4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
28 #include "monitor/monitor.h"
29 #include "sysemu/sysemu.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/dma.h"
32 #include "sysemu/kvm.h"
33 #include "qmp-commands.h"
35 #include "qemu/thread.h"
36 #include "sysemu/cpus.h"
37 #include "sysemu/qtest.h"
38 #include "qemu/main-loop.h"
39 #include "qemu/bitmap.h"
42 #include "qemu/compatfd.h"
47 #include <sys/prctl.h>
50 #define PR_MCE_KILL 33
53 #ifndef PR_MCE_KILL_SET
54 #define PR_MCE_KILL_SET 1
57 #ifndef PR_MCE_KILL_EARLY
58 #define PR_MCE_KILL_EARLY 1
61 #endif /* CONFIG_LINUX */
63 static CPUState
*next_cpu
;
65 static bool cpu_thread_is_idle(CPUState
*cpu
)
67 if (cpu
->stop
|| cpu
->queued_work_first
) {
70 if (cpu
->stopped
|| !runstate_is_running()) {
73 if (!cpu
->halted
|| qemu_cpu_has_work(cpu
) ||
74 kvm_halt_in_kernel()) {
80 static bool all_cpu_threads_idle(void)
84 for (cpu
= first_cpu
; cpu
!= NULL
; cpu
= cpu
->next_cpu
) {
85 if (!cpu_thread_is_idle(cpu
)) {
92 /***********************************************************/
93 /* guest cycle counter */
95 /* Conversion factor from emulated instructions to virtual clock ticks. */
96 static int icount_time_shift
;
97 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
98 #define MAX_ICOUNT_SHIFT 10
99 /* Compensate for varying guest execution speed. */
100 static int64_t qemu_icount_bias
;
101 static QEMUTimer
*icount_rt_timer
;
102 static QEMUTimer
*icount_vm_timer
;
103 static QEMUTimer
*icount_warp_timer
;
104 static int64_t vm_clock_warp_start
;
105 static int64_t qemu_icount
;
107 typedef struct TimersState
{
108 int64_t cpu_ticks_prev
;
109 int64_t cpu_ticks_offset
;
110 int64_t cpu_clock_offset
;
111 int32_t cpu_ticks_enabled
;
115 TimersState timers_state
;
117 /* Return the virtual CPU time, based on the instruction counter. */
118 int64_t cpu_get_icount(void)
121 CPUState
*cpu
= current_cpu
;
123 icount
= qemu_icount
;
125 CPUArchState
*env
= cpu
->env_ptr
;
126 if (!can_do_io(env
)) {
127 fprintf(stderr
, "Bad clock read\n");
129 icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
131 return qemu_icount_bias
+ (icount
<< icount_time_shift
);
134 /* return the host CPU cycle counter and handle stop/restart */
135 int64_t cpu_get_ticks(void)
138 return cpu_get_icount();
140 if (!timers_state
.cpu_ticks_enabled
) {
141 return timers_state
.cpu_ticks_offset
;
144 ticks
= cpu_get_real_ticks();
145 if (timers_state
.cpu_ticks_prev
> ticks
) {
146 /* Note: non increasing ticks may happen if the host uses
148 timers_state
.cpu_ticks_offset
+= timers_state
.cpu_ticks_prev
- ticks
;
150 timers_state
.cpu_ticks_prev
= ticks
;
151 return ticks
+ timers_state
.cpu_ticks_offset
;
155 /* return the host CPU monotonic timer and handle stop/restart */
156 int64_t cpu_get_clock(void)
159 if (!timers_state
.cpu_ticks_enabled
) {
160 return timers_state
.cpu_clock_offset
;
163 return ti
+ timers_state
.cpu_clock_offset
;
167 /* enable cpu_get_ticks() */
168 void cpu_enable_ticks(void)
170 if (!timers_state
.cpu_ticks_enabled
) {
171 timers_state
.cpu_ticks_offset
-= cpu_get_real_ticks();
172 timers_state
.cpu_clock_offset
-= get_clock();
173 timers_state
.cpu_ticks_enabled
= 1;
177 /* disable cpu_get_ticks() : the clock is stopped. You must not call
178 cpu_get_ticks() after that. */
179 void cpu_disable_ticks(void)
181 if (timers_state
.cpu_ticks_enabled
) {
182 timers_state
.cpu_ticks_offset
= cpu_get_ticks();
183 timers_state
.cpu_clock_offset
= cpu_get_clock();
184 timers_state
.cpu_ticks_enabled
= 0;
188 /* Correlation between real and virtual time is always going to be
189 fairly approximate, so ignore small variation.
190 When the guest is idle real and virtual time will be aligned in
192 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
194 static void icount_adjust(void)
199 static int64_t last_delta
;
200 /* If the VM is not running, then do nothing. */
201 if (!runstate_is_running()) {
204 cur_time
= cpu_get_clock();
205 cur_icount
= qemu_get_clock_ns(vm_clock
);
206 delta
= cur_icount
- cur_time
;
207 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
209 && last_delta
+ ICOUNT_WOBBLE
< delta
* 2
210 && icount_time_shift
> 0) {
211 /* The guest is getting too far ahead. Slow time down. */
215 && last_delta
- ICOUNT_WOBBLE
> delta
* 2
216 && icount_time_shift
< MAX_ICOUNT_SHIFT
) {
217 /* The guest is getting too far behind. Speed time up. */
221 qemu_icount_bias
= cur_icount
- (qemu_icount
<< icount_time_shift
);
224 static void icount_adjust_rt(void *opaque
)
226 qemu_mod_timer(icount_rt_timer
,
227 qemu_get_clock_ms(rt_clock
) + 1000);
231 static void icount_adjust_vm(void *opaque
)
233 qemu_mod_timer(icount_vm_timer
,
234 qemu_get_clock_ns(vm_clock
) + get_ticks_per_sec() / 10);
238 static int64_t qemu_icount_round(int64_t count
)
240 return (count
+ (1 << icount_time_shift
) - 1) >> icount_time_shift
;
243 static void icount_warp_rt(void *opaque
)
245 if (vm_clock_warp_start
== -1) {
249 if (runstate_is_running()) {
250 int64_t clock
= qemu_get_clock_ns(rt_clock
);
251 int64_t warp_delta
= clock
- vm_clock_warp_start
;
252 if (use_icount
== 1) {
253 qemu_icount_bias
+= warp_delta
;
256 * In adaptive mode, do not let the vm_clock run too
257 * far ahead of real time.
259 int64_t cur_time
= cpu_get_clock();
260 int64_t cur_icount
= qemu_get_clock_ns(vm_clock
);
261 int64_t delta
= cur_time
- cur_icount
;
262 qemu_icount_bias
+= MIN(warp_delta
, delta
);
264 if (qemu_clock_expired(vm_clock
)) {
268 vm_clock_warp_start
= -1;
271 void qtest_clock_warp(int64_t dest
)
273 int64_t clock
= qemu_get_clock_ns(vm_clock
);
274 assert(qtest_enabled());
275 while (clock
< dest
) {
276 int64_t deadline
= qemu_clock_deadline(vm_clock
);
277 int64_t warp
= MIN(dest
- clock
, deadline
);
278 qemu_icount_bias
+= warp
;
279 qemu_run_timers(vm_clock
);
280 clock
= qemu_get_clock_ns(vm_clock
);
285 void qemu_clock_warp(QEMUClock
*clock
)
290 * There are too many global variables to make the "warp" behavior
291 * applicable to other clocks. But a clock argument removes the
292 * need for if statements all over the place.
294 if (clock
!= vm_clock
|| !use_icount
) {
299 * If the CPUs have been sleeping, advance the vm_clock timer now. This
300 * ensures that the deadline for the timer is computed correctly below.
301 * This also makes sure that the insn counter is synchronized before the
302 * CPU starts running, in case the CPU is woken by an event other than
303 * the earliest vm_clock timer.
305 icount_warp_rt(NULL
);
306 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock
)) {
307 qemu_del_timer(icount_warp_timer
);
311 if (qtest_enabled()) {
312 /* When testing, qtest commands advance icount. */
316 vm_clock_warp_start
= qemu_get_clock_ns(rt_clock
);
317 deadline
= qemu_clock_deadline(vm_clock
);
320 * Ensure the vm_clock proceeds even when the virtual CPU goes to
321 * sleep. Otherwise, the CPU might be waiting for a future timer
322 * interrupt to wake it up, but the interrupt never comes because
323 * the vCPU isn't running any insns and thus doesn't advance the
326 * An extreme solution for this problem would be to never let VCPUs
327 * sleep in icount mode if there is a pending vm_clock timer; rather
328 * time could just advance to the next vm_clock event. Instead, we
329 * do stop VCPUs and only advance vm_clock after some "real" time,
330 * (related to the time left until the next event) has passed. This
331 * rt_clock timer will do this. This avoids that the warps are too
332 * visible externally---for example, you will not be sending network
333 * packets continuously instead of every 100ms.
335 qemu_mod_timer(icount_warp_timer
, vm_clock_warp_start
+ deadline
);
341 static const VMStateDescription vmstate_timers
= {
344 .minimum_version_id
= 1,
345 .minimum_version_id_old
= 1,
346 .fields
= (VMStateField
[]) {
347 VMSTATE_INT64(cpu_ticks_offset
, TimersState
),
348 VMSTATE_INT64(dummy
, TimersState
),
349 VMSTATE_INT64_V(cpu_clock_offset
, TimersState
, 2),
350 VMSTATE_END_OF_LIST()
354 void configure_icount(const char *option
)
356 vmstate_register(NULL
, 0, &vmstate_timers
, &timers_state
);
361 icount_warp_timer
= qemu_new_timer_ns(rt_clock
, icount_warp_rt
, NULL
);
362 if (strcmp(option
, "auto") != 0) {
363 icount_time_shift
= strtol(option
, NULL
, 0);
370 /* 125MIPS seems a reasonable initial guess at the guest speed.
371 It will be corrected fairly quickly anyway. */
372 icount_time_shift
= 3;
374 /* Have both realtime and virtual time triggers for speed adjustment.
375 The realtime trigger catches emulated time passing too slowly,
376 the virtual time trigger catches emulated time passing too fast.
377 Realtime triggers occur even when idle, so use them less frequently
379 icount_rt_timer
= qemu_new_timer_ms(rt_clock
, icount_adjust_rt
, NULL
);
380 qemu_mod_timer(icount_rt_timer
,
381 qemu_get_clock_ms(rt_clock
) + 1000);
382 icount_vm_timer
= qemu_new_timer_ns(vm_clock
, icount_adjust_vm
, NULL
);
383 qemu_mod_timer(icount_vm_timer
,
384 qemu_get_clock_ns(vm_clock
) + get_ticks_per_sec() / 10);
387 /***********************************************************/
388 void hw_error(const char *fmt
, ...)
394 fprintf(stderr
, "qemu: hardware error: ");
395 vfprintf(stderr
, fmt
, ap
);
396 fprintf(stderr
, "\n");
397 for (cpu
= first_cpu
; cpu
!= NULL
; cpu
= cpu
->next_cpu
) {
398 fprintf(stderr
, "CPU #%d:\n", cpu
->cpu_index
);
399 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
);
405 void cpu_synchronize_all_states(void)
409 for (cpu
= first_cpu
; cpu
; cpu
= cpu
->next_cpu
) {
410 cpu_synchronize_state(cpu
);
414 void cpu_synchronize_all_post_reset(void)
418 for (cpu
= first_cpu
; cpu
; cpu
= cpu
->next_cpu
) {
419 cpu_synchronize_post_reset(cpu
);
423 void cpu_synchronize_all_post_init(void)
427 for (cpu
= first_cpu
; cpu
; cpu
= cpu
->next_cpu
) {
428 cpu_synchronize_post_init(cpu
);
432 bool cpu_is_stopped(CPUState
*cpu
)
434 return !runstate_is_running() || cpu
->stopped
;
437 static int do_vm_stop(RunState state
)
441 if (runstate_is_running()) {
445 vm_state_notify(0, state
);
447 ret
= bdrv_flush_all();
448 monitor_protocol_event(QEVENT_STOP
, NULL
);
454 static bool cpu_can_run(CPUState
*cpu
)
459 if (cpu
->stopped
|| !runstate_is_running()) {
465 static void cpu_handle_guest_debug(CPUState
*cpu
)
467 gdb_set_stop_cpu(cpu
);
468 qemu_system_debug_request();
472 static void cpu_signal(int sig
)
475 cpu_exit(current_cpu
);
481 static void sigbus_reraise(void)
484 struct sigaction action
;
486 memset(&action
, 0, sizeof(action
));
487 action
.sa_handler
= SIG_DFL
;
488 if (!sigaction(SIGBUS
, &action
, NULL
)) {
491 sigaddset(&set
, SIGBUS
);
492 sigprocmask(SIG_UNBLOCK
, &set
, NULL
);
494 perror("Failed to re-raise SIGBUS!\n");
498 static void sigbus_handler(int n
, struct qemu_signalfd_siginfo
*siginfo
,
501 if (kvm_on_sigbus(siginfo
->ssi_code
,
502 (void *)(intptr_t)siginfo
->ssi_addr
)) {
507 static void qemu_init_sigbus(void)
509 struct sigaction action
;
511 memset(&action
, 0, sizeof(action
));
512 action
.sa_flags
= SA_SIGINFO
;
513 action
.sa_sigaction
= (void (*)(int, siginfo_t
*, void*))sigbus_handler
;
514 sigaction(SIGBUS
, &action
, NULL
);
516 prctl(PR_MCE_KILL
, PR_MCE_KILL_SET
, PR_MCE_KILL_EARLY
, 0, 0);
519 static void qemu_kvm_eat_signals(CPUState
*cpu
)
521 struct timespec ts
= { 0, 0 };
527 sigemptyset(&waitset
);
528 sigaddset(&waitset
, SIG_IPI
);
529 sigaddset(&waitset
, SIGBUS
);
532 r
= sigtimedwait(&waitset
, &siginfo
, &ts
);
533 if (r
== -1 && !(errno
== EAGAIN
|| errno
== EINTR
)) {
534 perror("sigtimedwait");
540 if (kvm_on_sigbus_vcpu(cpu
, siginfo
.si_code
, siginfo
.si_addr
)) {
548 r
= sigpending(&chkset
);
550 perror("sigpending");
553 } while (sigismember(&chkset
, SIG_IPI
) || sigismember(&chkset
, SIGBUS
));
556 #else /* !CONFIG_LINUX */
558 static void qemu_init_sigbus(void)
562 static void qemu_kvm_eat_signals(CPUState
*cpu
)
565 #endif /* !CONFIG_LINUX */
568 static void dummy_signal(int sig
)
572 static void qemu_kvm_init_cpu_signals(CPUState
*cpu
)
576 struct sigaction sigact
;
578 memset(&sigact
, 0, sizeof(sigact
));
579 sigact
.sa_handler
= dummy_signal
;
580 sigaction(SIG_IPI
, &sigact
, NULL
);
582 pthread_sigmask(SIG_BLOCK
, NULL
, &set
);
583 sigdelset(&set
, SIG_IPI
);
584 sigdelset(&set
, SIGBUS
);
585 r
= kvm_set_signal_mask(cpu
, &set
);
587 fprintf(stderr
, "kvm_set_signal_mask: %s\n", strerror(-r
));
592 static void qemu_tcg_init_cpu_signals(void)
595 struct sigaction sigact
;
597 memset(&sigact
, 0, sizeof(sigact
));
598 sigact
.sa_handler
= cpu_signal
;
599 sigaction(SIG_IPI
, &sigact
, NULL
);
602 sigaddset(&set
, SIG_IPI
);
603 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
607 static void qemu_kvm_init_cpu_signals(CPUState
*cpu
)
612 static void qemu_tcg_init_cpu_signals(void)
617 static QemuMutex qemu_global_mutex
;
618 static QemuCond qemu_io_proceeded_cond
;
619 static bool iothread_requesting_mutex
;
621 static QemuThread io_thread
;
623 static QemuThread
*tcg_cpu_thread
;
624 static QemuCond
*tcg_halt_cond
;
627 static QemuCond qemu_cpu_cond
;
629 static QemuCond qemu_pause_cond
;
630 static QemuCond qemu_work_cond
;
632 void qemu_init_cpu_loop(void)
635 qemu_cond_init(&qemu_cpu_cond
);
636 qemu_cond_init(&qemu_pause_cond
);
637 qemu_cond_init(&qemu_work_cond
);
638 qemu_cond_init(&qemu_io_proceeded_cond
);
639 qemu_mutex_init(&qemu_global_mutex
);
641 qemu_thread_get_self(&io_thread
);
644 void run_on_cpu(CPUState
*cpu
, void (*func
)(void *data
), void *data
)
646 struct qemu_work_item wi
;
648 if (qemu_cpu_is_self(cpu
)) {
656 if (cpu
->queued_work_first
== NULL
) {
657 cpu
->queued_work_first
= &wi
;
659 cpu
->queued_work_last
->next
= &wi
;
661 cpu
->queued_work_last
= &wi
;
667 CPUState
*self_cpu
= current_cpu
;
669 qemu_cond_wait(&qemu_work_cond
, &qemu_global_mutex
);
670 current_cpu
= self_cpu
;
674 void async_run_on_cpu(CPUState
*cpu
, void (*func
)(void *data
), void *data
)
676 struct qemu_work_item
*wi
;
678 if (qemu_cpu_is_self(cpu
)) {
683 wi
= g_malloc0(sizeof(struct qemu_work_item
));
687 if (cpu
->queued_work_first
== NULL
) {
688 cpu
->queued_work_first
= wi
;
690 cpu
->queued_work_last
->next
= wi
;
692 cpu
->queued_work_last
= wi
;
699 static void flush_queued_work(CPUState
*cpu
)
701 struct qemu_work_item
*wi
;
703 if (cpu
->queued_work_first
== NULL
) {
707 while ((wi
= cpu
->queued_work_first
)) {
708 cpu
->queued_work_first
= wi
->next
;
715 cpu
->queued_work_last
= NULL
;
716 qemu_cond_broadcast(&qemu_work_cond
);
719 static void qemu_wait_io_event_common(CPUState
*cpu
)
724 qemu_cond_signal(&qemu_pause_cond
);
726 flush_queued_work(cpu
);
727 cpu
->thread_kicked
= false;
730 static void qemu_tcg_wait_io_event(void)
734 while (all_cpu_threads_idle()) {
735 /* Start accounting real time to the virtual clock if the CPUs
737 qemu_clock_warp(vm_clock
);
738 qemu_cond_wait(tcg_halt_cond
, &qemu_global_mutex
);
741 while (iothread_requesting_mutex
) {
742 qemu_cond_wait(&qemu_io_proceeded_cond
, &qemu_global_mutex
);
745 for (cpu
= first_cpu
; cpu
!= NULL
; cpu
= cpu
->next_cpu
) {
746 qemu_wait_io_event_common(cpu
);
750 static void qemu_kvm_wait_io_event(CPUState
*cpu
)
752 while (cpu_thread_is_idle(cpu
)) {
753 qemu_cond_wait(cpu
->halt_cond
, &qemu_global_mutex
);
756 qemu_kvm_eat_signals(cpu
);
757 qemu_wait_io_event_common(cpu
);
760 static void *qemu_kvm_cpu_thread_fn(void *arg
)
765 qemu_mutex_lock(&qemu_global_mutex
);
766 qemu_thread_get_self(cpu
->thread
);
767 cpu
->thread_id
= qemu_get_thread_id();
770 r
= kvm_init_vcpu(cpu
);
772 fprintf(stderr
, "kvm_init_vcpu failed: %s\n", strerror(-r
));
776 qemu_kvm_init_cpu_signals(cpu
);
778 /* signal CPU creation */
780 qemu_cond_signal(&qemu_cpu_cond
);
783 if (cpu_can_run(cpu
)) {
784 r
= kvm_cpu_exec(cpu
);
785 if (r
== EXCP_DEBUG
) {
786 cpu_handle_guest_debug(cpu
);
789 qemu_kvm_wait_io_event(cpu
);
795 static void *qemu_dummy_cpu_thread_fn(void *arg
)
798 fprintf(stderr
, "qtest is not supported under Windows\n");
805 qemu_mutex_lock_iothread();
806 qemu_thread_get_self(cpu
->thread
);
807 cpu
->thread_id
= qemu_get_thread_id();
809 sigemptyset(&waitset
);
810 sigaddset(&waitset
, SIG_IPI
);
812 /* signal CPU creation */
814 qemu_cond_signal(&qemu_cpu_cond
);
819 qemu_mutex_unlock_iothread();
822 r
= sigwait(&waitset
, &sig
);
823 } while (r
== -1 && (errno
== EAGAIN
|| errno
== EINTR
));
828 qemu_mutex_lock_iothread();
830 qemu_wait_io_event_common(cpu
);
837 static void tcg_exec_all(void);
839 static void tcg_signal_cpu_creation(CPUState
*cpu
, void *data
)
841 cpu
->thread_id
= qemu_get_thread_id();
845 static void *qemu_tcg_cpu_thread_fn(void *arg
)
849 qemu_tcg_init_cpu_signals();
850 qemu_thread_get_self(cpu
->thread
);
852 qemu_mutex_lock(&qemu_global_mutex
);
853 qemu_for_each_cpu(tcg_signal_cpu_creation
, NULL
);
854 qemu_cond_signal(&qemu_cpu_cond
);
856 /* wait for initial kick-off after machine start */
857 while (first_cpu
->stopped
) {
858 qemu_cond_wait(tcg_halt_cond
, &qemu_global_mutex
);
860 /* process any pending work */
861 for (cpu
= first_cpu
; cpu
!= NULL
; cpu
= cpu
->next_cpu
) {
862 qemu_wait_io_event_common(cpu
);
868 if (use_icount
&& qemu_clock_deadline(vm_clock
) <= 0) {
871 qemu_tcg_wait_io_event();
877 static void qemu_cpu_kick_thread(CPUState
*cpu
)
882 err
= pthread_kill(cpu
->thread
->thread
, SIG_IPI
);
884 fprintf(stderr
, "qemu:%s: %s", __func__
, strerror(err
));
888 if (!qemu_cpu_is_self(cpu
)) {
891 if (SuspendThread(cpu
->hThread
) == (DWORD
)-1) {
892 fprintf(stderr
, "qemu:%s: GetLastError:%lu\n", __func__
,
897 /* On multi-core systems, we are not sure that the thread is actually
898 * suspended until we can get the context.
900 tcgContext
.ContextFlags
= CONTEXT_CONTROL
;
901 while (GetThreadContext(cpu
->hThread
, &tcgContext
) != 0) {
907 if (ResumeThread(cpu
->hThread
) == (DWORD
)-1) {
908 fprintf(stderr
, "qemu:%s: GetLastError:%lu\n", __func__
,
916 void qemu_cpu_kick(CPUState
*cpu
)
918 qemu_cond_broadcast(cpu
->halt_cond
);
919 if (!tcg_enabled() && !cpu
->thread_kicked
) {
920 qemu_cpu_kick_thread(cpu
);
921 cpu
->thread_kicked
= true;
925 void qemu_cpu_kick_self(void)
930 if (!current_cpu
->thread_kicked
) {
931 qemu_cpu_kick_thread(current_cpu
);
932 current_cpu
->thread_kicked
= true;
939 bool qemu_cpu_is_self(CPUState
*cpu
)
941 return qemu_thread_is_self(cpu
->thread
);
944 static bool qemu_in_vcpu_thread(void)
946 return current_cpu
&& qemu_cpu_is_self(current_cpu
);
949 void qemu_mutex_lock_iothread(void)
951 if (!tcg_enabled()) {
952 qemu_mutex_lock(&qemu_global_mutex
);
954 iothread_requesting_mutex
= true;
955 if (qemu_mutex_trylock(&qemu_global_mutex
)) {
956 qemu_cpu_kick_thread(first_cpu
);
957 qemu_mutex_lock(&qemu_global_mutex
);
959 iothread_requesting_mutex
= false;
960 qemu_cond_broadcast(&qemu_io_proceeded_cond
);
964 void qemu_mutex_unlock_iothread(void)
966 qemu_mutex_unlock(&qemu_global_mutex
);
969 static int all_vcpus_paused(void)
971 CPUState
*cpu
= first_cpu
;
983 void pause_all_vcpus(void)
985 CPUState
*cpu
= first_cpu
;
987 qemu_clock_enable(vm_clock
, false);
994 if (qemu_in_vcpu_thread()) {
996 if (!kvm_enabled()) {
1000 cpu
->stopped
= true;
1001 cpu
= cpu
->next_cpu
;
1007 while (!all_vcpus_paused()) {
1008 qemu_cond_wait(&qemu_pause_cond
, &qemu_global_mutex
);
1012 cpu
= cpu
->next_cpu
;
1017 void cpu_resume(CPUState
*cpu
)
1020 cpu
->stopped
= false;
1024 void resume_all_vcpus(void)
1026 CPUState
*cpu
= first_cpu
;
1028 qemu_clock_enable(vm_clock
, true);
1031 cpu
= cpu
->next_cpu
;
1035 static void qemu_tcg_init_vcpu(CPUState
*cpu
)
1037 /* share a single thread for all cpus with TCG */
1038 if (!tcg_cpu_thread
) {
1039 cpu
->thread
= g_malloc0(sizeof(QemuThread
));
1040 cpu
->halt_cond
= g_malloc0(sizeof(QemuCond
));
1041 qemu_cond_init(cpu
->halt_cond
);
1042 tcg_halt_cond
= cpu
->halt_cond
;
1043 qemu_thread_create(cpu
->thread
, qemu_tcg_cpu_thread_fn
, cpu
,
1044 QEMU_THREAD_JOINABLE
);
1046 cpu
->hThread
= qemu_thread_get_handle(cpu
->thread
);
1048 while (!cpu
->created
) {
1049 qemu_cond_wait(&qemu_cpu_cond
, &qemu_global_mutex
);
1051 tcg_cpu_thread
= cpu
->thread
;
1053 cpu
->thread
= tcg_cpu_thread
;
1054 cpu
->halt_cond
= tcg_halt_cond
;
1058 static void qemu_kvm_start_vcpu(CPUState
*cpu
)
1060 cpu
->thread
= g_malloc0(sizeof(QemuThread
));
1061 cpu
->halt_cond
= g_malloc0(sizeof(QemuCond
));
1062 qemu_cond_init(cpu
->halt_cond
);
1063 qemu_thread_create(cpu
->thread
, qemu_kvm_cpu_thread_fn
, cpu
,
1064 QEMU_THREAD_JOINABLE
);
1065 while (!cpu
->created
) {
1066 qemu_cond_wait(&qemu_cpu_cond
, &qemu_global_mutex
);
1070 static void qemu_dummy_start_vcpu(CPUState
*cpu
)
1072 cpu
->thread
= g_malloc0(sizeof(QemuThread
));
1073 cpu
->halt_cond
= g_malloc0(sizeof(QemuCond
));
1074 qemu_cond_init(cpu
->halt_cond
);
1075 qemu_thread_create(cpu
->thread
, qemu_dummy_cpu_thread_fn
, cpu
,
1076 QEMU_THREAD_JOINABLE
);
1077 while (!cpu
->created
) {
1078 qemu_cond_wait(&qemu_cpu_cond
, &qemu_global_mutex
);
1082 void qemu_init_vcpu(CPUState
*cpu
)
1084 cpu
->nr_cores
= smp_cores
;
1085 cpu
->nr_threads
= smp_threads
;
1086 cpu
->stopped
= true;
1087 if (kvm_enabled()) {
1088 qemu_kvm_start_vcpu(cpu
);
1089 } else if (tcg_enabled()) {
1090 qemu_tcg_init_vcpu(cpu
);
1092 qemu_dummy_start_vcpu(cpu
);
1096 void cpu_stop_current(void)
1099 current_cpu
->stop
= false;
1100 current_cpu
->stopped
= true;
1101 cpu_exit(current_cpu
);
1102 qemu_cond_signal(&qemu_pause_cond
);
1106 int vm_stop(RunState state
)
1108 if (qemu_in_vcpu_thread()) {
1109 qemu_system_vmstop_request(state
);
1111 * FIXME: should not return to device code in case
1112 * vm_stop() has been requested.
1118 return do_vm_stop(state
);
1121 /* does a state transition even if the VM is already stopped,
1122 current state is forgotten forever */
1123 int vm_stop_force_state(RunState state
)
1125 if (runstate_is_running()) {
1126 return vm_stop(state
);
1128 runstate_set(state
);
1133 static int tcg_cpu_exec(CPUArchState
*env
)
1136 #ifdef CONFIG_PROFILER
1140 #ifdef CONFIG_PROFILER
1141 ti
= profile_getclock();
1146 qemu_icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
1147 env
->icount_decr
.u16
.low
= 0;
1148 env
->icount_extra
= 0;
1149 count
= qemu_icount_round(qemu_clock_deadline(vm_clock
));
1150 qemu_icount
+= count
;
1151 decr
= (count
> 0xffff) ? 0xffff : count
;
1153 env
->icount_decr
.u16
.low
= decr
;
1154 env
->icount_extra
= count
;
1156 ret
= cpu_exec(env
);
1157 #ifdef CONFIG_PROFILER
1158 qemu_time
+= profile_getclock() - ti
;
1161 /* Fold pending instructions back into the
1162 instruction counter, and clear the interrupt flag. */
1163 qemu_icount
-= (env
->icount_decr
.u16
.low
1164 + env
->icount_extra
);
1165 env
->icount_decr
.u32
= 0;
1166 env
->icount_extra
= 0;
1171 static void tcg_exec_all(void)
1175 /* Account partial waits to the vm_clock. */
1176 qemu_clock_warp(vm_clock
);
1178 if (next_cpu
== NULL
) {
1179 next_cpu
= first_cpu
;
1181 for (; next_cpu
!= NULL
&& !exit_request
; next_cpu
= next_cpu
->next_cpu
) {
1182 CPUState
*cpu
= next_cpu
;
1183 CPUArchState
*env
= cpu
->env_ptr
;
1185 qemu_clock_enable(vm_clock
,
1186 (env
->singlestep_enabled
& SSTEP_NOTIMER
) == 0);
1188 if (cpu_can_run(cpu
)) {
1189 r
= tcg_cpu_exec(env
);
1190 if (r
== EXCP_DEBUG
) {
1191 cpu_handle_guest_debug(cpu
);
1194 } else if (cpu
->stop
|| cpu
->stopped
) {
1201 void set_numa_modes(void)
1206 for (cpu
= first_cpu
; cpu
!= NULL
; cpu
= cpu
->next_cpu
) {
1207 for (i
= 0; i
< nb_numa_nodes
; i
++) {
1208 if (test_bit(cpu
->cpu_index
, node_cpumask
[i
])) {
1215 void list_cpus(FILE *f
, fprintf_function cpu_fprintf
, const char *optarg
)
1217 /* XXX: implement xxx_cpu_list for targets that still miss it */
1218 #if defined(cpu_list)
1219 cpu_list(f
, cpu_fprintf
);
1223 CpuInfoList
*qmp_query_cpus(Error
**errp
)
1225 CpuInfoList
*head
= NULL
, *cur_item
= NULL
;
1228 for (cpu
= first_cpu
; cpu
!= NULL
; cpu
= cpu
->next_cpu
) {
1230 #if defined(TARGET_I386)
1231 X86CPU
*x86_cpu
= X86_CPU(cpu
);
1232 CPUX86State
*env
= &x86_cpu
->env
;
1233 #elif defined(TARGET_PPC)
1234 PowerPCCPU
*ppc_cpu
= POWERPC_CPU(cpu
);
1235 CPUPPCState
*env
= &ppc_cpu
->env
;
1236 #elif defined(TARGET_SPARC)
1237 SPARCCPU
*sparc_cpu
= SPARC_CPU(cpu
);
1238 CPUSPARCState
*env
= &sparc_cpu
->env
;
1239 #elif defined(TARGET_MIPS)
1240 MIPSCPU
*mips_cpu
= MIPS_CPU(cpu
);
1241 CPUMIPSState
*env
= &mips_cpu
->env
;
1244 cpu_synchronize_state(cpu
);
1246 info
= g_malloc0(sizeof(*info
));
1247 info
->value
= g_malloc0(sizeof(*info
->value
));
1248 info
->value
->CPU
= cpu
->cpu_index
;
1249 info
->value
->current
= (cpu
== first_cpu
);
1250 info
->value
->halted
= cpu
->halted
;
1251 info
->value
->thread_id
= cpu
->thread_id
;
1252 #if defined(TARGET_I386)
1253 info
->value
->has_pc
= true;
1254 info
->value
->pc
= env
->eip
+ env
->segs
[R_CS
].base
;
1255 #elif defined(TARGET_PPC)
1256 info
->value
->has_nip
= true;
1257 info
->value
->nip
= env
->nip
;
1258 #elif defined(TARGET_SPARC)
1259 info
->value
->has_pc
= true;
1260 info
->value
->pc
= env
->pc
;
1261 info
->value
->has_npc
= true;
1262 info
->value
->npc
= env
->npc
;
1263 #elif defined(TARGET_MIPS)
1264 info
->value
->has_PC
= true;
1265 info
->value
->PC
= env
->active_tc
.PC
;
1268 /* XXX: waiting for the qapi to support GSList */
1270 head
= cur_item
= info
;
1272 cur_item
->next
= info
;
1280 void qmp_memsave(int64_t addr
, int64_t size
, const char *filename
,
1281 bool has_cpu
, int64_t cpu_index
, Error
**errp
)
1293 cpu
= qemu_get_cpu(cpu_index
);
1295 error_set(errp
, QERR_INVALID_PARAMETER_VALUE
, "cpu-index",
1301 f
= fopen(filename
, "wb");
1303 error_setg_file_open(errp
, errno
, filename
);
1311 cpu_memory_rw_debug(env
, addr
, buf
, l
, 0);
1312 if (fwrite(buf
, 1, l
, f
) != l
) {
1313 error_set(errp
, QERR_IO_ERROR
);
1324 void qmp_pmemsave(int64_t addr
, int64_t size
, const char *filename
,
1331 f
= fopen(filename
, "wb");
1333 error_setg_file_open(errp
, errno
, filename
);
1341 cpu_physical_memory_rw(addr
, buf
, l
, 0);
1342 if (fwrite(buf
, 1, l
, f
) != l
) {
1343 error_set(errp
, QERR_IO_ERROR
);
1354 void qmp_inject_nmi(Error
**errp
)
1356 #if defined(TARGET_I386)
1359 for (cs
= first_cpu
; cs
!= NULL
; cs
= cs
->next_cpu
) {
1360 X86CPU
*cpu
= X86_CPU(cs
);
1361 CPUX86State
*env
= &cpu
->env
;
1363 if (!env
->apic_state
) {
1364 cpu_interrupt(cs
, CPU_INTERRUPT_NMI
);
1366 apic_deliver_nmi(env
->apic_state
);
1370 error_set(errp
, QERR_UNSUPPORTED
);