, &sregs
.tr
);
1670 get_seg(&env
->ldt
, &sregs
.ldt
);
1672 env
->idt
.limit
= sregs
.idt
.limit
;
1673 env
->idt
.base
= sregs
.idt
.base
;
1674 env
->gdt
.limit
= sregs
.gdt
.limit
;
1675 env
->gdt
.base
= sregs
.gdt
.base
;
1677 env
->cr
[0] = sregs
.cr0
;
1678 env
->cr
[2] = sregs
.cr2
;
1679 env
->cr
[3] = sregs
.cr3
;
1680 env
->cr
[4] = sregs
.cr4
;
1682 env
->efer
= sregs
.efer
;
1684 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1686 #define HFLAG_COPY_MASK \
1687 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1688 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1689 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1690 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1692 hflags
= (env
->segs
[R_SS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
1693 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
1694 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
1695 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
1696 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
1697 hflags
|= (env
->cr
[4] & CR4_OSFXSR_MASK
) <<
1698 (HF_OSFXSR_SHIFT
- CR4_OSFXSR_SHIFT
);
1700 if (env
->efer
& MSR_EFER_LMA
) {
1701 hflags
|= HF_LMA_MASK
;
1704 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
1705 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
1707 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
1708 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
1709 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
1710 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
1711 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
1712 !(hflags
& HF_CS32_MASK
)) {
1713 hflags
|= HF_ADDSEG_MASK
;
1715 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
1716 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
1719 env
->hflags
= (env
->hflags
& HFLAG_COPY_MASK
) | hflags
;
1724 static int kvm_get_msrs(X86CPU
*cpu
)
1726 CPUX86State
*env
= &cpu
->env
;
1728 struct kvm_msrs info
;
1729 struct kvm_msr_entry entries
[150];
1731 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1735 msrs
[n
++].index
= MSR_IA32_SYSENTER_CS
;
1736 msrs
[n
++].index
= MSR_IA32_SYSENTER_ESP
;
1737 msrs
[n
++].index
= MSR_IA32_SYSENTER_EIP
;
1738 msrs
[n
++].index
= MSR_PAT
;
1740 msrs
[n
++].index
= MSR_STAR
;
1742 if (has_msr_hsave_pa
) {
1743 msrs
[n
++].index
= MSR_VM_HSAVE_PA
;
1745 if (has_msr_tsc_aux
) {
1746 msrs
[n
++].index
= MSR_TSC_AUX
;
1748 if (has_msr_tsc_adjust
) {
1749 msrs
[n
++].index
= MSR_TSC_ADJUST
;
1751 if (has_msr_tsc_deadline
) {
1752 msrs
[n
++].index
= MSR_IA32_TSCDEADLINE
;
1754 if (has_msr_misc_enable
) {
1755 msrs
[n
++].index
= MSR_IA32_MISC_ENABLE
;
1757 if (has_msr_smbase
) {
1758 msrs
[n
++].index
= MSR_IA32_SMBASE
;
1760 if (has_msr_feature_control
) {
1761 msrs
[n
++].index
= MSR_IA32_FEATURE_CONTROL
;
1763 if (has_msr_bndcfgs
) {
1764 msrs
[n
++].index
= MSR_IA32_BNDCFGS
;
1767 msrs
[n
++].index
= MSR_IA32_XSS
;
1771 if (!env
->tsc_valid
) {
1772 msrs
[n
++].index
= MSR_IA32_TSC
;
1773 env
->tsc_valid
= !runstate_is_running();
1776 #ifdef TARGET_X86_64
1777 if (lm_capable_kernel
) {
1778 msrs
[n
++].index
= MSR_CSTAR
;
1779 msrs
[n
++].index
= MSR_KERNELGSBASE
;
1780 msrs
[n
++].index
= MSR_FMASK
;
1781 msrs
[n
++].index
= MSR_LSTAR
;
1784 msrs
[n
++].index
= MSR_KVM_SYSTEM_TIME
;
1785 msrs
[n
++].index
= MSR_KVM_WALL_CLOCK
;
1786 if (has_msr_async_pf_en
) {
1787 msrs
[n
++].index
= MSR_KVM_ASYNC_PF_EN
;
1789 if (has_msr_pv_eoi_en
) {
1790 msrs
[n
++].index
= MSR_KVM_PV_EOI_EN
;
1792 if (has_msr_kvm_steal_time
) {
1793 msrs
[n
++].index
= MSR_KVM_STEAL_TIME
;
1795 if (has_msr_architectural_pmu
) {
1796 msrs
[n
++].index
= MSR_CORE_PERF_FIXED_CTR_CTRL
;
1797 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_CTRL
;
1798 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_STATUS
;
1799 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_OVF_CTRL
;
1800 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1801 msrs
[n
++].index
= MSR_CORE_PERF_FIXED_CTR0
+ i
;
1803 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1804 msrs
[n
++].index
= MSR_P6_PERFCTR0
+ i
;
1805 msrs
[n
++].index
= MSR_P6_EVNTSEL0
+ i
;
1810 msrs
[n
++].index
= MSR_MCG_STATUS
;
1811 msrs
[n
++].index
= MSR_MCG_CTL
;
1812 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1813 msrs
[n
++].index
= MSR_MC0_CTL
+ i
;
1817 if (has_msr_hv_hypercall
) {
1818 msrs
[n
++].index
= HV_X64_MSR_HYPERCALL
;
1819 msrs
[n
++].index
= HV_X64_MSR_GUEST_OS_ID
;
1821 if (has_msr_hv_vapic
) {
1822 msrs
[n
++].index
= HV_X64_MSR_APIC_ASSIST_PAGE
;
1824 if (has_msr_hv_tsc
) {
1825 msrs
[n
++].index
= HV_X64_MSR_REFERENCE_TSC
;
1827 if (has_msr_hv_crash
) {
1830 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++) {
1831 msrs
[n
++].index
= HV_X64_MSR_CRASH_P0
+ j
;
1834 if (has_msr_hv_runtime
) {
1835 msrs
[n
++].index
= HV_X64_MSR_VP_RUNTIME
;
1838 msrs
[n
++].index
= MSR_MTRRdefType
;
1839 msrs
[n
++].index
= MSR_MTRRfix64K_00000
;
1840 msrs
[n
++].index
= MSR_MTRRfix16K_80000
;
1841 msrs
[n
++].index
= MSR_MTRRfix16K_A0000
;
1842 msrs
[n
++].index
= MSR_MTRRfix4K_C0000
;
1843 msrs
[n
++].index
= MSR_MTRRfix4K_C8000
;
1844 msrs
[n
++].index
= MSR_MTRRfix4K_D0000
;
1845 msrs
[n
++].index
= MSR_MTRRfix4K_D8000
;
1846 msrs
[n
++].index
= MSR_MTRRfix4K_E0000
;
1847 msrs
[n
++].index
= MSR_MTRRfix4K_E8000
;
1848 msrs
[n
++].index
= MSR_MTRRfix4K_F0000
;
1849 msrs
[n
++].index
= MSR_MTRRfix4K_F8000
;
1850 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1851 msrs
[n
++].index
= MSR_MTRRphysBase(i
);
1852 msrs
[n
++].index
= MSR_MTRRphysMask(i
);
1856 msr_data
.info
= (struct kvm_msrs
) {
1860 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
1865 for (i
= 0; i
< ret
; i
++) {
1866 uint32_t index
= msrs
[i
].index
;
1868 case MSR_IA32_SYSENTER_CS
:
1869 env
->sysenter_cs
= msrs
[i
].data
;
1871 case MSR_IA32_SYSENTER_ESP
:
1872 env
->sysenter_esp
= msrs
[i
].data
;
1874 case MSR_IA32_SYSENTER_EIP
:
1875 env
->sysenter_eip
= msrs
[i
].data
;
1878 env
->pat
= msrs
[i
].data
;
1881 env
->star
= msrs
[i
].data
;
1883 #ifdef TARGET_X86_64
1885 env
->cstar
= msrs
[i
].data
;
1887 case MSR_KERNELGSBASE
:
1888 env
->kernelgsbase
= msrs
[i
].data
;
1891 env
->fmask
= msrs
[i
].data
;
1894 env
->lstar
= msrs
[i
].data
;
1898 env
->tsc
= msrs
[i
].data
;
1901 env
->tsc_aux
= msrs
[i
].data
;
1903 case MSR_TSC_ADJUST
:
1904 env
->tsc_adjust
= msrs
[i
].data
;
1906 case MSR_IA32_TSCDEADLINE
:
1907 env
->tsc_deadline
= msrs
[i
].data
;
1909 case MSR_VM_HSAVE_PA
:
1910 env
->vm_hsave
= msrs
[i
].data
;
1912 case MSR_KVM_SYSTEM_TIME
:
1913 env
->system_time_msr
= msrs
[i
].data
;
1915 case MSR_KVM_WALL_CLOCK
:
1916 env
->wall_clock_msr
= msrs
[i
].data
;
1918 case MSR_MCG_STATUS
:
1919 env
->mcg_status
= msrs
[i
].data
;
1922 env
->mcg_ctl
= msrs
[i
].data
;
1924 case MSR_IA32_MISC_ENABLE
:
1925 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
1927 case MSR_IA32_SMBASE
:
1928 env
->smbase
= msrs
[i
].data
;
1930 case MSR_IA32_FEATURE_CONTROL
:
1931 env
->msr_ia32_feature_control
= msrs
[i
].data
;
1933 case MSR_IA32_BNDCFGS
:
1934 env
->msr_bndcfgs
= msrs
[i
].data
;
1937 env
->xss
= msrs
[i
].data
;
1940 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
1941 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
1942 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
1945 case MSR_KVM_ASYNC_PF_EN
:
1946 env
->async_pf_en_msr
= msrs
[i
].data
;
1948 case MSR_KVM_PV_EOI_EN
:
1949 env
->pv_eoi_en_msr
= msrs
[i
].data
;
1951 case MSR_KVM_STEAL_TIME
:
1952 env
->steal_time_msr
= msrs
[i
].data
;
1954 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
1955 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
1957 case MSR_CORE_PERF_GLOBAL_CTRL
:
1958 env
->msr_global_ctrl
= msrs
[i
].data
;
1960 case MSR_CORE_PERF_GLOBAL_STATUS
:
1961 env
->msr_global_status
= msrs
[i
].data
;
1963 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
1964 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
1966 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
1967 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
1969 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
1970 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
1972 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
1973 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
1975 case HV_X64_MSR_HYPERCALL
:
1976 env
->msr_hv_hypercall
= msrs
[i
].data
;
1978 case HV_X64_MSR_GUEST_OS_ID
:
1979 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
1981 case HV_X64_MSR_APIC_ASSIST_PAGE
:
1982 env
->msr_hv_vapic
= msrs
[i
].data
;
1984 case HV_X64_MSR_REFERENCE_TSC
:
1985 env
->msr_hv_tsc
= msrs
[i
].data
;
1987 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
1988 env
->msr_hv_crash_params
[index
- HV_X64_MSR_CRASH_P0
] = msrs
[i
].data
;
1990 case HV_X64_MSR_VP_RUNTIME
:
1991 env
->msr_hv_runtime
= msrs
[i
].data
;
1993 case MSR_MTRRdefType
:
1994 env
->mtrr_deftype
= msrs
[i
].data
;
1996 case MSR_MTRRfix64K_00000
:
1997 env
->mtrr_fixed
[0] = msrs
[i
].data
;
1999 case MSR_MTRRfix16K_80000
:
2000 env
->mtrr_fixed
[1] = msrs
[i
].data
;
2002 case MSR_MTRRfix16K_A0000
:
2003 env
->mtrr_fixed
[2] = msrs
[i
].data
;
2005 case MSR_MTRRfix4K_C0000
:
2006 env
->mtrr_fixed
[3] = msrs
[i
].data
;
2008 case MSR_MTRRfix4K_C8000
:
2009 env
->mtrr_fixed
[4] = msrs
[i
].data
;
2011 case MSR_MTRRfix4K_D0000
:
2012 env
->mtrr_fixed
[5] = msrs
[i
].data
;
2014 case MSR_MTRRfix4K_D8000
:
2015 env
->mtrr_fixed
[6] = msrs
[i
].data
;
2017 case MSR_MTRRfix4K_E0000
:
2018 env
->mtrr_fixed
[7] = msrs
[i
].data
;
2020 case MSR_MTRRfix4K_E8000
:
2021 env
->mtrr_fixed
[8] = msrs
[i
].data
;
2023 case MSR_MTRRfix4K_F0000
:
2024 env
->mtrr_fixed
[9] = msrs
[i
].data
;
2026 case MSR_MTRRfix4K_F8000
:
2027 env
->mtrr_fixed
[10] = msrs
[i
].data
;
2029 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
2031 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
;
2033 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
2042 static int kvm_put_mp_state(X86CPU
*cpu
)
2044 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
2046 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2049 static int kvm_get_mp_state(X86CPU
*cpu
)
2051 CPUState
*cs
= CPU(cpu
);
2052 CPUX86State
*env
= &cpu
->env
;
2053 struct kvm_mp_state mp_state
;
2056 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
2060 env
->mp_state
= mp_state
.mp_state
;
2061 if (kvm_irqchip_in_kernel()) {
2062 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
2067 static int kvm_get_apic(X86CPU
*cpu
)
2069 DeviceState
*apic
= cpu
->apic_state
;
2070 struct kvm_lapic_state kapic
;
2073 if (apic
&& kvm_irqchip_in_kernel()) {
2074 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
2079 kvm_get_apic_state(apic
, &kapic
);
2084 static int kvm_put_apic(X86CPU
*cpu
)
2086 DeviceState
*apic
= cpu
->apic_state
;
2087 struct kvm_lapic_state kapic
;
2089 if (apic
&& kvm_irqchip_in_kernel()) {
2090 kvm_put_apic_state(apic
, &kapic
);
2092 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_LAPIC
, &kapic
);
2097 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
2099 CPUState
*cs
= CPU(cpu
);
2100 CPUX86State
*env
= &cpu
->env
;
2101 struct kvm_vcpu_events events
= {};
2103 if (!kvm_has_vcpu_events()) {
2107 events
.exception
.injected
= (env
->exception_injected
>= 0);
2108 events
.exception
.nr
= env
->exception_injected
;
2109 events
.exception
.has_error_code
= env
->has_error_code
;
2110 events
.exception
.error_code
= env
->error_code
;
2111 events
.exception
.pad
= 0;
2113 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
2114 events
.interrupt
.nr
= env
->interrupt_injected
;
2115 events
.interrupt
.soft
= env
->soft_interrupt
;
2117 events
.nmi
.injected
= env
->nmi_injected
;
2118 events
.nmi
.pending
= env
->nmi_pending
;
2119 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
2122 events
.sipi_vector
= env
->sipi_vector
;
2124 if (has_msr_smbase
) {
2125 events
.smi
.smm
= !!(env
->hflags
& HF_SMM_MASK
);
2126 events
.smi
.smm_inside_nmi
= !!(env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
);
2127 if (kvm_irqchip_in_kernel()) {
2128 /* As soon as these are moved to the kernel, remove them
2129 * from cs->interrupt_request.
2131 events
.smi
.pending
= cs
->interrupt_request
& CPU_INTERRUPT_SMI
;
2132 events
.smi
.latched_init
= cs
->interrupt_request
& CPU_INTERRUPT_INIT
;
2133 cs
->interrupt_request
&= ~(CPU_INTERRUPT_INIT
| CPU_INTERRUPT_SMI
);
2135 /* Keep these in cs->interrupt_request. */
2136 events
.smi
.pending
= 0;
2137 events
.smi
.latched_init
= 0;
2139 events
.flags
|= KVM_VCPUEVENT_VALID_SMM
;
2143 if (level
>= KVM_PUT_RESET_STATE
) {
2145 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
2148 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
2151 static int kvm_get_vcpu_events(X86CPU
*cpu
)
2153 CPUX86State
*env
= &cpu
->env
;
2154 struct kvm_vcpu_events events
;
2157 if (!kvm_has_vcpu_events()) {
2161 memset(&events
, 0, sizeof(events
));
2162 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
2166 env
->exception_injected
=
2167 events
.exception
.injected
? events
.exception
.nr
: -1;
2168 env
->has_error_code
= events
.exception
.has_error_code
;
2169 env
->error_code
= events
.exception
.error_code
;
2171 env
->interrupt_injected
=
2172 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
2173 env
->soft_interrupt
= events
.interrupt
.soft
;
2175 env
->nmi_injected
= events
.nmi
.injected
;
2176 env
->nmi_pending
= events
.nmi
.pending
;
2177 if (events
.nmi
.masked
) {
2178 env
->hflags2
|= HF2_NMI_MASK
;
2180 env
->hflags2
&= ~HF2_NMI_MASK
;
2183 if (events
.flags
& KVM_VCPUEVENT_VALID_SMM
) {
2184 if (events
.smi
.smm
) {
2185 env
->hflags
|= HF_SMM_MASK
;
2187 env
->hflags
&= ~HF_SMM_MASK
;
2189 if (events
.smi
.pending
) {
2190 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2192 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2194 if (events
.smi
.smm_inside_nmi
) {
2195 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
2197 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
2199 if (events
.smi
.latched_init
) {
2200 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2202 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2206 env
->sipi_vector
= events
.sipi_vector
;
2211 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
2213 CPUState
*cs
= CPU(cpu
);
2214 CPUX86State
*env
= &cpu
->env
;
2216 unsigned long reinject_trap
= 0;
2218 if (!kvm_has_vcpu_events()) {
2219 if (env
->exception_injected
== 1) {
2220 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
2221 } else if (env
->exception_injected
== 3) {
2222 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
2224 env
->exception_injected
= -1;
2228 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2229 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2230 * by updating the debug state once again if single-stepping is on.
2231 * Another reason to call kvm_update_guest_debug here is a pending debug
2232 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2233 * reinject them via SET_GUEST_DEBUG.
2235 if (reinject_trap
||
2236 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
2237 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
2242 static int kvm_put_debugregs(X86CPU
*cpu
)
2244 CPUX86State
*env
= &cpu
->env
;
2245 struct kvm_debugregs dbgregs
;
2248 if (!kvm_has_debugregs()) {
2252 for (i
= 0; i
< 4; i
++) {
2253 dbgregs
.db
[i
] = env
->dr
[i
];
2255 dbgregs
.dr6
= env
->dr
[6];
2256 dbgregs
.dr7
= env
->dr
[7];
2259 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
2262 static int kvm_get_debugregs(X86CPU
*cpu
)
2264 CPUX86State
*env
= &cpu
->env
;
2265 struct kvm_debugregs dbgregs
;
2268 if (!kvm_has_debugregs()) {
2272 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
2276 for (i
= 0; i
< 4; i
++) {
2277 env
->dr
[i
] = dbgregs
.db
[i
];
2279 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
2280 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
2285 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
2287 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2290 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
2292 if (level
>= KVM_PUT_RESET_STATE
&& has_msr_feature_control
) {
2293 ret
= kvm_put_msr_feature_control(x86_cpu
);
2299 ret
= kvm_getput_regs(x86_cpu
, 1);
2303 ret
= kvm_put_xsave(x86_cpu
);
2307 ret
= kvm_put_xcrs(x86_cpu
);
2311 ret
= kvm_put_sregs(x86_cpu
);
2315 /* must be before kvm_put_msrs */
2316 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
2320 ret
= kvm_put_msrs(x86_cpu
, level
);
2324 if (level
>= KVM_PUT_RESET_STATE
) {
2325 ret
= kvm_put_mp_state(x86_cpu
);
2329 ret
= kvm_put_apic(x86_cpu
);
2335 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
2340 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
2344 ret
= kvm_put_debugregs(x86_cpu
);
2349 ret
= kvm_guest_debug_workarounds(x86_cpu
);
2356 int kvm_arch_get_registers(CPUState
*cs
)
2358 X86CPU
*cpu
= X86_CPU(cs
);
2361 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
2363 ret
= kvm_getput_regs(cpu
, 0);
2367 ret
= kvm_get_xsave(cpu
);
2371 ret
= kvm_get_xcrs(cpu
);
2375 ret
= kvm_get_sregs(cpu
);
2379 ret
= kvm_get_msrs(cpu
);
2383 ret
= kvm_get_mp_state(cpu
);
2387 ret
= kvm_get_apic(cpu
);
2391 ret
= kvm_get_vcpu_events(cpu
);
2395 ret
= kvm_get_debugregs(cpu
);
2402 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
2404 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2405 CPUX86State
*env
= &x86_cpu
->env
;
2409 if (cpu
->interrupt_request
& (CPU_INTERRUPT_NMI
| CPU_INTERRUPT_SMI
)) {
2410 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
2411 qemu_mutex_lock_iothread();
2412 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
2413 qemu_mutex_unlock_iothread();
2414 DPRINTF("injected NMI\n");
2415 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
2417 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
2421 if (cpu
->interrupt_request
& CPU_INTERRUPT_SMI
) {
2422 qemu_mutex_lock_iothread();
2423 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
2424 qemu_mutex_unlock_iothread();
2425 DPRINTF("injected SMI\n");
2426 ret
= kvm_vcpu_ioctl(cpu
, KVM_SMI
);
2428 fprintf(stderr
, "KVM: injection failed, SMI lost (%s)\n",
2434 if (!kvm_irqchip_in_kernel()) {
2435 qemu_mutex_lock_iothread();
2438 /* Force the VCPU out of its inner loop to process any INIT requests
2439 * or (for userspace APIC, but it is cheap to combine the checks here)
2440 * pending TPR access reports.
2442 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
2443 if ((cpu
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2444 !(env
->hflags
& HF_SMM_MASK
)) {
2445 cpu
->exit_request
= 1;
2447 if (cpu
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2448 cpu
->exit_request
= 1;
2452 if (!kvm_irqchip_in_kernel()) {
2453 /* Try to inject an interrupt if the guest can accept it */
2454 if (run
->ready_for_interrupt_injection
&&
2455 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2456 (env
->eflags
& IF_MASK
)) {
2459 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
2460 irq
= cpu_get_pic_interrupt(env
);
2462 struct kvm_interrupt intr
;
2465 DPRINTF("injected interrupt %d\n", irq
);
2466 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
2469 "KVM: injection failed, interrupt lost (%s)\n",
2475 /* If we have an interrupt but the guest is not ready to receive an
2476 * interrupt, request an interrupt window exit. This will
2477 * cause a return to userspace as soon as the guest is ready to
2478 * receive interrupts. */
2479 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
2480 run
->request_interrupt_window
= 1;
2482 run
->request_interrupt_window
= 0;
2485 DPRINTF("setting tpr\n");
2486 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
2488 qemu_mutex_unlock_iothread();
2492 MemTxAttrs
kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
2494 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2495 CPUX86State
*env
= &x86_cpu
->env
;
2497 if (run
->flags
& KVM_RUN_X86_SMM
) {
2498 env
->hflags
|= HF_SMM_MASK
;
2500 env
->hflags
&= HF_SMM_MASK
;
2503 env
->eflags
|= IF_MASK
;
2505 env
->eflags
&= ~IF_MASK
;
2508 /* We need to protect the apic state against concurrent accesses from
2509 * different threads in case the userspace irqchip is used. */
2510 if (!kvm_irqchip_in_kernel()) {
2511 qemu_mutex_lock_iothread();
2513 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
2514 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
2515 if (!kvm_irqchip_in_kernel()) {
2516 qemu_mutex_unlock_iothread();
2518 return cpu_get_mem_attrs(env
);
2521 int kvm_arch_process_async_events(CPUState
*cs
)
2523 X86CPU
*cpu
= X86_CPU(cs
);
2524 CPUX86State
*env
= &cpu
->env
;
2526 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
2527 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2528 assert(env
->mcg_cap
);
2530 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
2532 kvm_cpu_synchronize_state(cs
);
2534 if (env
->exception_injected
== EXCP08_DBLE
) {
2535 /* this means triple fault */
2536 qemu_system_reset_request();
2537 cs
->exit_request
= 1;
2540 env
->exception_injected
= EXCP12_MCHK
;
2541 env
->has_error_code
= 0;
2544 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
2545 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
2549 if ((cs
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2550 !(env
->hflags
& HF_SMM_MASK
)) {
2551 kvm_cpu_synchronize_state(cs
);
2555 if (kvm_irqchip_in_kernel()) {
2559 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
2560 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
2561 apic_poll_irq(cpu
->apic_state
);
2563 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2564 (env
->eflags
& IF_MASK
)) ||
2565 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2568 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
2569 kvm_cpu_synchronize_state(cs
);
2572 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2573 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
2574 kvm_cpu_synchronize_state(cs
);
2575 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
2576 env
->tpr_access_type
);
2582 static int kvm_handle_halt(X86CPU
*cpu
)
2584 CPUState
*cs
= CPU(cpu
);
2585 CPUX86State
*env
= &cpu
->env
;
2587 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2588 (env
->eflags
& IF_MASK
)) &&
2589 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2597 static int kvm_handle_tpr_access(X86CPU
*cpu
)
2599 CPUState
*cs
= CPU(cpu
);
2600 struct kvm_run
*run
= cs
->kvm_run
;
2602 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
2603 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
2608 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2610 static const uint8_t int3
= 0xcc;
2612 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
2613 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
2619 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2623 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
2624 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
2636 static int nb_hw_breakpoint
;
2638 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
2642 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
2643 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
2644 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
2651 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
2652 target_ulong len
, int type
)
2655 case GDB_BREAKPOINT_HW
:
2658 case GDB_WATCHPOINT_WRITE
:
2659 case GDB_WATCHPOINT_ACCESS
:
2666 if (addr
& (len
- 1)) {
2678 if (nb_hw_breakpoint
== 4) {
2681 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
2684 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
2685 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
2686 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
2692 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
2693 target_ulong len
, int type
)
2697 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
2702 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
2707 void kvm_arch_remove_all_hw_breakpoints(void)
2709 nb_hw_breakpoint
= 0;
2712 static CPUWatchpoint hw_watchpoint
;
2714 static int kvm_handle_debug(X86CPU
*cpu
,
2715 struct kvm_debug_exit_arch
*arch_info
)
2717 CPUState
*cs
= CPU(cpu
);
2718 CPUX86State
*env
= &cpu
->env
;
2722 if (arch_info
->exception
== 1) {
2723 if (arch_info
->dr6
& (1 << 14)) {
2724 if (cs
->singlestep_enabled
) {
2728 for (n
= 0; n
< 4; n
++) {
2729 if (arch_info
->dr6
& (1 << n
)) {
2730 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
2736 cs
->watchpoint_hit
= &hw_watchpoint
;
2737 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
2738 hw_watchpoint
.flags
= BP_MEM_WRITE
;
2742 cs
->watchpoint_hit
= &hw_watchpoint
;
2743 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
2744 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
2750 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
2754 cpu_synchronize_state(cs
);
2755 assert(env
->exception_injected
== -1);
2758 env
->exception_injected
= arch_info
->exception
;
2759 env
->has_error_code
= 0;
2765 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
2767 const uint8_t type_code
[] = {
2768 [GDB_BREAKPOINT_HW
] = 0x0,
2769 [GDB_WATCHPOINT_WRITE
] = 0x1,
2770 [GDB_WATCHPOINT_ACCESS
] = 0x3
2772 const uint8_t len_code
[] = {
2773 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2777 if (kvm_sw_breakpoints_active(cpu
)) {
2778 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
2780 if (nb_hw_breakpoint
> 0) {
2781 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
2782 dbg
->arch
.debugreg
[7] = 0x0600;
2783 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
2784 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
2785 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
2786 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
2787 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
2792 static bool host_supports_vmx(void)
2794 uint32_t ecx
, unused
;
2796 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
2797 return ecx
& CPUID_EXT_VMX
;
2800 #define VMX_INVALID_GUEST_STATE 0x80000021
2802 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
2804 X86CPU
*cpu
= X86_CPU(cs
);
2808 switch (run
->exit_reason
) {
2810 DPRINTF("handle_hlt\n");
2811 qemu_mutex_lock_iothread();
2812 ret
= kvm_handle_halt(cpu
);
2813 qemu_mutex_unlock_iothread();
2815 case KVM_EXIT_SET_TPR
:
2818 case KVM_EXIT_TPR_ACCESS
:
2819 qemu_mutex_lock_iothread();
2820 ret
= kvm_handle_tpr_access(cpu
);
2821 qemu_mutex_unlock_iothread();
2823 case KVM_EXIT_FAIL_ENTRY
:
2824 code
= run
->fail_entry
.hardware_entry_failure_reason
;
2825 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
2827 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
2829 "\nIf you're running a guest on an Intel machine without "
2830 "unrestricted mode\n"
2831 "support, the failure can be most likely due to the guest "
2832 "entering an invalid\n"
2833 "state for Intel VT. For example, the guest maybe running "
2834 "in big real mode\n"
2835 "which is not supported on less recent Intel processors."
2840 case KVM_EXIT_EXCEPTION
:
2841 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
2842 run
->ex
.exception
, run
->ex
.error_code
);
2845 case KVM_EXIT_DEBUG
:
2846 DPRINTF("kvm_exit_debug\n");
2847 qemu_mutex_lock_iothread();
2848 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
2849 qemu_mutex_unlock_iothread();
2852 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
2860 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
2862 X86CPU
*cpu
= X86_CPU(cs
);
2863 CPUX86State
*env
= &cpu
->env
;
2865 kvm_cpu_synchronize_state(cs
);
2866 return !(env
->cr
[0] & CR0_PE_MASK
) ||
2867 ((env
->segs
[R_CS
].selector
& 3) != 3);
2870 void kvm_arch_init_irq_routing(KVMState
*s
)
2872 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
2873 /* If kernel can't do irq routing, interrupt source
2874 * override 0->2 cannot be set up as required by HPET.
2875 * So we have to disable it.
2879 /* We know at this point that we're using the in-kernel
2880 * irqchip, so we can use irqfds, and on x86 we know
2881 * we can use msi via irqfd and GSI routing.
2883 kvm_msi_via_irqfd_allowed
= true;
2884 kvm_gsi_routing_allowed
= true;
2887 /* Classic KVM device assignment interface. Will remain x86 only. */
2888 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
2889 uint32_t flags
, uint32_t *dev_id
)
2891 struct kvm_assigned_pci_dev dev_data
= {
2892 .segnr
= dev_addr
->domain
,
2893 .busnr
= dev_addr
->bus
,
2894 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
2899 dev_data
.assigned_dev_id
=
2900 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
2902 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
2907 *dev_id
= dev_data
.assigned_dev_id
;
2912 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
2914 struct kvm_assigned_pci_dev dev_data
= {
2915 .assigned_dev_id
= dev_id
,
2918 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
2921 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
2922 uint32_t irq_type
, uint32_t guest_irq
)
2924 struct kvm_assigned_irq assigned_irq
= {
2925 .assigned_dev_id
= dev_id
,
2926 .guest_irq
= guest_irq
,
2930 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
2931 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
2933 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
2937 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
2940 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
2941 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
2943 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
2946 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
2948 struct kvm_assigned_pci_dev dev_data
= {
2949 .assigned_dev_id
= dev_id
,
2950 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
2953 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
2956 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
2959 struct kvm_assigned_irq assigned_irq
= {
2960 .assigned_dev_id
= dev_id
,
2964 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
2967 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
2969 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
2970 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
2973 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
2975 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
2976 KVM_DEV_IRQ_GUEST_MSI
, virq
);
2979 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
2981 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
2982 KVM_DEV_IRQ_HOST_MSI
);
2985 bool kvm_device_msix_supported(KVMState
*s
)
2987 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2988 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2989 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
2992 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
2993 uint32_t nr_vectors
)
2995 struct kvm_assigned_msix_nr msix_nr
= {
2996 .assigned_dev_id
= dev_id
,
2997 .entry_nr
= nr_vectors
,
3000 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
3003 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
3006 struct kvm_assigned_msix_entry msix_entry
= {
3007 .assigned_dev_id
= dev_id
,
3012 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
3015 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
3017 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
3018 KVM_DEV_IRQ_GUEST_MSIX
, 0);
3021 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
3023 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
3024 KVM_DEV_IRQ_HOST_MSIX
);
3027 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
3028 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
3033 int kvm_arch_msi_data_to_gsi(uint32_t data
)