find_ram_offset: Align ram_addr_t allocation on long boundaries
[qemu.git] / exec.c
blob9f4f4501a8a1b3c07b474d5ba33a2d8ff2db105c
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
100 #define RAM_RESIZEABLE (1 << 2)
102 #endif
104 #ifdef TARGET_PAGE_BITS_VARY
105 int target_page_bits;
106 bool target_page_bits_decided;
107 #endif
109 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
110 /* current CPU in the current thread. It is only valid inside
111 cpu_exec() */
112 __thread CPUState *current_cpu;
113 /* 0 = Do not count executed instructions.
114 1 = Precise instruction counting.
115 2 = Adaptive rate instruction counting. */
116 int use_icount;
118 uintptr_t qemu_host_page_size;
119 intptr_t qemu_host_page_mask;
121 bool set_preferred_target_page_bits(int bits)
123 /* The target page size is the lowest common denominator for all
124 * the CPUs in the system, so we can only make it smaller, never
125 * larger. And we can't make it smaller once we've committed to
126 * a particular size.
128 #ifdef TARGET_PAGE_BITS_VARY
129 assert(bits >= TARGET_PAGE_BITS_MIN);
130 if (target_page_bits == 0 || target_page_bits > bits) {
131 if (target_page_bits_decided) {
132 return false;
134 target_page_bits = bits;
136 #endif
137 return true;
140 #if !defined(CONFIG_USER_ONLY)
142 static void finalize_target_page_bits(void)
144 #ifdef TARGET_PAGE_BITS_VARY
145 if (target_page_bits == 0) {
146 target_page_bits = TARGET_PAGE_BITS_MIN;
148 target_page_bits_decided = true;
149 #endif
152 typedef struct PhysPageEntry PhysPageEntry;
154 struct PhysPageEntry {
155 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
156 uint32_t skip : 6;
157 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
158 uint32_t ptr : 26;
161 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
163 /* Size of the L2 (and L3, etc) page tables. */
164 #define ADDR_SPACE_BITS 64
166 #define P_L2_BITS 9
167 #define P_L2_SIZE (1 << P_L2_BITS)
169 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
171 typedef PhysPageEntry Node[P_L2_SIZE];
173 typedef struct PhysPageMap {
174 struct rcu_head rcu;
176 unsigned sections_nb;
177 unsigned sections_nb_alloc;
178 unsigned nodes_nb;
179 unsigned nodes_nb_alloc;
180 Node *nodes;
181 MemoryRegionSection *sections;
182 } PhysPageMap;
184 struct AddressSpaceDispatch {
185 MemoryRegionSection *mru_section;
186 /* This is a multi-level map on the physical address space.
187 * The bottom level has pointers to MemoryRegionSections.
189 PhysPageEntry phys_map;
190 PhysPageMap map;
193 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
194 typedef struct subpage_t {
195 MemoryRegion iomem;
196 FlatView *fv;
197 hwaddr base;
198 uint16_t sub_section[];
199 } subpage_t;
201 #define PHYS_SECTION_UNASSIGNED 0
202 #define PHYS_SECTION_NOTDIRTY 1
203 #define PHYS_SECTION_ROM 2
204 #define PHYS_SECTION_WATCH 3
206 static void io_mem_init(void);
207 static void memory_map_init(void);
208 static void tcg_commit(MemoryListener *listener);
210 static MemoryRegion io_mem_watch;
213 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
214 * @cpu: the CPU whose AddressSpace this is
215 * @as: the AddressSpace itself
216 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
217 * @tcg_as_listener: listener for tracking changes to the AddressSpace
219 struct CPUAddressSpace {
220 CPUState *cpu;
221 AddressSpace *as;
222 struct AddressSpaceDispatch *memory_dispatch;
223 MemoryListener tcg_as_listener;
226 struct DirtyBitmapSnapshot {
227 ram_addr_t start;
228 ram_addr_t end;
229 unsigned long dirty[];
232 #endif
234 #if !defined(CONFIG_USER_ONLY)
236 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
238 static unsigned alloc_hint = 16;
239 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
240 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
241 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
242 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
243 alloc_hint = map->nodes_nb_alloc;
247 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
249 unsigned i;
250 uint32_t ret;
251 PhysPageEntry e;
252 PhysPageEntry *p;
254 ret = map->nodes_nb++;
255 p = map->nodes[ret];
256 assert(ret != PHYS_MAP_NODE_NIL);
257 assert(ret != map->nodes_nb_alloc);
259 e.skip = leaf ? 0 : 1;
260 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
261 for (i = 0; i < P_L2_SIZE; ++i) {
262 memcpy(&p[i], &e, sizeof(e));
264 return ret;
267 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
268 hwaddr *index, hwaddr *nb, uint16_t leaf,
269 int level)
271 PhysPageEntry *p;
272 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
274 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
275 lp->ptr = phys_map_node_alloc(map, level == 0);
277 p = map->nodes[lp->ptr];
278 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
280 while (*nb && lp < &p[P_L2_SIZE]) {
281 if ((*index & (step - 1)) == 0 && *nb >= step) {
282 lp->skip = 0;
283 lp->ptr = leaf;
284 *index += step;
285 *nb -= step;
286 } else {
287 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
289 ++lp;
293 static void phys_page_set(AddressSpaceDispatch *d,
294 hwaddr index, hwaddr nb,
295 uint16_t leaf)
297 /* Wildly overreserve - it doesn't matter much. */
298 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
300 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
303 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
304 * and update our entry so we can skip it and go directly to the destination.
306 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
308 unsigned valid_ptr = P_L2_SIZE;
309 int valid = 0;
310 PhysPageEntry *p;
311 int i;
313 if (lp->ptr == PHYS_MAP_NODE_NIL) {
314 return;
317 p = nodes[lp->ptr];
318 for (i = 0; i < P_L2_SIZE; i++) {
319 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
320 continue;
323 valid_ptr = i;
324 valid++;
325 if (p[i].skip) {
326 phys_page_compact(&p[i], nodes);
330 /* We can only compress if there's only one child. */
331 if (valid != 1) {
332 return;
335 assert(valid_ptr < P_L2_SIZE);
337 /* Don't compress if it won't fit in the # of bits we have. */
338 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
339 return;
342 lp->ptr = p[valid_ptr].ptr;
343 if (!p[valid_ptr].skip) {
344 /* If our only child is a leaf, make this a leaf. */
345 /* By design, we should have made this node a leaf to begin with so we
346 * should never reach here.
347 * But since it's so simple to handle this, let's do it just in case we
348 * change this rule.
350 lp->skip = 0;
351 } else {
352 lp->skip += p[valid_ptr].skip;
356 void address_space_dispatch_compact(AddressSpaceDispatch *d)
358 if (d->phys_map.skip) {
359 phys_page_compact(&d->phys_map, d->map.nodes);
363 static inline bool section_covers_addr(const MemoryRegionSection *section,
364 hwaddr addr)
366 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
367 * the section must cover the entire address space.
369 return int128_gethi(section->size) ||
370 range_covers_byte(section->offset_within_address_space,
371 int128_getlo(section->size), addr);
374 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
376 PhysPageEntry lp = d->phys_map, *p;
377 Node *nodes = d->map.nodes;
378 MemoryRegionSection *sections = d->map.sections;
379 hwaddr index = addr >> TARGET_PAGE_BITS;
380 int i;
382 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
383 if (lp.ptr == PHYS_MAP_NODE_NIL) {
384 return &sections[PHYS_SECTION_UNASSIGNED];
386 p = nodes[lp.ptr];
387 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
390 if (section_covers_addr(&sections[lp.ptr], addr)) {
391 return &sections[lp.ptr];
392 } else {
393 return &sections[PHYS_SECTION_UNASSIGNED];
397 bool memory_region_is_unassigned(MemoryRegion *mr)
399 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
400 && mr != &io_mem_watch;
403 /* Called from RCU critical section */
404 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
405 hwaddr addr,
406 bool resolve_subpage)
408 MemoryRegionSection *section = atomic_read(&d->mru_section);
409 subpage_t *subpage;
411 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
412 !section_covers_addr(section, addr)) {
413 section = phys_page_find(d, addr);
414 atomic_set(&d->mru_section, section);
416 if (resolve_subpage && section->mr->subpage) {
417 subpage = container_of(section->mr, subpage_t, iomem);
418 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
420 return section;
423 /* Called from RCU critical section */
424 static MemoryRegionSection *
425 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
426 hwaddr *plen, bool resolve_subpage)
428 MemoryRegionSection *section;
429 MemoryRegion *mr;
430 Int128 diff;
432 section = address_space_lookup_region(d, addr, resolve_subpage);
433 /* Compute offset within MemoryRegionSection */
434 addr -= section->offset_within_address_space;
436 /* Compute offset within MemoryRegion */
437 *xlat = addr + section->offset_within_region;
439 mr = section->mr;
441 /* MMIO registers can be expected to perform full-width accesses based only
442 * on their address, without considering adjacent registers that could
443 * decode to completely different MemoryRegions. When such registers
444 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
445 * regions overlap wildly. For this reason we cannot clamp the accesses
446 * here.
448 * If the length is small (as is the case for address_space_ldl/stl),
449 * everything works fine. If the incoming length is large, however,
450 * the caller really has to do the clamping through memory_access_size.
452 if (memory_region_is_ram(mr)) {
453 diff = int128_sub(section->size, int128_make64(addr));
454 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
456 return section;
460 * flatview_do_translate - translate an address in FlatView
462 * @fv: the flat view that we want to translate on
463 * @addr: the address to be translated in above address space
464 * @xlat: the translated address offset within memory region. It
465 * cannot be @NULL.
466 * @plen_out: valid read/write length of the translated address. It
467 * can be @NULL when we don't care about it.
468 * @page_mask_out: page mask for the translated address. This
469 * should only be meaningful for IOMMU translated
470 * addresses, since there may be huge pages that this bit
471 * would tell. It can be @NULL if we don't care about it.
472 * @is_write: whether the translation operation is for write
473 * @is_mmio: whether this can be MMIO, set true if it can
475 * This function is called from RCU critical section
477 static MemoryRegionSection flatview_do_translate(FlatView *fv,
478 hwaddr addr,
479 hwaddr *xlat,
480 hwaddr *plen_out,
481 hwaddr *page_mask_out,
482 bool is_write,
483 bool is_mmio,
484 AddressSpace **target_as)
486 IOMMUTLBEntry iotlb;
487 MemoryRegionSection *section;
488 IOMMUMemoryRegion *iommu_mr;
489 IOMMUMemoryRegionClass *imrc;
490 hwaddr page_mask = (hwaddr)(-1);
491 hwaddr plen = (hwaddr)(-1);
493 if (plen_out) {
494 plen = *plen_out;
497 for (;;) {
498 section = address_space_translate_internal(
499 flatview_to_dispatch(fv), addr, &addr,
500 &plen, is_mmio);
502 iommu_mr = memory_region_get_iommu(section->mr);
503 if (!iommu_mr) {
504 break;
506 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
508 iotlb = imrc->translate(iommu_mr, addr, is_write ?
509 IOMMU_WO : IOMMU_RO);
510 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
511 | (addr & iotlb.addr_mask));
512 page_mask &= iotlb.addr_mask;
513 plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
514 if (!(iotlb.perm & (1 << is_write))) {
515 goto translate_fail;
518 fv = address_space_to_flatview(iotlb.target_as);
519 *target_as = iotlb.target_as;
522 *xlat = addr;
524 if (page_mask == (hwaddr)(-1)) {
525 /* Not behind an IOMMU, use default page size. */
526 page_mask = ~TARGET_PAGE_MASK;
529 if (page_mask_out) {
530 *page_mask_out = page_mask;
533 if (plen_out) {
534 *plen_out = plen;
537 return *section;
539 translate_fail:
540 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
543 /* Called from RCU critical section */
544 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
545 bool is_write)
547 MemoryRegionSection section;
548 hwaddr xlat, page_mask;
551 * This can never be MMIO, and we don't really care about plen,
552 * but page mask.
554 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
555 NULL, &page_mask, is_write, false, &as);
557 /* Illegal translation */
558 if (section.mr == &io_mem_unassigned) {
559 goto iotlb_fail;
562 /* Convert memory region offset into address space offset */
563 xlat += section.offset_within_address_space -
564 section.offset_within_region;
566 return (IOMMUTLBEntry) {
567 .target_as = as,
568 .iova = addr & ~page_mask,
569 .translated_addr = xlat & ~page_mask,
570 .addr_mask = page_mask,
571 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
572 .perm = IOMMU_RW,
575 iotlb_fail:
576 return (IOMMUTLBEntry) {0};
579 /* Called from RCU critical section */
580 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
581 hwaddr *plen, bool is_write)
583 MemoryRegion *mr;
584 MemoryRegionSection section;
585 AddressSpace *as = NULL;
587 /* This can be MMIO, so setup MMIO bit. */
588 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
589 is_write, true, &as);
590 mr = section.mr;
592 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
593 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
594 *plen = MIN(page, *plen);
597 return mr;
600 /* Called from RCU critical section */
601 MemoryRegionSection *
602 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
603 hwaddr *xlat, hwaddr *plen)
605 MemoryRegionSection *section;
606 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
608 section = address_space_translate_internal(d, addr, xlat, plen, false);
610 assert(!memory_region_is_iommu(section->mr));
611 return section;
613 #endif
615 #if !defined(CONFIG_USER_ONLY)
617 static int cpu_common_post_load(void *opaque, int version_id)
619 CPUState *cpu = opaque;
621 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
622 version_id is increased. */
623 cpu->interrupt_request &= ~0x01;
624 tlb_flush(cpu);
626 return 0;
629 static int cpu_common_pre_load(void *opaque)
631 CPUState *cpu = opaque;
633 cpu->exception_index = -1;
635 return 0;
638 static bool cpu_common_exception_index_needed(void *opaque)
640 CPUState *cpu = opaque;
642 return tcg_enabled() && cpu->exception_index != -1;
645 static const VMStateDescription vmstate_cpu_common_exception_index = {
646 .name = "cpu_common/exception_index",
647 .version_id = 1,
648 .minimum_version_id = 1,
649 .needed = cpu_common_exception_index_needed,
650 .fields = (VMStateField[]) {
651 VMSTATE_INT32(exception_index, CPUState),
652 VMSTATE_END_OF_LIST()
656 static bool cpu_common_crash_occurred_needed(void *opaque)
658 CPUState *cpu = opaque;
660 return cpu->crash_occurred;
663 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
664 .name = "cpu_common/crash_occurred",
665 .version_id = 1,
666 .minimum_version_id = 1,
667 .needed = cpu_common_crash_occurred_needed,
668 .fields = (VMStateField[]) {
669 VMSTATE_BOOL(crash_occurred, CPUState),
670 VMSTATE_END_OF_LIST()
674 const VMStateDescription vmstate_cpu_common = {
675 .name = "cpu_common",
676 .version_id = 1,
677 .minimum_version_id = 1,
678 .pre_load = cpu_common_pre_load,
679 .post_load = cpu_common_post_load,
680 .fields = (VMStateField[]) {
681 VMSTATE_UINT32(halted, CPUState),
682 VMSTATE_UINT32(interrupt_request, CPUState),
683 VMSTATE_END_OF_LIST()
685 .subsections = (const VMStateDescription*[]) {
686 &vmstate_cpu_common_exception_index,
687 &vmstate_cpu_common_crash_occurred,
688 NULL
692 #endif
694 CPUState *qemu_get_cpu(int index)
696 CPUState *cpu;
698 CPU_FOREACH(cpu) {
699 if (cpu->cpu_index == index) {
700 return cpu;
704 return NULL;
707 #if !defined(CONFIG_USER_ONLY)
708 void cpu_address_space_init(CPUState *cpu, int asidx,
709 const char *prefix, MemoryRegion *mr)
711 CPUAddressSpace *newas;
712 AddressSpace *as = g_new0(AddressSpace, 1);
713 char *as_name;
715 assert(mr);
716 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
717 address_space_init(as, mr, as_name);
718 g_free(as_name);
720 /* Target code should have set num_ases before calling us */
721 assert(asidx < cpu->num_ases);
723 if (asidx == 0) {
724 /* address space 0 gets the convenience alias */
725 cpu->as = as;
728 /* KVM cannot currently support multiple address spaces. */
729 assert(asidx == 0 || !kvm_enabled());
731 if (!cpu->cpu_ases) {
732 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
735 newas = &cpu->cpu_ases[asidx];
736 newas->cpu = cpu;
737 newas->as = as;
738 if (tcg_enabled()) {
739 newas->tcg_as_listener.commit = tcg_commit;
740 memory_listener_register(&newas->tcg_as_listener, as);
744 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
746 /* Return the AddressSpace corresponding to the specified index */
747 return cpu->cpu_ases[asidx].as;
749 #endif
751 void cpu_exec_unrealizefn(CPUState *cpu)
753 CPUClass *cc = CPU_GET_CLASS(cpu);
755 cpu_list_remove(cpu);
757 if (cc->vmsd != NULL) {
758 vmstate_unregister(NULL, cc->vmsd, cpu);
760 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
761 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
765 Property cpu_common_props[] = {
766 #ifndef CONFIG_USER_ONLY
767 /* Create a memory property for softmmu CPU object,
768 * so users can wire up its memory. (This can't go in qom/cpu.c
769 * because that file is compiled only once for both user-mode
770 * and system builds.) The default if no link is set up is to use
771 * the system address space.
773 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
774 MemoryRegion *),
775 #endif
776 DEFINE_PROP_END_OF_LIST(),
779 void cpu_exec_initfn(CPUState *cpu)
781 cpu->as = NULL;
782 cpu->num_ases = 0;
784 #ifndef CONFIG_USER_ONLY
785 cpu->thread_id = qemu_get_thread_id();
786 cpu->memory = system_memory;
787 object_ref(OBJECT(cpu->memory));
788 #endif
791 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
793 CPUClass *cc = CPU_GET_CLASS(cpu);
794 static bool tcg_target_initialized;
796 cpu_list_add(cpu);
798 if (tcg_enabled() && !tcg_target_initialized) {
799 tcg_target_initialized = true;
800 cc->tcg_initialize();
803 #ifndef CONFIG_USER_ONLY
804 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
805 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
807 if (cc->vmsd != NULL) {
808 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
810 #endif
813 #if defined(CONFIG_USER_ONLY)
814 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
816 mmap_lock();
817 tb_lock();
818 tb_invalidate_phys_page_range(pc, pc + 1, 0);
819 tb_unlock();
820 mmap_unlock();
822 #else
823 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
825 MemTxAttrs attrs;
826 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
827 int asidx = cpu_asidx_from_attrs(cpu, attrs);
828 if (phys != -1) {
829 /* Locks grabbed by tb_invalidate_phys_addr */
830 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
831 phys | (pc & ~TARGET_PAGE_MASK));
834 #endif
836 #if defined(CONFIG_USER_ONLY)
837 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
842 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
843 int flags)
845 return -ENOSYS;
848 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
852 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
853 int flags, CPUWatchpoint **watchpoint)
855 return -ENOSYS;
857 #else
858 /* Add a watchpoint. */
859 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
860 int flags, CPUWatchpoint **watchpoint)
862 CPUWatchpoint *wp;
864 /* forbid ranges which are empty or run off the end of the address space */
865 if (len == 0 || (addr + len - 1) < addr) {
866 error_report("tried to set invalid watchpoint at %"
867 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
868 return -EINVAL;
870 wp = g_malloc(sizeof(*wp));
872 wp->vaddr = addr;
873 wp->len = len;
874 wp->flags = flags;
876 /* keep all GDB-injected watchpoints in front */
877 if (flags & BP_GDB) {
878 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
879 } else {
880 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
883 tlb_flush_page(cpu, addr);
885 if (watchpoint)
886 *watchpoint = wp;
887 return 0;
890 /* Remove a specific watchpoint. */
891 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
892 int flags)
894 CPUWatchpoint *wp;
896 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
897 if (addr == wp->vaddr && len == wp->len
898 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
899 cpu_watchpoint_remove_by_ref(cpu, wp);
900 return 0;
903 return -ENOENT;
906 /* Remove a specific watchpoint by reference. */
907 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
909 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
911 tlb_flush_page(cpu, watchpoint->vaddr);
913 g_free(watchpoint);
916 /* Remove all matching watchpoints. */
917 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
919 CPUWatchpoint *wp, *next;
921 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
922 if (wp->flags & mask) {
923 cpu_watchpoint_remove_by_ref(cpu, wp);
928 /* Return true if this watchpoint address matches the specified
929 * access (ie the address range covered by the watchpoint overlaps
930 * partially or completely with the address range covered by the
931 * access).
933 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
934 vaddr addr,
935 vaddr len)
937 /* We know the lengths are non-zero, but a little caution is
938 * required to avoid errors in the case where the range ends
939 * exactly at the top of the address space and so addr + len
940 * wraps round to zero.
942 vaddr wpend = wp->vaddr + wp->len - 1;
943 vaddr addrend = addr + len - 1;
945 return !(addr > wpend || wp->vaddr > addrend);
948 #endif
950 /* Add a breakpoint. */
951 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
952 CPUBreakpoint **breakpoint)
954 CPUBreakpoint *bp;
956 bp = g_malloc(sizeof(*bp));
958 bp->pc = pc;
959 bp->flags = flags;
961 /* keep all GDB-injected breakpoints in front */
962 if (flags & BP_GDB) {
963 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
964 } else {
965 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
968 breakpoint_invalidate(cpu, pc);
970 if (breakpoint) {
971 *breakpoint = bp;
973 return 0;
976 /* Remove a specific breakpoint. */
977 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
979 CPUBreakpoint *bp;
981 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
982 if (bp->pc == pc && bp->flags == flags) {
983 cpu_breakpoint_remove_by_ref(cpu, bp);
984 return 0;
987 return -ENOENT;
990 /* Remove a specific breakpoint by reference. */
991 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
993 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
995 breakpoint_invalidate(cpu, breakpoint->pc);
997 g_free(breakpoint);
1000 /* Remove all matching breakpoints. */
1001 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1003 CPUBreakpoint *bp, *next;
1005 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1006 if (bp->flags & mask) {
1007 cpu_breakpoint_remove_by_ref(cpu, bp);
1012 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1013 CPU loop after each instruction */
1014 void cpu_single_step(CPUState *cpu, int enabled)
1016 if (cpu->singlestep_enabled != enabled) {
1017 cpu->singlestep_enabled = enabled;
1018 if (kvm_enabled()) {
1019 kvm_update_guest_debug(cpu, 0);
1020 } else {
1021 /* must flush all the translated code to avoid inconsistencies */
1022 /* XXX: only flush what is necessary */
1023 tb_flush(cpu);
1028 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1030 va_list ap;
1031 va_list ap2;
1033 va_start(ap, fmt);
1034 va_copy(ap2, ap);
1035 fprintf(stderr, "qemu: fatal: ");
1036 vfprintf(stderr, fmt, ap);
1037 fprintf(stderr, "\n");
1038 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1039 if (qemu_log_separate()) {
1040 qemu_log_lock();
1041 qemu_log("qemu: fatal: ");
1042 qemu_log_vprintf(fmt, ap2);
1043 qemu_log("\n");
1044 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1045 qemu_log_flush();
1046 qemu_log_unlock();
1047 qemu_log_close();
1049 va_end(ap2);
1050 va_end(ap);
1051 replay_finish();
1052 #if defined(CONFIG_USER_ONLY)
1054 struct sigaction act;
1055 sigfillset(&act.sa_mask);
1056 act.sa_handler = SIG_DFL;
1057 sigaction(SIGABRT, &act, NULL);
1059 #endif
1060 abort();
1063 #if !defined(CONFIG_USER_ONLY)
1064 /* Called from RCU critical section */
1065 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1067 RAMBlock *block;
1069 block = atomic_rcu_read(&ram_list.mru_block);
1070 if (block && addr - block->offset < block->max_length) {
1071 return block;
1073 RAMBLOCK_FOREACH(block) {
1074 if (addr - block->offset < block->max_length) {
1075 goto found;
1079 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1080 abort();
1082 found:
1083 /* It is safe to write mru_block outside the iothread lock. This
1084 * is what happens:
1086 * mru_block = xxx
1087 * rcu_read_unlock()
1088 * xxx removed from list
1089 * rcu_read_lock()
1090 * read mru_block
1091 * mru_block = NULL;
1092 * call_rcu(reclaim_ramblock, xxx);
1093 * rcu_read_unlock()
1095 * atomic_rcu_set is not needed here. The block was already published
1096 * when it was placed into the list. Here we're just making an extra
1097 * copy of the pointer.
1099 ram_list.mru_block = block;
1100 return block;
1103 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1105 CPUState *cpu;
1106 ram_addr_t start1;
1107 RAMBlock *block;
1108 ram_addr_t end;
1110 end = TARGET_PAGE_ALIGN(start + length);
1111 start &= TARGET_PAGE_MASK;
1113 rcu_read_lock();
1114 block = qemu_get_ram_block(start);
1115 assert(block == qemu_get_ram_block(end - 1));
1116 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1117 CPU_FOREACH(cpu) {
1118 tlb_reset_dirty(cpu, start1, length);
1120 rcu_read_unlock();
1123 /* Note: start and end must be within the same ram block. */
1124 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1125 ram_addr_t length,
1126 unsigned client)
1128 DirtyMemoryBlocks *blocks;
1129 unsigned long end, page;
1130 bool dirty = false;
1132 if (length == 0) {
1133 return false;
1136 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1137 page = start >> TARGET_PAGE_BITS;
1139 rcu_read_lock();
1141 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1143 while (page < end) {
1144 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1145 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1146 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1148 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1149 offset, num);
1150 page += num;
1153 rcu_read_unlock();
1155 if (dirty && tcg_enabled()) {
1156 tlb_reset_dirty_range_all(start, length);
1159 return dirty;
1162 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1163 (ram_addr_t start, ram_addr_t length, unsigned client)
1165 DirtyMemoryBlocks *blocks;
1166 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1167 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1168 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1169 DirtyBitmapSnapshot *snap;
1170 unsigned long page, end, dest;
1172 snap = g_malloc0(sizeof(*snap) +
1173 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1174 snap->start = first;
1175 snap->end = last;
1177 page = first >> TARGET_PAGE_BITS;
1178 end = last >> TARGET_PAGE_BITS;
1179 dest = 0;
1181 rcu_read_lock();
1183 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1185 while (page < end) {
1186 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1187 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1188 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1190 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1191 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1192 offset >>= BITS_PER_LEVEL;
1194 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1195 blocks->blocks[idx] + offset,
1196 num);
1197 page += num;
1198 dest += num >> BITS_PER_LEVEL;
1201 rcu_read_unlock();
1203 if (tcg_enabled()) {
1204 tlb_reset_dirty_range_all(start, length);
1207 return snap;
1210 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1211 ram_addr_t start,
1212 ram_addr_t length)
1214 unsigned long page, end;
1216 assert(start >= snap->start);
1217 assert(start + length <= snap->end);
1219 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1220 page = (start - snap->start) >> TARGET_PAGE_BITS;
1222 while (page < end) {
1223 if (test_bit(page, snap->dirty)) {
1224 return true;
1226 page++;
1228 return false;
1231 /* Called from RCU critical section */
1232 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1233 MemoryRegionSection *section,
1234 target_ulong vaddr,
1235 hwaddr paddr, hwaddr xlat,
1236 int prot,
1237 target_ulong *address)
1239 hwaddr iotlb;
1240 CPUWatchpoint *wp;
1242 if (memory_region_is_ram(section->mr)) {
1243 /* Normal RAM. */
1244 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1245 if (!section->readonly) {
1246 iotlb |= PHYS_SECTION_NOTDIRTY;
1247 } else {
1248 iotlb |= PHYS_SECTION_ROM;
1250 } else {
1251 AddressSpaceDispatch *d;
1253 d = flatview_to_dispatch(section->fv);
1254 iotlb = section - d->map.sections;
1255 iotlb += xlat;
1258 /* Make accesses to pages with watchpoints go via the
1259 watchpoint trap routines. */
1260 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1261 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1262 /* Avoid trapping reads of pages with a write breakpoint. */
1263 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1264 iotlb = PHYS_SECTION_WATCH + paddr;
1265 *address |= TLB_MMIO;
1266 break;
1271 return iotlb;
1273 #endif /* defined(CONFIG_USER_ONLY) */
1275 #if !defined(CONFIG_USER_ONLY)
1277 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1278 uint16_t section);
1279 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1281 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1282 qemu_anon_ram_alloc;
1285 * Set a custom physical guest memory alloator.
1286 * Accelerators with unusual needs may need this. Hopefully, we can
1287 * get rid of it eventually.
1289 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1291 phys_mem_alloc = alloc;
1294 static uint16_t phys_section_add(PhysPageMap *map,
1295 MemoryRegionSection *section)
1297 /* The physical section number is ORed with a page-aligned
1298 * pointer to produce the iotlb entries. Thus it should
1299 * never overflow into the page-aligned value.
1301 assert(map->sections_nb < TARGET_PAGE_SIZE);
1303 if (map->sections_nb == map->sections_nb_alloc) {
1304 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1305 map->sections = g_renew(MemoryRegionSection, map->sections,
1306 map->sections_nb_alloc);
1308 map->sections[map->sections_nb] = *section;
1309 memory_region_ref(section->mr);
1310 return map->sections_nb++;
1313 static void phys_section_destroy(MemoryRegion *mr)
1315 bool have_sub_page = mr->subpage;
1317 memory_region_unref(mr);
1319 if (have_sub_page) {
1320 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1321 object_unref(OBJECT(&subpage->iomem));
1322 g_free(subpage);
1326 static void phys_sections_free(PhysPageMap *map)
1328 while (map->sections_nb > 0) {
1329 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1330 phys_section_destroy(section->mr);
1332 g_free(map->sections);
1333 g_free(map->nodes);
1336 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1338 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1339 subpage_t *subpage;
1340 hwaddr base = section->offset_within_address_space
1341 & TARGET_PAGE_MASK;
1342 MemoryRegionSection *existing = phys_page_find(d, base);
1343 MemoryRegionSection subsection = {
1344 .offset_within_address_space = base,
1345 .size = int128_make64(TARGET_PAGE_SIZE),
1347 hwaddr start, end;
1349 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1351 if (!(existing->mr->subpage)) {
1352 subpage = subpage_init(fv, base);
1353 subsection.fv = fv;
1354 subsection.mr = &subpage->iomem;
1355 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1356 phys_section_add(&d->map, &subsection));
1357 } else {
1358 subpage = container_of(existing->mr, subpage_t, iomem);
1360 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1361 end = start + int128_get64(section->size) - 1;
1362 subpage_register(subpage, start, end,
1363 phys_section_add(&d->map, section));
1367 static void register_multipage(FlatView *fv,
1368 MemoryRegionSection *section)
1370 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1371 hwaddr start_addr = section->offset_within_address_space;
1372 uint16_t section_index = phys_section_add(&d->map, section);
1373 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1374 TARGET_PAGE_BITS));
1376 assert(num_pages);
1377 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1380 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1382 MemoryRegionSection now = *section, remain = *section;
1383 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1385 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1386 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1387 - now.offset_within_address_space;
1389 now.size = int128_min(int128_make64(left), now.size);
1390 register_subpage(fv, &now);
1391 } else {
1392 now.size = int128_zero();
1394 while (int128_ne(remain.size, now.size)) {
1395 remain.size = int128_sub(remain.size, now.size);
1396 remain.offset_within_address_space += int128_get64(now.size);
1397 remain.offset_within_region += int128_get64(now.size);
1398 now = remain;
1399 if (int128_lt(remain.size, page_size)) {
1400 register_subpage(fv, &now);
1401 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1402 now.size = page_size;
1403 register_subpage(fv, &now);
1404 } else {
1405 now.size = int128_and(now.size, int128_neg(page_size));
1406 register_multipage(fv, &now);
1411 void qemu_flush_coalesced_mmio_buffer(void)
1413 if (kvm_enabled())
1414 kvm_flush_coalesced_mmio_buffer();
1417 void qemu_mutex_lock_ramlist(void)
1419 qemu_mutex_lock(&ram_list.mutex);
1422 void qemu_mutex_unlock_ramlist(void)
1424 qemu_mutex_unlock(&ram_list.mutex);
1427 void ram_block_dump(Monitor *mon)
1429 RAMBlock *block;
1430 char *psize;
1432 rcu_read_lock();
1433 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1434 "Block Name", "PSize", "Offset", "Used", "Total");
1435 RAMBLOCK_FOREACH(block) {
1436 psize = size_to_str(block->page_size);
1437 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1438 " 0x%016" PRIx64 "\n", block->idstr, psize,
1439 (uint64_t)block->offset,
1440 (uint64_t)block->used_length,
1441 (uint64_t)block->max_length);
1442 g_free(psize);
1444 rcu_read_unlock();
1447 #ifdef __linux__
1449 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1450 * may or may not name the same files / on the same filesystem now as
1451 * when we actually open and map them. Iterate over the file
1452 * descriptors instead, and use qemu_fd_getpagesize().
1454 static int find_max_supported_pagesize(Object *obj, void *opaque)
1456 char *mem_path;
1457 long *hpsize_min = opaque;
1459 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1460 mem_path = object_property_get_str(obj, "mem-path", NULL);
1461 if (mem_path) {
1462 long hpsize = qemu_mempath_getpagesize(mem_path);
1463 if (hpsize < *hpsize_min) {
1464 *hpsize_min = hpsize;
1466 } else {
1467 *hpsize_min = getpagesize();
1471 return 0;
1474 long qemu_getrampagesize(void)
1476 long hpsize = LONG_MAX;
1477 long mainrampagesize;
1478 Object *memdev_root;
1480 if (mem_path) {
1481 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1482 } else {
1483 mainrampagesize = getpagesize();
1486 /* it's possible we have memory-backend objects with
1487 * hugepage-backed RAM. these may get mapped into system
1488 * address space via -numa parameters or memory hotplug
1489 * hooks. we want to take these into account, but we
1490 * also want to make sure these supported hugepage
1491 * sizes are applicable across the entire range of memory
1492 * we may boot from, so we take the min across all
1493 * backends, and assume normal pages in cases where a
1494 * backend isn't backed by hugepages.
1496 memdev_root = object_resolve_path("/objects", NULL);
1497 if (memdev_root) {
1498 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1500 if (hpsize == LONG_MAX) {
1501 /* No additional memory regions found ==> Report main RAM page size */
1502 return mainrampagesize;
1505 /* If NUMA is disabled or the NUMA nodes are not backed with a
1506 * memory-backend, then there is at least one node using "normal" RAM,
1507 * so if its page size is smaller we have got to report that size instead.
1509 if (hpsize > mainrampagesize &&
1510 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1511 static bool warned;
1512 if (!warned) {
1513 error_report("Huge page support disabled (n/a for main memory).");
1514 warned = true;
1516 return mainrampagesize;
1519 return hpsize;
1521 #else
1522 long qemu_getrampagesize(void)
1524 return getpagesize();
1526 #endif
1528 #ifdef __linux__
1529 static int64_t get_file_size(int fd)
1531 int64_t size = lseek(fd, 0, SEEK_END);
1532 if (size < 0) {
1533 return -errno;
1535 return size;
1538 static int file_ram_open(const char *path,
1539 const char *region_name,
1540 bool *created,
1541 Error **errp)
1543 char *filename;
1544 char *sanitized_name;
1545 char *c;
1546 int fd = -1;
1548 *created = false;
1549 for (;;) {
1550 fd = open(path, O_RDWR);
1551 if (fd >= 0) {
1552 /* @path names an existing file, use it */
1553 break;
1555 if (errno == ENOENT) {
1556 /* @path names a file that doesn't exist, create it */
1557 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1558 if (fd >= 0) {
1559 *created = true;
1560 break;
1562 } else if (errno == EISDIR) {
1563 /* @path names a directory, create a file there */
1564 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1565 sanitized_name = g_strdup(region_name);
1566 for (c = sanitized_name; *c != '\0'; c++) {
1567 if (*c == '/') {
1568 *c = '_';
1572 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1573 sanitized_name);
1574 g_free(sanitized_name);
1576 fd = mkstemp(filename);
1577 if (fd >= 0) {
1578 unlink(filename);
1579 g_free(filename);
1580 break;
1582 g_free(filename);
1584 if (errno != EEXIST && errno != EINTR) {
1585 error_setg_errno(errp, errno,
1586 "can't open backing store %s for guest RAM",
1587 path);
1588 return -1;
1591 * Try again on EINTR and EEXIST. The latter happens when
1592 * something else creates the file between our two open().
1596 return fd;
1599 static void *file_ram_alloc(RAMBlock *block,
1600 ram_addr_t memory,
1601 int fd,
1602 bool truncate,
1603 Error **errp)
1605 void *area;
1607 block->page_size = qemu_fd_getpagesize(fd);
1608 block->mr->align = block->page_size;
1609 #if defined(__s390x__)
1610 if (kvm_enabled()) {
1611 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1613 #endif
1615 if (memory < block->page_size) {
1616 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1617 "or larger than page size 0x%zx",
1618 memory, block->page_size);
1619 return NULL;
1622 memory = ROUND_UP(memory, block->page_size);
1625 * ftruncate is not supported by hugetlbfs in older
1626 * hosts, so don't bother bailing out on errors.
1627 * If anything goes wrong with it under other filesystems,
1628 * mmap will fail.
1630 * Do not truncate the non-empty backend file to avoid corrupting
1631 * the existing data in the file. Disabling shrinking is not
1632 * enough. For example, the current vNVDIMM implementation stores
1633 * the guest NVDIMM labels at the end of the backend file. If the
1634 * backend file is later extended, QEMU will not be able to find
1635 * those labels. Therefore, extending the non-empty backend file
1636 * is disabled as well.
1638 if (truncate && ftruncate(fd, memory)) {
1639 perror("ftruncate");
1642 area = qemu_ram_mmap(fd, memory, block->mr->align,
1643 block->flags & RAM_SHARED);
1644 if (area == MAP_FAILED) {
1645 error_setg_errno(errp, errno,
1646 "unable to map backing store for guest RAM");
1647 return NULL;
1650 if (mem_prealloc) {
1651 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1652 if (errp && *errp) {
1653 qemu_ram_munmap(area, memory);
1654 return NULL;
1658 block->fd = fd;
1659 return area;
1661 #endif
1663 /* Allocate space within the ram_addr_t space that governs the
1664 * dirty bitmaps.
1665 * Called with the ramlist lock held.
1667 static ram_addr_t find_ram_offset(ram_addr_t size)
1669 RAMBlock *block, *next_block;
1670 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1672 assert(size != 0); /* it would hand out same offset multiple times */
1674 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1675 return 0;
1678 RAMBLOCK_FOREACH(block) {
1679 ram_addr_t candidate, next = RAM_ADDR_MAX;
1681 /* Align blocks to start on a 'long' in the bitmap
1682 * which makes the bitmap sync'ing take the fast path.
1684 candidate = block->offset + block->max_length;
1685 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1687 /* Search for the closest following block
1688 * and find the gap.
1690 RAMBLOCK_FOREACH(next_block) {
1691 if (next_block->offset >= candidate) {
1692 next = MIN(next, next_block->offset);
1696 /* If it fits remember our place and remember the size
1697 * of gap, but keep going so that we might find a smaller
1698 * gap to fill so avoiding fragmentation.
1700 if (next - candidate >= size && next - candidate < mingap) {
1701 offset = candidate;
1702 mingap = next - candidate;
1705 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1708 if (offset == RAM_ADDR_MAX) {
1709 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1710 (uint64_t)size);
1711 abort();
1714 trace_find_ram_offset(size, offset);
1716 return offset;
1719 unsigned long last_ram_page(void)
1721 RAMBlock *block;
1722 ram_addr_t last = 0;
1724 rcu_read_lock();
1725 RAMBLOCK_FOREACH(block) {
1726 last = MAX(last, block->offset + block->max_length);
1728 rcu_read_unlock();
1729 return last >> TARGET_PAGE_BITS;
1732 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1734 int ret;
1736 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1737 if (!machine_dump_guest_core(current_machine)) {
1738 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1739 if (ret) {
1740 perror("qemu_madvise");
1741 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1742 "but dump_guest_core=off specified\n");
1747 const char *qemu_ram_get_idstr(RAMBlock *rb)
1749 return rb->idstr;
1752 bool qemu_ram_is_shared(RAMBlock *rb)
1754 return rb->flags & RAM_SHARED;
1757 /* Called with iothread lock held. */
1758 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1760 RAMBlock *block;
1762 assert(new_block);
1763 assert(!new_block->idstr[0]);
1765 if (dev) {
1766 char *id = qdev_get_dev_path(dev);
1767 if (id) {
1768 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1769 g_free(id);
1772 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1774 rcu_read_lock();
1775 RAMBLOCK_FOREACH(block) {
1776 if (block != new_block &&
1777 !strcmp(block->idstr, new_block->idstr)) {
1778 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1779 new_block->idstr);
1780 abort();
1783 rcu_read_unlock();
1786 /* Called with iothread lock held. */
1787 void qemu_ram_unset_idstr(RAMBlock *block)
1789 /* FIXME: arch_init.c assumes that this is not called throughout
1790 * migration. Ignore the problem since hot-unplug during migration
1791 * does not work anyway.
1793 if (block) {
1794 memset(block->idstr, 0, sizeof(block->idstr));
1798 size_t qemu_ram_pagesize(RAMBlock *rb)
1800 return rb->page_size;
1803 /* Returns the largest size of page in use */
1804 size_t qemu_ram_pagesize_largest(void)
1806 RAMBlock *block;
1807 size_t largest = 0;
1809 RAMBLOCK_FOREACH(block) {
1810 largest = MAX(largest, qemu_ram_pagesize(block));
1813 return largest;
1816 static int memory_try_enable_merging(void *addr, size_t len)
1818 if (!machine_mem_merge(current_machine)) {
1819 /* disabled by the user */
1820 return 0;
1823 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1826 /* Only legal before guest might have detected the memory size: e.g. on
1827 * incoming migration, or right after reset.
1829 * As memory core doesn't know how is memory accessed, it is up to
1830 * resize callback to update device state and/or add assertions to detect
1831 * misuse, if necessary.
1833 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1835 assert(block);
1837 newsize = HOST_PAGE_ALIGN(newsize);
1839 if (block->used_length == newsize) {
1840 return 0;
1843 if (!(block->flags & RAM_RESIZEABLE)) {
1844 error_setg_errno(errp, EINVAL,
1845 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1846 " in != 0x" RAM_ADDR_FMT, block->idstr,
1847 newsize, block->used_length);
1848 return -EINVAL;
1851 if (block->max_length < newsize) {
1852 error_setg_errno(errp, EINVAL,
1853 "Length too large: %s: 0x" RAM_ADDR_FMT
1854 " > 0x" RAM_ADDR_FMT, block->idstr,
1855 newsize, block->max_length);
1856 return -EINVAL;
1859 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1860 block->used_length = newsize;
1861 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1862 DIRTY_CLIENTS_ALL);
1863 memory_region_set_size(block->mr, newsize);
1864 if (block->resized) {
1865 block->resized(block->idstr, newsize, block->host);
1867 return 0;
1870 /* Called with ram_list.mutex held */
1871 static void dirty_memory_extend(ram_addr_t old_ram_size,
1872 ram_addr_t new_ram_size)
1874 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1875 DIRTY_MEMORY_BLOCK_SIZE);
1876 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1877 DIRTY_MEMORY_BLOCK_SIZE);
1878 int i;
1880 /* Only need to extend if block count increased */
1881 if (new_num_blocks <= old_num_blocks) {
1882 return;
1885 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1886 DirtyMemoryBlocks *old_blocks;
1887 DirtyMemoryBlocks *new_blocks;
1888 int j;
1890 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1891 new_blocks = g_malloc(sizeof(*new_blocks) +
1892 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1894 if (old_num_blocks) {
1895 memcpy(new_blocks->blocks, old_blocks->blocks,
1896 old_num_blocks * sizeof(old_blocks->blocks[0]));
1899 for (j = old_num_blocks; j < new_num_blocks; j++) {
1900 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1903 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1905 if (old_blocks) {
1906 g_free_rcu(old_blocks, rcu);
1911 static void ram_block_add(RAMBlock *new_block, Error **errp)
1913 RAMBlock *block;
1914 RAMBlock *last_block = NULL;
1915 ram_addr_t old_ram_size, new_ram_size;
1916 Error *err = NULL;
1918 old_ram_size = last_ram_page();
1920 qemu_mutex_lock_ramlist();
1921 new_block->offset = find_ram_offset(new_block->max_length);
1923 if (!new_block->host) {
1924 if (xen_enabled()) {
1925 xen_ram_alloc(new_block->offset, new_block->max_length,
1926 new_block->mr, &err);
1927 if (err) {
1928 error_propagate(errp, err);
1929 qemu_mutex_unlock_ramlist();
1930 return;
1932 } else {
1933 new_block->host = phys_mem_alloc(new_block->max_length,
1934 &new_block->mr->align);
1935 if (!new_block->host) {
1936 error_setg_errno(errp, errno,
1937 "cannot set up guest memory '%s'",
1938 memory_region_name(new_block->mr));
1939 qemu_mutex_unlock_ramlist();
1940 return;
1942 memory_try_enable_merging(new_block->host, new_block->max_length);
1946 new_ram_size = MAX(old_ram_size,
1947 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1948 if (new_ram_size > old_ram_size) {
1949 dirty_memory_extend(old_ram_size, new_ram_size);
1951 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1952 * QLIST (which has an RCU-friendly variant) does not have insertion at
1953 * tail, so save the last element in last_block.
1955 RAMBLOCK_FOREACH(block) {
1956 last_block = block;
1957 if (block->max_length < new_block->max_length) {
1958 break;
1961 if (block) {
1962 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1963 } else if (last_block) {
1964 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1965 } else { /* list is empty */
1966 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1968 ram_list.mru_block = NULL;
1970 /* Write list before version */
1971 smp_wmb();
1972 ram_list.version++;
1973 qemu_mutex_unlock_ramlist();
1975 cpu_physical_memory_set_dirty_range(new_block->offset,
1976 new_block->used_length,
1977 DIRTY_CLIENTS_ALL);
1979 if (new_block->host) {
1980 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1981 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1982 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1983 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1984 ram_block_notify_add(new_block->host, new_block->max_length);
1988 #ifdef __linux__
1989 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1990 bool share, int fd,
1991 Error **errp)
1993 RAMBlock *new_block;
1994 Error *local_err = NULL;
1995 int64_t file_size;
1997 if (xen_enabled()) {
1998 error_setg(errp, "-mem-path not supported with Xen");
1999 return NULL;
2002 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2003 error_setg(errp,
2004 "host lacks kvm mmu notifiers, -mem-path unsupported");
2005 return NULL;
2008 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2010 * file_ram_alloc() needs to allocate just like
2011 * phys_mem_alloc, but we haven't bothered to provide
2012 * a hook there.
2014 error_setg(errp,
2015 "-mem-path not supported with this accelerator");
2016 return NULL;
2019 size = HOST_PAGE_ALIGN(size);
2020 file_size = get_file_size(fd);
2021 if (file_size > 0 && file_size < size) {
2022 error_setg(errp, "backing store %s size 0x%" PRIx64
2023 " does not match 'size' option 0x" RAM_ADDR_FMT,
2024 mem_path, file_size, size);
2025 return NULL;
2028 new_block = g_malloc0(sizeof(*new_block));
2029 new_block->mr = mr;
2030 new_block->used_length = size;
2031 new_block->max_length = size;
2032 new_block->flags = share ? RAM_SHARED : 0;
2033 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2034 if (!new_block->host) {
2035 g_free(new_block);
2036 return NULL;
2039 ram_block_add(new_block, &local_err);
2040 if (local_err) {
2041 g_free(new_block);
2042 error_propagate(errp, local_err);
2043 return NULL;
2045 return new_block;
2050 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2051 bool share, const char *mem_path,
2052 Error **errp)
2054 int fd;
2055 bool created;
2056 RAMBlock *block;
2058 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2059 if (fd < 0) {
2060 return NULL;
2063 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2064 if (!block) {
2065 if (created) {
2066 unlink(mem_path);
2068 close(fd);
2069 return NULL;
2072 return block;
2074 #endif
2076 static
2077 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2078 void (*resized)(const char*,
2079 uint64_t length,
2080 void *host),
2081 void *host, bool resizeable,
2082 MemoryRegion *mr, Error **errp)
2084 RAMBlock *new_block;
2085 Error *local_err = NULL;
2087 size = HOST_PAGE_ALIGN(size);
2088 max_size = HOST_PAGE_ALIGN(max_size);
2089 new_block = g_malloc0(sizeof(*new_block));
2090 new_block->mr = mr;
2091 new_block->resized = resized;
2092 new_block->used_length = size;
2093 new_block->max_length = max_size;
2094 assert(max_size >= size);
2095 new_block->fd = -1;
2096 new_block->page_size = getpagesize();
2097 new_block->host = host;
2098 if (host) {
2099 new_block->flags |= RAM_PREALLOC;
2101 if (resizeable) {
2102 new_block->flags |= RAM_RESIZEABLE;
2104 ram_block_add(new_block, &local_err);
2105 if (local_err) {
2106 g_free(new_block);
2107 error_propagate(errp, local_err);
2108 return NULL;
2110 return new_block;
2113 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2114 MemoryRegion *mr, Error **errp)
2116 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2119 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
2121 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2124 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2125 void (*resized)(const char*,
2126 uint64_t length,
2127 void *host),
2128 MemoryRegion *mr, Error **errp)
2130 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
2133 static void reclaim_ramblock(RAMBlock *block)
2135 if (block->flags & RAM_PREALLOC) {
2137 } else if (xen_enabled()) {
2138 xen_invalidate_map_cache_entry(block->host);
2139 #ifndef _WIN32
2140 } else if (block->fd >= 0) {
2141 qemu_ram_munmap(block->host, block->max_length);
2142 close(block->fd);
2143 #endif
2144 } else {
2145 qemu_anon_ram_free(block->host, block->max_length);
2147 g_free(block);
2150 void qemu_ram_free(RAMBlock *block)
2152 if (!block) {
2153 return;
2156 if (block->host) {
2157 ram_block_notify_remove(block->host, block->max_length);
2160 qemu_mutex_lock_ramlist();
2161 QLIST_REMOVE_RCU(block, next);
2162 ram_list.mru_block = NULL;
2163 /* Write list before version */
2164 smp_wmb();
2165 ram_list.version++;
2166 call_rcu(block, reclaim_ramblock, rcu);
2167 qemu_mutex_unlock_ramlist();
2170 #ifndef _WIN32
2171 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2173 RAMBlock *block;
2174 ram_addr_t offset;
2175 int flags;
2176 void *area, *vaddr;
2178 RAMBLOCK_FOREACH(block) {
2179 offset = addr - block->offset;
2180 if (offset < block->max_length) {
2181 vaddr = ramblock_ptr(block, offset);
2182 if (block->flags & RAM_PREALLOC) {
2184 } else if (xen_enabled()) {
2185 abort();
2186 } else {
2187 flags = MAP_FIXED;
2188 if (block->fd >= 0) {
2189 flags |= (block->flags & RAM_SHARED ?
2190 MAP_SHARED : MAP_PRIVATE);
2191 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2192 flags, block->fd, offset);
2193 } else {
2195 * Remap needs to match alloc. Accelerators that
2196 * set phys_mem_alloc never remap. If they did,
2197 * we'd need a remap hook here.
2199 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2201 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2202 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2203 flags, -1, 0);
2205 if (area != vaddr) {
2206 fprintf(stderr, "Could not remap addr: "
2207 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2208 length, addr);
2209 exit(1);
2211 memory_try_enable_merging(vaddr, length);
2212 qemu_ram_setup_dump(vaddr, length);
2217 #endif /* !_WIN32 */
2219 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2220 * This should not be used for general purpose DMA. Use address_space_map
2221 * or address_space_rw instead. For local memory (e.g. video ram) that the
2222 * device owns, use memory_region_get_ram_ptr.
2224 * Called within RCU critical section.
2226 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2228 RAMBlock *block = ram_block;
2230 if (block == NULL) {
2231 block = qemu_get_ram_block(addr);
2232 addr -= block->offset;
2235 if (xen_enabled() && block->host == NULL) {
2236 /* We need to check if the requested address is in the RAM
2237 * because we don't want to map the entire memory in QEMU.
2238 * In that case just map until the end of the page.
2240 if (block->offset == 0) {
2241 return xen_map_cache(addr, 0, 0, false);
2244 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2246 return ramblock_ptr(block, addr);
2249 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2250 * but takes a size argument.
2252 * Called within RCU critical section.
2254 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2255 hwaddr *size, bool lock)
2257 RAMBlock *block = ram_block;
2258 if (*size == 0) {
2259 return NULL;
2262 if (block == NULL) {
2263 block = qemu_get_ram_block(addr);
2264 addr -= block->offset;
2266 *size = MIN(*size, block->max_length - addr);
2268 if (xen_enabled() && block->host == NULL) {
2269 /* We need to check if the requested address is in the RAM
2270 * because we don't want to map the entire memory in QEMU.
2271 * In that case just map the requested area.
2273 if (block->offset == 0) {
2274 return xen_map_cache(addr, *size, lock, lock);
2277 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2280 return ramblock_ptr(block, addr);
2284 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2285 * in that RAMBlock.
2287 * ptr: Host pointer to look up
2288 * round_offset: If true round the result offset down to a page boundary
2289 * *ram_addr: set to result ram_addr
2290 * *offset: set to result offset within the RAMBlock
2292 * Returns: RAMBlock (or NULL if not found)
2294 * By the time this function returns, the returned pointer is not protected
2295 * by RCU anymore. If the caller is not within an RCU critical section and
2296 * does not hold the iothread lock, it must have other means of protecting the
2297 * pointer, such as a reference to the region that includes the incoming
2298 * ram_addr_t.
2300 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2301 ram_addr_t *offset)
2303 RAMBlock *block;
2304 uint8_t *host = ptr;
2306 if (xen_enabled()) {
2307 ram_addr_t ram_addr;
2308 rcu_read_lock();
2309 ram_addr = xen_ram_addr_from_mapcache(ptr);
2310 block = qemu_get_ram_block(ram_addr);
2311 if (block) {
2312 *offset = ram_addr - block->offset;
2314 rcu_read_unlock();
2315 return block;
2318 rcu_read_lock();
2319 block = atomic_rcu_read(&ram_list.mru_block);
2320 if (block && block->host && host - block->host < block->max_length) {
2321 goto found;
2324 RAMBLOCK_FOREACH(block) {
2325 /* This case append when the block is not mapped. */
2326 if (block->host == NULL) {
2327 continue;
2329 if (host - block->host < block->max_length) {
2330 goto found;
2334 rcu_read_unlock();
2335 return NULL;
2337 found:
2338 *offset = (host - block->host);
2339 if (round_offset) {
2340 *offset &= TARGET_PAGE_MASK;
2342 rcu_read_unlock();
2343 return block;
2347 * Finds the named RAMBlock
2349 * name: The name of RAMBlock to find
2351 * Returns: RAMBlock (or NULL if not found)
2353 RAMBlock *qemu_ram_block_by_name(const char *name)
2355 RAMBlock *block;
2357 RAMBLOCK_FOREACH(block) {
2358 if (!strcmp(name, block->idstr)) {
2359 return block;
2363 return NULL;
2366 /* Some of the softmmu routines need to translate from a host pointer
2367 (typically a TLB entry) back to a ram offset. */
2368 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2370 RAMBlock *block;
2371 ram_addr_t offset;
2373 block = qemu_ram_block_from_host(ptr, false, &offset);
2374 if (!block) {
2375 return RAM_ADDR_INVALID;
2378 return block->offset + offset;
2381 /* Called within RCU critical section. */
2382 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2383 CPUState *cpu,
2384 vaddr mem_vaddr,
2385 ram_addr_t ram_addr,
2386 unsigned size)
2388 ndi->cpu = cpu;
2389 ndi->ram_addr = ram_addr;
2390 ndi->mem_vaddr = mem_vaddr;
2391 ndi->size = size;
2392 ndi->locked = false;
2394 assert(tcg_enabled());
2395 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2396 ndi->locked = true;
2397 tb_lock();
2398 tb_invalidate_phys_page_fast(ram_addr, size);
2402 /* Called within RCU critical section. */
2403 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2405 if (ndi->locked) {
2406 tb_unlock();
2409 /* Set both VGA and migration bits for simplicity and to remove
2410 * the notdirty callback faster.
2412 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2413 DIRTY_CLIENTS_NOCODE);
2414 /* we remove the notdirty callback only if the code has been
2415 flushed */
2416 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2417 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2421 /* Called within RCU critical section. */
2422 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2423 uint64_t val, unsigned size)
2425 NotDirtyInfo ndi;
2427 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2428 ram_addr, size);
2430 switch (size) {
2431 case 1:
2432 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2433 break;
2434 case 2:
2435 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2436 break;
2437 case 4:
2438 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2439 break;
2440 case 8:
2441 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2442 break;
2443 default:
2444 abort();
2446 memory_notdirty_write_complete(&ndi);
2449 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2450 unsigned size, bool is_write)
2452 return is_write;
2455 static const MemoryRegionOps notdirty_mem_ops = {
2456 .write = notdirty_mem_write,
2457 .valid.accepts = notdirty_mem_accepts,
2458 .endianness = DEVICE_NATIVE_ENDIAN,
2459 .valid = {
2460 .min_access_size = 1,
2461 .max_access_size = 8,
2462 .unaligned = false,
2464 .impl = {
2465 .min_access_size = 1,
2466 .max_access_size = 8,
2467 .unaligned = false,
2471 /* Generate a debug exception if a watchpoint has been hit. */
2472 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2474 CPUState *cpu = current_cpu;
2475 CPUClass *cc = CPU_GET_CLASS(cpu);
2476 target_ulong vaddr;
2477 CPUWatchpoint *wp;
2479 assert(tcg_enabled());
2480 if (cpu->watchpoint_hit) {
2481 /* We re-entered the check after replacing the TB. Now raise
2482 * the debug interrupt so that is will trigger after the
2483 * current instruction. */
2484 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2485 return;
2487 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2488 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2489 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2490 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2491 && (wp->flags & flags)) {
2492 if (flags == BP_MEM_READ) {
2493 wp->flags |= BP_WATCHPOINT_HIT_READ;
2494 } else {
2495 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2497 wp->hitaddr = vaddr;
2498 wp->hitattrs = attrs;
2499 if (!cpu->watchpoint_hit) {
2500 if (wp->flags & BP_CPU &&
2501 !cc->debug_check_watchpoint(cpu, wp)) {
2502 wp->flags &= ~BP_WATCHPOINT_HIT;
2503 continue;
2505 cpu->watchpoint_hit = wp;
2507 /* Both tb_lock and iothread_mutex will be reset when
2508 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2509 * back into the cpu_exec main loop.
2511 tb_lock();
2512 tb_check_watchpoint(cpu);
2513 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2514 cpu->exception_index = EXCP_DEBUG;
2515 cpu_loop_exit(cpu);
2516 } else {
2517 /* Force execution of one insn next time. */
2518 cpu->cflags_next_tb = 1 | curr_cflags();
2519 cpu_loop_exit_noexc(cpu);
2522 } else {
2523 wp->flags &= ~BP_WATCHPOINT_HIT;
2528 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2529 so these check for a hit then pass through to the normal out-of-line
2530 phys routines. */
2531 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2532 unsigned size, MemTxAttrs attrs)
2534 MemTxResult res;
2535 uint64_t data;
2536 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2537 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2539 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2540 switch (size) {
2541 case 1:
2542 data = address_space_ldub(as, addr, attrs, &res);
2543 break;
2544 case 2:
2545 data = address_space_lduw(as, addr, attrs, &res);
2546 break;
2547 case 4:
2548 data = address_space_ldl(as, addr, attrs, &res);
2549 break;
2550 case 8:
2551 data = address_space_ldq(as, addr, attrs, &res);
2552 break;
2553 default: abort();
2555 *pdata = data;
2556 return res;
2559 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2560 uint64_t val, unsigned size,
2561 MemTxAttrs attrs)
2563 MemTxResult res;
2564 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2565 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2567 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2568 switch (size) {
2569 case 1:
2570 address_space_stb(as, addr, val, attrs, &res);
2571 break;
2572 case 2:
2573 address_space_stw(as, addr, val, attrs, &res);
2574 break;
2575 case 4:
2576 address_space_stl(as, addr, val, attrs, &res);
2577 break;
2578 case 8:
2579 address_space_stq(as, addr, val, attrs, &res);
2580 break;
2581 default: abort();
2583 return res;
2586 static const MemoryRegionOps watch_mem_ops = {
2587 .read_with_attrs = watch_mem_read,
2588 .write_with_attrs = watch_mem_write,
2589 .endianness = DEVICE_NATIVE_ENDIAN,
2590 .valid = {
2591 .min_access_size = 1,
2592 .max_access_size = 8,
2593 .unaligned = false,
2595 .impl = {
2596 .min_access_size = 1,
2597 .max_access_size = 8,
2598 .unaligned = false,
2602 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2603 const uint8_t *buf, int len);
2604 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2605 bool is_write);
2607 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2608 unsigned len, MemTxAttrs attrs)
2610 subpage_t *subpage = opaque;
2611 uint8_t buf[8];
2612 MemTxResult res;
2614 #if defined(DEBUG_SUBPAGE)
2615 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2616 subpage, len, addr);
2617 #endif
2618 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2619 if (res) {
2620 return res;
2622 switch (len) {
2623 case 1:
2624 *data = ldub_p(buf);
2625 return MEMTX_OK;
2626 case 2:
2627 *data = lduw_p(buf);
2628 return MEMTX_OK;
2629 case 4:
2630 *data = ldl_p(buf);
2631 return MEMTX_OK;
2632 case 8:
2633 *data = ldq_p(buf);
2634 return MEMTX_OK;
2635 default:
2636 abort();
2640 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2641 uint64_t value, unsigned len, MemTxAttrs attrs)
2643 subpage_t *subpage = opaque;
2644 uint8_t buf[8];
2646 #if defined(DEBUG_SUBPAGE)
2647 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2648 " value %"PRIx64"\n",
2649 __func__, subpage, len, addr, value);
2650 #endif
2651 switch (len) {
2652 case 1:
2653 stb_p(buf, value);
2654 break;
2655 case 2:
2656 stw_p(buf, value);
2657 break;
2658 case 4:
2659 stl_p(buf, value);
2660 break;
2661 case 8:
2662 stq_p(buf, value);
2663 break;
2664 default:
2665 abort();
2667 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2670 static bool subpage_accepts(void *opaque, hwaddr addr,
2671 unsigned len, bool is_write)
2673 subpage_t *subpage = opaque;
2674 #if defined(DEBUG_SUBPAGE)
2675 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2676 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2677 #endif
2679 return flatview_access_valid(subpage->fv, addr + subpage->base,
2680 len, is_write);
2683 static const MemoryRegionOps subpage_ops = {
2684 .read_with_attrs = subpage_read,
2685 .write_with_attrs = subpage_write,
2686 .impl.min_access_size = 1,
2687 .impl.max_access_size = 8,
2688 .valid.min_access_size = 1,
2689 .valid.max_access_size = 8,
2690 .valid.accepts = subpage_accepts,
2691 .endianness = DEVICE_NATIVE_ENDIAN,
2694 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2695 uint16_t section)
2697 int idx, eidx;
2699 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2700 return -1;
2701 idx = SUBPAGE_IDX(start);
2702 eidx = SUBPAGE_IDX(end);
2703 #if defined(DEBUG_SUBPAGE)
2704 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2705 __func__, mmio, start, end, idx, eidx, section);
2706 #endif
2707 for (; idx <= eidx; idx++) {
2708 mmio->sub_section[idx] = section;
2711 return 0;
2714 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2716 subpage_t *mmio;
2718 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2719 mmio->fv = fv;
2720 mmio->base = base;
2721 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2722 NULL, TARGET_PAGE_SIZE);
2723 mmio->iomem.subpage = true;
2724 #if defined(DEBUG_SUBPAGE)
2725 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2726 mmio, base, TARGET_PAGE_SIZE);
2727 #endif
2728 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2730 return mmio;
2733 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2735 assert(fv);
2736 MemoryRegionSection section = {
2737 .fv = fv,
2738 .mr = mr,
2739 .offset_within_address_space = 0,
2740 .offset_within_region = 0,
2741 .size = int128_2_64(),
2744 return phys_section_add(map, &section);
2747 static void readonly_mem_write(void *opaque, hwaddr addr,
2748 uint64_t val, unsigned size)
2750 /* Ignore any write to ROM. */
2753 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2754 unsigned size, bool is_write)
2756 return is_write;
2759 /* This will only be used for writes, because reads are special cased
2760 * to directly access the underlying host ram.
2762 static const MemoryRegionOps readonly_mem_ops = {
2763 .write = readonly_mem_write,
2764 .valid.accepts = readonly_mem_accepts,
2765 .endianness = DEVICE_NATIVE_ENDIAN,
2766 .valid = {
2767 .min_access_size = 1,
2768 .max_access_size = 8,
2769 .unaligned = false,
2771 .impl = {
2772 .min_access_size = 1,
2773 .max_access_size = 8,
2774 .unaligned = false,
2778 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2780 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2781 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2782 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2783 MemoryRegionSection *sections = d->map.sections;
2785 return sections[index & ~TARGET_PAGE_MASK].mr;
2788 static void io_mem_init(void)
2790 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
2791 NULL, NULL, UINT64_MAX);
2792 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2793 NULL, UINT64_MAX);
2795 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2796 * which can be called without the iothread mutex.
2798 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2799 NULL, UINT64_MAX);
2800 memory_region_clear_global_locking(&io_mem_notdirty);
2802 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2803 NULL, UINT64_MAX);
2806 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2808 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2809 uint16_t n;
2811 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2812 assert(n == PHYS_SECTION_UNASSIGNED);
2813 n = dummy_section(&d->map, fv, &io_mem_notdirty);
2814 assert(n == PHYS_SECTION_NOTDIRTY);
2815 n = dummy_section(&d->map, fv, &io_mem_rom);
2816 assert(n == PHYS_SECTION_ROM);
2817 n = dummy_section(&d->map, fv, &io_mem_watch);
2818 assert(n == PHYS_SECTION_WATCH);
2820 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2822 return d;
2825 void address_space_dispatch_free(AddressSpaceDispatch *d)
2827 phys_sections_free(&d->map);
2828 g_free(d);
2831 static void tcg_commit(MemoryListener *listener)
2833 CPUAddressSpace *cpuas;
2834 AddressSpaceDispatch *d;
2836 /* since each CPU stores ram addresses in its TLB cache, we must
2837 reset the modified entries */
2838 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2839 cpu_reloading_memory_map();
2840 /* The CPU and TLB are protected by the iothread lock.
2841 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2842 * may have split the RCU critical section.
2844 d = address_space_to_dispatch(cpuas->as);
2845 atomic_rcu_set(&cpuas->memory_dispatch, d);
2846 tlb_flush(cpuas->cpu);
2849 static void memory_map_init(void)
2851 system_memory = g_malloc(sizeof(*system_memory));
2853 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2854 address_space_init(&address_space_memory, system_memory, "memory");
2856 system_io = g_malloc(sizeof(*system_io));
2857 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2858 65536);
2859 address_space_init(&address_space_io, system_io, "I/O");
2862 MemoryRegion *get_system_memory(void)
2864 return system_memory;
2867 MemoryRegion *get_system_io(void)
2869 return system_io;
2872 #endif /* !defined(CONFIG_USER_ONLY) */
2874 /* physical memory access (slow version, mainly for debug) */
2875 #if defined(CONFIG_USER_ONLY)
2876 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2877 uint8_t *buf, int len, int is_write)
2879 int l, flags;
2880 target_ulong page;
2881 void * p;
2883 while (len > 0) {
2884 page = addr & TARGET_PAGE_MASK;
2885 l = (page + TARGET_PAGE_SIZE) - addr;
2886 if (l > len)
2887 l = len;
2888 flags = page_get_flags(page);
2889 if (!(flags & PAGE_VALID))
2890 return -1;
2891 if (is_write) {
2892 if (!(flags & PAGE_WRITE))
2893 return -1;
2894 /* XXX: this code should not depend on lock_user */
2895 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2896 return -1;
2897 memcpy(p, buf, l);
2898 unlock_user(p, addr, l);
2899 } else {
2900 if (!(flags & PAGE_READ))
2901 return -1;
2902 /* XXX: this code should not depend on lock_user */
2903 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2904 return -1;
2905 memcpy(buf, p, l);
2906 unlock_user(p, addr, 0);
2908 len -= l;
2909 buf += l;
2910 addr += l;
2912 return 0;
2915 #else
2917 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2918 hwaddr length)
2920 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2921 addr += memory_region_get_ram_addr(mr);
2923 /* No early return if dirty_log_mask is or becomes 0, because
2924 * cpu_physical_memory_set_dirty_range will still call
2925 * xen_modified_memory.
2927 if (dirty_log_mask) {
2928 dirty_log_mask =
2929 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2931 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2932 assert(tcg_enabled());
2933 tb_lock();
2934 tb_invalidate_phys_range(addr, addr + length);
2935 tb_unlock();
2936 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2938 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2941 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2943 unsigned access_size_max = mr->ops->valid.max_access_size;
2945 /* Regions are assumed to support 1-4 byte accesses unless
2946 otherwise specified. */
2947 if (access_size_max == 0) {
2948 access_size_max = 4;
2951 /* Bound the maximum access by the alignment of the address. */
2952 if (!mr->ops->impl.unaligned) {
2953 unsigned align_size_max = addr & -addr;
2954 if (align_size_max != 0 && align_size_max < access_size_max) {
2955 access_size_max = align_size_max;
2959 /* Don't attempt accesses larger than the maximum. */
2960 if (l > access_size_max) {
2961 l = access_size_max;
2963 l = pow2floor(l);
2965 return l;
2968 static bool prepare_mmio_access(MemoryRegion *mr)
2970 bool unlocked = !qemu_mutex_iothread_locked();
2971 bool release_lock = false;
2973 if (unlocked && mr->global_locking) {
2974 qemu_mutex_lock_iothread();
2975 unlocked = false;
2976 release_lock = true;
2978 if (mr->flush_coalesced_mmio) {
2979 if (unlocked) {
2980 qemu_mutex_lock_iothread();
2982 qemu_flush_coalesced_mmio_buffer();
2983 if (unlocked) {
2984 qemu_mutex_unlock_iothread();
2988 return release_lock;
2991 /* Called within RCU critical section. */
2992 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2993 MemTxAttrs attrs,
2994 const uint8_t *buf,
2995 int len, hwaddr addr1,
2996 hwaddr l, MemoryRegion *mr)
2998 uint8_t *ptr;
2999 uint64_t val;
3000 MemTxResult result = MEMTX_OK;
3001 bool release_lock = false;
3003 for (;;) {
3004 if (!memory_access_is_direct(mr, true)) {
3005 release_lock |= prepare_mmio_access(mr);
3006 l = memory_access_size(mr, l, addr1);
3007 /* XXX: could force current_cpu to NULL to avoid
3008 potential bugs */
3009 switch (l) {
3010 case 8:
3011 /* 64 bit write access */
3012 val = ldq_p(buf);
3013 result |= memory_region_dispatch_write(mr, addr1, val, 8,
3014 attrs);
3015 break;
3016 case 4:
3017 /* 32 bit write access */
3018 val = (uint32_t)ldl_p(buf);
3019 result |= memory_region_dispatch_write(mr, addr1, val, 4,
3020 attrs);
3021 break;
3022 case 2:
3023 /* 16 bit write access */
3024 val = lduw_p(buf);
3025 result |= memory_region_dispatch_write(mr, addr1, val, 2,
3026 attrs);
3027 break;
3028 case 1:
3029 /* 8 bit write access */
3030 val = ldub_p(buf);
3031 result |= memory_region_dispatch_write(mr, addr1, val, 1,
3032 attrs);
3033 break;
3034 default:
3035 abort();
3037 } else {
3038 /* RAM case */
3039 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3040 memcpy(ptr, buf, l);
3041 invalidate_and_set_dirty(mr, addr1, l);
3044 if (release_lock) {
3045 qemu_mutex_unlock_iothread();
3046 release_lock = false;
3049 len -= l;
3050 buf += l;
3051 addr += l;
3053 if (!len) {
3054 break;
3057 l = len;
3058 mr = flatview_translate(fv, addr, &addr1, &l, true);
3061 return result;
3064 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3065 const uint8_t *buf, int len)
3067 hwaddr l;
3068 hwaddr addr1;
3069 MemoryRegion *mr;
3070 MemTxResult result = MEMTX_OK;
3072 if (len > 0) {
3073 rcu_read_lock();
3074 l = len;
3075 mr = flatview_translate(fv, addr, &addr1, &l, true);
3076 result = flatview_write_continue(fv, addr, attrs, buf, len,
3077 addr1, l, mr);
3078 rcu_read_unlock();
3081 return result;
3084 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3085 MemTxAttrs attrs,
3086 const uint8_t *buf, int len)
3088 return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len);
3091 /* Called within RCU critical section. */
3092 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3093 MemTxAttrs attrs, uint8_t *buf,
3094 int len, hwaddr addr1, hwaddr l,
3095 MemoryRegion *mr)
3097 uint8_t *ptr;
3098 uint64_t val;
3099 MemTxResult result = MEMTX_OK;
3100 bool release_lock = false;
3102 for (;;) {
3103 if (!memory_access_is_direct(mr, false)) {
3104 /* I/O case */
3105 release_lock |= prepare_mmio_access(mr);
3106 l = memory_access_size(mr, l, addr1);
3107 switch (l) {
3108 case 8:
3109 /* 64 bit read access */
3110 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3111 attrs);
3112 stq_p(buf, val);
3113 break;
3114 case 4:
3115 /* 32 bit read access */
3116 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3117 attrs);
3118 stl_p(buf, val);
3119 break;
3120 case 2:
3121 /* 16 bit read access */
3122 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3123 attrs);
3124 stw_p(buf, val);
3125 break;
3126 case 1:
3127 /* 8 bit read access */
3128 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3129 attrs);
3130 stb_p(buf, val);
3131 break;
3132 default:
3133 abort();
3135 } else {
3136 /* RAM case */
3137 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3138 memcpy(buf, ptr, l);
3141 if (release_lock) {
3142 qemu_mutex_unlock_iothread();
3143 release_lock = false;
3146 len -= l;
3147 buf += l;
3148 addr += l;
3150 if (!len) {
3151 break;
3154 l = len;
3155 mr = flatview_translate(fv, addr, &addr1, &l, false);
3158 return result;
3161 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
3162 MemTxAttrs attrs, uint8_t *buf, int len)
3164 hwaddr l;
3165 hwaddr addr1;
3166 MemoryRegion *mr;
3167 MemTxResult result = MEMTX_OK;
3169 if (len > 0) {
3170 rcu_read_lock();
3171 l = len;
3172 mr = flatview_translate(fv, addr, &addr1, &l, false);
3173 result = flatview_read_continue(fv, addr, attrs, buf, len,
3174 addr1, l, mr);
3175 rcu_read_unlock();
3178 return result;
3181 static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3182 uint8_t *buf, int len, bool is_write)
3184 if (is_write) {
3185 return flatview_write(fv, addr, attrs, (uint8_t *)buf, len);
3186 } else {
3187 return flatview_read(fv, addr, attrs, (uint8_t *)buf, len);
3191 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
3192 MemTxAttrs attrs, uint8_t *buf,
3193 int len, bool is_write)
3195 return flatview_rw(address_space_to_flatview(as),
3196 addr, attrs, buf, len, is_write);
3199 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3200 int len, int is_write)
3202 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3203 buf, len, is_write);
3206 enum write_rom_type {
3207 WRITE_DATA,
3208 FLUSH_CACHE,
3211 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3212 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3214 hwaddr l;
3215 uint8_t *ptr;
3216 hwaddr addr1;
3217 MemoryRegion *mr;
3219 rcu_read_lock();
3220 while (len > 0) {
3221 l = len;
3222 mr = address_space_translate(as, addr, &addr1, &l, true);
3224 if (!(memory_region_is_ram(mr) ||
3225 memory_region_is_romd(mr))) {
3226 l = memory_access_size(mr, l, addr1);
3227 } else {
3228 /* ROM/RAM case */
3229 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3230 switch (type) {
3231 case WRITE_DATA:
3232 memcpy(ptr, buf, l);
3233 invalidate_and_set_dirty(mr, addr1, l);
3234 break;
3235 case FLUSH_CACHE:
3236 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3237 break;
3240 len -= l;
3241 buf += l;
3242 addr += l;
3244 rcu_read_unlock();
3247 /* used for ROM loading : can write in RAM and ROM */
3248 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3249 const uint8_t *buf, int len)
3251 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3254 void cpu_flush_icache_range(hwaddr start, int len)
3257 * This function should do the same thing as an icache flush that was
3258 * triggered from within the guest. For TCG we are always cache coherent,
3259 * so there is no need to flush anything. For KVM / Xen we need to flush
3260 * the host's instruction cache at least.
3262 if (tcg_enabled()) {
3263 return;
3266 cpu_physical_memory_write_rom_internal(&address_space_memory,
3267 start, NULL, len, FLUSH_CACHE);
3270 typedef struct {
3271 MemoryRegion *mr;
3272 void *buffer;
3273 hwaddr addr;
3274 hwaddr len;
3275 bool in_use;
3276 } BounceBuffer;
3278 static BounceBuffer bounce;
3280 typedef struct MapClient {
3281 QEMUBH *bh;
3282 QLIST_ENTRY(MapClient) link;
3283 } MapClient;
3285 QemuMutex map_client_list_lock;
3286 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3287 = QLIST_HEAD_INITIALIZER(map_client_list);
3289 static void cpu_unregister_map_client_do(MapClient *client)
3291 QLIST_REMOVE(client, link);
3292 g_free(client);
3295 static void cpu_notify_map_clients_locked(void)
3297 MapClient *client;
3299 while (!QLIST_EMPTY(&map_client_list)) {
3300 client = QLIST_FIRST(&map_client_list);
3301 qemu_bh_schedule(client->bh);
3302 cpu_unregister_map_client_do(client);
3306 void cpu_register_map_client(QEMUBH *bh)
3308 MapClient *client = g_malloc(sizeof(*client));
3310 qemu_mutex_lock(&map_client_list_lock);
3311 client->bh = bh;
3312 QLIST_INSERT_HEAD(&map_client_list, client, link);
3313 if (!atomic_read(&bounce.in_use)) {
3314 cpu_notify_map_clients_locked();
3316 qemu_mutex_unlock(&map_client_list_lock);
3319 void cpu_exec_init_all(void)
3321 qemu_mutex_init(&ram_list.mutex);
3322 /* The data structures we set up here depend on knowing the page size,
3323 * so no more changes can be made after this point.
3324 * In an ideal world, nothing we did before we had finished the
3325 * machine setup would care about the target page size, and we could
3326 * do this much later, rather than requiring board models to state
3327 * up front what their requirements are.
3329 finalize_target_page_bits();
3330 io_mem_init();
3331 memory_map_init();
3332 qemu_mutex_init(&map_client_list_lock);
3335 void cpu_unregister_map_client(QEMUBH *bh)
3337 MapClient *client;
3339 qemu_mutex_lock(&map_client_list_lock);
3340 QLIST_FOREACH(client, &map_client_list, link) {
3341 if (client->bh == bh) {
3342 cpu_unregister_map_client_do(client);
3343 break;
3346 qemu_mutex_unlock(&map_client_list_lock);
3349 static void cpu_notify_map_clients(void)
3351 qemu_mutex_lock(&map_client_list_lock);
3352 cpu_notify_map_clients_locked();
3353 qemu_mutex_unlock(&map_client_list_lock);
3356 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3357 bool is_write)
3359 MemoryRegion *mr;
3360 hwaddr l, xlat;
3362 rcu_read_lock();
3363 while (len > 0) {
3364 l = len;
3365 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3366 if (!memory_access_is_direct(mr, is_write)) {
3367 l = memory_access_size(mr, l, addr);
3368 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3369 rcu_read_unlock();
3370 return false;
3374 len -= l;
3375 addr += l;
3377 rcu_read_unlock();
3378 return true;
3381 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3382 int len, bool is_write)
3384 return flatview_access_valid(address_space_to_flatview(as),
3385 addr, len, is_write);
3388 static hwaddr
3389 flatview_extend_translation(FlatView *fv, hwaddr addr,
3390 hwaddr target_len,
3391 MemoryRegion *mr, hwaddr base, hwaddr len,
3392 bool is_write)
3394 hwaddr done = 0;
3395 hwaddr xlat;
3396 MemoryRegion *this_mr;
3398 for (;;) {
3399 target_len -= len;
3400 addr += len;
3401 done += len;
3402 if (target_len == 0) {
3403 return done;
3406 len = target_len;
3407 this_mr = flatview_translate(fv, addr, &xlat,
3408 &len, is_write);
3409 if (this_mr != mr || xlat != base + done) {
3410 return done;
3415 /* Map a physical memory region into a host virtual address.
3416 * May map a subset of the requested range, given by and returned in *plen.
3417 * May return NULL if resources needed to perform the mapping are exhausted.
3418 * Use only for reads OR writes - not for read-modify-write operations.
3419 * Use cpu_register_map_client() to know when retrying the map operation is
3420 * likely to succeed.
3422 void *address_space_map(AddressSpace *as,
3423 hwaddr addr,
3424 hwaddr *plen,
3425 bool is_write)
3427 hwaddr len = *plen;
3428 hwaddr l, xlat;
3429 MemoryRegion *mr;
3430 void *ptr;
3431 FlatView *fv = address_space_to_flatview(as);
3433 if (len == 0) {
3434 return NULL;
3437 l = len;
3438 rcu_read_lock();
3439 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3441 if (!memory_access_is_direct(mr, is_write)) {
3442 if (atomic_xchg(&bounce.in_use, true)) {
3443 rcu_read_unlock();
3444 return NULL;
3446 /* Avoid unbounded allocations */
3447 l = MIN(l, TARGET_PAGE_SIZE);
3448 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3449 bounce.addr = addr;
3450 bounce.len = l;
3452 memory_region_ref(mr);
3453 bounce.mr = mr;
3454 if (!is_write) {
3455 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3456 bounce.buffer, l);
3459 rcu_read_unlock();
3460 *plen = l;
3461 return bounce.buffer;
3465 memory_region_ref(mr);
3466 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3467 l, is_write);
3468 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3469 rcu_read_unlock();
3471 return ptr;
3474 /* Unmaps a memory region previously mapped by address_space_map().
3475 * Will also mark the memory as dirty if is_write == 1. access_len gives
3476 * the amount of memory that was actually read or written by the caller.
3478 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3479 int is_write, hwaddr access_len)
3481 if (buffer != bounce.buffer) {
3482 MemoryRegion *mr;
3483 ram_addr_t addr1;
3485 mr = memory_region_from_host(buffer, &addr1);
3486 assert(mr != NULL);
3487 if (is_write) {
3488 invalidate_and_set_dirty(mr, addr1, access_len);
3490 if (xen_enabled()) {
3491 xen_invalidate_map_cache_entry(buffer);
3493 memory_region_unref(mr);
3494 return;
3496 if (is_write) {
3497 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3498 bounce.buffer, access_len);
3500 qemu_vfree(bounce.buffer);
3501 bounce.buffer = NULL;
3502 memory_region_unref(bounce.mr);
3503 atomic_mb_set(&bounce.in_use, false);
3504 cpu_notify_map_clients();
3507 void *cpu_physical_memory_map(hwaddr addr,
3508 hwaddr *plen,
3509 int is_write)
3511 return address_space_map(&address_space_memory, addr, plen, is_write);
3514 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3515 int is_write, hwaddr access_len)
3517 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3520 #define ARG1_DECL AddressSpace *as
3521 #define ARG1 as
3522 #define SUFFIX
3523 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3524 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3525 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3526 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3527 #define RCU_READ_LOCK(...) rcu_read_lock()
3528 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3529 #include "memory_ldst.inc.c"
3531 int64_t address_space_cache_init(MemoryRegionCache *cache,
3532 AddressSpace *as,
3533 hwaddr addr,
3534 hwaddr len,
3535 bool is_write)
3537 cache->len = len;
3538 cache->as = as;
3539 cache->xlat = addr;
3540 return len;
3543 void address_space_cache_invalidate(MemoryRegionCache *cache,
3544 hwaddr addr,
3545 hwaddr access_len)
3549 void address_space_cache_destroy(MemoryRegionCache *cache)
3551 cache->as = NULL;
3554 #define ARG1_DECL MemoryRegionCache *cache
3555 #define ARG1 cache
3556 #define SUFFIX _cached
3557 #define TRANSLATE(addr, ...) \
3558 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3559 #define IS_DIRECT(mr, is_write) true
3560 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3561 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3562 #define RCU_READ_LOCK() rcu_read_lock()
3563 #define RCU_READ_UNLOCK() rcu_read_unlock()
3564 #include "memory_ldst.inc.c"
3566 /* virtual memory access for debug (includes writing to ROM) */
3567 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3568 uint8_t *buf, int len, int is_write)
3570 int l;
3571 hwaddr phys_addr;
3572 target_ulong page;
3574 cpu_synchronize_state(cpu);
3575 while (len > 0) {
3576 int asidx;
3577 MemTxAttrs attrs;
3579 page = addr & TARGET_PAGE_MASK;
3580 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3581 asidx = cpu_asidx_from_attrs(cpu, attrs);
3582 /* if no physical page mapped, return an error */
3583 if (phys_addr == -1)
3584 return -1;
3585 l = (page + TARGET_PAGE_SIZE) - addr;
3586 if (l > len)
3587 l = len;
3588 phys_addr += (addr & ~TARGET_PAGE_MASK);
3589 if (is_write) {
3590 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3591 phys_addr, buf, l);
3592 } else {
3593 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3594 MEMTXATTRS_UNSPECIFIED,
3595 buf, l, 0);
3597 len -= l;
3598 buf += l;
3599 addr += l;
3601 return 0;
3605 * Allows code that needs to deal with migration bitmaps etc to still be built
3606 * target independent.
3608 size_t qemu_target_page_size(void)
3610 return TARGET_PAGE_SIZE;
3613 int qemu_target_page_bits(void)
3615 return TARGET_PAGE_BITS;
3618 int qemu_target_page_bits_min(void)
3620 return TARGET_PAGE_BITS_MIN;
3622 #endif
3625 * A helper function for the _utterly broken_ virtio device model to find out if
3626 * it's running on a big endian machine. Don't do this at home kids!
3628 bool target_words_bigendian(void);
3629 bool target_words_bigendian(void)
3631 #if defined(TARGET_WORDS_BIGENDIAN)
3632 return true;
3633 #else
3634 return false;
3635 #endif
3638 #ifndef CONFIG_USER_ONLY
3639 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3641 MemoryRegion*mr;
3642 hwaddr l = 1;
3643 bool res;
3645 rcu_read_lock();
3646 mr = address_space_translate(&address_space_memory,
3647 phys_addr, &phys_addr, &l, false);
3649 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3650 rcu_read_unlock();
3651 return res;
3654 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3656 RAMBlock *block;
3657 int ret = 0;
3659 rcu_read_lock();
3660 RAMBLOCK_FOREACH(block) {
3661 ret = func(block->idstr, block->host, block->offset,
3662 block->used_length, opaque);
3663 if (ret) {
3664 break;
3667 rcu_read_unlock();
3668 return ret;
3672 * Unmap pages of memory from start to start+length such that
3673 * they a) read as 0, b) Trigger whatever fault mechanism
3674 * the OS provides for postcopy.
3675 * The pages must be unmapped by the end of the function.
3676 * Returns: 0 on success, none-0 on failure
3679 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3681 int ret = -1;
3683 uint8_t *host_startaddr = rb->host + start;
3685 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3686 error_report("ram_block_discard_range: Unaligned start address: %p",
3687 host_startaddr);
3688 goto err;
3691 if ((start + length) <= rb->used_length) {
3692 uint8_t *host_endaddr = host_startaddr + length;
3693 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3694 error_report("ram_block_discard_range: Unaligned end address: %p",
3695 host_endaddr);
3696 goto err;
3699 errno = ENOTSUP; /* If we are missing MADVISE etc */
3701 if (rb->page_size == qemu_host_page_size) {
3702 #if defined(CONFIG_MADVISE)
3703 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3704 * freeing the page.
3706 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3707 #endif
3708 } else {
3709 /* Huge page case - unfortunately it can't do DONTNEED, but
3710 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3711 * huge page file.
3713 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3714 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3715 start, length);
3716 #endif
3718 if (ret) {
3719 ret = -errno;
3720 error_report("ram_block_discard_range: Failed to discard range "
3721 "%s:%" PRIx64 " +%zx (%d)",
3722 rb->idstr, start, length, ret);
3724 } else {
3725 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3726 "/%zx/" RAM_ADDR_FMT")",
3727 rb->idstr, start, length, rb->used_length);
3730 err:
3731 return ret;
3734 #endif
3736 void page_size_init(void)
3738 /* NOTE: we can always suppose that qemu_host_page_size >=
3739 TARGET_PAGE_SIZE */
3740 if (qemu_host_page_size == 0) {
3741 qemu_host_page_size = qemu_real_host_page_size;
3743 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3744 qemu_host_page_size = TARGET_PAGE_SIZE;
3746 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3749 #if !defined(CONFIG_USER_ONLY)
3751 static void mtree_print_phys_entries(fprintf_function mon, void *f,
3752 int start, int end, int skip, int ptr)
3754 if (start == end - 1) {
3755 mon(f, "\t%3d ", start);
3756 } else {
3757 mon(f, "\t%3d..%-3d ", start, end - 1);
3759 mon(f, " skip=%d ", skip);
3760 if (ptr == PHYS_MAP_NODE_NIL) {
3761 mon(f, " ptr=NIL");
3762 } else if (!skip) {
3763 mon(f, " ptr=#%d", ptr);
3764 } else {
3765 mon(f, " ptr=[%d]", ptr);
3767 mon(f, "\n");
3770 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3771 int128_sub((size), int128_one())) : 0)
3773 void mtree_print_dispatch(fprintf_function mon, void *f,
3774 AddressSpaceDispatch *d, MemoryRegion *root)
3776 int i;
3778 mon(f, " Dispatch\n");
3779 mon(f, " Physical sections\n");
3781 for (i = 0; i < d->map.sections_nb; ++i) {
3782 MemoryRegionSection *s = d->map.sections + i;
3783 const char *names[] = { " [unassigned]", " [not dirty]",
3784 " [ROM]", " [watch]" };
3786 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3788 s->offset_within_address_space,
3789 s->offset_within_address_space + MR_SIZE(s->mr->size),
3790 s->mr->name ? s->mr->name : "(noname)",
3791 i < ARRAY_SIZE(names) ? names[i] : "",
3792 s->mr == root ? " [ROOT]" : "",
3793 s == d->mru_section ? " [MRU]" : "",
3794 s->mr->is_iommu ? " [iommu]" : "");
3796 if (s->mr->alias) {
3797 mon(f, " alias=%s", s->mr->alias->name ?
3798 s->mr->alias->name : "noname");
3800 mon(f, "\n");
3803 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3804 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3805 for (i = 0; i < d->map.nodes_nb; ++i) {
3806 int j, jprev;
3807 PhysPageEntry prev;
3808 Node *n = d->map.nodes + i;
3810 mon(f, " [%d]\n", i);
3812 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3813 PhysPageEntry *pe = *n + j;
3815 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3816 continue;
3819 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3821 jprev = j;
3822 prev = *pe;
3825 if (jprev != ARRAY_SIZE(*n)) {
3826 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3831 #endif