virtio-pci: support queue reset
[qemu.git] / hw / arm / stellaris.c
bloba9e96c37f89d85381de274f8d57a31bd6902d661
1 /*
2 * Luminary Micro Stellaris peripherals
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/core/split-irq.h"
13 #include "hw/sysbus.h"
14 #include "hw/sd/sd.h"
15 #include "hw/ssi/ssi.h"
16 #include "hw/arm/boot.h"
17 #include "qemu/timer.h"
18 #include "hw/i2c/i2c.h"
19 #include "net/net.h"
20 #include "hw/boards.h"
21 #include "qemu/log.h"
22 #include "exec/address-spaces.h"
23 #include "sysemu/sysemu.h"
24 #include "hw/arm/armv7m.h"
25 #include "hw/char/pl011.h"
26 #include "hw/input/gamepad.h"
27 #include "hw/irq.h"
28 #include "hw/watchdog/cmsdk-apb-watchdog.h"
29 #include "migration/vmstate.h"
30 #include "hw/misc/unimp.h"
31 #include "hw/timer/stellaris-gptm.h"
32 #include "hw/qdev-clock.h"
33 #include "qom/object.h"
35 #define GPIO_A 0
36 #define GPIO_B 1
37 #define GPIO_C 2
38 #define GPIO_D 3
39 #define GPIO_E 4
40 #define GPIO_F 5
41 #define GPIO_G 6
43 #define BP_OLED_I2C 0x01
44 #define BP_OLED_SSI 0x02
45 #define BP_GAMEPAD 0x04
47 #define NUM_IRQ_LINES 64
49 typedef const struct {
50 const char *name;
51 uint32_t did0;
52 uint32_t did1;
53 uint32_t dc0;
54 uint32_t dc1;
55 uint32_t dc2;
56 uint32_t dc3;
57 uint32_t dc4;
58 uint32_t peripherals;
59 } stellaris_board_info;
61 /* System controller. */
63 #define TYPE_STELLARIS_SYS "stellaris-sys"
64 OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
66 struct ssys_state {
67 SysBusDevice parent_obj;
69 MemoryRegion iomem;
70 uint32_t pborctl;
71 uint32_t ldopctl;
72 uint32_t int_status;
73 uint32_t int_mask;
74 uint32_t resc;
75 uint32_t rcc;
76 uint32_t rcc2;
77 uint32_t rcgc[3];
78 uint32_t scgc[3];
79 uint32_t dcgc[3];
80 uint32_t clkvclr;
81 uint32_t ldoarst;
82 qemu_irq irq;
83 Clock *sysclk;
84 /* Properties (all read-only registers) */
85 uint32_t user0;
86 uint32_t user1;
87 uint32_t did0;
88 uint32_t did1;
89 uint32_t dc0;
90 uint32_t dc1;
91 uint32_t dc2;
92 uint32_t dc3;
93 uint32_t dc4;
96 static void ssys_update(ssys_state *s)
98 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
101 static uint32_t pllcfg_sandstorm[16] = {
102 0x31c0, /* 1 Mhz */
103 0x1ae0, /* 1.8432 Mhz */
104 0x18c0, /* 2 Mhz */
105 0xd573, /* 2.4576 Mhz */
106 0x37a6, /* 3.57954 Mhz */
107 0x1ae2, /* 3.6864 Mhz */
108 0x0c40, /* 4 Mhz */
109 0x98bc, /* 4.906 Mhz */
110 0x935b, /* 4.9152 Mhz */
111 0x09c0, /* 5 Mhz */
112 0x4dee, /* 5.12 Mhz */
113 0x0c41, /* 6 Mhz */
114 0x75db, /* 6.144 Mhz */
115 0x1ae6, /* 7.3728 Mhz */
116 0x0600, /* 8 Mhz */
117 0x585b /* 8.192 Mhz */
120 static uint32_t pllcfg_fury[16] = {
121 0x3200, /* 1 Mhz */
122 0x1b20, /* 1.8432 Mhz */
123 0x1900, /* 2 Mhz */
124 0xf42b, /* 2.4576 Mhz */
125 0x37e3, /* 3.57954 Mhz */
126 0x1b21, /* 3.6864 Mhz */
127 0x0c80, /* 4 Mhz */
128 0x98ee, /* 4.906 Mhz */
129 0xd5b4, /* 4.9152 Mhz */
130 0x0a00, /* 5 Mhz */
131 0x4e27, /* 5.12 Mhz */
132 0x1902, /* 6 Mhz */
133 0xec1c, /* 6.144 Mhz */
134 0x1b23, /* 7.3728 Mhz */
135 0x0640, /* 8 Mhz */
136 0xb11c /* 8.192 Mhz */
139 #define DID0_VER_MASK 0x70000000
140 #define DID0_VER_0 0x00000000
141 #define DID0_VER_1 0x10000000
143 #define DID0_CLASS_MASK 0x00FF0000
144 #define DID0_CLASS_SANDSTORM 0x00000000
145 #define DID0_CLASS_FURY 0x00010000
147 static int ssys_board_class(const ssys_state *s)
149 uint32_t did0 = s->did0;
150 switch (did0 & DID0_VER_MASK) {
151 case DID0_VER_0:
152 return DID0_CLASS_SANDSTORM;
153 case DID0_VER_1:
154 switch (did0 & DID0_CLASS_MASK) {
155 case DID0_CLASS_SANDSTORM:
156 case DID0_CLASS_FURY:
157 return did0 & DID0_CLASS_MASK;
159 /* for unknown classes, fall through */
160 default:
161 /* This can only happen if the hardwired constant did0 value
162 * in this board's stellaris_board_info struct is wrong.
164 g_assert_not_reached();
168 static uint64_t ssys_read(void *opaque, hwaddr offset,
169 unsigned size)
171 ssys_state *s = (ssys_state *)opaque;
173 switch (offset) {
174 case 0x000: /* DID0 */
175 return s->did0;
176 case 0x004: /* DID1 */
177 return s->did1;
178 case 0x008: /* DC0 */
179 return s->dc0;
180 case 0x010: /* DC1 */
181 return s->dc1;
182 case 0x014: /* DC2 */
183 return s->dc2;
184 case 0x018: /* DC3 */
185 return s->dc3;
186 case 0x01c: /* DC4 */
187 return s->dc4;
188 case 0x030: /* PBORCTL */
189 return s->pborctl;
190 case 0x034: /* LDOPCTL */
191 return s->ldopctl;
192 case 0x040: /* SRCR0 */
193 return 0;
194 case 0x044: /* SRCR1 */
195 return 0;
196 case 0x048: /* SRCR2 */
197 return 0;
198 case 0x050: /* RIS */
199 return s->int_status;
200 case 0x054: /* IMC */
201 return s->int_mask;
202 case 0x058: /* MISC */
203 return s->int_status & s->int_mask;
204 case 0x05c: /* RESC */
205 return s->resc;
206 case 0x060: /* RCC */
207 return s->rcc;
208 case 0x064: /* PLLCFG */
210 int xtal;
211 xtal = (s->rcc >> 6) & 0xf;
212 switch (ssys_board_class(s)) {
213 case DID0_CLASS_FURY:
214 return pllcfg_fury[xtal];
215 case DID0_CLASS_SANDSTORM:
216 return pllcfg_sandstorm[xtal];
217 default:
218 g_assert_not_reached();
221 case 0x070: /* RCC2 */
222 return s->rcc2;
223 case 0x100: /* RCGC0 */
224 return s->rcgc[0];
225 case 0x104: /* RCGC1 */
226 return s->rcgc[1];
227 case 0x108: /* RCGC2 */
228 return s->rcgc[2];
229 case 0x110: /* SCGC0 */
230 return s->scgc[0];
231 case 0x114: /* SCGC1 */
232 return s->scgc[1];
233 case 0x118: /* SCGC2 */
234 return s->scgc[2];
235 case 0x120: /* DCGC0 */
236 return s->dcgc[0];
237 case 0x124: /* DCGC1 */
238 return s->dcgc[1];
239 case 0x128: /* DCGC2 */
240 return s->dcgc[2];
241 case 0x150: /* CLKVCLR */
242 return s->clkvclr;
243 case 0x160: /* LDOARST */
244 return s->ldoarst;
245 case 0x1e0: /* USER0 */
246 return s->user0;
247 case 0x1e4: /* USER1 */
248 return s->user1;
249 default:
250 qemu_log_mask(LOG_GUEST_ERROR,
251 "SSYS: read at bad offset 0x%x\n", (int)offset);
252 return 0;
256 static bool ssys_use_rcc2(ssys_state *s)
258 return (s->rcc2 >> 31) & 0x1;
262 * Calculate the system clock period. We only want to propagate
263 * this change to the rest of the system if we're not being called
264 * from migration post-load.
266 static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
268 int period_ns;
270 * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc. Input
271 * clock is 200MHz, which is a period of 5 ns. Dividing the clock
272 * frequency by X is the same as multiplying the period by X.
274 if (ssys_use_rcc2(s)) {
275 period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
276 } else {
277 period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1);
279 clock_set_ns(s->sysclk, period_ns);
280 if (propagate_clock) {
281 clock_propagate(s->sysclk);
285 static void ssys_write(void *opaque, hwaddr offset,
286 uint64_t value, unsigned size)
288 ssys_state *s = (ssys_state *)opaque;
290 switch (offset) {
291 case 0x030: /* PBORCTL */
292 s->pborctl = value & 0xffff;
293 break;
294 case 0x034: /* LDOPCTL */
295 s->ldopctl = value & 0x1f;
296 break;
297 case 0x040: /* SRCR0 */
298 case 0x044: /* SRCR1 */
299 case 0x048: /* SRCR2 */
300 qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
301 break;
302 case 0x054: /* IMC */
303 s->int_mask = value & 0x7f;
304 break;
305 case 0x058: /* MISC */
306 s->int_status &= ~value;
307 break;
308 case 0x05c: /* RESC */
309 s->resc = value & 0x3f;
310 break;
311 case 0x060: /* RCC */
312 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
313 /* PLL enable. */
314 s->int_status |= (1 << 6);
316 s->rcc = value;
317 ssys_calculate_system_clock(s, true);
318 break;
319 case 0x070: /* RCC2 */
320 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
321 break;
324 if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
325 /* PLL enable. */
326 s->int_status |= (1 << 6);
328 s->rcc2 = value;
329 ssys_calculate_system_clock(s, true);
330 break;
331 case 0x100: /* RCGC0 */
332 s->rcgc[0] = value;
333 break;
334 case 0x104: /* RCGC1 */
335 s->rcgc[1] = value;
336 break;
337 case 0x108: /* RCGC2 */
338 s->rcgc[2] = value;
339 break;
340 case 0x110: /* SCGC0 */
341 s->scgc[0] = value;
342 break;
343 case 0x114: /* SCGC1 */
344 s->scgc[1] = value;
345 break;
346 case 0x118: /* SCGC2 */
347 s->scgc[2] = value;
348 break;
349 case 0x120: /* DCGC0 */
350 s->dcgc[0] = value;
351 break;
352 case 0x124: /* DCGC1 */
353 s->dcgc[1] = value;
354 break;
355 case 0x128: /* DCGC2 */
356 s->dcgc[2] = value;
357 break;
358 case 0x150: /* CLKVCLR */
359 s->clkvclr = value;
360 break;
361 case 0x160: /* LDOARST */
362 s->ldoarst = value;
363 break;
364 default:
365 qemu_log_mask(LOG_GUEST_ERROR,
366 "SSYS: write at bad offset 0x%x\n", (int)offset);
368 ssys_update(s);
371 static const MemoryRegionOps ssys_ops = {
372 .read = ssys_read,
373 .write = ssys_write,
374 .endianness = DEVICE_NATIVE_ENDIAN,
377 static void stellaris_sys_reset_enter(Object *obj, ResetType type)
379 ssys_state *s = STELLARIS_SYS(obj);
381 s->pborctl = 0x7ffd;
382 s->rcc = 0x078e3ac0;
384 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
385 s->rcc2 = 0;
386 } else {
387 s->rcc2 = 0x07802810;
389 s->rcgc[0] = 1;
390 s->scgc[0] = 1;
391 s->dcgc[0] = 1;
394 static void stellaris_sys_reset_hold(Object *obj)
396 ssys_state *s = STELLARIS_SYS(obj);
398 /* OK to propagate clocks from the hold phase */
399 ssys_calculate_system_clock(s, true);
402 static void stellaris_sys_reset_exit(Object *obj)
406 static int stellaris_sys_post_load(void *opaque, int version_id)
408 ssys_state *s = opaque;
410 ssys_calculate_system_clock(s, false);
412 return 0;
415 static const VMStateDescription vmstate_stellaris_sys = {
416 .name = "stellaris_sys",
417 .version_id = 2,
418 .minimum_version_id = 1,
419 .post_load = stellaris_sys_post_load,
420 .fields = (VMStateField[]) {
421 VMSTATE_UINT32(pborctl, ssys_state),
422 VMSTATE_UINT32(ldopctl, ssys_state),
423 VMSTATE_UINT32(int_mask, ssys_state),
424 VMSTATE_UINT32(int_status, ssys_state),
425 VMSTATE_UINT32(resc, ssys_state),
426 VMSTATE_UINT32(rcc, ssys_state),
427 VMSTATE_UINT32_V(rcc2, ssys_state, 2),
428 VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
429 VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
430 VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
431 VMSTATE_UINT32(clkvclr, ssys_state),
432 VMSTATE_UINT32(ldoarst, ssys_state),
433 /* No field for sysclk -- handled in post-load instead */
434 VMSTATE_END_OF_LIST()
438 static Property stellaris_sys_properties[] = {
439 DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
440 DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
441 DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
442 DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
443 DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
444 DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
445 DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
446 DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
447 DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
448 DEFINE_PROP_END_OF_LIST()
451 static void stellaris_sys_instance_init(Object *obj)
453 ssys_state *s = STELLARIS_SYS(obj);
454 SysBusDevice *sbd = SYS_BUS_DEVICE(s);
456 memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
457 sysbus_init_mmio(sbd, &s->iomem);
458 sysbus_init_irq(sbd, &s->irq);
459 s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
462 /* I2C controller. */
464 #define TYPE_STELLARIS_I2C "stellaris-i2c"
465 OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
467 struct stellaris_i2c_state {
468 SysBusDevice parent_obj;
470 I2CBus *bus;
471 qemu_irq irq;
472 MemoryRegion iomem;
473 uint32_t msa;
474 uint32_t mcs;
475 uint32_t mdr;
476 uint32_t mtpr;
477 uint32_t mimr;
478 uint32_t mris;
479 uint32_t mcr;
482 #define STELLARIS_I2C_MCS_BUSY 0x01
483 #define STELLARIS_I2C_MCS_ERROR 0x02
484 #define STELLARIS_I2C_MCS_ADRACK 0x04
485 #define STELLARIS_I2C_MCS_DATACK 0x08
486 #define STELLARIS_I2C_MCS_ARBLST 0x10
487 #define STELLARIS_I2C_MCS_IDLE 0x20
488 #define STELLARIS_I2C_MCS_BUSBSY 0x40
490 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
491 unsigned size)
493 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
495 switch (offset) {
496 case 0x00: /* MSA */
497 return s->msa;
498 case 0x04: /* MCS */
499 /* We don't emulate timing, so the controller is never busy. */
500 return s->mcs | STELLARIS_I2C_MCS_IDLE;
501 case 0x08: /* MDR */
502 return s->mdr;
503 case 0x0c: /* MTPR */
504 return s->mtpr;
505 case 0x10: /* MIMR */
506 return s->mimr;
507 case 0x14: /* MRIS */
508 return s->mris;
509 case 0x18: /* MMIS */
510 return s->mris & s->mimr;
511 case 0x20: /* MCR */
512 return s->mcr;
513 default:
514 qemu_log_mask(LOG_GUEST_ERROR,
515 "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
516 return 0;
520 static void stellaris_i2c_update(stellaris_i2c_state *s)
522 int level;
524 level = (s->mris & s->mimr) != 0;
525 qemu_set_irq(s->irq, level);
528 static void stellaris_i2c_write(void *opaque, hwaddr offset,
529 uint64_t value, unsigned size)
531 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
533 switch (offset) {
534 case 0x00: /* MSA */
535 s->msa = value & 0xff;
536 break;
537 case 0x04: /* MCS */
538 if ((s->mcr & 0x10) == 0) {
539 /* Disabled. Do nothing. */
540 break;
542 /* Grab the bus if this is starting a transfer. */
543 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
544 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
545 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
546 } else {
547 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
548 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
551 /* If we don't have the bus then indicate an error. */
552 if (!i2c_bus_busy(s->bus)
553 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
554 s->mcs |= STELLARIS_I2C_MCS_ERROR;
555 break;
557 s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
558 if (value & 1) {
559 /* Transfer a byte. */
560 /* TODO: Handle errors. */
561 if (s->msa & 1) {
562 /* Recv */
563 s->mdr = i2c_recv(s->bus);
564 } else {
565 /* Send */
566 i2c_send(s->bus, s->mdr);
568 /* Raise an interrupt. */
569 s->mris |= 1;
571 if (value & 4) {
572 /* Finish transfer. */
573 i2c_end_transfer(s->bus);
574 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
576 break;
577 case 0x08: /* MDR */
578 s->mdr = value & 0xff;
579 break;
580 case 0x0c: /* MTPR */
581 s->mtpr = value & 0xff;
582 break;
583 case 0x10: /* MIMR */
584 s->mimr = 1;
585 break;
586 case 0x1c: /* MICR */
587 s->mris &= ~value;
588 break;
589 case 0x20: /* MCR */
590 if (value & 1) {
591 qemu_log_mask(LOG_UNIMP,
592 "stellaris_i2c: Loopback not implemented\n");
594 if (value & 0x20) {
595 qemu_log_mask(LOG_UNIMP,
596 "stellaris_i2c: Slave mode not implemented\n");
598 s->mcr = value & 0x31;
599 break;
600 default:
601 qemu_log_mask(LOG_GUEST_ERROR,
602 "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
604 stellaris_i2c_update(s);
607 static void stellaris_i2c_reset(stellaris_i2c_state *s)
609 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
610 i2c_end_transfer(s->bus);
612 s->msa = 0;
613 s->mcs = 0;
614 s->mdr = 0;
615 s->mtpr = 1;
616 s->mimr = 0;
617 s->mris = 0;
618 s->mcr = 0;
619 stellaris_i2c_update(s);
622 static const MemoryRegionOps stellaris_i2c_ops = {
623 .read = stellaris_i2c_read,
624 .write = stellaris_i2c_write,
625 .endianness = DEVICE_NATIVE_ENDIAN,
628 static const VMStateDescription vmstate_stellaris_i2c = {
629 .name = "stellaris_i2c",
630 .version_id = 1,
631 .minimum_version_id = 1,
632 .fields = (VMStateField[]) {
633 VMSTATE_UINT32(msa, stellaris_i2c_state),
634 VMSTATE_UINT32(mcs, stellaris_i2c_state),
635 VMSTATE_UINT32(mdr, stellaris_i2c_state),
636 VMSTATE_UINT32(mtpr, stellaris_i2c_state),
637 VMSTATE_UINT32(mimr, stellaris_i2c_state),
638 VMSTATE_UINT32(mris, stellaris_i2c_state),
639 VMSTATE_UINT32(mcr, stellaris_i2c_state),
640 VMSTATE_END_OF_LIST()
644 static void stellaris_i2c_init(Object *obj)
646 DeviceState *dev = DEVICE(obj);
647 stellaris_i2c_state *s = STELLARIS_I2C(obj);
648 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
649 I2CBus *bus;
651 sysbus_init_irq(sbd, &s->irq);
652 bus = i2c_init_bus(dev, "i2c");
653 s->bus = bus;
655 memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
656 "i2c", 0x1000);
657 sysbus_init_mmio(sbd, &s->iomem);
658 /* ??? For now we only implement the master interface. */
659 stellaris_i2c_reset(s);
662 /* Analogue to Digital Converter. This is only partially implemented,
663 enough for applications that use a combined ADC and timer tick. */
665 #define STELLARIS_ADC_EM_CONTROLLER 0
666 #define STELLARIS_ADC_EM_COMP 1
667 #define STELLARIS_ADC_EM_EXTERNAL 4
668 #define STELLARIS_ADC_EM_TIMER 5
669 #define STELLARIS_ADC_EM_PWM0 6
670 #define STELLARIS_ADC_EM_PWM1 7
671 #define STELLARIS_ADC_EM_PWM2 8
673 #define STELLARIS_ADC_FIFO_EMPTY 0x0100
674 #define STELLARIS_ADC_FIFO_FULL 0x1000
676 #define TYPE_STELLARIS_ADC "stellaris-adc"
677 typedef struct StellarisADCState stellaris_adc_state;
678 DECLARE_INSTANCE_CHECKER(stellaris_adc_state, STELLARIS_ADC,
679 TYPE_STELLARIS_ADC)
681 struct StellarisADCState {
682 SysBusDevice parent_obj;
684 MemoryRegion iomem;
685 uint32_t actss;
686 uint32_t ris;
687 uint32_t im;
688 uint32_t emux;
689 uint32_t ostat;
690 uint32_t ustat;
691 uint32_t sspri;
692 uint32_t sac;
693 struct {
694 uint32_t state;
695 uint32_t data[16];
696 } fifo[4];
697 uint32_t ssmux[4];
698 uint32_t ssctl[4];
699 uint32_t noise;
700 qemu_irq irq[4];
703 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
705 int tail;
707 tail = s->fifo[n].state & 0xf;
708 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
709 s->ustat |= 1 << n;
710 } else {
711 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
712 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
713 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
714 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
716 return s->fifo[n].data[tail];
719 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
720 uint32_t value)
722 int head;
724 /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry
725 FIFO fir each sequencer. */
726 head = (s->fifo[n].state >> 4) & 0xf;
727 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
728 s->ostat |= 1 << n;
729 return;
731 s->fifo[n].data[head] = value;
732 head = (head + 1) & 0xf;
733 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
734 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
735 if ((s->fifo[n].state & 0xf) == head)
736 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
739 static void stellaris_adc_update(stellaris_adc_state *s)
741 int level;
742 int n;
744 for (n = 0; n < 4; n++) {
745 level = (s->ris & s->im & (1 << n)) != 0;
746 qemu_set_irq(s->irq[n], level);
750 static void stellaris_adc_trigger(void *opaque, int irq, int level)
752 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
753 int n;
755 for (n = 0; n < 4; n++) {
756 if ((s->actss & (1 << n)) == 0) {
757 continue;
760 if (((s->emux >> (n * 4)) & 0xff) != 5) {
761 continue;
764 /* Some applications use the ADC as a random number source, so introduce
765 some variation into the signal. */
766 s->noise = s->noise * 314159 + 1;
767 /* ??? actual inputs not implemented. Return an arbitrary value. */
768 stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
769 s->ris |= (1 << n);
770 stellaris_adc_update(s);
774 static void stellaris_adc_reset(stellaris_adc_state *s)
776 int n;
778 for (n = 0; n < 4; n++) {
779 s->ssmux[n] = 0;
780 s->ssctl[n] = 0;
781 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
785 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
786 unsigned size)
788 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
790 /* TODO: Implement this. */
791 if (offset >= 0x40 && offset < 0xc0) {
792 int n;
793 n = (offset - 0x40) >> 5;
794 switch (offset & 0x1f) {
795 case 0x00: /* SSMUX */
796 return s->ssmux[n];
797 case 0x04: /* SSCTL */
798 return s->ssctl[n];
799 case 0x08: /* SSFIFO */
800 return stellaris_adc_fifo_read(s, n);
801 case 0x0c: /* SSFSTAT */
802 return s->fifo[n].state;
803 default:
804 break;
807 switch (offset) {
808 case 0x00: /* ACTSS */
809 return s->actss;
810 case 0x04: /* RIS */
811 return s->ris;
812 case 0x08: /* IM */
813 return s->im;
814 case 0x0c: /* ISC */
815 return s->ris & s->im;
816 case 0x10: /* OSTAT */
817 return s->ostat;
818 case 0x14: /* EMUX */
819 return s->emux;
820 case 0x18: /* USTAT */
821 return s->ustat;
822 case 0x20: /* SSPRI */
823 return s->sspri;
824 case 0x30: /* SAC */
825 return s->sac;
826 default:
827 qemu_log_mask(LOG_GUEST_ERROR,
828 "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
829 return 0;
833 static void stellaris_adc_write(void *opaque, hwaddr offset,
834 uint64_t value, unsigned size)
836 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
838 /* TODO: Implement this. */
839 if (offset >= 0x40 && offset < 0xc0) {
840 int n;
841 n = (offset - 0x40) >> 5;
842 switch (offset & 0x1f) {
843 case 0x00: /* SSMUX */
844 s->ssmux[n] = value & 0x33333333;
845 return;
846 case 0x04: /* SSCTL */
847 if (value != 6) {
848 qemu_log_mask(LOG_UNIMP,
849 "ADC: Unimplemented sequence %" PRIx64 "\n",
850 value);
852 s->ssctl[n] = value;
853 return;
854 default:
855 break;
858 switch (offset) {
859 case 0x00: /* ACTSS */
860 s->actss = value & 0xf;
861 break;
862 case 0x08: /* IM */
863 s->im = value;
864 break;
865 case 0x0c: /* ISC */
866 s->ris &= ~value;
867 break;
868 case 0x10: /* OSTAT */
869 s->ostat &= ~value;
870 break;
871 case 0x14: /* EMUX */
872 s->emux = value;
873 break;
874 case 0x18: /* USTAT */
875 s->ustat &= ~value;
876 break;
877 case 0x20: /* SSPRI */
878 s->sspri = value;
879 break;
880 case 0x28: /* PSSI */
881 qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
882 break;
883 case 0x30: /* SAC */
884 s->sac = value;
885 break;
886 default:
887 qemu_log_mask(LOG_GUEST_ERROR,
888 "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
890 stellaris_adc_update(s);
893 static const MemoryRegionOps stellaris_adc_ops = {
894 .read = stellaris_adc_read,
895 .write = stellaris_adc_write,
896 .endianness = DEVICE_NATIVE_ENDIAN,
899 static const VMStateDescription vmstate_stellaris_adc = {
900 .name = "stellaris_adc",
901 .version_id = 1,
902 .minimum_version_id = 1,
903 .fields = (VMStateField[]) {
904 VMSTATE_UINT32(actss, stellaris_adc_state),
905 VMSTATE_UINT32(ris, stellaris_adc_state),
906 VMSTATE_UINT32(im, stellaris_adc_state),
907 VMSTATE_UINT32(emux, stellaris_adc_state),
908 VMSTATE_UINT32(ostat, stellaris_adc_state),
909 VMSTATE_UINT32(ustat, stellaris_adc_state),
910 VMSTATE_UINT32(sspri, stellaris_adc_state),
911 VMSTATE_UINT32(sac, stellaris_adc_state),
912 VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
913 VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
914 VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
915 VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
916 VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
917 VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
918 VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
919 VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
920 VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
921 VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
922 VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
923 VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
924 VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
925 VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
926 VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
927 VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
928 VMSTATE_UINT32(noise, stellaris_adc_state),
929 VMSTATE_END_OF_LIST()
933 static void stellaris_adc_init(Object *obj)
935 DeviceState *dev = DEVICE(obj);
936 stellaris_adc_state *s = STELLARIS_ADC(obj);
937 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
938 int n;
940 for (n = 0; n < 4; n++) {
941 sysbus_init_irq(sbd, &s->irq[n]);
944 memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
945 "adc", 0x1000);
946 sysbus_init_mmio(sbd, &s->iomem);
947 stellaris_adc_reset(s);
948 qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
951 /* Board init. */
952 static stellaris_board_info stellaris_boards[] = {
953 { "LM3S811EVB",
955 0x0032000e,
956 0x001f001f, /* dc0 */
957 0x001132bf,
958 0x01071013,
959 0x3f0f01ff,
960 0x0000001f,
961 BP_OLED_I2C
963 { "LM3S6965EVB",
964 0x10010002,
965 0x1073402e,
966 0x00ff007f, /* dc0 */
967 0x001133ff,
968 0x030f5317,
969 0x0f0f87ff,
970 0x5000007f,
971 BP_OLED_SSI | BP_GAMEPAD
975 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
977 static const int uart_irq[] = {5, 6, 33, 34};
978 static const int timer_irq[] = {19, 21, 23, 35};
979 static const uint32_t gpio_addr[7] =
980 { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
981 0x40024000, 0x40025000, 0x40026000};
982 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
984 /* Memory map of SoC devices, from
985 * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
986 * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
988 * 40000000 wdtimer
989 * 40002000 i2c (unimplemented)
990 * 40004000 GPIO
991 * 40005000 GPIO
992 * 40006000 GPIO
993 * 40007000 GPIO
994 * 40008000 SSI
995 * 4000c000 UART
996 * 4000d000 UART
997 * 4000e000 UART
998 * 40020000 i2c
999 * 40021000 i2c (unimplemented)
1000 * 40024000 GPIO
1001 * 40025000 GPIO
1002 * 40026000 GPIO
1003 * 40028000 PWM (unimplemented)
1004 * 4002c000 QEI (unimplemented)
1005 * 4002d000 QEI (unimplemented)
1006 * 40030000 gptimer
1007 * 40031000 gptimer
1008 * 40032000 gptimer
1009 * 40033000 gptimer
1010 * 40038000 ADC
1011 * 4003c000 analogue comparator (unimplemented)
1012 * 40048000 ethernet
1013 * 400fc000 hibernation module (unimplemented)
1014 * 400fd000 flash memory control (unimplemented)
1015 * 400fe000 system control
1018 DeviceState *gpio_dev[7], *nvic;
1019 qemu_irq gpio_in[7][8];
1020 qemu_irq gpio_out[7][8];
1021 qemu_irq adc;
1022 int sram_size;
1023 int flash_size;
1024 I2CBus *i2c;
1025 DeviceState *dev;
1026 DeviceState *ssys_dev;
1027 int i;
1028 int j;
1029 const uint8_t *macaddr;
1031 MemoryRegion *sram = g_new(MemoryRegion, 1);
1032 MemoryRegion *flash = g_new(MemoryRegion, 1);
1033 MemoryRegion *system_memory = get_system_memory();
1035 flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1036 sram_size = ((board->dc0 >> 18) + 1) * 1024;
1038 /* Flash programming is done via the SCU, so pretend it is ROM. */
1039 memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
1040 &error_fatal);
1041 memory_region_add_subregion(system_memory, 0, flash);
1043 memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1044 &error_fatal);
1045 memory_region_add_subregion(system_memory, 0x20000000, sram);
1048 * Create the system-registers object early, because we will
1049 * need its sysclk output.
1051 ssys_dev = qdev_new(TYPE_STELLARIS_SYS);
1052 /* Most devices come preprogrammed with a MAC address in the user data. */
1053 macaddr = nd_table[0].macaddr.a;
1054 qdev_prop_set_uint32(ssys_dev, "user0",
1055 macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16));
1056 qdev_prop_set_uint32(ssys_dev, "user1",
1057 macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16));
1058 qdev_prop_set_uint32(ssys_dev, "did0", board->did0);
1059 qdev_prop_set_uint32(ssys_dev, "did1", board->did1);
1060 qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0);
1061 qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1);
1062 qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2);
1063 qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3);
1064 qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4);
1065 sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal);
1067 nvic = qdev_new(TYPE_ARMV7M);
1068 qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1069 qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1070 qdev_prop_set_bit(nvic, "enable-bitband", true);
1071 qdev_connect_clock_in(nvic, "cpuclk",
1072 qdev_get_clock_out(ssys_dev, "SYSCLK"));
1073 /* This SoC does not connect the systick reference clock */
1074 object_property_set_link(OBJECT(nvic), "memory",
1075 OBJECT(get_system_memory()), &error_abort);
1076 /* This will exit with an error if the user passed us a bad cpu_type */
1077 sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
1079 /* Now we can wire up the IRQ and MMIO of the system registers */
1080 sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000);
1081 sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28));
1083 if (board->dc1 & (1 << 16)) {
1084 dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1085 qdev_get_gpio_in(nvic, 14),
1086 qdev_get_gpio_in(nvic, 15),
1087 qdev_get_gpio_in(nvic, 16),
1088 qdev_get_gpio_in(nvic, 17),
1089 NULL);
1090 adc = qdev_get_gpio_in(dev, 0);
1091 } else {
1092 adc = NULL;
1094 for (i = 0; i < 4; i++) {
1095 if (board->dc2 & (0x10000 << i)) {
1096 SysBusDevice *sbd;
1098 dev = qdev_new(TYPE_STELLARIS_GPTM);
1099 sbd = SYS_BUS_DEVICE(dev);
1100 qdev_connect_clock_in(dev, "clk",
1101 qdev_get_clock_out(ssys_dev, "SYSCLK"));
1102 sysbus_realize_and_unref(sbd, &error_fatal);
1103 sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000);
1104 sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i]));
1105 /* TODO: This is incorrect, but we get away with it because
1106 the ADC output is only ever pulsed. */
1107 qdev_connect_gpio_out(dev, 0, adc);
1111 if (board->dc1 & (1 << 3)) { /* watchdog present */
1112 dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
1114 qdev_connect_clock_in(dev, "WDOGCLK",
1115 qdev_get_clock_out(ssys_dev, "SYSCLK"));
1117 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1118 sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1120 0x40000000u);
1121 sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1123 qdev_get_gpio_in(nvic, 18));
1127 for (i = 0; i < 7; i++) {
1128 if (board->dc4 & (1 << i)) {
1129 gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1130 qdev_get_gpio_in(nvic,
1131 gpio_irq[i]));
1132 for (j = 0; j < 8; j++) {
1133 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1134 gpio_out[i][j] = NULL;
1139 if (board->dc2 & (1 << 12)) {
1140 dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1141 qdev_get_gpio_in(nvic, 8));
1142 i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1143 if (board->peripherals & BP_OLED_I2C) {
1144 i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
1148 for (i = 0; i < 4; i++) {
1149 if (board->dc2 & (1 << i)) {
1150 pl011_luminary_create(0x4000c000 + i * 0x1000,
1151 qdev_get_gpio_in(nvic, uart_irq[i]),
1152 serial_hd(i));
1155 if (board->dc2 & (1 << 4)) {
1156 dev = sysbus_create_simple("pl022", 0x40008000,
1157 qdev_get_gpio_in(nvic, 7));
1158 if (board->peripherals & BP_OLED_SSI) {
1159 void *bus;
1160 DeviceState *sddev;
1161 DeviceState *ssddev;
1162 DriveInfo *dinfo;
1163 DeviceState *carddev;
1164 DeviceState *gpio_d_splitter;
1165 BlockBackend *blk;
1168 * Some boards have both an OLED controller and SD card connected to
1169 * the same SSI port, with the SD card chip select connected to a
1170 * GPIO pin. Technically the OLED chip select is connected to the
1171 * SSI Fss pin. We do not bother emulating that as both devices
1172 * should never be selected simultaneously, and our OLED controller
1173 * ignores stray 0xff commands that occur when deselecting the SD
1174 * card.
1176 * The h/w wiring is:
1177 * - GPIO pin D0 is wired to the active-low SD card chip select
1178 * - GPIO pin A3 is wired to the active-low OLED chip select
1179 * - The SoC wiring of the PL061 "auxiliary function" for A3 is
1180 * SSI0Fss ("frame signal"), which is an output from the SoC's
1181 * SSI controller. The SSI controller takes SSI0Fss low when it
1182 * transmits a frame, so it can work as a chip-select signal.
1183 * - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx
1184 * (the OLED never sends data to the CPU, so no wiring needed)
1185 * - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx
1186 * and the OLED display-data-in
1187 * - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED
1188 * serial-clock input
1189 * So a guest that wants to use the OLED can configure the PL061
1190 * to make pins A2, A3, A5 aux-function, so they are connected
1191 * directly to the SSI controller. When the SSI controller sends
1192 * data it asserts SSI0Fss which selects the OLED.
1193 * A guest that wants to use the SD card configures A2, A4 and A5
1194 * as aux-function, but leaves A3 as a software-controlled GPIO
1195 * line. It asserts the SD card chip-select by using the PL061
1196 * to control pin D0, and lets the SSI controller handle Clk, Tx
1197 * and Rx. (The SSI controller asserts Fss during tx cycles as
1198 * usual, but because A3 is not set to aux-function this is not
1199 * forwarded to the OLED, and so the OLED stays unselected.)
1201 * The QEMU implementation instead is:
1202 * - GPIO pin D0 is wired to the active-low SD card chip select,
1203 * and also to the OLED chip-select which is implemented
1204 * as *active-high*
1205 * - SSI controller signals go to the devices regardless of
1206 * whether the guest programs A2, A4, A5 as aux-function or not
1208 * The problem with this implementation is if the guest doesn't
1209 * care about the SD card and only uses the OLED. In that case it
1210 * may choose never to do anything with D0 (leaving it in its
1211 * default floating state, which reliably leaves the card disabled
1212 * because an SD card has a pullup on CS within the card itself),
1213 * and only set up A2, A3, A5. This for us would mean the OLED
1214 * never gets the chip-select assert it needs. We work around
1215 * this with a manual raise of D0 here (despite board creation
1216 * code being the wrong place to raise IRQ lines) to put the OLED
1217 * into an initially selected state.
1219 * In theory the right way to model this would be:
1220 * - Implement aux-function support in the PL061, with an
1221 * extra set of AFIN and AFOUT GPIO lines (set up so that
1222 * if a GPIO line is in auxfn mode the main GPIO in and out
1223 * track the AFIN and AFOUT lines)
1224 * - Wire the AFOUT for D0 up to either a line from the
1225 * SSI controller that's pulled low around every transmit,
1226 * or at least to an always-0 line here on the board
1227 * - Make the ssd0323 OLED controller chipselect active-low
1229 bus = qdev_get_child_bus(dev, "ssi");
1230 sddev = ssi_create_peripheral(bus, "ssi-sd");
1232 dinfo = drive_get(IF_SD, 0, 0);
1233 blk = dinfo ? blk_by_legacy_dinfo(dinfo) : NULL;
1234 carddev = qdev_new(TYPE_SD_CARD);
1235 qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
1236 qdev_prop_set_bit(carddev, "spi", true);
1237 qdev_realize_and_unref(carddev,
1238 qdev_get_child_bus(sddev, "sd-bus"),
1239 &error_fatal);
1241 ssddev = ssi_create_peripheral(bus, "ssd0323");
1243 gpio_d_splitter = qdev_new(TYPE_SPLIT_IRQ);
1244 qdev_prop_set_uint32(gpio_d_splitter, "num-lines", 2);
1245 qdev_realize_and_unref(gpio_d_splitter, NULL, &error_fatal);
1246 qdev_connect_gpio_out(
1247 gpio_d_splitter, 0,
1248 qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0));
1249 qdev_connect_gpio_out(
1250 gpio_d_splitter, 1,
1251 qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1252 gpio_out[GPIO_D][0] = qdev_get_gpio_in(gpio_d_splitter, 0);
1254 gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1256 /* Make sure the select pin is high. */
1257 qemu_irq_raise(gpio_out[GPIO_D][0]);
1260 if (board->dc4 & (1 << 28)) {
1261 DeviceState *enet;
1263 qemu_check_nic_model(&nd_table[0], "stellaris");
1265 enet = qdev_new("stellaris_enet");
1266 qdev_set_nic_properties(enet, &nd_table[0]);
1267 sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
1268 sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1269 sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1271 if (board->peripherals & BP_GAMEPAD) {
1272 qemu_irq gpad_irq[5];
1273 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1275 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1276 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1277 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1278 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1279 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1281 stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1283 for (i = 0; i < 7; i++) {
1284 if (board->dc4 & (1 << i)) {
1285 for (j = 0; j < 8; j++) {
1286 if (gpio_out[i][j]) {
1287 qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1293 /* Add dummy regions for the devices we don't implement yet,
1294 * so guest accesses don't cause unlogged crashes.
1296 create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1297 create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1298 create_unimplemented_device("PWM", 0x40028000, 0x1000);
1299 create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1300 create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1301 create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1302 create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1303 create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1305 armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, 0, flash_size);
1308 /* FIXME: Figure out how to generate these from stellaris_boards. */
1309 static void lm3s811evb_init(MachineState *machine)
1311 stellaris_init(machine, &stellaris_boards[0]);
1314 static void lm3s6965evb_init(MachineState *machine)
1316 stellaris_init(machine, &stellaris_boards[1]);
1319 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1321 MachineClass *mc = MACHINE_CLASS(oc);
1323 mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
1324 mc->init = lm3s811evb_init;
1325 mc->ignore_memory_transaction_failures = true;
1326 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1329 static const TypeInfo lm3s811evb_type = {
1330 .name = MACHINE_TYPE_NAME("lm3s811evb"),
1331 .parent = TYPE_MACHINE,
1332 .class_init = lm3s811evb_class_init,
1335 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1337 MachineClass *mc = MACHINE_CLASS(oc);
1339 mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
1340 mc->init = lm3s6965evb_init;
1341 mc->ignore_memory_transaction_failures = true;
1342 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1345 static const TypeInfo lm3s6965evb_type = {
1346 .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1347 .parent = TYPE_MACHINE,
1348 .class_init = lm3s6965evb_class_init,
1351 static void stellaris_machine_init(void)
1353 type_register_static(&lm3s811evb_type);
1354 type_register_static(&lm3s6965evb_type);
1357 type_init(stellaris_machine_init)
1359 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1361 DeviceClass *dc = DEVICE_CLASS(klass);
1363 dc->vmsd = &vmstate_stellaris_i2c;
1366 static const TypeInfo stellaris_i2c_info = {
1367 .name = TYPE_STELLARIS_I2C,
1368 .parent = TYPE_SYS_BUS_DEVICE,
1369 .instance_size = sizeof(stellaris_i2c_state),
1370 .instance_init = stellaris_i2c_init,
1371 .class_init = stellaris_i2c_class_init,
1374 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1376 DeviceClass *dc = DEVICE_CLASS(klass);
1378 dc->vmsd = &vmstate_stellaris_adc;
1381 static const TypeInfo stellaris_adc_info = {
1382 .name = TYPE_STELLARIS_ADC,
1383 .parent = TYPE_SYS_BUS_DEVICE,
1384 .instance_size = sizeof(stellaris_adc_state),
1385 .instance_init = stellaris_adc_init,
1386 .class_init = stellaris_adc_class_init,
1389 static void stellaris_sys_class_init(ObjectClass *klass, void *data)
1391 DeviceClass *dc = DEVICE_CLASS(klass);
1392 ResettableClass *rc = RESETTABLE_CLASS(klass);
1394 dc->vmsd = &vmstate_stellaris_sys;
1395 rc->phases.enter = stellaris_sys_reset_enter;
1396 rc->phases.hold = stellaris_sys_reset_hold;
1397 rc->phases.exit = stellaris_sys_reset_exit;
1398 device_class_set_props(dc, stellaris_sys_properties);
1401 static const TypeInfo stellaris_sys_info = {
1402 .name = TYPE_STELLARIS_SYS,
1403 .parent = TYPE_SYS_BUS_DEVICE,
1404 .instance_size = sizeof(ssys_state),
1405 .instance_init = stellaris_sys_instance_init,
1406 .class_init = stellaris_sys_class_init,
1409 static void stellaris_register_types(void)
1411 type_register_static(&stellaris_i2c_info);
1412 type_register_static(&stellaris_adc_info);
1413 type_register_static(&stellaris_sys_info);
1416 type_init(stellaris_register_types)