hostmem-file: fix pmem file size check
[qemu.git] / qemu-options.hx
blobea0638e92d44f1899f1f0c4d57e4fc6501a22b0f
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
9 DEFHEADING(Standard options:)
10 STEXI
11 @table @option
12 ETEXI
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, hax, hvf, whpx or tcg (default: tcg)\n"
35 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n"
36 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
37 " kvm_shadow_mem=size of KVM shadow MMU in bytes\n"
38 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
39 " mem-merge=on|off controls memory merge support (default: on)\n"
40 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n"
41 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
42 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
43 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
44 " nvdimm=on|off controls NVDIMM support (default=off)\n"
45 " enforce-config-section=on|off enforce configuration section migration (default=off)\n"
46 " memory-encryption=@var{} memory encryption object to use (default=none)\n",
47 QEMU_ARCH_ALL)
48 STEXI
49 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
50 @findex -machine
51 Select the emulated machine by @var{name}. Use @code{-machine help} to list
52 available machines.
54 For architectures which aim to support live migration compatibility
55 across releases, each release will introduce a new versioned machine
56 type. For example, the 2.8.0 release introduced machine types
57 ``pc-i440fx-2.8'' and ``pc-q35-2.8'' for the x86_64/i686 architectures.
59 To allow live migration of guests from QEMU version 2.8.0, to QEMU
60 version 2.9.0, the 2.9.0 version must support the ``pc-i440fx-2.8''
61 and ``pc-q35-2.8'' machines too. To allow users live migrating VMs
62 to skip multiple intermediate releases when upgrading, new releases
63 of QEMU will support machine types from many previous versions.
65 Supported machine properties are:
66 @table @option
67 @item accel=@var{accels1}[:@var{accels2}[:...]]
68 This is used to enable an accelerator. Depending on the target architecture,
69 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
70 more than one accelerator specified, the next one is used if the previous one
71 fails to initialize.
72 @item kernel_irqchip=on|off
73 Controls in-kernel irqchip support for the chosen accelerator when available.
74 @item gfx_passthru=on|off
75 Enables IGD GFX passthrough support for the chosen machine when available.
76 @item vmport=on|off|auto
77 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
78 value based on accel. For accel=xen the default is off otherwise the default
79 is on.
80 @item kvm_shadow_mem=size
81 Defines the size of the KVM shadow MMU.
82 @item dump-guest-core=on|off
83 Include guest memory in a core dump. The default is on.
84 @item mem-merge=on|off
85 Enables or disables memory merge support. This feature, when supported by
86 the host, de-duplicates identical memory pages among VMs instances
87 (enabled by default).
88 @item aes-key-wrap=on|off
89 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
90 controls whether AES wrapping keys will be created to allow
91 execution of AES cryptographic functions. The default is on.
92 @item dea-key-wrap=on|off
93 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
94 controls whether DEA wrapping keys will be created to allow
95 execution of DEA cryptographic functions. The default is on.
96 @item nvdimm=on|off
97 Enables or disables NVDIMM support. The default is off.
98 @item enforce-config-section=on|off
99 If @option{enforce-config-section} is set to @var{on}, force migration
100 code to send configuration section even if the machine-type sets the
101 @option{migration.send-configuration} property to @var{off}.
102 NOTE: this parameter is deprecated. Please use @option{-global}
103 @option{migration.send-configuration}=@var{on|off} instead.
104 @item memory-encryption=@var{}
105 Memory encryption object to use. The default is none.
106 @end table
107 ETEXI
109 HXCOMM Deprecated by -machine
110 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
112 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
113 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
114 STEXI
115 @item -cpu @var{model}
116 @findex -cpu
117 Select CPU model (@code{-cpu help} for list and additional feature selection)
118 ETEXI
120 DEF("accel", HAS_ARG, QEMU_OPTION_accel,
121 "-accel [accel=]accelerator[,thread=single|multi]\n"
122 " select accelerator (kvm, xen, hax, hvf, whpx or tcg; use 'help' for a list)\n"
123 " thread=single|multi (enable multi-threaded TCG)\n", QEMU_ARCH_ALL)
124 STEXI
125 @item -accel @var{name}[,prop=@var{value}[,...]]
126 @findex -accel
127 This is used to enable an accelerator. Depending on the target architecture,
128 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
129 more than one accelerator specified, the next one is used if the previous one
130 fails to initialize.
131 @table @option
132 @item thread=single|multi
133 Controls number of TCG threads. When the TCG is multi-threaded there will be one
134 thread per vCPU therefor taking advantage of additional host cores. The default
135 is to enable multi-threading where both the back-end and front-ends support it and
136 no incompatible TCG features have been enabled (e.g. icount/replay).
137 @end table
138 ETEXI
140 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
141 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,dies=dies][,sockets=sockets]\n"
142 " set the number of CPUs to 'n' [default=1]\n"
143 " maxcpus= maximum number of total cpus, including\n"
144 " offline CPUs for hotplug, etc\n"
145 " cores= number of CPU cores on one socket (for PC, it's on one die)\n"
146 " threads= number of threads on one CPU core\n"
147 " dies= number of CPU dies on one socket (for PC only)\n"
148 " sockets= number of discrete sockets in the system\n",
149 QEMU_ARCH_ALL)
150 STEXI
151 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,dies=dies][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
152 @findex -smp
153 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
154 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
155 to 4.
156 For the PC target, the number of @var{cores} per die, the number of @var{threads}
157 per cores, the number of @var{dies} per packages and the total number of
158 @var{sockets} can be specified. Missing values will be computed.
159 If any on the three values is given, the total number of CPUs @var{n} can be omitted.
160 @var{maxcpus} specifies the maximum number of hotpluggable CPUs.
161 ETEXI
163 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
164 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
165 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
166 "-numa dist,src=source,dst=destination,val=distance\n"
167 "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n",
168 QEMU_ARCH_ALL)
169 STEXI
170 @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
171 @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
172 @itemx -numa dist,src=@var{source},dst=@var{destination},val=@var{distance}
173 @itemx -numa cpu,node-id=@var{node}[,socket-id=@var{x}][,core-id=@var{y}][,thread-id=@var{z}]
174 @findex -numa
175 Define a NUMA node and assign RAM and VCPUs to it.
176 Set the NUMA distance from a source node to a destination node.
178 Legacy VCPU assignment uses @samp{cpus} option where
179 @var{firstcpu} and @var{lastcpu} are CPU indexes. Each
180 @samp{cpus} option represent a contiguous range of CPU indexes
181 (or a single VCPU if @var{lastcpu} is omitted). A non-contiguous
182 set of VCPUs can be represented by providing multiple @samp{cpus}
183 options. If @samp{cpus} is omitted on all nodes, VCPUs are automatically
184 split between them.
186 For example, the following option assigns VCPUs 0, 1, 2 and 5 to
187 a NUMA node:
188 @example
189 -numa node,cpus=0-2,cpus=5
190 @end example
192 @samp{cpu} option is a new alternative to @samp{cpus} option
193 which uses @samp{socket-id|core-id|thread-id} properties to assign
194 CPU objects to a @var{node} using topology layout properties of CPU.
195 The set of properties is machine specific, and depends on used
196 machine type/@samp{smp} options. It could be queried with
197 @samp{hotpluggable-cpus} monitor command.
198 @samp{node-id} property specifies @var{node} to which CPU object
199 will be assigned, it's required for @var{node} to be declared
200 with @samp{node} option before it's used with @samp{cpu} option.
202 For example:
203 @example
204 -M pc \
205 -smp 1,sockets=2,maxcpus=2 \
206 -numa node,nodeid=0 -numa node,nodeid=1 \
207 -numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1
208 @end example
210 @samp{mem} assigns a given RAM amount to a node. @samp{memdev}
211 assigns RAM from a given memory backend device to a node. If
212 @samp{mem} and @samp{memdev} are omitted in all nodes, RAM is
213 split equally between them.
215 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore,
216 if one node uses @samp{memdev}, all of them have to use it.
218 @var{source} and @var{destination} are NUMA node IDs.
219 @var{distance} is the NUMA distance from @var{source} to @var{destination}.
220 The distance from a node to itself is always 10. If any pair of nodes is
221 given a distance, then all pairs must be given distances. Although, when
222 distances are only given in one direction for each pair of nodes, then
223 the distances in the opposite directions are assumed to be the same. If,
224 however, an asymmetrical pair of distances is given for even one node
225 pair, then all node pairs must be provided distance values for both
226 directions, even when they are symmetrical. When a node is unreachable
227 from another node, set the pair's distance to 255.
229 Note that the -@option{numa} option doesn't allocate any of the
230 specified resources, it just assigns existing resources to NUMA
231 nodes. This means that one still has to use the @option{-m},
232 @option{-smp} options to allocate RAM and VCPUs respectively.
234 ETEXI
236 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
237 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
238 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
239 STEXI
240 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
241 @findex -add-fd
243 Add a file descriptor to an fd set. Valid options are:
245 @table @option
246 @item fd=@var{fd}
247 This option defines the file descriptor of which a duplicate is added to fd set.
248 The file descriptor cannot be stdin, stdout, or stderr.
249 @item set=@var{set}
250 This option defines the ID of the fd set to add the file descriptor to.
251 @item opaque=@var{opaque}
252 This option defines a free-form string that can be used to describe @var{fd}.
253 @end table
255 You can open an image using pre-opened file descriptors from an fd set:
256 @example
257 qemu-system-i386
258 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
259 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
260 -drive file=/dev/fdset/2,index=0,media=disk
261 @end example
262 ETEXI
264 DEF("set", HAS_ARG, QEMU_OPTION_set,
265 "-set group.id.arg=value\n"
266 " set <arg> parameter for item <id> of type <group>\n"
267 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
268 STEXI
269 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
270 @findex -set
271 Set parameter @var{arg} for item @var{id} of type @var{group}
272 ETEXI
274 DEF("global", HAS_ARG, QEMU_OPTION_global,
275 "-global driver.property=value\n"
276 "-global driver=driver,property=property,value=value\n"
277 " set a global default for a driver property\n",
278 QEMU_ARCH_ALL)
279 STEXI
280 @item -global @var{driver}.@var{prop}=@var{value}
281 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
282 @findex -global
283 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
285 @example
286 qemu-system-i386 -global ide-hd.physical_block_size=4096 disk-image.img
287 @end example
289 In particular, you can use this to set driver properties for devices which are
290 created automatically by the machine model. To create a device which is not
291 created automatically and set properties on it, use -@option{device}.
293 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
294 driver=@var{driver},property=@var{prop},value=@var{value}. The
295 longhand syntax works even when @var{driver} contains a dot.
296 ETEXI
298 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
299 "-boot [order=drives][,once=drives][,menu=on|off]\n"
300 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
301 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
302 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
303 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
304 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
305 QEMU_ARCH_ALL)
306 STEXI
307 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
308 @findex -boot
309 Specify boot order @var{drives} as a string of drive letters. Valid
310 drive letters depend on the target architecture. The x86 PC uses: a, b
311 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
312 from network adapter 1-4), hard disk boot is the default. To apply a
313 particular boot order only on the first startup, specify it via
314 @option{once}. Note that the @option{order} or @option{once} parameter
315 should not be used together with the @option{bootindex} property of
316 devices, since the firmware implementations normally do not support both
317 at the same time.
319 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
320 as firmware/BIOS supports them. The default is non-interactive boot.
322 A splash picture could be passed to bios, enabling user to show it as logo,
323 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
324 supports them. Currently Seabios for X86 system support it.
325 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
326 format(true color). The resolution should be supported by the SVGA mode, so
327 the recommended is 320x240, 640x480, 800x640.
329 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
330 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
331 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
332 system support it.
334 Do strict boot via @option{strict=on} as far as firmware/BIOS
335 supports it. This only effects when boot priority is changed by
336 bootindex options. The default is non-strict boot.
338 @example
339 # try to boot from network first, then from hard disk
340 qemu-system-i386 -boot order=nc
341 # boot from CD-ROM first, switch back to default order after reboot
342 qemu-system-i386 -boot once=d
343 # boot with a splash picture for 5 seconds.
344 qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
345 @end example
347 Note: The legacy format '-boot @var{drives}' is still supported but its
348 use is discouraged as it may be removed from future versions.
349 ETEXI
351 DEF("m", HAS_ARG, QEMU_OPTION_m,
352 "-m [size=]megs[,slots=n,maxmem=size]\n"
353 " configure guest RAM\n"
354 " size: initial amount of guest memory\n"
355 " slots: number of hotplug slots (default: none)\n"
356 " maxmem: maximum amount of guest memory (default: none)\n"
357 "NOTE: Some architectures might enforce a specific granularity\n",
358 QEMU_ARCH_ALL)
359 STEXI
360 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
361 @findex -m
362 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
363 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
364 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
365 could be used to set amount of hotpluggable memory slots and maximum amount of
366 memory. Note that @var{maxmem} must be aligned to the page size.
368 For example, the following command-line sets the guest startup RAM size to
369 1GB, creates 3 slots to hotplug additional memory and sets the maximum
370 memory the guest can reach to 4GB:
372 @example
373 qemu-system-x86_64 -m 1G,slots=3,maxmem=4G
374 @end example
376 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
377 be enabled and the guest startup RAM will never increase.
378 ETEXI
380 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
381 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
382 STEXI
383 @item -mem-path @var{path}
384 @findex -mem-path
385 Allocate guest RAM from a temporarily created file in @var{path}.
386 ETEXI
388 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
389 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
390 QEMU_ARCH_ALL)
391 STEXI
392 @item -mem-prealloc
393 @findex -mem-prealloc
394 Preallocate memory when using -mem-path.
395 ETEXI
397 DEF("k", HAS_ARG, QEMU_OPTION_k,
398 "-k language use keyboard layout (for example 'fr' for French)\n",
399 QEMU_ARCH_ALL)
400 STEXI
401 @item -k @var{language}
402 @findex -k
403 Use keyboard layout @var{language} (for example @code{fr} for
404 French). This option is only needed where it is not easy to get raw PC
405 keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses
406 display). You don't normally need to use it on PC/Linux or PC/Windows
407 hosts.
409 The available layouts are:
410 @example
411 ar de-ch es fo fr-ca hu ja mk no pt-br sv
412 da en-gb et fr fr-ch is lt nl pl ru th
413 de en-us fi fr-be hr it lv nl-be pt sl tr
414 @end example
416 The default is @code{en-us}.
417 ETEXI
420 HXCOMM Deprecated by -audiodev
421 DEF("audio-help", 0, QEMU_OPTION_audio_help,
422 "-audio-help show -audiodev equivalent of the currently specified audio settings\n",
423 QEMU_ARCH_ALL)
424 STEXI
425 @item -audio-help
426 @findex -audio-help
427 Will show the -audiodev equivalent of the currently specified
428 (deprecated) environment variables.
429 ETEXI
431 DEF("audiodev", HAS_ARG, QEMU_OPTION_audiodev,
432 "-audiodev [driver=]driver,id=id[,prop[=value][,...]]\n"
433 " specifies the audio backend to use\n"
434 " id= identifier of the backend\n"
435 " timer-period= timer period in microseconds\n"
436 " in|out.fixed-settings= use fixed settings for host audio\n"
437 " in|out.frequency= frequency to use with fixed settings\n"
438 " in|out.channels= number of channels to use with fixed settings\n"
439 " in|out.format= sample format to use with fixed settings\n"
440 " valid values: s8, s16, s32, u8, u16, u32\n"
441 " in|out.voices= number of voices to use\n"
442 " in|out.buffer-len= length of buffer in microseconds\n"
443 "-audiodev none,id=id,[,prop[=value][,...]]\n"
444 " dummy driver that discards all output\n"
445 #ifdef CONFIG_AUDIO_ALSA
446 "-audiodev alsa,id=id[,prop[=value][,...]]\n"
447 " in|out.dev= name of the audio device to use\n"
448 " in|out.period-len= length of period in microseconds\n"
449 " in|out.try-poll= attempt to use poll mode\n"
450 " threshold= threshold (in microseconds) when playback starts\n"
451 #endif
452 #ifdef CONFIG_AUDIO_COREAUDIO
453 "-audiodev coreaudio,id=id[,prop[=value][,...]]\n"
454 " in|out.buffer-count= number of buffers\n"
455 #endif
456 #ifdef CONFIG_AUDIO_DSOUND
457 "-audiodev dsound,id=id[,prop[=value][,...]]\n"
458 " latency= add extra latency to playback in microseconds\n"
459 #endif
460 #ifdef CONFIG_AUDIO_OSS
461 "-audiodev oss,id=id[,prop[=value][,...]]\n"
462 " in|out.dev= path of the audio device to use\n"
463 " in|out.buffer-count= number of buffers\n"
464 " in|out.try-poll= attempt to use poll mode\n"
465 " try-mmap= try using memory mapped access\n"
466 " exclusive= open device in exclusive mode\n"
467 " dsp-policy= set timing policy (0..10), -1 to use fragment mode\n"
468 #endif
469 #ifdef CONFIG_AUDIO_PA
470 "-audiodev pa,id=id[,prop[=value][,...]]\n"
471 " server= PulseAudio server address\n"
472 " in|out.name= source/sink device name\n"
473 #endif
474 #ifdef CONFIG_AUDIO_SDL
475 "-audiodev sdl,id=id[,prop[=value][,...]]\n"
476 #endif
477 #ifdef CONFIG_SPICE
478 "-audiodev spice,id=id[,prop[=value][,...]]\n"
479 #endif
480 "-audiodev wav,id=id[,prop[=value][,...]]\n"
481 " path= path of wav file to record\n",
482 QEMU_ARCH_ALL)
483 STEXI
484 @item -audiodev [driver=]@var{driver},id=@var{id}[,@var{prop}[=@var{value}][,...]]
485 @findex -audiodev
486 Adds a new audio backend @var{driver} identified by @var{id}. There are
487 global and driver specific properties. Some values can be set
488 differently for input and output, they're marked with @code{in|out.}.
489 You can set the input's property with @code{in.@var{prop}} and the
490 output's property with @code{out.@var{prop}}. For example:
491 @example
492 -audiodev alsa,id=example,in.frequency=44110,out.frequency=8000
493 -audiodev alsa,id=example,out.channels=1 # leaves in.channels unspecified
494 @end example
496 Valid global options are:
498 @table @option
499 @item id=@var{identifier}
500 Identifies the audio backend.
502 @item timer-period=@var{period}
503 Sets the timer @var{period} used by the audio subsystem in microseconds.
504 Default is 10000 (10 ms).
506 @item in|out.fixed-settings=on|off
507 Use fixed settings for host audio. When off, it will change based on
508 how the guest opens the sound card. In this case you must not specify
509 @var{frequency}, @var{channels} or @var{format}. Default is on.
511 @item in|out.frequency=@var{frequency}
512 Specify the @var{frequency} to use when using @var{fixed-settings}.
513 Default is 44100Hz.
515 @item in|out.channels=@var{channels}
516 Specify the number of @var{channels} to use when using
517 @var{fixed-settings}. Default is 2 (stereo).
519 @item in|out.format=@var{format}
520 Specify the sample @var{format} to use when using @var{fixed-settings}.
521 Valid values are: @code{s8}, @code{s16}, @code{s32}, @code{u8},
522 @code{u16}, @code{u32}. Default is @code{s16}.
524 @item in|out.voices=@var{voices}
525 Specify the number of @var{voices} to use. Default is 1.
527 @item in|out.buffer=@var{usecs}
528 Sets the size of the buffer in microseconds.
530 @end table
532 @item -audiodev none,id=@var{id}[,@var{prop}[=@var{value}][,...]]
533 Creates a dummy backend that discards all outputs. This backend has no
534 backend specific properties.
536 @item -audiodev alsa,id=@var{id}[,@var{prop}[=@var{value}][,...]]
537 Creates backend using the ALSA. This backend is only available on
538 Linux.
540 ALSA specific options are:
542 @table @option
544 @item in|out.dev=@var{device}
545 Specify the ALSA @var{device} to use for input and/or output. Default
546 is @code{default}.
548 @item in|out.period-len=@var{usecs}
549 Sets the period length in microseconds.
551 @item in|out.try-poll=on|off
552 Attempt to use poll mode with the device. Default is on.
554 @item threshold=@var{threshold}
555 Threshold (in microseconds) when playback starts. Default is 0.
557 @end table
559 @item -audiodev coreaudio,id=@var{id}[,@var{prop}[=@var{value}][,...]]
560 Creates a backend using Apple's Core Audio. This backend is only
561 available on Mac OS and only supports playback.
563 Core Audio specific options are:
565 @table @option
567 @item in|out.buffer-count=@var{count}
568 Sets the @var{count} of the buffers.
570 @end table
572 @item -audiodev dsound,id=@var{id}[,@var{prop}[=@var{value}][,...]]
573 Creates a backend using Microsoft's DirectSound. This backend is only
574 available on Windows and only supports playback.
576 DirectSound specific options are:
578 @table @option
580 @item latency=@var{usecs}
581 Add extra @var{usecs} microseconds latency to playback. Default is
582 10000 (10 ms).
584 @end table
586 @item -audiodev oss,id=@var{id}[,@var{prop}[=@var{value}][,...]]
587 Creates a backend using OSS. This backend is available on most
588 Unix-like systems.
590 OSS specific options are:
592 @table @option
594 @item in|out.dev=@var{device}
595 Specify the file name of the OSS @var{device} to use. Default is
596 @code{/dev/dsp}.
598 @item in|out.buffer-count=@var{count}
599 Sets the @var{count} of the buffers.
601 @item in|out.try-poll=on|of
602 Attempt to use poll mode with the device. Default is on.
604 @item try-mmap=on|off
605 Try using memory mapped device access. Default is off.
607 @item exclusive=on|off
608 Open the device in exclusive mode (vmix won't work in this case).
609 Default is off.
611 @item dsp-policy=@var{policy}
612 Sets the timing policy (between 0 and 10, where smaller number means
613 smaller latency but higher CPU usage). Use -1 to use buffer sizes
614 specified by @code{buffer} and @code{buffer-count}. This option is
615 ignored if you do not have OSS 4. Default is 5.
617 @end table
619 @item -audiodev pa,id=@var{id}[,@var{prop}[=@var{value}][,...]]
620 Creates a backend using PulseAudio. This backend is available on most
621 systems.
623 PulseAudio specific options are:
625 @table @option
627 @item server=@var{server}
628 Sets the PulseAudio @var{server} to connect to.
630 @item in|out.name=@var{sink}
631 Use the specified source/sink for recording/playback.
633 @end table
635 @item -audiodev sdl,id=@var{id}[,@var{prop}[=@var{value}][,...]]
636 Creates a backend using SDL. This backend is available on most systems,
637 but you should use your platform's native backend if possible. This
638 backend has no backend specific properties.
640 @item -audiodev spice,id=@var{id}[,@var{prop}[=@var{value}][,...]]
641 Creates a backend that sends audio through SPICE. This backend requires
642 @code{-spice} and automatically selected in that case, so usually you
643 can ignore this option. This backend has no backend specific
644 properties.
646 @item -audiodev wav,id=@var{id}[,@var{prop}[=@var{value}][,...]]
647 Creates a backend that writes audio to a WAV file.
649 Backend specific options are:
651 @table @option
653 @item path=@var{path}
654 Write recorded audio into the specified file. Default is
655 @code{qemu.wav}.
657 @end table
658 ETEXI
660 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
661 "-soundhw c1,... enable audio support\n"
662 " and only specified sound cards (comma separated list)\n"
663 " use '-soundhw help' to get the list of supported cards\n"
664 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
665 STEXI
666 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
667 @findex -soundhw
668 Enable audio and selected sound hardware. Use 'help' to print all
669 available sound hardware.
671 @example
672 qemu-system-i386 -soundhw sb16,adlib disk.img
673 qemu-system-i386 -soundhw es1370 disk.img
674 qemu-system-i386 -soundhw ac97 disk.img
675 qemu-system-i386 -soundhw hda disk.img
676 qemu-system-i386 -soundhw all disk.img
677 qemu-system-i386 -soundhw help
678 @end example
680 Note that Linux's i810_audio OSS kernel (for AC97) module might
681 require manually specifying clocking.
683 @example
684 modprobe i810_audio clocking=48000
685 @end example
686 ETEXI
688 DEF("device", HAS_ARG, QEMU_OPTION_device,
689 "-device driver[,prop[=value][,...]]\n"
690 " add device (based on driver)\n"
691 " prop=value,... sets driver properties\n"
692 " use '-device help' to print all possible drivers\n"
693 " use '-device driver,help' to print all possible properties\n",
694 QEMU_ARCH_ALL)
695 STEXI
696 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
697 @findex -device
698 Add device @var{driver}. @var{prop}=@var{value} sets driver
699 properties. Valid properties depend on the driver. To get help on
700 possible drivers and properties, use @code{-device help} and
701 @code{-device @var{driver},help}.
703 Some drivers are:
704 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}][,sdrfile=@var{file}][,furareasize=@var{val}][,furdatafile=@var{file}]
706 Add an IPMI BMC. This is a simulation of a hardware management
707 interface processor that normally sits on a system. It provides
708 a watchdog and the ability to reset and power control the system.
709 You need to connect this to an IPMI interface to make it useful
711 The IPMI slave address to use for the BMC. The default is 0x20.
712 This address is the BMC's address on the I2C network of management
713 controllers. If you don't know what this means, it is safe to ignore
716 @table @option
717 @item bmc=@var{id}
718 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
719 @item slave_addr=@var{val}
720 Define slave address to use for the BMC. The default is 0x20.
721 @item sdrfile=@var{file}
722 file containing raw Sensor Data Records (SDR) data. The default is none.
723 @item fruareasize=@var{val}
724 size of a Field Replaceable Unit (FRU) area. The default is 1024.
725 @item frudatafile=@var{file}
726 file containing raw Field Replaceable Unit (FRU) inventory data. The default is none.
727 @end table
729 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
731 Add a connection to an external IPMI BMC simulator. Instead of
732 locally emulating the BMC like the above item, instead connect
733 to an external entity that provides the IPMI services.
735 A connection is made to an external BMC simulator. If you do this, it
736 is strongly recommended that you use the "reconnect=" chardev option
737 to reconnect to the simulator if the connection is lost. Note that if
738 this is not used carefully, it can be a security issue, as the
739 interface has the ability to send resets, NMIs, and power off the VM.
740 It's best if QEMU makes a connection to an external simulator running
741 on a secure port on localhost, so neither the simulator nor QEMU is
742 exposed to any outside network.
744 See the "lanserv/README.vm" file in the OpenIPMI library for more
745 details on the external interface.
747 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
749 Add a KCS IPMI interafce on the ISA bus. This also adds a
750 corresponding ACPI and SMBIOS entries, if appropriate.
752 @table @option
753 @item bmc=@var{id}
754 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
755 @item ioport=@var{val}
756 Define the I/O address of the interface. The default is 0xca0 for KCS.
757 @item irq=@var{val}
758 Define the interrupt to use. The default is 5. To disable interrupts,
759 set this to 0.
760 @end table
762 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
764 Like the KCS interface, but defines a BT interface. The default port is
765 0xe4 and the default interrupt is 5.
767 ETEXI
769 DEF("name", HAS_ARG, QEMU_OPTION_name,
770 "-name string1[,process=string2][,debug-threads=on|off]\n"
771 " set the name of the guest\n"
772 " string1 sets the window title and string2 the process name\n"
773 " When debug-threads is enabled, individual threads are given a separate name\n"
774 " NOTE: The thread names are for debugging and not a stable API.\n",
775 QEMU_ARCH_ALL)
776 STEXI
777 @item -name @var{name}
778 @findex -name
779 Sets the @var{name} of the guest.
780 This name will be displayed in the SDL window caption.
781 The @var{name} will also be used for the VNC server.
782 Also optionally set the top visible process name in Linux.
783 Naming of individual threads can also be enabled on Linux to aid debugging.
784 ETEXI
786 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
787 "-uuid %08x-%04x-%04x-%04x-%012x\n"
788 " specify machine UUID\n", QEMU_ARCH_ALL)
789 STEXI
790 @item -uuid @var{uuid}
791 @findex -uuid
792 Set system UUID.
793 ETEXI
795 STEXI
796 @end table
797 ETEXI
798 DEFHEADING()
800 DEFHEADING(Block device options:)
801 STEXI
802 @table @option
803 ETEXI
805 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
806 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
807 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
808 STEXI
809 @item -fda @var{file}
810 @itemx -fdb @var{file}
811 @findex -fda
812 @findex -fdb
813 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
814 ETEXI
816 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
817 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
818 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
819 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
820 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
821 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
822 STEXI
823 @item -hda @var{file}
824 @itemx -hdb @var{file}
825 @itemx -hdc @var{file}
826 @itemx -hdd @var{file}
827 @findex -hda
828 @findex -hdb
829 @findex -hdc
830 @findex -hdd
831 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
832 ETEXI
834 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
835 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
836 QEMU_ARCH_ALL)
837 STEXI
838 @item -cdrom @var{file}
839 @findex -cdrom
840 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
841 @option{-cdrom} at the same time). You can use the host CD-ROM by
842 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
843 ETEXI
845 DEF("blockdev", HAS_ARG, QEMU_OPTION_blockdev,
846 "-blockdev [driver=]driver[,node-name=N][,discard=ignore|unmap]\n"
847 " [,cache.direct=on|off][,cache.no-flush=on|off]\n"
848 " [,read-only=on|off][,detect-zeroes=on|off|unmap]\n"
849 " [,driver specific parameters...]\n"
850 " configure a block backend\n", QEMU_ARCH_ALL)
851 STEXI
852 @item -blockdev @var{option}[,@var{option}[,@var{option}[,...]]]
853 @findex -blockdev
855 Define a new block driver node. Some of the options apply to all block drivers,
856 other options are only accepted for a specific block driver. See below for a
857 list of generic options and options for the most common block drivers.
859 Options that expect a reference to another node (e.g. @code{file}) can be
860 given in two ways. Either you specify the node name of an already existing node
861 (file=@var{node-name}), or you define a new node inline, adding options
862 for the referenced node after a dot (file.filename=@var{path},file.aio=native).
864 A block driver node created with @option{-blockdev} can be used for a guest
865 device by specifying its node name for the @code{drive} property in a
866 @option{-device} argument that defines a block device.
868 @table @option
869 @item Valid options for any block driver node:
871 @table @code
872 @item driver
873 Specifies the block driver to use for the given node.
874 @item node-name
875 This defines the name of the block driver node by which it will be referenced
876 later. The name must be unique, i.e. it must not match the name of a different
877 block driver node, or (if you use @option{-drive} as well) the ID of a drive.
879 If no node name is specified, it is automatically generated. The generated node
880 name is not intended to be predictable and changes between QEMU invocations.
881 For the top level, an explicit node name must be specified.
882 @item read-only
883 Open the node read-only. Guest write attempts will fail.
884 @item cache.direct
885 The host page cache can be avoided with @option{cache.direct=on}. This will
886 attempt to do disk IO directly to the guest's memory. QEMU may still perform an
887 internal copy of the data.
888 @item cache.no-flush
889 In case you don't care about data integrity over host failures, you can use
890 @option{cache.no-flush=on}. This option tells QEMU that it never needs to write
891 any data to the disk but can instead keep things in cache. If anything goes
892 wrong, like your host losing power, the disk storage getting disconnected
893 accidentally, etc. your image will most probably be rendered unusable.
894 @item discard=@var{discard}
895 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls
896 whether @code{discard} (also known as @code{trim} or @code{unmap}) requests are
897 ignored or passed to the filesystem. Some machine types may not support
898 discard requests.
899 @item detect-zeroes=@var{detect-zeroes}
900 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
901 conversion of plain zero writes by the OS to driver specific optimized
902 zero write commands. You may even choose "unmap" if @var{discard} is set
903 to "unmap" to allow a zero write to be converted to an @code{unmap} operation.
904 @end table
906 @item Driver-specific options for @code{file}
908 This is the protocol-level block driver for accessing regular files.
910 @table @code
911 @item filename
912 The path to the image file in the local filesystem
913 @item aio
914 Specifies the AIO backend (threads/native, default: threads)
915 @item locking
916 Specifies whether the image file is protected with Linux OFD / POSIX locks. The
917 default is to use the Linux Open File Descriptor API if available, otherwise no
918 lock is applied. (auto/on/off, default: auto)
919 @end table
920 Example:
921 @example
922 -blockdev driver=file,node-name=disk,filename=disk.img
923 @end example
925 @item Driver-specific options for @code{raw}
927 This is the image format block driver for raw images. It is usually
928 stacked on top of a protocol level block driver such as @code{file}.
930 @table @code
931 @item file
932 Reference to or definition of the data source block driver node
933 (e.g. a @code{file} driver node)
934 @end table
935 Example 1:
936 @example
937 -blockdev driver=file,node-name=disk_file,filename=disk.img
938 -blockdev driver=raw,node-name=disk,file=disk_file
939 @end example
940 Example 2:
941 @example
942 -blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img
943 @end example
945 @item Driver-specific options for @code{qcow2}
947 This is the image format block driver for qcow2 images. It is usually
948 stacked on top of a protocol level block driver such as @code{file}.
950 @table @code
951 @item file
952 Reference to or definition of the data source block driver node
953 (e.g. a @code{file} driver node)
955 @item backing
956 Reference to or definition of the backing file block device (default is taken
957 from the image file). It is allowed to pass @code{null} here in order to disable
958 the default backing file.
960 @item lazy-refcounts
961 Whether to enable the lazy refcounts feature (on/off; default is taken from the
962 image file)
964 @item cache-size
965 The maximum total size of the L2 table and refcount block caches in bytes
966 (default: the sum of l2-cache-size and refcount-cache-size)
968 @item l2-cache-size
969 The maximum size of the L2 table cache in bytes
970 (default: if cache-size is not specified - 32M on Linux platforms, and 8M on
971 non-Linux platforms; otherwise, as large as possible within the cache-size,
972 while permitting the requested or the minimal refcount cache size)
974 @item refcount-cache-size
975 The maximum size of the refcount block cache in bytes
976 (default: 4 times the cluster size; or if cache-size is specified, the part of
977 it which is not used for the L2 cache)
979 @item cache-clean-interval
980 Clean unused entries in the L2 and refcount caches. The interval is in seconds.
981 The default value is 600 on supporting platforms, and 0 on other platforms.
982 Setting it to 0 disables this feature.
984 @item pass-discard-request
985 Whether discard requests to the qcow2 device should be forwarded to the data
986 source (on/off; default: on if discard=unmap is specified, off otherwise)
988 @item pass-discard-snapshot
989 Whether discard requests for the data source should be issued when a snapshot
990 operation (e.g. deleting a snapshot) frees clusters in the qcow2 file (on/off;
991 default: on)
993 @item pass-discard-other
994 Whether discard requests for the data source should be issued on other
995 occasions where a cluster gets freed (on/off; default: off)
997 @item overlap-check
998 Which overlap checks to perform for writes to the image
999 (none/constant/cached/all; default: cached). For details or finer
1000 granularity control refer to the QAPI documentation of @code{blockdev-add}.
1001 @end table
1003 Example 1:
1004 @example
1005 -blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2
1006 -blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216
1007 @end example
1008 Example 2:
1009 @example
1010 -blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2
1011 @end example
1013 @item Driver-specific options for other drivers
1014 Please refer to the QAPI documentation of the @code{blockdev-add} QMP command.
1016 @end table
1018 ETEXI
1020 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
1021 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
1022 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
1023 " [,snapshot=on|off][,rerror=ignore|stop|report]\n"
1024 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
1025 " [,readonly=on|off][,copy-on-read=on|off]\n"
1026 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
1027 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
1028 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
1029 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
1030 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
1031 " [[,iops_size=is]]\n"
1032 " [[,group=g]]\n"
1033 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
1034 STEXI
1035 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
1036 @findex -drive
1038 Define a new drive. This includes creating a block driver node (the backend) as
1039 well as a guest device, and is mostly a shortcut for defining the corresponding
1040 @option{-blockdev} and @option{-device} options.
1042 @option{-drive} accepts all options that are accepted by @option{-blockdev}. In
1043 addition, it knows the following options:
1045 @table @option
1046 @item file=@var{file}
1047 This option defines which disk image (@pxref{disk_images}) to use with
1048 this drive. If the filename contains comma, you must double it
1049 (for instance, "file=my,,file" to use file "my,file").
1051 Special files such as iSCSI devices can be specified using protocol
1052 specific URLs. See the section for "Device URL Syntax" for more information.
1053 @item if=@var{interface}
1054 This option defines on which type on interface the drive is connected.
1055 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio, none.
1056 @item bus=@var{bus},unit=@var{unit}
1057 These options define where is connected the drive by defining the bus number and
1058 the unit id.
1059 @item index=@var{index}
1060 This option defines where is connected the drive by using an index in the list
1061 of available connectors of a given interface type.
1062 @item media=@var{media}
1063 This option defines the type of the media: disk or cdrom.
1064 @item snapshot=@var{snapshot}
1065 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
1066 (see @option{-snapshot}).
1067 @item cache=@var{cache}
1068 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough"
1069 and controls how the host cache is used to access block data. This is a
1070 shortcut that sets the @option{cache.direct} and @option{cache.no-flush}
1071 options (as in @option{-blockdev}), and additionally @option{cache.writeback},
1072 which provides a default for the @option{write-cache} option of block guest
1073 devices (as in @option{-device}). The modes correspond to the following
1074 settings:
1076 @c Our texi2pod.pl script doesn't support @multitable, so fall back to using
1077 @c plain ASCII art (well, UTF-8 art really). This looks okay both in the manpage
1078 @c and the HTML output.
1079 @example
1080 @ │ cache.writeback cache.direct cache.no-flush
1081 ─────────────┼─────────────────────────────────────────────────
1082 writeback │ on off off
1083 none │ on on off
1084 writethrough │ off off off
1085 directsync │ off on off
1086 unsafe │ on off on
1087 @end example
1089 The default mode is @option{cache=writeback}.
1091 @item aio=@var{aio}
1092 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
1093 @item format=@var{format}
1094 Specify which disk @var{format} will be used rather than detecting
1095 the format. Can be used to specify format=raw to avoid interpreting
1096 an untrusted format header.
1097 @item werror=@var{action},rerror=@var{action}
1098 Specify which @var{action} to take on write and read errors. Valid actions are:
1099 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
1100 "report" (report the error to the guest), "enospc" (pause QEMU only if the
1101 host disk is full; report the error to the guest otherwise).
1102 The default setting is @option{werror=enospc} and @option{rerror=report}.
1103 @item copy-on-read=@var{copy-on-read}
1104 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
1105 file sectors into the image file.
1106 @item bps=@var{b},bps_rd=@var{r},bps_wr=@var{w}
1107 Specify bandwidth throttling limits in bytes per second, either for all request
1108 types or for reads or writes only. Small values can lead to timeouts or hangs
1109 inside the guest. A safe minimum for disks is 2 MB/s.
1110 @item bps_max=@var{bm},bps_rd_max=@var{rm},bps_wr_max=@var{wm}
1111 Specify bursts in bytes per second, either for all request types or for reads
1112 or writes only. Bursts allow the guest I/O to spike above the limit
1113 temporarily.
1114 @item iops=@var{i},iops_rd=@var{r},iops_wr=@var{w}
1115 Specify request rate limits in requests per second, either for all request
1116 types or for reads or writes only.
1117 @item iops_max=@var{bm},iops_rd_max=@var{rm},iops_wr_max=@var{wm}
1118 Specify bursts in requests per second, either for all request types or for reads
1119 or writes only. Bursts allow the guest I/O to spike above the limit
1120 temporarily.
1121 @item iops_size=@var{is}
1122 Let every @var{is} bytes of a request count as a new request for iops
1123 throttling purposes. Use this option to prevent guests from circumventing iops
1124 limits by sending fewer but larger requests.
1125 @item group=@var{g}
1126 Join a throttling quota group with given name @var{g}. All drives that are
1127 members of the same group are accounted for together. Use this option to
1128 prevent guests from circumventing throttling limits by using many small disks
1129 instead of a single larger disk.
1130 @end table
1132 By default, the @option{cache.writeback=on} mode is used. It will report data
1133 writes as completed as soon as the data is present in the host page cache.
1134 This is safe as long as your guest OS makes sure to correctly flush disk caches
1135 where needed. If your guest OS does not handle volatile disk write caches
1136 correctly and your host crashes or loses power, then the guest may experience
1137 data corruption.
1139 For such guests, you should consider using @option{cache.writeback=off}. This
1140 means that the host page cache will be used to read and write data, but write
1141 notification will be sent to the guest only after QEMU has made sure to flush
1142 each write to the disk. Be aware that this has a major impact on performance.
1144 When using the @option{-snapshot} option, unsafe caching is always used.
1146 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
1147 useful when the backing file is over a slow network. By default copy-on-read
1148 is off.
1150 Instead of @option{-cdrom} you can use:
1151 @example
1152 qemu-system-i386 -drive file=file,index=2,media=cdrom
1153 @end example
1155 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
1156 use:
1157 @example
1158 qemu-system-i386 -drive file=file,index=0,media=disk
1159 qemu-system-i386 -drive file=file,index=1,media=disk
1160 qemu-system-i386 -drive file=file,index=2,media=disk
1161 qemu-system-i386 -drive file=file,index=3,media=disk
1162 @end example
1164 You can open an image using pre-opened file descriptors from an fd set:
1165 @example
1166 qemu-system-i386
1167 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
1168 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
1169 -drive file=/dev/fdset/2,index=0,media=disk
1170 @end example
1172 You can connect a CDROM to the slave of ide0:
1173 @example
1174 qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom
1175 @end example
1177 If you don't specify the "file=" argument, you define an empty drive:
1178 @example
1179 qemu-system-i386 -drive if=ide,index=1,media=cdrom
1180 @end example
1182 Instead of @option{-fda}, @option{-fdb}, you can use:
1183 @example
1184 qemu-system-i386 -drive file=file,index=0,if=floppy
1185 qemu-system-i386 -drive file=file,index=1,if=floppy
1186 @end example
1188 By default, @var{interface} is "ide" and @var{index} is automatically
1189 incremented:
1190 @example
1191 qemu-system-i386 -drive file=a -drive file=b"
1192 @end example
1193 is interpreted like:
1194 @example
1195 qemu-system-i386 -hda a -hdb b
1196 @end example
1197 ETEXI
1199 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
1200 "-mtdblock file use 'file' as on-board Flash memory image\n",
1201 QEMU_ARCH_ALL)
1202 STEXI
1203 @item -mtdblock @var{file}
1204 @findex -mtdblock
1205 Use @var{file} as on-board Flash memory image.
1206 ETEXI
1208 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
1209 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
1210 STEXI
1211 @item -sd @var{file}
1212 @findex -sd
1213 Use @var{file} as SecureDigital card image.
1214 ETEXI
1216 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
1217 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
1218 STEXI
1219 @item -pflash @var{file}
1220 @findex -pflash
1221 Use @var{file} as a parallel flash image.
1222 ETEXI
1224 DEF("snapshot", 0, QEMU_OPTION_snapshot,
1225 "-snapshot write to temporary files instead of disk image files\n",
1226 QEMU_ARCH_ALL)
1227 STEXI
1228 @item -snapshot
1229 @findex -snapshot
1230 Write to temporary files instead of disk image files. In this case,
1231 the raw disk image you use is not written back. You can however force
1232 the write back by pressing @key{C-a s} (@pxref{disk_images}).
1233 ETEXI
1235 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
1236 "-fsdev local,id=id,path=path,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1237 " [,writeout=immediate][,readonly][,fmode=fmode][,dmode=dmode]\n"
1238 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
1239 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
1240 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
1241 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
1242 " [[,throttling.iops-size=is]]\n"
1243 "-fsdev proxy,id=id,socket=socket[,writeout=immediate][,readonly]\n"
1244 "-fsdev proxy,id=id,sock_fd=sock_fd[,writeout=immediate][,readonly]\n"
1245 "-fsdev synth,id=id\n",
1246 QEMU_ARCH_ALL)
1248 STEXI
1250 @item -fsdev local,id=@var{id},path=@var{path},security_model=@var{security_model} [,writeout=@var{writeout}][,readonly][,fmode=@var{fmode}][,dmode=@var{dmode}] [,throttling.@var{option}=@var{value}[,throttling.@var{option}=@var{value}[,...]]]
1251 @itemx -fsdev proxy,id=@var{id},socket=@var{socket}[,writeout=@var{writeout}][,readonly]
1252 @itemx -fsdev proxy,id=@var{id},sock_fd=@var{sock_fd}[,writeout=@var{writeout}][,readonly]
1253 @itemx -fsdev synth,id=@var{id}[,readonly]
1254 @findex -fsdev
1255 Define a new file system device. Valid options are:
1256 @table @option
1257 @item local
1258 Accesses to the filesystem are done by QEMU.
1259 @item proxy
1260 Accesses to the filesystem are done by virtfs-proxy-helper(1).
1261 @item synth
1262 Synthetic filesystem, only used by QTests.
1263 @item id=@var{id}
1264 Specifies identifier for this device.
1265 @item path=@var{path}
1266 Specifies the export path for the file system device. Files under
1267 this path will be available to the 9p client on the guest.
1268 @item security_model=@var{security_model}
1269 Specifies the security model to be used for this export path.
1270 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1271 In "passthrough" security model, files are stored using the same
1272 credentials as they are created on the guest. This requires QEMU
1273 to run as root. In "mapped-xattr" security model, some of the file
1274 attributes like uid, gid, mode bits and link target are stored as
1275 file attributes. For "mapped-file" these attributes are stored in the
1276 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1277 interact with other unix tools. "none" security model is same as
1278 passthrough except the sever won't report failures if it fails to
1279 set file attributes like ownership. Security model is mandatory
1280 only for local fsdriver. Other fsdrivers (like proxy) don't take
1281 security model as a parameter.
1282 @item writeout=@var{writeout}
1283 This is an optional argument. The only supported value is "immediate".
1284 This means that host page cache will be used to read and write data but
1285 write notification will be sent to the guest only when the data has been
1286 reported as written by the storage subsystem.
1287 @item readonly
1288 Enables exporting 9p share as a readonly mount for guests. By default
1289 read-write access is given.
1290 @item socket=@var{socket}
1291 Enables proxy filesystem driver to use passed socket file for communicating
1292 with virtfs-proxy-helper(1).
1293 @item sock_fd=@var{sock_fd}
1294 Enables proxy filesystem driver to use passed socket descriptor for
1295 communicating with virtfs-proxy-helper(1). Usually a helper like libvirt
1296 will create socketpair and pass one of the fds as sock_fd.
1297 @item fmode=@var{fmode}
1298 Specifies the default mode for newly created files on the host. Works only
1299 with security models "mapped-xattr" and "mapped-file".
1300 @item dmode=@var{dmode}
1301 Specifies the default mode for newly created directories on the host. Works
1302 only with security models "mapped-xattr" and "mapped-file".
1303 @item throttling.bps-total=@var{b},throttling.bps-read=@var{r},throttling.bps-write=@var{w}
1304 Specify bandwidth throttling limits in bytes per second, either for all request
1305 types or for reads or writes only.
1306 @item throttling.bps-total-max=@var{bm},bps-read-max=@var{rm},bps-write-max=@var{wm}
1307 Specify bursts in bytes per second, either for all request types or for reads
1308 or writes only. Bursts allow the guest I/O to spike above the limit
1309 temporarily.
1310 @item throttling.iops-total=@var{i},throttling.iops-read=@var{r}, throttling.iops-write=@var{w}
1311 Specify request rate limits in requests per second, either for all request
1312 types or for reads or writes only.
1313 @item throttling.iops-total-max=@var{im},throttling.iops-read-max=@var{irm}, throttling.iops-write-max=@var{iwm}
1314 Specify bursts in requests per second, either for all request types or for reads
1315 or writes only. Bursts allow the guest I/O to spike above the limit temporarily.
1316 @item throttling.iops-size=@var{is}
1317 Let every @var{is} bytes of a request count as a new request for iops
1318 throttling purposes.
1319 @end table
1321 -fsdev option is used along with -device driver "virtio-9p-...".
1322 @item -device virtio-9p-@var{type},fsdev=@var{id},mount_tag=@var{mount_tag}
1323 Options for virtio-9p-... driver are:
1324 @table @option
1325 @item @var{type}
1326 Specifies the variant to be used. Supported values are "pci", "ccw" or "device",
1327 depending on the machine type.
1328 @item fsdev=@var{id}
1329 Specifies the id value specified along with -fsdev option.
1330 @item mount_tag=@var{mount_tag}
1331 Specifies the tag name to be used by the guest to mount this export point.
1332 @end table
1334 ETEXI
1336 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
1337 "-virtfs local,path=path,mount_tag=tag,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1338 " [,id=id][,writeout=immediate][,readonly][,fmode=fmode][,dmode=dmode]\n"
1339 "-virtfs proxy,mount_tag=tag,socket=socket[,id=id][,writeout=immediate][,readonly]\n"
1340 "-virtfs proxy,mount_tag=tag,sock_fd=sock_fd[,id=id][,writeout=immediate][,readonly]\n"
1341 "-virtfs synth,mount_tag=tag[,id=id][,readonly]\n",
1342 QEMU_ARCH_ALL)
1344 STEXI
1346 @item -virtfs local,path=@var{path},mount_tag=@var{mount_tag} ,security_model=@var{security_model}[,writeout=@var{writeout}][,readonly] [,fmode=@var{fmode}][,dmode=@var{dmode}]
1347 @itemx -virtfs proxy,socket=@var{socket},mount_tag=@var{mount_tag} [,writeout=@var{writeout}][,readonly]
1348 @itemx -virtfs proxy,sock_fd=@var{sock_fd},mount_tag=@var{mount_tag} [,writeout=@var{writeout}][,readonly]
1349 @itemx -virtfs synth,mount_tag=@var{mount_tag}
1350 @findex -virtfs
1352 Define a new filesystem device and expose it to the guest using a virtio-9p-device. The general form of a Virtual File system pass-through options are:
1353 @table @option
1354 @item local
1355 Accesses to the filesystem are done by QEMU.
1356 @item proxy
1357 Accesses to the filesystem are done by virtfs-proxy-helper(1).
1358 @item synth
1359 Synthetic filesystem, only used by QTests.
1360 @item id=@var{id}
1361 Specifies identifier for the filesystem device
1362 @item path=@var{path}
1363 Specifies the export path for the file system device. Files under
1364 this path will be available to the 9p client on the guest.
1365 @item security_model=@var{security_model}
1366 Specifies the security model to be used for this export path.
1367 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1368 In "passthrough" security model, files are stored using the same
1369 credentials as they are created on the guest. This requires QEMU
1370 to run as root. In "mapped-xattr" security model, some of the file
1371 attributes like uid, gid, mode bits and link target are stored as
1372 file attributes. For "mapped-file" these attributes are stored in the
1373 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1374 interact with other unix tools. "none" security model is same as
1375 passthrough except the sever won't report failures if it fails to
1376 set file attributes like ownership. Security model is mandatory only
1377 for local fsdriver. Other fsdrivers (like proxy) don't take security
1378 model as a parameter.
1379 @item writeout=@var{writeout}
1380 This is an optional argument. The only supported value is "immediate".
1381 This means that host page cache will be used to read and write data but
1382 write notification will be sent to the guest only when the data has been
1383 reported as written by the storage subsystem.
1384 @item readonly
1385 Enables exporting 9p share as a readonly mount for guests. By default
1386 read-write access is given.
1387 @item socket=@var{socket}
1388 Enables proxy filesystem driver to use passed socket file for
1389 communicating with virtfs-proxy-helper(1). Usually a helper like libvirt
1390 will create socketpair and pass one of the fds as sock_fd.
1391 @item sock_fd
1392 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
1393 descriptor for interfacing with virtfs-proxy-helper(1).
1394 @item fmode=@var{fmode}
1395 Specifies the default mode for newly created files on the host. Works only
1396 with security models "mapped-xattr" and "mapped-file".
1397 @item dmode=@var{dmode}
1398 Specifies the default mode for newly created directories on the host. Works
1399 only with security models "mapped-xattr" and "mapped-file".
1400 @item mount_tag=@var{mount_tag}
1401 Specifies the tag name to be used by the guest to mount this export point.
1402 @end table
1403 ETEXI
1405 DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth,
1406 "-virtfs_synth Create synthetic file system image\n",
1407 QEMU_ARCH_ALL)
1408 STEXI
1409 @item -virtfs_synth
1410 @findex -virtfs_synth
1411 Create synthetic file system image. Note that this option is now deprecated.
1412 Please use @code{-fsdev synth} and @code{-device virtio-9p-...} instead.
1413 ETEXI
1415 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
1416 "-iscsi [user=user][,password=password]\n"
1417 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
1418 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
1419 " [,timeout=timeout]\n"
1420 " iSCSI session parameters\n", QEMU_ARCH_ALL)
1422 STEXI
1423 @item -iscsi
1424 @findex -iscsi
1425 Configure iSCSI session parameters.
1426 ETEXI
1428 STEXI
1429 @end table
1430 ETEXI
1431 DEFHEADING()
1433 DEFHEADING(USB options:)
1434 STEXI
1435 @table @option
1436 ETEXI
1438 DEF("usb", 0, QEMU_OPTION_usb,
1439 "-usb enable on-board USB host controller (if not enabled by default)\n",
1440 QEMU_ARCH_ALL)
1441 STEXI
1442 @item -usb
1443 @findex -usb
1444 Enable USB emulation on machine types with an on-board USB host controller (if
1445 not enabled by default). Note that on-board USB host controllers may not
1446 support USB 3.0. In this case @option{-device qemu-xhci} can be used instead
1447 on machines with PCI.
1448 ETEXI
1450 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
1451 "-usbdevice name add the host or guest USB device 'name'\n",
1452 QEMU_ARCH_ALL)
1453 STEXI
1455 @item -usbdevice @var{devname}
1456 @findex -usbdevice
1457 Add the USB device @var{devname}. Note that this option is deprecated,
1458 please use @code{-device usb-...} instead. @xref{usb_devices}.
1460 @table @option
1462 @item mouse
1463 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1465 @item tablet
1466 Pointer device that uses absolute coordinates (like a touchscreen). This
1467 means QEMU is able to report the mouse position without having to grab the
1468 mouse. Also overrides the PS/2 mouse emulation when activated.
1470 @item braille
1471 Braille device. This will use BrlAPI to display the braille output on a real
1472 or fake device.
1474 @end table
1475 ETEXI
1477 STEXI
1478 @end table
1479 ETEXI
1480 DEFHEADING()
1482 DEFHEADING(Display options:)
1483 STEXI
1484 @table @option
1485 ETEXI
1487 DEF("display", HAS_ARG, QEMU_OPTION_display,
1488 "-display spice-app[,gl=on|off]\n"
1489 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n"
1490 " [,window_close=on|off][,gl=on|core|es|off]\n"
1491 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
1492 "-display vnc=<display>[,<optargs>]\n"
1493 "-display curses[,charset=<encoding>]\n"
1494 "-display none\n"
1495 "-display egl-headless[,rendernode=<file>]"
1496 " select display type\n"
1497 "The default display is equivalent to\n"
1498 #if defined(CONFIG_GTK)
1499 "\t\"-display gtk\"\n"
1500 #elif defined(CONFIG_SDL)
1501 "\t\"-display sdl\"\n"
1502 #elif defined(CONFIG_COCOA)
1503 "\t\"-display cocoa\"\n"
1504 #elif defined(CONFIG_VNC)
1505 "\t\"-vnc localhost:0,to=99,id=default\"\n"
1506 #else
1507 "\t\"-display none\"\n"
1508 #endif
1509 , QEMU_ARCH_ALL)
1510 STEXI
1511 @item -display @var{type}
1512 @findex -display
1513 Select type of display to use. This option is a replacement for the
1514 old style -sdl/-curses/... options. Valid values for @var{type} are
1515 @table @option
1516 @item sdl
1517 Display video output via SDL (usually in a separate graphics
1518 window; see the SDL documentation for other possibilities).
1519 @item curses
1520 Display video output via curses. For graphics device models which
1521 support a text mode, QEMU can display this output using a
1522 curses/ncurses interface. Nothing is displayed when the graphics
1523 device is in graphical mode or if the graphics device does not support
1524 a text mode. Generally only the VGA device models support text mode.
1525 The font charset used by the guest can be specified with the
1526 @code{charset} option, for example @code{charset=CP850} for IBM CP850
1527 encoding. The default is @code{CP437}.
1528 @item none
1529 Do not display video output. The guest will still see an emulated
1530 graphics card, but its output will not be displayed to the QEMU
1531 user. This option differs from the -nographic option in that it
1532 only affects what is done with video output; -nographic also changes
1533 the destination of the serial and parallel port data.
1534 @item gtk
1535 Display video output in a GTK window. This interface provides drop-down
1536 menus and other UI elements to configure and control the VM during
1537 runtime.
1538 @item vnc
1539 Start a VNC server on display <arg>
1540 @item egl-headless
1541 Offload all OpenGL operations to a local DRI device. For any graphical display,
1542 this display needs to be paired with either VNC or SPICE displays.
1543 @item spice-app
1544 Start QEMU as a Spice server and launch the default Spice client
1545 application. The Spice server will redirect the serial consoles and
1546 QEMU monitors. (Since 4.0)
1547 @end table
1548 ETEXI
1550 DEF("nographic", 0, QEMU_OPTION_nographic,
1551 "-nographic disable graphical output and redirect serial I/Os to console\n",
1552 QEMU_ARCH_ALL)
1553 STEXI
1554 @item -nographic
1555 @findex -nographic
1556 Normally, if QEMU is compiled with graphical window support, it displays
1557 output such as guest graphics, guest console, and the QEMU monitor in a
1558 window. With this option, you can totally disable graphical output so
1559 that QEMU is a simple command line application. The emulated serial port
1560 is redirected on the console and muxed with the monitor (unless
1561 redirected elsewhere explicitly). Therefore, you can still use QEMU to
1562 debug a Linux kernel with a serial console. Use @key{C-a h} for help on
1563 switching between the console and monitor.
1564 ETEXI
1566 DEF("curses", 0, QEMU_OPTION_curses,
1567 "-curses shorthand for -display curses\n",
1568 QEMU_ARCH_ALL)
1569 STEXI
1570 @item -curses
1571 @findex -curses
1572 Normally, if QEMU is compiled with graphical window support, it displays
1573 output such as guest graphics, guest console, and the QEMU monitor in a
1574 window. With this option, QEMU can display the VGA output when in text
1575 mode using a curses/ncurses interface. Nothing is displayed in graphical
1576 mode.
1577 ETEXI
1579 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1580 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1581 QEMU_ARCH_ALL)
1582 STEXI
1583 @item -alt-grab
1584 @findex -alt-grab
1585 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1586 affects the special keys (for fullscreen, monitor-mode switching, etc).
1587 ETEXI
1589 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1590 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1591 QEMU_ARCH_ALL)
1592 STEXI
1593 @item -ctrl-grab
1594 @findex -ctrl-grab
1595 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1596 affects the special keys (for fullscreen, monitor-mode switching, etc).
1597 ETEXI
1599 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1600 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1601 STEXI
1602 @item -no-quit
1603 @findex -no-quit
1604 Disable SDL window close capability.
1605 ETEXI
1607 DEF("sdl", 0, QEMU_OPTION_sdl,
1608 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL)
1609 STEXI
1610 @item -sdl
1611 @findex -sdl
1612 Enable SDL.
1613 ETEXI
1615 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1616 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1617 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1618 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1619 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1620 " [,tls-ciphers=<list>]\n"
1621 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1622 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1623 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1624 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1625 " [,jpeg-wan-compression=[auto|never|always]]\n"
1626 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1627 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1628 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1629 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1630 " [,gl=[on|off]][,rendernode=<file>]\n"
1631 " enable spice\n"
1632 " at least one of {port, tls-port} is mandatory\n",
1633 QEMU_ARCH_ALL)
1634 STEXI
1635 @item -spice @var{option}[,@var{option}[,...]]
1636 @findex -spice
1637 Enable the spice remote desktop protocol. Valid options are
1639 @table @option
1641 @item port=<nr>
1642 Set the TCP port spice is listening on for plaintext channels.
1644 @item addr=<addr>
1645 Set the IP address spice is listening on. Default is any address.
1647 @item ipv4
1648 @itemx ipv6
1649 @itemx unix
1650 Force using the specified IP version.
1652 @item password=<secret>
1653 Set the password you need to authenticate.
1655 @item sasl
1656 Require that the client use SASL to authenticate with the spice.
1657 The exact choice of authentication method used is controlled from the
1658 system / user's SASL configuration file for the 'qemu' service. This
1659 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1660 unprivileged user, an environment variable SASL_CONF_PATH can be used
1661 to make it search alternate locations for the service config.
1662 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1663 it is recommended that SASL always be combined with the 'tls' and
1664 'x509' settings to enable use of SSL and server certificates. This
1665 ensures a data encryption preventing compromise of authentication
1666 credentials.
1668 @item disable-ticketing
1669 Allow client connects without authentication.
1671 @item disable-copy-paste
1672 Disable copy paste between the client and the guest.
1674 @item disable-agent-file-xfer
1675 Disable spice-vdagent based file-xfer between the client and the guest.
1677 @item tls-port=<nr>
1678 Set the TCP port spice is listening on for encrypted channels.
1680 @item x509-dir=<dir>
1681 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1683 @item x509-key-file=<file>
1684 @itemx x509-key-password=<file>
1685 @itemx x509-cert-file=<file>
1686 @itemx x509-cacert-file=<file>
1687 @itemx x509-dh-key-file=<file>
1688 The x509 file names can also be configured individually.
1690 @item tls-ciphers=<list>
1691 Specify which ciphers to use.
1693 @item tls-channel=[main|display|cursor|inputs|record|playback]
1694 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1695 Force specific channel to be used with or without TLS encryption. The
1696 options can be specified multiple times to configure multiple
1697 channels. The special name "default" can be used to set the default
1698 mode. For channels which are not explicitly forced into one mode the
1699 spice client is allowed to pick tls/plaintext as he pleases.
1701 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1702 Configure image compression (lossless).
1703 Default is auto_glz.
1705 @item jpeg-wan-compression=[auto|never|always]
1706 @itemx zlib-glz-wan-compression=[auto|never|always]
1707 Configure wan image compression (lossy for slow links).
1708 Default is auto.
1710 @item streaming-video=[off|all|filter]
1711 Configure video stream detection. Default is off.
1713 @item agent-mouse=[on|off]
1714 Enable/disable passing mouse events via vdagent. Default is on.
1716 @item playback-compression=[on|off]
1717 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1719 @item seamless-migration=[on|off]
1720 Enable/disable spice seamless migration. Default is off.
1722 @item gl=[on|off]
1723 Enable/disable OpenGL context. Default is off.
1725 @item rendernode=<file>
1726 DRM render node for OpenGL rendering. If not specified, it will pick
1727 the first available. (Since 2.9)
1729 @end table
1730 ETEXI
1732 DEF("portrait", 0, QEMU_OPTION_portrait,
1733 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1734 QEMU_ARCH_ALL)
1735 STEXI
1736 @item -portrait
1737 @findex -portrait
1738 Rotate graphical output 90 deg left (only PXA LCD).
1739 ETEXI
1741 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1742 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1743 QEMU_ARCH_ALL)
1744 STEXI
1745 @item -rotate @var{deg}
1746 @findex -rotate
1747 Rotate graphical output some deg left (only PXA LCD).
1748 ETEXI
1750 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1751 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1752 " select video card type\n", QEMU_ARCH_ALL)
1753 STEXI
1754 @item -vga @var{type}
1755 @findex -vga
1756 Select type of VGA card to emulate. Valid values for @var{type} are
1757 @table @option
1758 @item cirrus
1759 Cirrus Logic GD5446 Video card. All Windows versions starting from
1760 Windows 95 should recognize and use this graphic card. For optimal
1761 performances, use 16 bit color depth in the guest and the host OS.
1762 (This card was the default before QEMU 2.2)
1763 @item std
1764 Standard VGA card with Bochs VBE extensions. If your guest OS
1765 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1766 to use high resolution modes (>= 1280x1024x16) then you should use
1767 this option. (This card is the default since QEMU 2.2)
1768 @item vmware
1769 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1770 recent XFree86/XOrg server or Windows guest with a driver for this
1771 card.
1772 @item qxl
1773 QXL paravirtual graphic card. It is VGA compatible (including VESA
1774 2.0 VBE support). Works best with qxl guest drivers installed though.
1775 Recommended choice when using the spice protocol.
1776 @item tcx
1777 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1778 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1779 fixed resolution of 1024x768.
1780 @item cg3
1781 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1782 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1783 resolutions aimed at people wishing to run older Solaris versions.
1784 @item virtio
1785 Virtio VGA card.
1786 @item none
1787 Disable VGA card.
1788 @end table
1789 ETEXI
1791 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1792 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1793 STEXI
1794 @item -full-screen
1795 @findex -full-screen
1796 Start in full screen.
1797 ETEXI
1799 DEF("g", 1, QEMU_OPTION_g ,
1800 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1801 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
1802 STEXI
1803 @item -g @var{width}x@var{height}[x@var{depth}]
1804 @findex -g
1805 Set the initial graphical resolution and depth (PPC, SPARC only).
1806 ETEXI
1808 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1809 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
1810 STEXI
1811 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1812 @findex -vnc
1813 Normally, if QEMU is compiled with graphical window support, it displays
1814 output such as guest graphics, guest console, and the QEMU monitor in a
1815 window. With this option, you can have QEMU listen on VNC display
1816 @var{display} and redirect the VGA display over the VNC session. It is
1817 very useful to enable the usb tablet device when using this option
1818 (option @option{-device usb-tablet}). When using the VNC display, you
1819 must use the @option{-k} parameter to set the keyboard layout if you are
1820 not using en-us. Valid syntax for the @var{display} is
1822 @table @option
1824 @item to=@var{L}
1826 With this option, QEMU will try next available VNC @var{display}s, until the
1827 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1828 available, e.g. port 5900+@var{display} is already used by another
1829 application. By default, to=0.
1831 @item @var{host}:@var{d}
1833 TCP connections will only be allowed from @var{host} on display @var{d}.
1834 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1835 be omitted in which case the server will accept connections from any host.
1837 @item unix:@var{path}
1839 Connections will be allowed over UNIX domain sockets where @var{path} is the
1840 location of a unix socket to listen for connections on.
1842 @item none
1844 VNC is initialized but not started. The monitor @code{change} command
1845 can be used to later start the VNC server.
1847 @end table
1849 Following the @var{display} value there may be one or more @var{option} flags
1850 separated by commas. Valid options are
1852 @table @option
1854 @item reverse
1856 Connect to a listening VNC client via a ``reverse'' connection. The
1857 client is specified by the @var{display}. For reverse network
1858 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
1859 is a TCP port number, not a display number.
1861 @item websocket
1863 Opens an additional TCP listening port dedicated to VNC Websocket connections.
1864 If a bare @var{websocket} option is given, the Websocket port is
1865 5700+@var{display}. An alternative port can be specified with the
1866 syntax @code{websocket}=@var{port}.
1868 If @var{host} is specified connections will only be allowed from this host.
1869 It is possible to control the websocket listen address independently, using
1870 the syntax @code{websocket}=@var{host}:@var{port}.
1872 If no TLS credentials are provided, the websocket connection runs in
1873 unencrypted mode. If TLS credentials are provided, the websocket connection
1874 requires encrypted client connections.
1876 @item password
1878 Require that password based authentication is used for client connections.
1880 The password must be set separately using the @code{set_password} command in
1881 the @ref{pcsys_monitor}. The syntax to change your password is:
1882 @code{set_password <protocol> <password>} where <protocol> could be either
1883 "vnc" or "spice".
1885 If you would like to change <protocol> password expiration, you should use
1886 @code{expire_password <protocol> <expiration-time>} where expiration time could
1887 be one of the following options: now, never, +seconds or UNIX time of
1888 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
1889 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
1890 date and time).
1892 You can also use keywords "now" or "never" for the expiration time to
1893 allow <protocol> password to expire immediately or never expire.
1895 @item tls-creds=@var{ID}
1897 Provides the ID of a set of TLS credentials to use to secure the
1898 VNC server. They will apply to both the normal VNC server socket
1899 and the websocket socket (if enabled). Setting TLS credentials
1900 will cause the VNC server socket to enable the VeNCrypt auth
1901 mechanism. The credentials should have been previously created
1902 using the @option{-object tls-creds} argument.
1904 @item tls-authz=@var{ID}
1906 Provides the ID of the QAuthZ authorization object against which
1907 the client's x509 distinguished name will validated. This object is
1908 only resolved at time of use, so can be deleted and recreated on the
1909 fly while the VNC server is active. If missing, it will default
1910 to denying access.
1912 @item sasl
1914 Require that the client use SASL to authenticate with the VNC server.
1915 The exact choice of authentication method used is controlled from the
1916 system / user's SASL configuration file for the 'qemu' service. This
1917 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1918 unprivileged user, an environment variable SASL_CONF_PATH can be used
1919 to make it search alternate locations for the service config.
1920 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1921 it is recommended that SASL always be combined with the 'tls' and
1922 'x509' settings to enable use of SSL and server certificates. This
1923 ensures a data encryption preventing compromise of authentication
1924 credentials. See the @ref{vnc_security} section for details on using
1925 SASL authentication.
1927 @item sasl-authz=@var{ID}
1929 Provides the ID of the QAuthZ authorization object against which
1930 the client's SASL username will validated. This object is
1931 only resolved at time of use, so can be deleted and recreated on the
1932 fly while the VNC server is active. If missing, it will default
1933 to denying access.
1935 @item acl
1937 Legacy method for enabling authorization of clients against the
1938 x509 distinguished name and SASL username. It results in the creation
1939 of two @code{authz-list} objects with IDs of @code{vnc.username} and
1940 @code{vnc.x509dname}. The rules for these objects must be configured
1941 with the HMP ACL commands.
1943 This option is deprecated and should no longer be used. The new
1944 @option{sasl-authz} and @option{tls-authz} options are a
1945 replacement.
1947 @item lossy
1949 Enable lossy compression methods (gradient, JPEG, ...). If this
1950 option is set, VNC client may receive lossy framebuffer updates
1951 depending on its encoding settings. Enabling this option can save
1952 a lot of bandwidth at the expense of quality.
1954 @item non-adaptive
1956 Disable adaptive encodings. Adaptive encodings are enabled by default.
1957 An adaptive encoding will try to detect frequently updated screen regions,
1958 and send updates in these regions using a lossy encoding (like JPEG).
1959 This can be really helpful to save bandwidth when playing videos. Disabling
1960 adaptive encodings restores the original static behavior of encodings
1961 like Tight.
1963 @item share=[allow-exclusive|force-shared|ignore]
1965 Set display sharing policy. 'allow-exclusive' allows clients to ask
1966 for exclusive access. As suggested by the rfb spec this is
1967 implemented by dropping other connections. Connecting multiple
1968 clients in parallel requires all clients asking for a shared session
1969 (vncviewer: -shared switch). This is the default. 'force-shared'
1970 disables exclusive client access. Useful for shared desktop sessions,
1971 where you don't want someone forgetting specify -shared disconnect
1972 everybody else. 'ignore' completely ignores the shared flag and
1973 allows everybody connect unconditionally. Doesn't conform to the rfb
1974 spec but is traditional QEMU behavior.
1976 @item key-delay-ms
1978 Set keyboard delay, for key down and key up events, in milliseconds.
1979 Default is 10. Keyboards are low-bandwidth devices, so this slowdown
1980 can help the device and guest to keep up and not lose events in case
1981 events are arriving in bulk. Possible causes for the latter are flaky
1982 network connections, or scripts for automated testing.
1984 @item audiodev=@var{audiodev}
1986 Use the specified @var{audiodev} when the VNC client requests audio
1987 transmission. When not using an -audiodev argument, this option must
1988 be omitted, otherwise is must be present and specify a valid audiodev.
1990 @end table
1991 ETEXI
1993 STEXI
1994 @end table
1995 ETEXI
1996 ARCHHEADING(, QEMU_ARCH_I386)
1998 ARCHHEADING(i386 target only:, QEMU_ARCH_I386)
1999 STEXI
2000 @table @option
2001 ETEXI
2003 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
2004 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
2005 QEMU_ARCH_I386)
2006 STEXI
2007 @item -win2k-hack
2008 @findex -win2k-hack
2009 Use it when installing Windows 2000 to avoid a disk full bug. After
2010 Windows 2000 is installed, you no longer need this option (this option
2011 slows down the IDE transfers).
2012 ETEXI
2014 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
2015 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
2016 QEMU_ARCH_I386)
2017 STEXI
2018 @item -no-fd-bootchk
2019 @findex -no-fd-bootchk
2020 Disable boot signature checking for floppy disks in BIOS. May
2021 be needed to boot from old floppy disks.
2022 ETEXI
2024 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
2025 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
2026 STEXI
2027 @item -no-acpi
2028 @findex -no-acpi
2029 Disable ACPI (Advanced Configuration and Power Interface) support. Use
2030 it if your guest OS complains about ACPI problems (PC target machine
2031 only).
2032 ETEXI
2034 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
2035 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
2036 STEXI
2037 @item -no-hpet
2038 @findex -no-hpet
2039 Disable HPET support.
2040 ETEXI
2042 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
2043 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
2044 " ACPI table description\n", QEMU_ARCH_I386)
2045 STEXI
2046 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
2047 @findex -acpitable
2048 Add ACPI table with specified header fields and context from specified files.
2049 For file=, take whole ACPI table from the specified files, including all
2050 ACPI headers (possible overridden by other options).
2051 For data=, only data
2052 portion of the table is used, all header information is specified in the
2053 command line.
2054 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
2055 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
2056 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
2057 spec.
2058 ETEXI
2060 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
2061 "-smbios file=binary\n"
2062 " load SMBIOS entry from binary file\n"
2063 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
2064 " [,uefi=on|off]\n"
2065 " specify SMBIOS type 0 fields\n"
2066 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2067 " [,uuid=uuid][,sku=str][,family=str]\n"
2068 " specify SMBIOS type 1 fields\n"
2069 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2070 " [,asset=str][,location=str]\n"
2071 " specify SMBIOS type 2 fields\n"
2072 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
2073 " [,sku=str]\n"
2074 " specify SMBIOS type 3 fields\n"
2075 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
2076 " [,asset=str][,part=str]\n"
2077 " specify SMBIOS type 4 fields\n"
2078 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
2079 " [,asset=str][,part=str][,speed=%d]\n"
2080 " specify SMBIOS type 17 fields\n",
2081 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
2082 STEXI
2083 @item -smbios file=@var{binary}
2084 @findex -smbios
2085 Load SMBIOS entry from binary file.
2087 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
2088 Specify SMBIOS type 0 fields
2090 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
2091 Specify SMBIOS type 1 fields
2093 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}]
2094 Specify SMBIOS type 2 fields
2096 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
2097 Specify SMBIOS type 3 fields
2099 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
2100 Specify SMBIOS type 4 fields
2102 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
2103 Specify SMBIOS type 17 fields
2104 ETEXI
2106 STEXI
2107 @end table
2108 ETEXI
2109 DEFHEADING()
2111 DEFHEADING(Network options:)
2112 STEXI
2113 @table @option
2114 ETEXI
2116 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
2117 #ifdef CONFIG_SLIRP
2118 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
2119 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
2120 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
2121 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,domainname=domain]\n"
2122 " [,tftp=dir][,tftp-server-name=name][,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
2123 #ifndef _WIN32
2124 "[,smb=dir[,smbserver=addr]]\n"
2125 #endif
2126 " configure a user mode network backend with ID 'str',\n"
2127 " its DHCP server and optional services\n"
2128 #endif
2129 #ifdef _WIN32
2130 "-netdev tap,id=str,ifname=name\n"
2131 " configure a host TAP network backend with ID 'str'\n"
2132 #else
2133 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
2134 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
2135 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
2136 " [,poll-us=n]\n"
2137 " configure a host TAP network backend with ID 'str'\n"
2138 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2139 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
2140 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
2141 " to deconfigure it\n"
2142 " use '[down]script=no' to disable script execution\n"
2143 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
2144 " configure it\n"
2145 " use 'fd=h' to connect to an already opened TAP interface\n"
2146 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
2147 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
2148 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
2149 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
2150 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
2151 " use vhost=on to enable experimental in kernel accelerator\n"
2152 " (only has effect for virtio guests which use MSIX)\n"
2153 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
2154 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
2155 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
2156 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
2157 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n"
2158 " spent on busy polling for vhost net\n"
2159 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
2160 " configure a host TAP network backend with ID 'str' that is\n"
2161 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2162 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
2163 #endif
2164 #ifdef __linux__
2165 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
2166 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
2167 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
2168 " [,rxcookie=rxcookie][,offset=offset]\n"
2169 " configure a network backend with ID 'str' connected to\n"
2170 " an Ethernet over L2TPv3 pseudowire.\n"
2171 " Linux kernel 3.3+ as well as most routers can talk\n"
2172 " L2TPv3. This transport allows connecting a VM to a VM,\n"
2173 " VM to a router and even VM to Host. It is a nearly-universal\n"
2174 " standard (RFC3391). Note - this implementation uses static\n"
2175 " pre-configured tunnels (same as the Linux kernel).\n"
2176 " use 'src=' to specify source address\n"
2177 " use 'dst=' to specify destination address\n"
2178 " use 'udp=on' to specify udp encapsulation\n"
2179 " use 'srcport=' to specify source udp port\n"
2180 " use 'dstport=' to specify destination udp port\n"
2181 " use 'ipv6=on' to force v6\n"
2182 " L2TPv3 uses cookies to prevent misconfiguration as\n"
2183 " well as a weak security measure\n"
2184 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
2185 " use 'txcookie=0x012345678' to specify a txcookie\n"
2186 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
2187 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
2188 " use 'pincounter=on' to work around broken counter handling in peer\n"
2189 " use 'offset=X' to add an extra offset between header and data\n"
2190 #endif
2191 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
2192 " configure a network backend to connect to another network\n"
2193 " using a socket connection\n"
2194 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
2195 " configure a network backend to connect to a multicast maddr and port\n"
2196 " use 'localaddr=addr' to specify the host address to send packets from\n"
2197 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
2198 " configure a network backend to connect to another network\n"
2199 " using an UDP tunnel\n"
2200 #ifdef CONFIG_VDE
2201 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
2202 " configure a network backend to connect to port 'n' of a vde switch\n"
2203 " running on host and listening for incoming connections on 'socketpath'.\n"
2204 " Use group 'groupname' and mode 'octalmode' to change default\n"
2205 " ownership and permissions for communication port.\n"
2206 #endif
2207 #ifdef CONFIG_NETMAP
2208 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
2209 " attach to the existing netmap-enabled network interface 'name', or to a\n"
2210 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
2211 " netmap device, defaults to '/dev/netmap')\n"
2212 #endif
2213 #ifdef CONFIG_POSIX
2214 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
2215 " configure a vhost-user network, backed by a chardev 'dev'\n"
2216 #endif
2217 "-netdev hubport,id=str,hubid=n[,netdev=nd]\n"
2218 " configure a hub port on the hub with ID 'n'\n", QEMU_ARCH_ALL)
2219 DEF("nic", HAS_ARG, QEMU_OPTION_nic,
2220 "-nic [tap|bridge|"
2221 #ifdef CONFIG_SLIRP
2222 "user|"
2223 #endif
2224 #ifdef __linux__
2225 "l2tpv3|"
2226 #endif
2227 #ifdef CONFIG_VDE
2228 "vde|"
2229 #endif
2230 #ifdef CONFIG_NETMAP
2231 "netmap|"
2232 #endif
2233 #ifdef CONFIG_POSIX
2234 "vhost-user|"
2235 #endif
2236 "socket][,option][,...][mac=macaddr]\n"
2237 " initialize an on-board / default host NIC (using MAC address\n"
2238 " macaddr) and connect it to the given host network backend\n"
2239 "-nic none use it alone to have zero network devices (the default is to\n"
2240 " provided a 'user' network connection)\n",
2241 QEMU_ARCH_ALL)
2242 DEF("net", HAS_ARG, QEMU_OPTION_net,
2243 "-net nic[,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
2244 " configure or create an on-board (or machine default) NIC and\n"
2245 " connect it to hub 0 (please use -nic unless you need a hub)\n"
2246 "-net ["
2247 #ifdef CONFIG_SLIRP
2248 "user|"
2249 #endif
2250 "tap|"
2251 "bridge|"
2252 #ifdef CONFIG_VDE
2253 "vde|"
2254 #endif
2255 #ifdef CONFIG_NETMAP
2256 "netmap|"
2257 #endif
2258 "socket][,option][,option][,...]\n"
2259 " old way to initialize a host network interface\n"
2260 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
2261 STEXI
2262 @item -nic [tap|bridge|user|l2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn]
2263 @findex -nic
2264 This option is a shortcut for configuring both the on-board (default) guest
2265 NIC hardware and the host network backend in one go. The host backend options
2266 are the same as with the corresponding @option{-netdev} options below.
2267 The guest NIC model can be set with @option{model=@var{modelname}}.
2268 Use @option{model=help} to list the available device types.
2269 The hardware MAC address can be set with @option{mac=@var{macaddr}}.
2271 The following two example do exactly the same, to show how @option{-nic} can
2272 be used to shorten the command line length (note that the e1000 is the default
2273 on i386, so the @option{model=e1000} parameter could even be omitted here, too):
2274 @example
2275 qemu-system-i386 -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32
2276 qemu-system-i386 -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32
2277 @end example
2279 @item -nic none
2280 Indicate that no network devices should be configured. It is used to override
2281 the default configuration (default NIC with ``user'' host network backend)
2282 which is activated if no other networking options are provided.
2284 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
2285 @findex -netdev
2286 Configure user mode host network backend which requires no administrator
2287 privilege to run. Valid options are:
2289 @table @option
2290 @item id=@var{id}
2291 Assign symbolic name for use in monitor commands.
2293 @item ipv4=on|off and ipv6=on|off
2294 Specify that either IPv4 or IPv6 must be enabled. If neither is specified
2295 both protocols are enabled.
2297 @item net=@var{addr}[/@var{mask}]
2298 Set IP network address the guest will see. Optionally specify the netmask,
2299 either in the form a.b.c.d or as number of valid top-most bits. Default is
2300 10.0.2.0/24.
2302 @item host=@var{addr}
2303 Specify the guest-visible address of the host. Default is the 2nd IP in the
2304 guest network, i.e. x.x.x.2.
2306 @item ipv6-net=@var{addr}[/@var{int}]
2307 Set IPv6 network address the guest will see (default is fec0::/64). The
2308 network prefix is given in the usual hexadecimal IPv6 address
2309 notation. The prefix size is optional, and is given as the number of
2310 valid top-most bits (default is 64).
2312 @item ipv6-host=@var{addr}
2313 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
2314 the guest network, i.e. xxxx::2.
2316 @item restrict=on|off
2317 If this option is enabled, the guest will be isolated, i.e. it will not be
2318 able to contact the host and no guest IP packets will be routed over the host
2319 to the outside. This option does not affect any explicitly set forwarding rules.
2321 @item hostname=@var{name}
2322 Specifies the client hostname reported by the built-in DHCP server.
2324 @item dhcpstart=@var{addr}
2325 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
2326 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
2328 @item dns=@var{addr}
2329 Specify the guest-visible address of the virtual nameserver. The address must
2330 be different from the host address. Default is the 3rd IP in the guest network,
2331 i.e. x.x.x.3.
2333 @item ipv6-dns=@var{addr}
2334 Specify the guest-visible address of the IPv6 virtual nameserver. The address
2335 must be different from the host address. Default is the 3rd IP in the guest
2336 network, i.e. xxxx::3.
2338 @item dnssearch=@var{domain}
2339 Provides an entry for the domain-search list sent by the built-in
2340 DHCP server. More than one domain suffix can be transmitted by specifying
2341 this option multiple times. If supported, this will cause the guest to
2342 automatically try to append the given domain suffix(es) in case a domain name
2343 can not be resolved.
2345 Example:
2346 @example
2347 qemu-system-i386 -nic user,dnssearch=mgmt.example.org,dnssearch=example.org
2348 @end example
2350 @item domainname=@var{domain}
2351 Specifies the client domain name reported by the built-in DHCP server.
2353 @item tftp=@var{dir}
2354 When using the user mode network stack, activate a built-in TFTP
2355 server. The files in @var{dir} will be exposed as the root of a TFTP server.
2356 The TFTP client on the guest must be configured in binary mode (use the command
2357 @code{bin} of the Unix TFTP client).
2359 @item tftp-server-name=@var{name}
2360 In BOOTP reply, broadcast @var{name} as the "TFTP server name" (RFC2132 option
2361 66). This can be used to advise the guest to load boot files or configurations
2362 from a different server than the host address.
2364 @item bootfile=@var{file}
2365 When using the user mode network stack, broadcast @var{file} as the BOOTP
2366 filename. In conjunction with @option{tftp}, this can be used to network boot
2367 a guest from a local directory.
2369 Example (using pxelinux):
2370 @example
2371 qemu-system-i386 -hda linux.img -boot n -device e1000,netdev=n1 \
2372 -netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
2373 @end example
2375 @item smb=@var{dir}[,smbserver=@var{addr}]
2376 When using the user mode network stack, activate a built-in SMB
2377 server so that Windows OSes can access to the host files in @file{@var{dir}}
2378 transparently. The IP address of the SMB server can be set to @var{addr}. By
2379 default the 4th IP in the guest network is used, i.e. x.x.x.4.
2381 In the guest Windows OS, the line:
2382 @example
2383 10.0.2.4 smbserver
2384 @end example
2385 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
2386 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
2388 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
2390 Note that a SAMBA server must be installed on the host OS.
2392 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
2393 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
2394 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
2395 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
2396 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
2397 be bound to a specific host interface. If no connection type is set, TCP is
2398 used. This option can be given multiple times.
2400 For example, to redirect host X11 connection from screen 1 to guest
2401 screen 0, use the following:
2403 @example
2404 # on the host
2405 qemu-system-i386 -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
2406 # this host xterm should open in the guest X11 server
2407 xterm -display :1
2408 @end example
2410 To redirect telnet connections from host port 5555 to telnet port on
2411 the guest, use the following:
2413 @example
2414 # on the host
2415 qemu-system-i386 -nic user,hostfwd=tcp::5555-:23
2416 telnet localhost 5555
2417 @end example
2419 Then when you use on the host @code{telnet localhost 5555}, you
2420 connect to the guest telnet server.
2422 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
2423 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
2424 Forward guest TCP connections to the IP address @var{server} on port @var{port}
2425 to the character device @var{dev} or to a program executed by @var{cmd:command}
2426 which gets spawned for each connection. This option can be given multiple times.
2428 You can either use a chardev directly and have that one used throughout QEMU's
2429 lifetime, like in the following example:
2431 @example
2432 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
2433 # the guest accesses it
2434 qemu-system-i386 -nic user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321
2435 @end example
2437 Or you can execute a command on every TCP connection established by the guest,
2438 so that QEMU behaves similar to an inetd process for that virtual server:
2440 @example
2441 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
2442 # and connect the TCP stream to its stdin/stdout
2443 qemu-system-i386 -nic 'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
2444 @end example
2446 @end table
2448 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
2449 Configure a host TAP network backend with ID @var{id}.
2451 Use the network script @var{file} to configure it and the network script
2452 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
2453 automatically provides one. The default network configure script is
2454 @file{/etc/qemu-ifup} and the default network deconfigure script is
2455 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
2456 to disable script execution.
2458 If running QEMU as an unprivileged user, use the network helper
2459 @var{helper} to configure the TAP interface and attach it to the bridge.
2460 The default network helper executable is @file{/path/to/qemu-bridge-helper}
2461 and the default bridge device is @file{br0}.
2463 @option{fd}=@var{h} can be used to specify the handle of an already
2464 opened host TAP interface.
2466 Examples:
2468 @example
2469 #launch a QEMU instance with the default network script
2470 qemu-system-i386 linux.img -nic tap
2471 @end example
2473 @example
2474 #launch a QEMU instance with two NICs, each one connected
2475 #to a TAP device
2476 qemu-system-i386 linux.img \
2477 -netdev tap,id=nd0,ifname=tap0 -device e1000,netdev=nd0 \
2478 -netdev tap,id=nd1,ifname=tap1 -device rtl8139,netdev=nd1
2479 @end example
2481 @example
2482 #launch a QEMU instance with the default network helper to
2483 #connect a TAP device to bridge br0
2484 qemu-system-i386 linux.img -device virtio-net-pci,netdev=n1 \
2485 -netdev tap,id=n1,"helper=/path/to/qemu-bridge-helper"
2486 @end example
2488 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
2489 Connect a host TAP network interface to a host bridge device.
2491 Use the network helper @var{helper} to configure the TAP interface and
2492 attach it to the bridge. The default network helper executable is
2493 @file{/path/to/qemu-bridge-helper} and the default bridge
2494 device is @file{br0}.
2496 Examples:
2498 @example
2499 #launch a QEMU instance with the default network helper to
2500 #connect a TAP device to bridge br0
2501 qemu-system-i386 linux.img -netdev bridge,id=n1 -device virtio-net,netdev=n1
2502 @end example
2504 @example
2505 #launch a QEMU instance with the default network helper to
2506 #connect a TAP device to bridge qemubr0
2507 qemu-system-i386 linux.img -netdev bridge,br=qemubr0,id=n1 -device virtio-net,netdev=n1
2508 @end example
2510 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
2512 This host network backend can be used to connect the guest's network to
2513 another QEMU virtual machine using a TCP socket connection. If @option{listen}
2514 is specified, QEMU waits for incoming connections on @var{port}
2515 (@var{host} is optional). @option{connect} is used to connect to
2516 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
2517 specifies an already opened TCP socket.
2519 Example:
2520 @example
2521 # launch a first QEMU instance
2522 qemu-system-i386 linux.img \
2523 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2524 -netdev socket,id=n1,listen=:1234
2525 # connect the network of this instance to the network of the first instance
2526 qemu-system-i386 linux.img \
2527 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2528 -netdev socket,id=n2,connect=127.0.0.1:1234
2529 @end example
2531 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2533 Configure a socket host network backend to share the guest's network traffic
2534 with another QEMU virtual machines using a UDP multicast socket, effectively
2535 making a bus for every QEMU with same multicast address @var{maddr} and @var{port}.
2536 NOTES:
2537 @enumerate
2538 @item
2539 Several QEMU can be running on different hosts and share same bus (assuming
2540 correct multicast setup for these hosts).
2541 @item
2542 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
2543 @url{http://user-mode-linux.sf.net}.
2544 @item
2545 Use @option{fd=h} to specify an already opened UDP multicast socket.
2546 @end enumerate
2548 Example:
2549 @example
2550 # launch one QEMU instance
2551 qemu-system-i386 linux.img \
2552 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2553 -netdev socket,id=n1,mcast=230.0.0.1:1234
2554 # launch another QEMU instance on same "bus"
2555 qemu-system-i386 linux.img \
2556 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2557 -netdev socket,id=n2,mcast=230.0.0.1:1234
2558 # launch yet another QEMU instance on same "bus"
2559 qemu-system-i386 linux.img \
2560 -device e1000,netdev=n3,mac=52:54:00:12:34:58 \
2561 -netdev socket,id=n3,mcast=230.0.0.1:1234
2562 @end example
2564 Example (User Mode Linux compat.):
2565 @example
2566 # launch QEMU instance (note mcast address selected is UML's default)
2567 qemu-system-i386 linux.img \
2568 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2569 -netdev socket,id=n1,mcast=239.192.168.1:1102
2570 # launch UML
2571 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2572 @end example
2574 Example (send packets from host's 1.2.3.4):
2575 @example
2576 qemu-system-i386 linux.img \
2577 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2578 -netdev socket,id=n1,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2579 @end example
2581 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2582 Configure a L2TPv3 pseudowire host network backend. L2TPv3 (RFC3391) is a
2583 popular protocol to transport Ethernet (and other Layer 2) data frames between
2584 two systems. It is present in routers, firewalls and the Linux kernel
2585 (from version 3.3 onwards).
2587 This transport allows a VM to communicate to another VM, router or firewall directly.
2589 @table @option
2590 @item src=@var{srcaddr}
2591 source address (mandatory)
2592 @item dst=@var{dstaddr}
2593 destination address (mandatory)
2594 @item udp
2595 select udp encapsulation (default is ip).
2596 @item srcport=@var{srcport}
2597 source udp port.
2598 @item dstport=@var{dstport}
2599 destination udp port.
2600 @item ipv6
2601 force v6, otherwise defaults to v4.
2602 @item rxcookie=@var{rxcookie}
2603 @itemx txcookie=@var{txcookie}
2604 Cookies are a weak form of security in the l2tpv3 specification.
2605 Their function is mostly to prevent misconfiguration. By default they are 32
2606 bit.
2607 @item cookie64
2608 Set cookie size to 64 bit instead of the default 32
2609 @item counter=off
2610 Force a 'cut-down' L2TPv3 with no counter as in
2611 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2612 @item pincounter=on
2613 Work around broken counter handling in peer. This may also help on
2614 networks which have packet reorder.
2615 @item offset=@var{offset}
2616 Add an extra offset between header and data
2617 @end table
2619 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2620 on the remote Linux host 1.2.3.4:
2621 @example
2622 # Setup tunnel on linux host using raw ip as encapsulation
2623 # on 1.2.3.4
2624 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2625 encap udp udp_sport 16384 udp_dport 16384
2626 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2627 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2628 ifconfig vmtunnel0 mtu 1500
2629 ifconfig vmtunnel0 up
2630 brctl addif br-lan vmtunnel0
2633 # on 4.3.2.1
2634 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2636 qemu-system-i386 linux.img -device e1000,netdev=n1 \
2637 -netdev l2tpv3,id=n1,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2639 @end example
2641 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2642 Configure VDE backend to connect to PORT @var{n} of a vde switch running on host and
2643 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2644 and MODE @var{octalmode} to change default ownership and permissions for
2645 communication port. This option is only available if QEMU has been compiled
2646 with vde support enabled.
2648 Example:
2649 @example
2650 # launch vde switch
2651 vde_switch -F -sock /tmp/myswitch
2652 # launch QEMU instance
2653 qemu-system-i386 linux.img -nic vde,sock=/tmp/myswitch
2654 @end example
2656 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2658 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2659 be a unix domain socket backed one. The vhost-user uses a specifically defined
2660 protocol to pass vhost ioctl replacement messages to an application on the other
2661 end of the socket. On non-MSIX guests, the feature can be forced with
2662 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2663 be created for multiqueue vhost-user.
2665 Example:
2666 @example
2667 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2668 -numa node,memdev=mem \
2669 -chardev socket,id=chr0,path=/path/to/socket \
2670 -netdev type=vhost-user,id=net0,chardev=chr0 \
2671 -device virtio-net-pci,netdev=net0
2672 @end example
2674 @item -netdev hubport,id=@var{id},hubid=@var{hubid}[,netdev=@var{nd}]
2676 Create a hub port on the emulated hub with ID @var{hubid}.
2678 The hubport netdev lets you connect a NIC to a QEMU emulated hub instead of a
2679 single netdev. Alternatively, you can also connect the hubport to another
2680 netdev with ID @var{nd} by using the @option{netdev=@var{nd}} option.
2682 @item -net nic[,netdev=@var{nd}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
2683 @findex -net
2684 Legacy option to configure or create an on-board (or machine default) Network
2685 Interface Card(NIC) and connect it either to the emulated hub with ID 0 (i.e.
2686 the default hub), or to the netdev @var{nd}.
2687 The NIC is an e1000 by default on the PC target. Optionally, the MAC address
2688 can be changed to @var{mac}, the device address set to @var{addr} (PCI cards
2689 only), and a @var{name} can be assigned for use in monitor commands.
2690 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
2691 that the card should have; this option currently only affects virtio cards; set
2692 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
2693 NIC is created. QEMU can emulate several different models of network card.
2694 Use @code{-net nic,model=help} for a list of available devices for your target.
2696 @item -net user|tap|bridge|socket|l2tpv3|vde[,...][,name=@var{name}]
2697 Configure a host network backend (with the options corresponding to the same
2698 @option{-netdev} option) and connect it to the emulated hub 0 (the default
2699 hub). Use @var{name} to specify the name of the hub port.
2700 ETEXI
2702 STEXI
2703 @end table
2704 ETEXI
2705 DEFHEADING()
2707 DEFHEADING(Character device options:)
2709 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2710 "-chardev help\n"
2711 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2712 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2713 " [,server][,nowait][,telnet][,websocket][,reconnect=seconds][,mux=on|off]\n"
2714 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID][,tls-authz=ID] (tcp)\n"
2715 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,websocket][,reconnect=seconds]\n"
2716 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2717 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2718 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2719 " [,logfile=PATH][,logappend=on|off]\n"
2720 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2721 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2722 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2723 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2724 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2725 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2726 #ifdef _WIN32
2727 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2728 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2729 #else
2730 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2731 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2732 #endif
2733 #ifdef CONFIG_BRLAPI
2734 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2735 #endif
2736 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2737 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2738 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2739 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2740 #endif
2741 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2742 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2743 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2744 #endif
2745 #if defined(CONFIG_SPICE)
2746 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2747 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2748 #endif
2749 , QEMU_ARCH_ALL
2752 STEXI
2754 The general form of a character device option is:
2755 @table @option
2756 @item -chardev @var{backend},id=@var{id}[,mux=on|off][,@var{options}]
2757 @findex -chardev
2758 Backend is one of:
2759 @option{null},
2760 @option{socket},
2761 @option{udp},
2762 @option{msmouse},
2763 @option{vc},
2764 @option{ringbuf},
2765 @option{file},
2766 @option{pipe},
2767 @option{console},
2768 @option{serial},
2769 @option{pty},
2770 @option{stdio},
2771 @option{braille},
2772 @option{tty},
2773 @option{parallel},
2774 @option{parport},
2775 @option{spicevmc},
2776 @option{spiceport}.
2777 The specific backend will determine the applicable options.
2779 Use @code{-chardev help} to print all available chardev backend types.
2781 All devices must have an id, which can be any string up to 127 characters long.
2782 It is used to uniquely identify this device in other command line directives.
2784 A character device may be used in multiplexing mode by multiple front-ends.
2785 Specify @option{mux=on} to enable this mode.
2786 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2787 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2788 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2789 create a multiplexer with your specified ID, and you can then configure multiple
2790 front ends to use that chardev ID for their input/output. Up to four different
2791 front ends can be connected to a single multiplexed chardev. (Without
2792 multiplexing enabled, a chardev can only be used by a single front end.)
2793 For instance you could use this to allow a single stdio chardev to be used by
2794 two serial ports and the QEMU monitor:
2796 @example
2797 -chardev stdio,mux=on,id=char0 \
2798 -mon chardev=char0,mode=readline \
2799 -serial chardev:char0 \
2800 -serial chardev:char0
2801 @end example
2803 You can have more than one multiplexer in a system configuration; for instance
2804 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2805 multiplexed between the QEMU monitor and a parallel port:
2807 @example
2808 -chardev stdio,mux=on,id=char0 \
2809 -mon chardev=char0,mode=readline \
2810 -parallel chardev:char0 \
2811 -chardev tcp,...,mux=on,id=char1 \
2812 -serial chardev:char1 \
2813 -serial chardev:char1
2814 @end example
2816 When you're using a multiplexed character device, some escape sequences are
2817 interpreted in the input. @xref{mux_keys, Keys in the character backend
2818 multiplexer}.
2820 Note that some other command line options may implicitly create multiplexed
2821 character backends; for instance @option{-serial mon:stdio} creates a
2822 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2823 and @option{-nographic} also multiplexes the console and the monitor to
2824 stdio.
2826 There is currently no support for multiplexing in the other direction
2827 (where a single QEMU front end takes input and output from multiple chardevs).
2829 Every backend supports the @option{logfile} option, which supplies the path
2830 to a file to record all data transmitted via the backend. The @option{logappend}
2831 option controls whether the log file will be truncated or appended to when
2832 opened.
2834 @end table
2836 The available backends are:
2838 @table @option
2839 @item -chardev null,id=@var{id}
2840 A void device. This device will not emit any data, and will drop any data it
2841 receives. The null backend does not take any options.
2843 @item -chardev socket,id=@var{id}[,@var{TCP options} or @var{unix options}][,server][,nowait][,telnet][,websocket][,reconnect=@var{seconds}][,tls-creds=@var{id}][,tls-authz=@var{id}]
2845 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2846 unix socket will be created if @option{path} is specified. Behaviour is
2847 undefined if TCP options are specified for a unix socket.
2849 @option{server} specifies that the socket shall be a listening socket.
2851 @option{nowait} specifies that QEMU should not block waiting for a client to
2852 connect to a listening socket.
2854 @option{telnet} specifies that traffic on the socket should interpret telnet
2855 escape sequences.
2857 @option{websocket} specifies that the socket uses WebSocket protocol for
2858 communication.
2860 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
2861 the remote end goes away. qemu will delay this many seconds and then attempt
2862 to reconnect. Zero disables reconnecting, and is the default.
2864 @option{tls-creds} requests enablement of the TLS protocol for encryption,
2865 and specifies the id of the TLS credentials to use for the handshake. The
2866 credentials must be previously created with the @option{-object tls-creds}
2867 argument.
2869 @option{tls-auth} provides the ID of the QAuthZ authorization object against
2870 which the client's x509 distinguished name will be validated. This object is
2871 only resolved at time of use, so can be deleted and recreated on the fly
2872 while the chardev server is active. If missing, it will default to denying
2873 access.
2875 TCP and unix socket options are given below:
2877 @table @option
2879 @item TCP options: port=@var{port}[,host=@var{host}][,to=@var{to}][,ipv4][,ipv6][,nodelay]
2881 @option{host} for a listening socket specifies the local address to be bound.
2882 For a connecting socket species the remote host to connect to. @option{host} is
2883 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
2885 @option{port} for a listening socket specifies the local port to be bound. For a
2886 connecting socket specifies the port on the remote host to connect to.
2887 @option{port} can be given as either a port number or a service name.
2888 @option{port} is required.
2890 @option{to} is only relevant to listening sockets. If it is specified, and
2891 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
2892 to and including @option{to} until it succeeds. @option{to} must be specified
2893 as a port number.
2895 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2896 If neither is specified the socket may use either protocol.
2898 @option{nodelay} disables the Nagle algorithm.
2900 @item unix options: path=@var{path}
2902 @option{path} specifies the local path of the unix socket. @option{path} is
2903 required.
2905 @end table
2907 @item -chardev udp,id=@var{id}[,host=@var{host}],port=@var{port}[,localaddr=@var{localaddr}][,localport=@var{localport}][,ipv4][,ipv6]
2909 Sends all traffic from the guest to a remote host over UDP.
2911 @option{host} specifies the remote host to connect to. If not specified it
2912 defaults to @code{localhost}.
2914 @option{port} specifies the port on the remote host to connect to. @option{port}
2915 is required.
2917 @option{localaddr} specifies the local address to bind to. If not specified it
2918 defaults to @code{0.0.0.0}.
2920 @option{localport} specifies the local port to bind to. If not specified any
2921 available local port will be used.
2923 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2924 If neither is specified the device may use either protocol.
2926 @item -chardev msmouse,id=@var{id}
2928 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
2929 take any options.
2931 @item -chardev vc,id=@var{id}[[,width=@var{width}][,height=@var{height}]][[,cols=@var{cols}][,rows=@var{rows}]]
2933 Connect to a QEMU text console. @option{vc} may optionally be given a specific
2934 size.
2936 @option{width} and @option{height} specify the width and height respectively of
2937 the console, in pixels.
2939 @option{cols} and @option{rows} specify that the console be sized to fit a text
2940 console with the given dimensions.
2942 @item -chardev ringbuf,id=@var{id}[,size=@var{size}]
2944 Create a ring buffer with fixed size @option{size}.
2945 @var{size} must be a power of two and defaults to @code{64K}.
2947 @item -chardev file,id=@var{id},path=@var{path}
2949 Log all traffic received from the guest to a file.
2951 @option{path} specifies the path of the file to be opened. This file will be
2952 created if it does not already exist, and overwritten if it does. @option{path}
2953 is required.
2955 @item -chardev pipe,id=@var{id},path=@var{path}
2957 Create a two-way connection to the guest. The behaviour differs slightly between
2958 Windows hosts and other hosts:
2960 On Windows, a single duplex pipe will be created at
2961 @file{\\.pipe\@option{path}}.
2963 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
2964 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
2965 received by the guest. Data written by the guest can be read from
2966 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
2967 be present.
2969 @option{path} forms part of the pipe path as described above. @option{path} is
2970 required.
2972 @item -chardev console,id=@var{id}
2974 Send traffic from the guest to QEMU's standard output. @option{console} does not
2975 take any options.
2977 @option{console} is only available on Windows hosts.
2979 @item -chardev serial,id=@var{id},path=@option{path}
2981 Send traffic from the guest to a serial device on the host.
2983 On Unix hosts serial will actually accept any tty device,
2984 not only serial lines.
2986 @option{path} specifies the name of the serial device to open.
2988 @item -chardev pty,id=@var{id}
2990 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
2991 not take any options.
2993 @option{pty} is not available on Windows hosts.
2995 @item -chardev stdio,id=@var{id}[,signal=on|off]
2996 Connect to standard input and standard output of the QEMU process.
2998 @option{signal} controls if signals are enabled on the terminal, that includes
2999 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
3000 default, use @option{signal=off} to disable it.
3002 @item -chardev braille,id=@var{id}
3004 Connect to a local BrlAPI server. @option{braille} does not take any options.
3006 @item -chardev tty,id=@var{id},path=@var{path}
3008 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
3009 DragonFlyBSD hosts. It is an alias for @option{serial}.
3011 @option{path} specifies the path to the tty. @option{path} is required.
3013 @item -chardev parallel,id=@var{id},path=@var{path}
3014 @itemx -chardev parport,id=@var{id},path=@var{path}
3016 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
3018 Connect to a local parallel port.
3020 @option{path} specifies the path to the parallel port device. @option{path} is
3021 required.
3023 @item -chardev spicevmc,id=@var{id},debug=@var{debug},name=@var{name}
3025 @option{spicevmc} is only available when spice support is built in.
3027 @option{debug} debug level for spicevmc
3029 @option{name} name of spice channel to connect to
3031 Connect to a spice virtual machine channel, such as vdiport.
3033 @item -chardev spiceport,id=@var{id},debug=@var{debug},name=@var{name}
3035 @option{spiceport} is only available when spice support is built in.
3037 @option{debug} debug level for spicevmc
3039 @option{name} name of spice port to connect to
3041 Connect to a spice port, allowing a Spice client to handle the traffic
3042 identified by a name (preferably a fqdn).
3043 ETEXI
3045 STEXI
3046 @end table
3047 ETEXI
3048 DEFHEADING()
3050 DEFHEADING(Bluetooth(R) options:)
3051 STEXI
3052 @table @option
3053 ETEXI
3055 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
3056 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
3057 "-bt hci,host[:id]\n" \
3058 " use host's HCI with the given name\n" \
3059 "-bt hci[,vlan=n]\n" \
3060 " emulate a standard HCI in virtual scatternet 'n'\n" \
3061 "-bt vhci[,vlan=n]\n" \
3062 " add host computer to virtual scatternet 'n' using VHCI\n" \
3063 "-bt device:dev[,vlan=n]\n" \
3064 " emulate a bluetooth device 'dev' in scatternet 'n'\n",
3065 QEMU_ARCH_ALL)
3066 STEXI
3067 @item -bt hci[...]
3068 @findex -bt
3069 Defines the function of the corresponding Bluetooth HCI. -bt options
3070 are matched with the HCIs present in the chosen machine type. For
3071 example when emulating a machine with only one HCI built into it, only
3072 the first @code{-bt hci[...]} option is valid and defines the HCI's
3073 logic. The Transport Layer is decided by the machine type. Currently
3074 the machines @code{n800} and @code{n810} have one HCI and all other
3075 machines have none.
3077 Note: This option and the whole bluetooth subsystem is considered as deprecated.
3078 If you still use it, please send a mail to @email{qemu-devel@@nongnu.org} where
3079 you describe your usecase.
3081 @anchor{bt-hcis}
3082 The following three types are recognized:
3084 @table @option
3085 @item -bt hci,null
3086 (default) The corresponding Bluetooth HCI assumes no internal logic
3087 and will not respond to any HCI commands or emit events.
3089 @item -bt hci,host[:@var{id}]
3090 (@code{bluez} only) The corresponding HCI passes commands / events
3091 to / from the physical HCI identified by the name @var{id} (default:
3092 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
3093 capable systems like Linux.
3095 @item -bt hci[,vlan=@var{n}]
3096 Add a virtual, standard HCI that will participate in the Bluetooth
3097 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
3098 VLANs, devices inside a bluetooth network @var{n} can only communicate
3099 with other devices in the same network (scatternet).
3100 @end table
3102 @item -bt vhci[,vlan=@var{n}]
3103 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
3104 to the host bluetooth stack instead of to the emulated target. This
3105 allows the host and target machines to participate in a common scatternet
3106 and communicate. Requires the Linux @code{vhci} driver installed. Can
3107 be used as following:
3109 @example
3110 qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
3111 @end example
3113 @item -bt device:@var{dev}[,vlan=@var{n}]
3114 Emulate a bluetooth device @var{dev} and place it in network @var{n}
3115 (default @code{0}). QEMU can only emulate one type of bluetooth devices
3116 currently:
3118 @table @option
3119 @item keyboard
3120 Virtual wireless keyboard implementing the HIDP bluetooth profile.
3121 @end table
3122 ETEXI
3124 STEXI
3125 @end table
3126 ETEXI
3127 DEFHEADING()
3129 #ifdef CONFIG_TPM
3130 DEFHEADING(TPM device options:)
3132 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
3133 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
3134 " use path to provide path to a character device; default is /dev/tpm0\n"
3135 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
3136 " not provided it will be searched for in /sys/class/misc/tpm?/device\n"
3137 "-tpmdev emulator,id=id,chardev=dev\n"
3138 " configure the TPM device using chardev backend\n",
3139 QEMU_ARCH_ALL)
3140 STEXI
3142 The general form of a TPM device option is:
3143 @table @option
3145 @item -tpmdev @var{backend},id=@var{id}[,@var{options}]
3146 @findex -tpmdev
3148 The specific backend type will determine the applicable options.
3149 The @code{-tpmdev} option creates the TPM backend and requires a
3150 @code{-device} option that specifies the TPM frontend interface model.
3152 Use @code{-tpmdev help} to print all available TPM backend types.
3154 @end table
3156 The available backends are:
3158 @table @option
3160 @item -tpmdev passthrough,id=@var{id},path=@var{path},cancel-path=@var{cancel-path}
3162 (Linux-host only) Enable access to the host's TPM using the passthrough
3163 driver.
3165 @option{path} specifies the path to the host's TPM device, i.e., on
3166 a Linux host this would be @code{/dev/tpm0}.
3167 @option{path} is optional and by default @code{/dev/tpm0} is used.
3169 @option{cancel-path} specifies the path to the host TPM device's sysfs
3170 entry allowing for cancellation of an ongoing TPM command.
3171 @option{cancel-path} is optional and by default QEMU will search for the
3172 sysfs entry to use.
3174 Some notes about using the host's TPM with the passthrough driver:
3176 The TPM device accessed by the passthrough driver must not be
3177 used by any other application on the host.
3179 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
3180 the VM's firmware (BIOS/UEFI) will not be able to initialize the
3181 TPM again and may therefore not show a TPM-specific menu that would
3182 otherwise allow the user to configure the TPM, e.g., allow the user to
3183 enable/disable or activate/deactivate the TPM.
3184 Further, if TPM ownership is released from within a VM then the host's TPM
3185 will get disabled and deactivated. To enable and activate the
3186 TPM again afterwards, the host has to be rebooted and the user is
3187 required to enter the firmware's menu to enable and activate the TPM.
3188 If the TPM is left disabled and/or deactivated most TPM commands will fail.
3190 To create a passthrough TPM use the following two options:
3191 @example
3192 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
3193 @end example
3194 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
3195 @code{tpmdev=tpm0} in the device option.
3197 @item -tpmdev emulator,id=@var{id},chardev=@var{dev}
3199 (Linux-host only) Enable access to a TPM emulator using Unix domain socket based
3200 chardev backend.
3202 @option{chardev} specifies the unique ID of a character device backend that provides connection to the software TPM server.
3204 To create a TPM emulator backend device with chardev socket backend:
3205 @example
3207 -chardev socket,id=chrtpm,path=/tmp/swtpm-sock -tpmdev emulator,id=tpm0,chardev=chrtpm -device tpm-tis,tpmdev=tpm0
3209 @end example
3211 ETEXI
3213 STEXI
3214 @end table
3215 ETEXI
3216 DEFHEADING()
3218 #endif
3220 DEFHEADING(Linux/Multiboot boot specific:)
3221 STEXI
3223 When using these options, you can use a given Linux or Multiboot
3224 kernel without installing it in the disk image. It can be useful
3225 for easier testing of various kernels.
3227 @table @option
3228 ETEXI
3230 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
3231 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
3232 STEXI
3233 @item -kernel @var{bzImage}
3234 @findex -kernel
3235 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
3236 or in multiboot format.
3237 ETEXI
3239 DEF("append", HAS_ARG, QEMU_OPTION_append, \
3240 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
3241 STEXI
3242 @item -append @var{cmdline}
3243 @findex -append
3244 Use @var{cmdline} as kernel command line
3245 ETEXI
3247 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
3248 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
3249 STEXI
3250 @item -initrd @var{file}
3251 @findex -initrd
3252 Use @var{file} as initial ram disk.
3254 @item -initrd "@var{file1} arg=foo,@var{file2}"
3256 This syntax is only available with multiboot.
3258 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
3259 first module.
3260 ETEXI
3262 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
3263 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
3264 STEXI
3265 @item -dtb @var{file}
3266 @findex -dtb
3267 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
3268 on boot.
3269 ETEXI
3271 STEXI
3272 @end table
3273 ETEXI
3274 DEFHEADING()
3276 DEFHEADING(Debug/Expert options:)
3277 STEXI
3278 @table @option
3279 ETEXI
3281 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
3282 "-fw_cfg [name=]<name>,file=<file>\n"
3283 " add named fw_cfg entry with contents from file\n"
3284 "-fw_cfg [name=]<name>,string=<str>\n"
3285 " add named fw_cfg entry with contents from string\n",
3286 QEMU_ARCH_ALL)
3287 STEXI
3289 @item -fw_cfg [name=]@var{name},file=@var{file}
3290 @findex -fw_cfg
3291 Add named fw_cfg entry with contents from file @var{file}.
3293 @item -fw_cfg [name=]@var{name},string=@var{str}
3294 Add named fw_cfg entry with contents from string @var{str}.
3296 The terminating NUL character of the contents of @var{str} will not be
3297 included as part of the fw_cfg item data. To insert contents with
3298 embedded NUL characters, you have to use the @var{file} parameter.
3300 The fw_cfg entries are passed by QEMU through to the guest.
3302 Example:
3303 @example
3304 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
3305 @end example
3306 creates an fw_cfg entry named opt/com.mycompany/blob with contents
3307 from ./my_blob.bin.
3309 ETEXI
3311 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
3312 "-serial dev redirect the serial port to char device 'dev'\n",
3313 QEMU_ARCH_ALL)
3314 STEXI
3315 @item -serial @var{dev}
3316 @findex -serial
3317 Redirect the virtual serial port to host character device
3318 @var{dev}. The default device is @code{vc} in graphical mode and
3319 @code{stdio} in non graphical mode.
3321 This option can be used several times to simulate up to 4 serial
3322 ports.
3324 Use @code{-serial none} to disable all serial ports.
3326 Available character devices are:
3327 @table @option
3328 @item vc[:@var{W}x@var{H}]
3329 Virtual console. Optionally, a width and height can be given in pixel with
3330 @example
3331 vc:800x600
3332 @end example
3333 It is also possible to specify width or height in characters:
3334 @example
3335 vc:80Cx24C
3336 @end example
3337 @item pty
3338 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
3339 @item none
3340 No device is allocated.
3341 @item null
3342 void device
3343 @item chardev:@var{id}
3344 Use a named character device defined with the @code{-chardev} option.
3345 @item /dev/XXX
3346 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
3347 parameters are set according to the emulated ones.
3348 @item /dev/parport@var{N}
3349 [Linux only, parallel port only] Use host parallel port
3350 @var{N}. Currently SPP and EPP parallel port features can be used.
3351 @item file:@var{filename}
3352 Write output to @var{filename}. No character can be read.
3353 @item stdio
3354 [Unix only] standard input/output
3355 @item pipe:@var{filename}
3356 name pipe @var{filename}
3357 @item COM@var{n}
3358 [Windows only] Use host serial port @var{n}
3359 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
3360 This implements UDP Net Console.
3361 When @var{remote_host} or @var{src_ip} are not specified
3362 they default to @code{0.0.0.0}.
3363 When not using a specified @var{src_port} a random port is automatically chosen.
3365 If you just want a simple readonly console you can use @code{netcat} or
3366 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
3367 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
3368 will appear in the netconsole session.
3370 If you plan to send characters back via netconsole or you want to stop
3371 and start QEMU a lot of times, you should have QEMU use the same
3372 source port each time by using something like @code{-serial
3373 udp::4555@@:4556} to QEMU. Another approach is to use a patched
3374 version of netcat which can listen to a TCP port and send and receive
3375 characters via udp. If you have a patched version of netcat which
3376 activates telnet remote echo and single char transfer, then you can
3377 use the following options to set up a netcat redirector to allow
3378 telnet on port 5555 to access the QEMU port.
3379 @table @code
3380 @item QEMU Options:
3381 -serial udp::4555@@:4556
3382 @item netcat options:
3383 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
3384 @item telnet options:
3385 localhost 5555
3386 @end table
3388 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
3389 The TCP Net Console has two modes of operation. It can send the serial
3390 I/O to a location or wait for a connection from a location. By default
3391 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
3392 the @var{server} option QEMU will wait for a client socket application
3393 to connect to the port before continuing, unless the @code{nowait}
3394 option was specified. The @code{nodelay} option disables the Nagle buffering
3395 algorithm. The @code{reconnect} option only applies if @var{noserver} is
3396 set, if the connection goes down it will attempt to reconnect at the
3397 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
3398 one TCP connection at a time is accepted. You can use @code{telnet} to
3399 connect to the corresponding character device.
3400 @table @code
3401 @item Example to send tcp console to 192.168.0.2 port 4444
3402 -serial tcp:192.168.0.2:4444
3403 @item Example to listen and wait on port 4444 for connection
3404 -serial tcp::4444,server
3405 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3406 -serial tcp:192.168.0.100:4444,server,nowait
3407 @end table
3409 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3410 The telnet protocol is used instead of raw tcp sockets. The options
3411 work the same as if you had specified @code{-serial tcp}. The
3412 difference is that the port acts like a telnet server or client using
3413 telnet option negotiation. This will also allow you to send the
3414 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3415 sequence. Typically in unix telnet you do it with Control-] and then
3416 type "send break" followed by pressing the enter key.
3418 @item websocket:@var{host}:@var{port},server[,nowait][,nodelay]
3419 The WebSocket protocol is used instead of raw tcp socket. The port acts as
3420 a WebSocket server. Client mode is not supported.
3422 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3423 A unix domain socket is used instead of a tcp socket. The option works the
3424 same as if you had specified @code{-serial tcp} except the unix domain socket
3425 @var{path} is used for connections.
3427 @item mon:@var{dev_string}
3428 This is a special option to allow the monitor to be multiplexed onto
3429 another serial port. The monitor is accessed with key sequence of
3430 @key{Control-a} and then pressing @key{c}.
3431 @var{dev_string} should be any one of the serial devices specified
3432 above. An example to multiplex the monitor onto a telnet server
3433 listening on port 4444 would be:
3434 @table @code
3435 @item -serial mon:telnet::4444,server,nowait
3436 @end table
3437 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3438 QEMU any more but will be passed to the guest instead.
3440 @item braille
3441 Braille device. This will use BrlAPI to display the braille output on a real
3442 or fake device.
3444 @item msmouse
3445 Three button serial mouse. Configure the guest to use Microsoft protocol.
3446 @end table
3447 ETEXI
3449 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3450 "-parallel dev redirect the parallel port to char device 'dev'\n",
3451 QEMU_ARCH_ALL)
3452 STEXI
3453 @item -parallel @var{dev}
3454 @findex -parallel
3455 Redirect the virtual parallel port to host device @var{dev} (same
3456 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3457 be used to use hardware devices connected on the corresponding host
3458 parallel port.
3460 This option can be used several times to simulate up to 3 parallel
3461 ports.
3463 Use @code{-parallel none} to disable all parallel ports.
3464 ETEXI
3466 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3467 "-monitor dev redirect the monitor to char device 'dev'\n",
3468 QEMU_ARCH_ALL)
3469 STEXI
3470 @item -monitor @var{dev}
3471 @findex -monitor
3472 Redirect the monitor to host device @var{dev} (same devices as the
3473 serial port).
3474 The default device is @code{vc} in graphical mode and @code{stdio} in
3475 non graphical mode.
3476 Use @code{-monitor none} to disable the default monitor.
3477 ETEXI
3478 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3479 "-qmp dev like -monitor but opens in 'control' mode\n",
3480 QEMU_ARCH_ALL)
3481 STEXI
3482 @item -qmp @var{dev}
3483 @findex -qmp
3484 Like -monitor but opens in 'control' mode.
3485 ETEXI
3486 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3487 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3488 QEMU_ARCH_ALL)
3489 STEXI
3490 @item -qmp-pretty @var{dev}
3491 @findex -qmp-pretty
3492 Like -qmp but uses pretty JSON formatting.
3493 ETEXI
3495 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3496 "-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]\n", QEMU_ARCH_ALL)
3497 STEXI
3498 @item -mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]
3499 @findex -mon
3500 Setup monitor on chardev @var{name}. @code{pretty} turns on JSON pretty printing
3501 easing human reading and debugging.
3502 ETEXI
3504 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3505 "-debugcon dev redirect the debug console to char device 'dev'\n",
3506 QEMU_ARCH_ALL)
3507 STEXI
3508 @item -debugcon @var{dev}
3509 @findex -debugcon
3510 Redirect the debug console to host device @var{dev} (same devices as the
3511 serial port). The debug console is an I/O port which is typically port
3512 0xe9; writing to that I/O port sends output to this device.
3513 The default device is @code{vc} in graphical mode and @code{stdio} in
3514 non graphical mode.
3515 ETEXI
3517 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3518 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3519 STEXI
3520 @item -pidfile @var{file}
3521 @findex -pidfile
3522 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3523 from a script.
3524 ETEXI
3526 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3527 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3528 STEXI
3529 @item -singlestep
3530 @findex -singlestep
3531 Run the emulation in single step mode.
3532 ETEXI
3534 DEF("preconfig", 0, QEMU_OPTION_preconfig, \
3535 "--preconfig pause QEMU before machine is initialized (experimental)\n",
3536 QEMU_ARCH_ALL)
3537 STEXI
3538 @item --preconfig
3539 @findex --preconfig
3540 Pause QEMU for interactive configuration before the machine is created,
3541 which allows querying and configuring properties that will affect
3542 machine initialization. Use QMP command 'x-exit-preconfig' to exit
3543 the preconfig state and move to the next state (i.e. run guest if -S
3544 isn't used or pause the second time if -S is used). This option is
3545 experimental.
3546 ETEXI
3548 DEF("S", 0, QEMU_OPTION_S, \
3549 "-S freeze CPU at startup (use 'c' to start execution)\n",
3550 QEMU_ARCH_ALL)
3551 STEXI
3552 @item -S
3553 @findex -S
3554 Do not start CPU at startup (you must type 'c' in the monitor).
3555 ETEXI
3557 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3558 "-realtime [mlock=on|off]\n"
3559 " run qemu with realtime features\n"
3560 " mlock=on|off controls mlock support (default: on)\n",
3561 QEMU_ARCH_ALL)
3562 STEXI
3563 @item -realtime mlock=on|off
3564 @findex -realtime
3565 Run qemu with realtime features.
3566 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3567 (enabled by default).
3568 ETEXI
3570 DEF("overcommit", HAS_ARG, QEMU_OPTION_overcommit,
3571 "-overcommit [mem-lock=on|off][cpu-pm=on|off]\n"
3572 " run qemu with overcommit hints\n"
3573 " mem-lock=on|off controls memory lock support (default: off)\n"
3574 " cpu-pm=on|off controls cpu power management (default: off)\n",
3575 QEMU_ARCH_ALL)
3576 STEXI
3577 @item -overcommit mem-lock=on|off
3578 @item -overcommit cpu-pm=on|off
3579 @findex -overcommit
3580 Run qemu with hints about host resource overcommit. The default is
3581 to assume that host overcommits all resources.
3583 Locking qemu and guest memory can be enabled via @option{mem-lock=on} (disabled
3584 by default). This works when host memory is not overcommitted and reduces the
3585 worst-case latency for guest. This is equivalent to @option{realtime}.
3587 Guest ability to manage power state of host cpus (increasing latency for other
3588 processes on the same host cpu, but decreasing latency for guest) can be
3589 enabled via @option{cpu-pm=on} (disabled by default). This works best when
3590 host CPU is not overcommitted. When used, host estimates of CPU cycle and power
3591 utilization will be incorrect, not taking into account guest idle time.
3592 ETEXI
3594 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3595 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3596 STEXI
3597 @item -gdb @var{dev}
3598 @findex -gdb
3599 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3600 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3601 stdio are reasonable use case. The latter is allowing to start QEMU from
3602 within gdb and establish the connection via a pipe:
3603 @example
3604 (gdb) target remote | exec qemu-system-i386 -gdb stdio ...
3605 @end example
3606 ETEXI
3608 DEF("s", 0, QEMU_OPTION_s, \
3609 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3610 QEMU_ARCH_ALL)
3611 STEXI
3612 @item -s
3613 @findex -s
3614 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3615 (@pxref{gdb_usage}).
3616 ETEXI
3618 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3619 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3620 QEMU_ARCH_ALL)
3621 STEXI
3622 @item -d @var{item1}[,...]
3623 @findex -d
3624 Enable logging of specified items. Use '-d help' for a list of log items.
3625 ETEXI
3627 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3628 "-D logfile output log to logfile (default stderr)\n",
3629 QEMU_ARCH_ALL)
3630 STEXI
3631 @item -D @var{logfile}
3632 @findex -D
3633 Output log in @var{logfile} instead of to stderr
3634 ETEXI
3636 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3637 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3638 QEMU_ARCH_ALL)
3639 STEXI
3640 @item -dfilter @var{range1}[,...]
3641 @findex -dfilter
3642 Filter debug output to that relevant to a range of target addresses. The filter
3643 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3644 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3645 addresses and sizes required. For example:
3646 @example
3647 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3648 @end example
3649 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3650 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3651 block starting at 0xffffffc00005f000.
3652 ETEXI
3654 DEF("seed", HAS_ARG, QEMU_OPTION_seed, \
3655 "-seed number seed the pseudo-random number generator\n",
3656 QEMU_ARCH_ALL)
3657 STEXI
3658 @item -seed @var{number}
3659 @findex -seed
3660 Force the guest to use a deterministic pseudo-random number generator, seeded
3661 with @var{number}. This does not affect crypto routines within the host.
3662 ETEXI
3664 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3665 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3666 QEMU_ARCH_ALL)
3667 STEXI
3668 @item -L @var{path}
3669 @findex -L
3670 Set the directory for the BIOS, VGA BIOS and keymaps.
3672 To list all the data directories, use @code{-L help}.
3673 ETEXI
3675 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3676 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3677 STEXI
3678 @item -bios @var{file}
3679 @findex -bios
3680 Set the filename for the BIOS.
3681 ETEXI
3683 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3684 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3685 STEXI
3686 @item -enable-kvm
3687 @findex -enable-kvm
3688 Enable KVM full virtualization support. This option is only available
3689 if KVM support is enabled when compiling.
3690 ETEXI
3692 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3693 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3694 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3695 "-xen-attach attach to existing xen domain\n"
3696 " libxl will use this when starting QEMU\n",
3697 QEMU_ARCH_ALL)
3698 DEF("xen-domid-restrict", 0, QEMU_OPTION_xen_domid_restrict,
3699 "-xen-domid-restrict restrict set of available xen operations\n"
3700 " to specified domain id. (Does not affect\n"
3701 " xenpv machine type).\n",
3702 QEMU_ARCH_ALL)
3703 STEXI
3704 @item -xen-domid @var{id}
3705 @findex -xen-domid
3706 Specify xen guest domain @var{id} (XEN only).
3707 @item -xen-attach
3708 @findex -xen-attach
3709 Attach to existing xen domain.
3710 libxl will use this when starting QEMU (XEN only).
3711 @findex -xen-domid-restrict
3712 Restrict set of available xen operations to specified domain id (XEN only).
3713 ETEXI
3715 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3716 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3717 STEXI
3718 @item -no-reboot
3719 @findex -no-reboot
3720 Exit instead of rebooting.
3721 ETEXI
3723 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3724 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3725 STEXI
3726 @item -no-shutdown
3727 @findex -no-shutdown
3728 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3729 This allows for instance switching to monitor to commit changes to the
3730 disk image.
3731 ETEXI
3733 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3734 "-loadvm [tag|id]\n" \
3735 " start right away with a saved state (loadvm in monitor)\n",
3736 QEMU_ARCH_ALL)
3737 STEXI
3738 @item -loadvm @var{file}
3739 @findex -loadvm
3740 Start right away with a saved state (@code{loadvm} in monitor)
3741 ETEXI
3743 #ifndef _WIN32
3744 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3745 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3746 #endif
3747 STEXI
3748 @item -daemonize
3749 @findex -daemonize
3750 Daemonize the QEMU process after initialization. QEMU will not detach from
3751 standard IO until it is ready to receive connections on any of its devices.
3752 This option is a useful way for external programs to launch QEMU without having
3753 to cope with initialization race conditions.
3754 ETEXI
3756 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3757 "-option-rom rom load a file, rom, into the option ROM space\n",
3758 QEMU_ARCH_ALL)
3759 STEXI
3760 @item -option-rom @var{file}
3761 @findex -option-rom
3762 Load the contents of @var{file} as an option ROM.
3763 This option is useful to load things like EtherBoot.
3764 ETEXI
3766 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3767 "-rtc [base=utc|localtime|<datetime>][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3768 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3769 QEMU_ARCH_ALL)
3771 STEXI
3773 @item -rtc [base=utc|localtime|@var{datetime}][,clock=host|rt|vm][,driftfix=none|slew]
3774 @findex -rtc
3775 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3776 UTC or local time, respectively. @code{localtime} is required for correct date in
3777 MS-DOS or Windows. To start at a specific point in time, provide @var{datetime} in the
3778 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3780 By default the RTC is driven by the host system time. This allows using of the
3781 RTC as accurate reference clock inside the guest, specifically if the host
3782 time is smoothly following an accurate external reference clock, e.g. via NTP.
3783 If you want to isolate the guest time from the host, you can set @option{clock}
3784 to @code{rt} instead, which provides a host monotonic clock if host support it.
3785 To even prevent the RTC from progressing during suspension, you can set @option{clock}
3786 to @code{vm} (virtual clock). @samp{clock=vm} is recommended especially in
3787 icount mode in order to preserve determinism; however, note that in icount mode
3788 the speed of the virtual clock is variable and can in general differ from the
3789 host clock.
3791 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3792 specifically with Windows' ACPI HAL. This option will try to figure out how
3793 many timer interrupts were not processed by the Windows guest and will
3794 re-inject them.
3795 ETEXI
3797 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3798 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \
3799 " enable virtual instruction counter with 2^N clock ticks per\n" \
3800 " instruction, enable aligning the host and virtual clocks\n" \
3801 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3802 STEXI
3803 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename},rrsnapshot=@var{snapshot}]
3804 @findex -icount
3805 Enable virtual instruction counter. The virtual cpu will execute one
3806 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3807 then the virtual cpu speed will be automatically adjusted to keep virtual
3808 time within a few seconds of real time.
3810 When the virtual cpu is sleeping, the virtual time will advance at default
3811 speed unless @option{sleep=on|off} is specified.
3812 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3813 instantly whenever the virtual cpu goes to sleep mode and will not advance
3814 if no timer is enabled. This behavior give deterministic execution times from
3815 the guest point of view.
3817 Note that while this option can give deterministic behavior, it does not
3818 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3819 order cores with complex cache hierarchies. The number of instructions
3820 executed often has little or no correlation with actual performance.
3822 @option{align=on} will activate the delay algorithm which will try
3823 to synchronise the host clock and the virtual clock. The goal is to
3824 have a guest running at the real frequency imposed by the shift option.
3825 Whenever the guest clock is behind the host clock and if
3826 @option{align=on} is specified then we print a message to the user
3827 to inform about the delay.
3828 Currently this option does not work when @option{shift} is @code{auto}.
3829 Note: The sync algorithm will work for those shift values for which
3830 the guest clock runs ahead of the host clock. Typically this happens
3831 when the shift value is high (how high depends on the host machine).
3833 When @option{rr} option is specified deterministic record/replay is enabled.
3834 Replay log is written into @var{filename} file in record mode and
3835 read from this file in replay mode.
3837 Option rrsnapshot is used to create new vm snapshot named @var{snapshot}
3838 at the start of execution recording. In replay mode this option is used
3839 to load the initial VM state.
3840 ETEXI
3842 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3843 "-watchdog model\n" \
3844 " enable virtual hardware watchdog [default=none]\n",
3845 QEMU_ARCH_ALL)
3846 STEXI
3847 @item -watchdog @var{model}
3848 @findex -watchdog
3849 Create a virtual hardware watchdog device. Once enabled (by a guest
3850 action), the watchdog must be periodically polled by an agent inside
3851 the guest or else the guest will be restarted. Choose a model for
3852 which your guest has drivers.
3854 The @var{model} is the model of hardware watchdog to emulate. Use
3855 @code{-watchdog help} to list available hardware models. Only one
3856 watchdog can be enabled for a guest.
3858 The following models may be available:
3859 @table @option
3860 @item ib700
3861 iBASE 700 is a very simple ISA watchdog with a single timer.
3862 @item i6300esb
3863 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3864 dual-timer watchdog.
3865 @item diag288
3866 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3867 (currently KVM only).
3868 @end table
3869 ETEXI
3871 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3872 "-watchdog-action reset|shutdown|poweroff|inject-nmi|pause|debug|none\n" \
3873 " action when watchdog fires [default=reset]\n",
3874 QEMU_ARCH_ALL)
3875 STEXI
3876 @item -watchdog-action @var{action}
3877 @findex -watchdog-action
3879 The @var{action} controls what QEMU will do when the watchdog timer
3880 expires.
3881 The default is
3882 @code{reset} (forcefully reset the guest).
3883 Other possible actions are:
3884 @code{shutdown} (attempt to gracefully shutdown the guest),
3885 @code{poweroff} (forcefully poweroff the guest),
3886 @code{inject-nmi} (inject a NMI into the guest),
3887 @code{pause} (pause the guest),
3888 @code{debug} (print a debug message and continue), or
3889 @code{none} (do nothing).
3891 Note that the @code{shutdown} action requires that the guest responds
3892 to ACPI signals, which it may not be able to do in the sort of
3893 situations where the watchdog would have expired, and thus
3894 @code{-watchdog-action shutdown} is not recommended for production use.
3896 Examples:
3898 @table @code
3899 @item -watchdog i6300esb -watchdog-action pause
3900 @itemx -watchdog ib700
3901 @end table
3902 ETEXI
3904 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3905 "-echr chr set terminal escape character instead of ctrl-a\n",
3906 QEMU_ARCH_ALL)
3907 STEXI
3909 @item -echr @var{numeric_ascii_value}
3910 @findex -echr
3911 Change the escape character used for switching to the monitor when using
3912 monitor and serial sharing. The default is @code{0x01} when using the
3913 @code{-nographic} option. @code{0x01} is equal to pressing
3914 @code{Control-a}. You can select a different character from the ascii
3915 control keys where 1 through 26 map to Control-a through Control-z. For
3916 instance you could use the either of the following to change the escape
3917 character to Control-t.
3918 @table @code
3919 @item -echr 0x14
3920 @itemx -echr 20
3921 @end table
3922 ETEXI
3924 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3925 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3926 STEXI
3927 @item -show-cursor
3928 @findex -show-cursor
3929 Show cursor.
3930 ETEXI
3932 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3933 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
3934 STEXI
3935 @item -tb-size @var{n}
3936 @findex -tb-size
3937 Set TB size.
3938 ETEXI
3940 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
3941 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
3942 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
3943 "-incoming unix:socketpath\n" \
3944 " prepare for incoming migration, listen on\n" \
3945 " specified protocol and socket address\n" \
3946 "-incoming fd:fd\n" \
3947 "-incoming exec:cmdline\n" \
3948 " accept incoming migration on given file descriptor\n" \
3949 " or from given external command\n" \
3950 "-incoming defer\n" \
3951 " wait for the URI to be specified via migrate_incoming\n",
3952 QEMU_ARCH_ALL)
3953 STEXI
3954 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
3955 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
3956 @findex -incoming
3957 Prepare for incoming migration, listen on a given tcp port.
3959 @item -incoming unix:@var{socketpath}
3960 Prepare for incoming migration, listen on a given unix socket.
3962 @item -incoming fd:@var{fd}
3963 Accept incoming migration from a given filedescriptor.
3965 @item -incoming exec:@var{cmdline}
3966 Accept incoming migration as an output from specified external command.
3968 @item -incoming defer
3969 Wait for the URI to be specified via migrate_incoming. The monitor can
3970 be used to change settings (such as migration parameters) prior to issuing
3971 the migrate_incoming to allow the migration to begin.
3972 ETEXI
3974 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
3975 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
3976 STEXI
3977 @item -only-migratable
3978 @findex -only-migratable
3979 Only allow migratable devices. Devices will not be allowed to enter an
3980 unmigratable state.
3981 ETEXI
3983 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
3984 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
3985 STEXI
3986 @item -nodefaults
3987 @findex -nodefaults
3988 Don't create default devices. Normally, QEMU sets the default devices like serial
3989 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
3990 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
3991 default devices.
3992 ETEXI
3994 #ifndef _WIN32
3995 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
3996 "-chroot dir chroot to dir just before starting the VM\n",
3997 QEMU_ARCH_ALL)
3998 #endif
3999 STEXI
4000 @item -chroot @var{dir}
4001 @findex -chroot
4002 Immediately before starting guest execution, chroot to the specified
4003 directory. Especially useful in combination with -runas.
4004 ETEXI
4006 #ifndef _WIN32
4007 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
4008 "-runas user change to user id user just before starting the VM\n" \
4009 " user can be numeric uid:gid instead\n",
4010 QEMU_ARCH_ALL)
4011 #endif
4012 STEXI
4013 @item -runas @var{user}
4014 @findex -runas
4015 Immediately before starting guest execution, drop root privileges, switching
4016 to the specified user.
4017 ETEXI
4019 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
4020 "-prom-env variable=value\n"
4021 " set OpenBIOS nvram variables\n",
4022 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
4023 STEXI
4024 @item -prom-env @var{variable}=@var{value}
4025 @findex -prom-env
4026 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
4027 ETEXI
4028 DEF("semihosting", 0, QEMU_OPTION_semihosting,
4029 "-semihosting semihosting mode\n",
4030 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
4031 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2)
4032 STEXI
4033 @item -semihosting
4034 @findex -semihosting
4035 Enable semihosting mode (ARM, M68K, Xtensa, MIPS, Nios II only).
4036 ETEXI
4037 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
4038 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]\n" \
4039 " semihosting configuration\n",
4040 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
4041 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2)
4042 STEXI
4043 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]
4044 @findex -semihosting-config
4045 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS, Nios II only).
4046 @table @option
4047 @item target=@code{native|gdb|auto}
4048 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
4049 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
4050 during debug sessions and @code{native} otherwise.
4051 @item chardev=@var{str1}
4052 Send the output to a chardev backend output for native or auto output when not in gdb
4053 @item arg=@var{str1},arg=@var{str2},...
4054 Allows the user to pass input arguments, and can be used multiple times to build
4055 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
4056 command line is still supported for backward compatibility. If both the
4057 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
4058 specified, the former is passed to semihosting as it always takes precedence.
4059 @end table
4060 ETEXI
4061 DEF("old-param", 0, QEMU_OPTION_old_param,
4062 "-old-param old param mode\n", QEMU_ARCH_ARM)
4063 STEXI
4064 @item -old-param
4065 @findex -old-param (ARM)
4066 Old param mode (ARM only).
4067 ETEXI
4069 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
4070 "-sandbox on[,obsolete=allow|deny][,elevateprivileges=allow|deny|children]\n" \
4071 " [,spawn=allow|deny][,resourcecontrol=allow|deny]\n" \
4072 " Enable seccomp mode 2 system call filter (default 'off').\n" \
4073 " use 'obsolete' to allow obsolete system calls that are provided\n" \
4074 " by the kernel, but typically no longer used by modern\n" \
4075 " C library implementations.\n" \
4076 " use 'elevateprivileges' to allow or deny QEMU process to elevate\n" \
4077 " its privileges by blacklisting all set*uid|gid system calls.\n" \
4078 " The value 'children' will deny set*uid|gid system calls for\n" \
4079 " main QEMU process but will allow forks and execves to run unprivileged\n" \
4080 " use 'spawn' to avoid QEMU to spawn new threads or processes by\n" \
4081 " blacklisting *fork and execve\n" \
4082 " use 'resourcecontrol' to disable process affinity and schedular priority\n",
4083 QEMU_ARCH_ALL)
4084 STEXI
4085 @item -sandbox @var{arg}[,obsolete=@var{string}][,elevateprivileges=@var{string}][,spawn=@var{string}][,resourcecontrol=@var{string}]
4086 @findex -sandbox
4087 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
4088 disable it. The default is 'off'.
4089 @table @option
4090 @item obsolete=@var{string}
4091 Enable Obsolete system calls
4092 @item elevateprivileges=@var{string}
4093 Disable set*uid|gid system calls
4094 @item spawn=@var{string}
4095 Disable *fork and execve
4096 @item resourcecontrol=@var{string}
4097 Disable process affinity and schedular priority
4098 @end table
4099 ETEXI
4101 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
4102 "-readconfig <file>\n", QEMU_ARCH_ALL)
4103 STEXI
4104 @item -readconfig @var{file}
4105 @findex -readconfig
4106 Read device configuration from @var{file}. This approach is useful when you want to spawn
4107 QEMU process with many command line options but you don't want to exceed the command line
4108 character limit.
4109 ETEXI
4110 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
4111 "-writeconfig <file>\n"
4112 " read/write config file\n", QEMU_ARCH_ALL)
4113 STEXI
4114 @item -writeconfig @var{file}
4115 @findex -writeconfig
4116 Write device configuration to @var{file}. The @var{file} can be either filename to save
4117 command line and device configuration into file or dash @code{-}) character to print the
4118 output to stdout. This can be later used as input file for @code{-readconfig} option.
4119 ETEXI
4121 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
4122 "-no-user-config\n"
4123 " do not load default user-provided config files at startup\n",
4124 QEMU_ARCH_ALL)
4125 STEXI
4126 @item -no-user-config
4127 @findex -no-user-config
4128 The @code{-no-user-config} option makes QEMU not load any of the user-provided
4129 config files on @var{sysconfdir}.
4130 ETEXI
4132 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
4133 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
4134 " specify tracing options\n",
4135 QEMU_ARCH_ALL)
4136 STEXI
4137 HXCOMM This line is not accurate, as some sub-options are backend-specific but
4138 HXCOMM HX does not support conditional compilation of text.
4139 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
4140 @findex -trace
4141 @include qemu-option-trace.texi
4142 ETEXI
4144 HXCOMM Internal use
4145 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
4146 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
4148 #ifdef __linux__
4149 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
4150 "-enable-fips enable FIPS 140-2 compliance\n",
4151 QEMU_ARCH_ALL)
4152 #endif
4153 STEXI
4154 @item -enable-fips
4155 @findex -enable-fips
4156 Enable FIPS 140-2 compliance mode.
4157 ETEXI
4159 HXCOMM Deprecated by -machine accel=tcg property
4160 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
4162 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
4163 "-msg timestamp[=on|off]\n"
4164 " change the format of messages\n"
4165 " on|off controls leading timestamps (default:on)\n",
4166 QEMU_ARCH_ALL)
4167 STEXI
4168 @item -msg timestamp[=on|off]
4169 @findex -msg
4170 prepend a timestamp to each log message.(default:on)
4171 ETEXI
4173 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
4174 "-dump-vmstate <file>\n"
4175 " Output vmstate information in JSON format to file.\n"
4176 " Use the scripts/vmstate-static-checker.py file to\n"
4177 " check for possible regressions in migration code\n"
4178 " by comparing two such vmstate dumps.\n",
4179 QEMU_ARCH_ALL)
4180 STEXI
4181 @item -dump-vmstate @var{file}
4182 @findex -dump-vmstate
4183 Dump json-encoded vmstate information for current machine type to file
4184 in @var{file}
4185 ETEXI
4187 DEF("enable-sync-profile", 0, QEMU_OPTION_enable_sync_profile,
4188 "-enable-sync-profile\n"
4189 " enable synchronization profiling\n",
4190 QEMU_ARCH_ALL)
4191 STEXI
4192 @item -enable-sync-profile
4193 @findex -enable-sync-profile
4194 Enable synchronization profiling.
4195 ETEXI
4197 STEXI
4198 @end table
4199 ETEXI
4200 DEFHEADING()
4202 DEFHEADING(Generic object creation:)
4203 STEXI
4204 @table @option
4205 ETEXI
4207 DEF("object", HAS_ARG, QEMU_OPTION_object,
4208 "-object TYPENAME[,PROP1=VALUE1,...]\n"
4209 " create a new object of type TYPENAME setting properties\n"
4210 " in the order they are specified. Note that the 'id'\n"
4211 " property must be set. These objects are placed in the\n"
4212 " '/objects' path.\n",
4213 QEMU_ARCH_ALL)
4214 STEXI
4215 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
4216 @findex -object
4217 Create a new object of type @var{typename} setting properties
4218 in the order they are specified. Note that the 'id'
4219 property must be set. These objects are placed in the
4220 '/objects' path.
4222 @table @option
4224 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off},discard-data=@var{on|off},merge=@var{on|off},dump=@var{on|off},prealloc=@var{on|off},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},align=@var{align}
4226 Creates a memory file backend object, which can be used to back
4227 the guest RAM with huge pages.
4229 The @option{id} parameter is a unique ID that will be used to reference this
4230 memory region when configuring the @option{-numa} argument.
4232 The @option{size} option provides the size of the memory region, and accepts
4233 common suffixes, eg @option{500M}.
4235 The @option{mem-path} provides the path to either a shared memory or huge page
4236 filesystem mount.
4238 The @option{share} boolean option determines whether the memory
4239 region is marked as private to QEMU, or shared. The latter allows
4240 a co-operating external process to access the QEMU memory region.
4242 The @option{share} is also required for pvrdma devices due to
4243 limitations in the RDMA API provided by Linux.
4245 Setting share=on might affect the ability to configure NUMA
4246 bindings for the memory backend under some circumstances, see
4247 Documentation/vm/numa_memory_policy.txt on the Linux kernel
4248 source tree for additional details.
4250 Setting the @option{discard-data} boolean option to @var{on}
4251 indicates that file contents can be destroyed when QEMU exits,
4252 to avoid unnecessarily flushing data to the backing file. Note
4253 that @option{discard-data} is only an optimization, and QEMU
4254 might not discard file contents if it aborts unexpectedly or is
4255 terminated using SIGKILL.
4257 The @option{merge} boolean option enables memory merge, also known as
4258 MADV_MERGEABLE, so that Kernel Samepage Merging will consider the pages for
4259 memory deduplication.
4261 Setting the @option{dump} boolean option to @var{off} excludes the memory from
4262 core dumps. This feature is also known as MADV_DONTDUMP.
4264 The @option{prealloc} boolean option enables memory preallocation.
4266 The @option{host-nodes} option binds the memory range to a list of NUMA host
4267 nodes.
4269 The @option{policy} option sets the NUMA policy to one of the following values:
4271 @table @option
4272 @item @var{default}
4273 default host policy
4275 @item @var{preferred}
4276 prefer the given host node list for allocation
4278 @item @var{bind}
4279 restrict memory allocation to the given host node list
4281 @item @var{interleave}
4282 interleave memory allocations across the given host node list
4283 @end table
4285 The @option{align} option specifies the base address alignment when
4286 QEMU mmap(2) @option{mem-path}, and accepts common suffixes, eg
4287 @option{2M}. Some backend store specified by @option{mem-path}
4288 requires an alignment different than the default one used by QEMU, eg
4289 the device DAX /dev/dax0.0 requires 2M alignment rather than 4K. In
4290 such cases, users can specify the required alignment via this option.
4292 The @option{pmem} option specifies whether the backing file specified
4293 by @option{mem-path} is in host persistent memory that can be accessed
4294 using the SNIA NVM programming model (e.g. Intel NVDIMM).
4295 If @option{pmem} is set to 'on', QEMU will take necessary operations to
4296 guarantee the persistence of its own writes to @option{mem-path}
4297 (e.g. in vNVDIMM label emulation and live migration).
4298 Also, we will map the backend-file with MAP_SYNC flag, which ensures the
4299 file metadata is in sync for @option{mem-path} in case of host crash
4300 or a power failure. MAP_SYNC requires support from both the host kernel
4301 (since Linux kernel 4.15) and the filesystem of @option{mem-path} mounted
4302 with DAX option.
4304 @item -object memory-backend-ram,id=@var{id},merge=@var{on|off},dump=@var{on|off},share=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave}
4306 Creates a memory backend object, which can be used to back the guest RAM.
4307 Memory backend objects offer more control than the @option{-m} option that is
4308 traditionally used to define guest RAM. Please refer to
4309 @option{memory-backend-file} for a description of the options.
4311 @item -object memory-backend-memfd,id=@var{id},merge=@var{on|off},dump=@var{on|off},share=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},seal=@var{on|off},hugetlb=@var{on|off},hugetlbsize=@var{size}
4313 Creates an anonymous memory file backend object, which allows QEMU to
4314 share the memory with an external process (e.g. when using
4315 vhost-user). The memory is allocated with memfd and optional
4316 sealing. (Linux only)
4318 The @option{seal} option creates a sealed-file, that will block
4319 further resizing the memory ('on' by default).
4321 The @option{hugetlb} option specify the file to be created resides in
4322 the hugetlbfs filesystem (since Linux 4.14). Used in conjunction with
4323 the @option{hugetlb} option, the @option{hugetlbsize} option specify
4324 the hugetlb page size on systems that support multiple hugetlb page
4325 sizes (it must be a power of 2 value supported by the system).
4327 In some versions of Linux, the @option{hugetlb} option is incompatible
4328 with the @option{seal} option (requires at least Linux 4.16).
4330 Please refer to @option{memory-backend-file} for a description of the
4331 other options.
4333 The @option{share} boolean option is @var{on} by default with memfd.
4335 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
4337 Creates a random number generator backend which obtains entropy from
4338 a device on the host. The @option{id} parameter is a unique ID that
4339 will be used to reference this entropy backend from the @option{virtio-rng}
4340 device. The @option{filename} parameter specifies which file to obtain
4341 entropy from and if omitted defaults to @option{/dev/urandom}.
4343 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
4345 Creates a random number generator backend which obtains entropy from
4346 an external daemon running on the host. The @option{id} parameter is
4347 a unique ID that will be used to reference this entropy backend from
4348 the @option{virtio-rng} device. The @option{chardev} parameter is
4349 the unique ID of a character device backend that provides the connection
4350 to the RNG daemon.
4352 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
4354 Creates a TLS anonymous credentials object, which can be used to provide
4355 TLS support on network backends. The @option{id} parameter is a unique
4356 ID which network backends will use to access the credentials. The
4357 @option{endpoint} is either @option{server} or @option{client} depending
4358 on whether the QEMU network backend that uses the credentials will be
4359 acting as a client or as a server. If @option{verify-peer} is enabled
4360 (the default) then once the handshake is completed, the peer credentials
4361 will be verified, though this is a no-op for anonymous credentials.
4363 The @var{dir} parameter tells QEMU where to find the credential
4364 files. For server endpoints, this directory may contain a file
4365 @var{dh-params.pem} providing diffie-hellman parameters to use
4366 for the TLS server. If the file is missing, QEMU will generate
4367 a set of DH parameters at startup. This is a computationally
4368 expensive operation that consumes random pool entropy, so it is
4369 recommended that a persistent set of parameters be generated
4370 upfront and saved.
4372 @item -object tls-creds-psk,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/keys/dir}[,username=@var{username}]
4374 Creates a TLS Pre-Shared Keys (PSK) credentials object, which can be used to provide
4375 TLS support on network backends. The @option{id} parameter is a unique
4376 ID which network backends will use to access the credentials. The
4377 @option{endpoint} is either @option{server} or @option{client} depending
4378 on whether the QEMU network backend that uses the credentials will be
4379 acting as a client or as a server. For clients only, @option{username}
4380 is the username which will be sent to the server. If omitted
4381 it defaults to ``qemu''.
4383 The @var{dir} parameter tells QEMU where to find the keys file.
4384 It is called ``@var{dir}/keys.psk'' and contains ``username:key''
4385 pairs. This file can most easily be created using the GnuTLS
4386 @code{psktool} program.
4388 For server endpoints, @var{dir} may also contain a file
4389 @var{dh-params.pem} providing diffie-hellman parameters to use
4390 for the TLS server. If the file is missing, QEMU will generate
4391 a set of DH parameters at startup. This is a computationally
4392 expensive operation that consumes random pool entropy, so it is
4393 recommended that a persistent set of parameters be generated
4394 up front and saved.
4396 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},priority=@var{priority},verify-peer=@var{on|off},passwordid=@var{id}
4398 Creates a TLS anonymous credentials object, which can be used to provide
4399 TLS support on network backends. The @option{id} parameter is a unique
4400 ID which network backends will use to access the credentials. The
4401 @option{endpoint} is either @option{server} or @option{client} depending
4402 on whether the QEMU network backend that uses the credentials will be
4403 acting as a client or as a server. If @option{verify-peer} is enabled
4404 (the default) then once the handshake is completed, the peer credentials
4405 will be verified. With x509 certificates, this implies that the clients
4406 must be provided with valid client certificates too.
4408 The @var{dir} parameter tells QEMU where to find the credential
4409 files. For server endpoints, this directory may contain a file
4410 @var{dh-params.pem} providing diffie-hellman parameters to use
4411 for the TLS server. If the file is missing, QEMU will generate
4412 a set of DH parameters at startup. This is a computationally
4413 expensive operation that consumes random pool entropy, so it is
4414 recommended that a persistent set of parameters be generated
4415 upfront and saved.
4417 For x509 certificate credentials the directory will contain further files
4418 providing the x509 certificates. The certificates must be stored
4419 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
4420 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
4421 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
4423 For the @var{server-key.pem} and @var{client-key.pem} files which
4424 contain sensitive private keys, it is possible to use an encrypted
4425 version by providing the @var{passwordid} parameter. This provides
4426 the ID of a previously created @code{secret} object containing the
4427 password for decryption.
4429 The @var{priority} parameter allows to override the global default
4430 priority used by gnutls. This can be useful if the system administrator
4431 needs to use a weaker set of crypto priorities for QEMU without
4432 potentially forcing the weakness onto all applications. Or conversely
4433 if one wants wants a stronger default for QEMU than for all other
4434 applications, they can do this through this parameter. Its format is
4435 a gnutls priority string as described at
4436 @url{https://gnutls.org/manual/html_node/Priority-Strings.html}.
4438 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
4440 Interval @var{t} can't be 0, this filter batches the packet delivery: all
4441 packets arriving in a given interval on netdev @var{netdevid} are delayed
4442 until the end of the interval. Interval is in microseconds.
4443 @option{status} is optional that indicate whether the netfilter is
4444 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
4446 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
4448 @option{all}: the filter is attached both to the receive and the transmit
4449 queue of the netdev (default).
4451 @option{rx}: the filter is attached to the receive queue of the netdev,
4452 where it will receive packets sent to the netdev.
4454 @option{tx}: the filter is attached to the transmit queue of the netdev,
4455 where it will receive packets sent by the netdev.
4457 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4459 filter-mirror on netdev @var{netdevid},mirror net packet to chardev@var{chardevid}, if it has the vnet_hdr_support flag, filter-mirror will mirror packet with vnet_hdr_len.
4461 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4463 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
4464 @var{chardevid},and redirect indev's packet to filter.if it has the vnet_hdr_support flag,
4465 filter-redirector will redirect packet with vnet_hdr_len.
4466 Create a filter-redirector we need to differ outdev id from indev id, id can not
4467 be the same. we can just use indev or outdev, but at least one of indev or outdev
4468 need to be specified.
4470 @item -object filter-rewriter,id=@var{id},netdev=@var{netdevid},queue=@var{all|rx|tx},[vnet_hdr_support]
4472 Filter-rewriter is a part of COLO project.It will rewrite tcp packet to
4473 secondary from primary to keep secondary tcp connection,and rewrite
4474 tcp packet to primary from secondary make tcp packet can be handled by
4475 client.if it has the vnet_hdr_support flag, we can parse packet with vnet header.
4477 usage:
4478 colo secondary:
4479 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4480 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4481 -object filter-rewriter,id=rew0,netdev=hn0,queue=all
4483 @item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}]
4485 Dump the network traffic on netdev @var{dev} to the file specified by
4486 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
4487 The file format is libpcap, so it can be analyzed with tools such as tcpdump
4488 or Wireshark.
4490 @item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid},outdev=@var{chardevid},iothread=@var{id}[,vnet_hdr_support][,notify_dev=@var{id}]
4492 Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with
4493 secondary packet. If the packets are same, we will output primary
4494 packet to outdev@var{chardevid}, else we will notify colo-frame
4495 do checkpoint and send primary packet to outdev@var{chardevid}.
4496 In order to improve efficiency, we need to put the task of comparison
4497 in another thread. If it has the vnet_hdr_support flag, colo compare
4498 will send/recv packet with vnet_hdr_len.
4499 If you want to use Xen COLO, will need the notify_dev to notify Xen
4500 colo-frame to do checkpoint.
4502 we must use it with the help of filter-mirror and filter-redirector.
4504 @example
4506 KVM COLO
4508 primary:
4509 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4510 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4511 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4512 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4513 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4514 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4515 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4516 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4517 -object iothread,id=iothread1
4518 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4519 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4520 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4521 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,iothread=iothread1
4523 secondary:
4524 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4525 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4526 -chardev socket,id=red0,host=3.3.3.3,port=9003
4527 -chardev socket,id=red1,host=3.3.3.3,port=9004
4528 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4529 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4532 Xen COLO
4534 primary:
4535 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4536 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4537 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4538 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4539 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4540 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4541 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4542 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4543 -chardev socket,id=notify_way,host=3.3.3.3,port=9009,server,nowait
4544 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4545 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4546 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4547 -object iothread,id=iothread1
4548 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,notify_dev=nofity_way,iothread=iothread1
4550 secondary:
4551 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4552 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4553 -chardev socket,id=red0,host=3.3.3.3,port=9003
4554 -chardev socket,id=red1,host=3.3.3.3,port=9004
4555 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4556 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4558 @end example
4560 If you want to know the detail of above command line, you can read
4561 the colo-compare git log.
4563 @item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}]
4565 Creates a cryptodev backend which executes crypto opreation from
4566 the QEMU cipher APIS. The @var{id} parameter is
4567 a unique ID that will be used to reference this cryptodev backend from
4568 the @option{virtio-crypto} device. The @var{queues} parameter is optional,
4569 which specify the queue number of cryptodev backend, the default of
4570 @var{queues} is 1.
4572 @example
4574 # qemu-system-x86_64 \
4575 [...] \
4576 -object cryptodev-backend-builtin,id=cryptodev0 \
4577 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4578 [...]
4579 @end example
4581 @item -object cryptodev-vhost-user,id=@var{id},chardev=@var{chardevid}[,queues=@var{queues}]
4583 Creates a vhost-user cryptodev backend, backed by a chardev @var{chardevid}.
4584 The @var{id} parameter is a unique ID that will be used to reference this
4585 cryptodev backend from the @option{virtio-crypto} device.
4586 The chardev should be a unix domain socket backed one. The vhost-user uses
4587 a specifically defined protocol to pass vhost ioctl replacement messages
4588 to an application on the other end of the socket.
4589 The @var{queues} parameter is optional, which specify the queue number
4590 of cryptodev backend for multiqueue vhost-user, the default of @var{queues} is 1.
4592 @example
4594 # qemu-system-x86_64 \
4595 [...] \
4596 -chardev socket,id=chardev0,path=/path/to/socket \
4597 -object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 \
4598 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4599 [...]
4600 @end example
4602 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4603 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4605 Defines a secret to store a password, encryption key, or some other sensitive
4606 data. The sensitive data can either be passed directly via the @var{data}
4607 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
4608 parameter is insecure unless the sensitive data is encrypted.
4610 The sensitive data can be provided in raw format (the default), or base64.
4611 When encoded as JSON, the raw format only supports valid UTF-8 characters,
4612 so base64 is recommended for sending binary data. QEMU will convert from
4613 which ever format is provided to the format it needs internally. eg, an
4614 RBD password can be provided in raw format, even though it will be base64
4615 encoded when passed onto the RBD sever.
4617 For added protection, it is possible to encrypt the data associated with
4618 a secret using the AES-256-CBC cipher. Use of encryption is indicated
4619 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
4620 parameter provides the ID of a previously defined secret that contains
4621 the AES-256 decryption key. This key should be 32-bytes long and be
4622 base64 encoded. The @var{iv} parameter provides the random initialization
4623 vector used for encryption of this particular secret and should be a
4624 base64 encrypted string of the 16-byte IV.
4626 The simplest (insecure) usage is to provide the secret inline
4628 @example
4630 # $QEMU -object secret,id=sec0,data=letmein,format=raw
4632 @end example
4634 The simplest secure usage is to provide the secret via a file
4636 # printf "letmein" > mypasswd.txt
4637 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw
4639 For greater security, AES-256-CBC should be used. To illustrate usage,
4640 consider the openssl command line tool which can encrypt the data. Note
4641 that when encrypting, the plaintext must be padded to the cipher block
4642 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
4644 First a master key needs to be created in base64 encoding:
4646 @example
4647 # openssl rand -base64 32 > key.b64
4648 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
4649 @end example
4651 Each secret to be encrypted needs to have a random initialization vector
4652 generated. These do not need to be kept secret
4654 @example
4655 # openssl rand -base64 16 > iv.b64
4656 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
4657 @end example
4659 The secret to be defined can now be encrypted, in this case we're
4660 telling openssl to base64 encode the result, but it could be left
4661 as raw bytes if desired.
4663 @example
4664 # SECRET=$(printf "letmein" |
4665 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4666 @end example
4668 When launching QEMU, create a master secret pointing to @code{key.b64}
4669 and specify that to be used to decrypt the user password. Pass the
4670 contents of @code{iv.b64} to the second secret
4672 @example
4673 # $QEMU \
4674 -object secret,id=secmaster0,format=base64,file=key.b64 \
4675 -object secret,id=sec0,keyid=secmaster0,format=base64,\
4676 data=$SECRET,iv=$(<iv.b64)
4677 @end example
4679 @item -object sev-guest,id=@var{id},cbitpos=@var{cbitpos},reduced-phys-bits=@var{val},[sev-device=@var{string},policy=@var{policy},handle=@var{handle},dh-cert-file=@var{file},session-file=@var{file}]
4681 Create a Secure Encrypted Virtualization (SEV) guest object, which can be used
4682 to provide the guest memory encryption support on AMD processors.
4684 When memory encryption is enabled, one of the physical address bit (aka the
4685 C-bit) is utilized to mark if a memory page is protected. The @option{cbitpos}
4686 is used to provide the C-bit position. The C-bit position is Host family dependent
4687 hence user must provide this value. On EPYC, the value should be 47.
4689 When memory encryption is enabled, we loose certain bits in physical address space.
4690 The @option{reduced-phys-bits} is used to provide the number of bits we loose in
4691 physical address space. Similar to C-bit, the value is Host family dependent.
4692 On EPYC, the value should be 5.
4694 The @option{sev-device} provides the device file to use for communicating with
4695 the SEV firmware running inside AMD Secure Processor. The default device is
4696 '/dev/sev'. If hardware supports memory encryption then /dev/sev devices are
4697 created by CCP driver.
4699 The @option{policy} provides the guest policy to be enforced by the SEV firmware
4700 and restrict what configuration and operational commands can be performed on this
4701 guest by the hypervisor. The policy should be provided by the guest owner and is
4702 bound to the guest and cannot be changed throughout the lifetime of the guest.
4703 The default is 0.
4705 If guest @option{policy} allows sharing the key with another SEV guest then
4706 @option{handle} can be use to provide handle of the guest from which to share
4707 the key.
4709 The @option{dh-cert-file} and @option{session-file} provides the guest owner's
4710 Public Diffie-Hillman key defined in SEV spec. The PDH and session parameters
4711 are used for establishing a cryptographic session with the guest owner to
4712 negotiate keys used for attestation. The file must be encoded in base64.
4714 e.g to launch a SEV guest
4715 @example
4716 # $QEMU \
4717 ......
4718 -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 \
4719 -machine ...,memory-encryption=sev0
4720 .....
4722 @end example
4725 @item -object authz-simple,id=@var{id},identity=@var{string}
4727 Create an authorization object that will control access to network services.
4729 The @option{identity} parameter is identifies the user and its format
4730 depends on the network service that authorization object is associated
4731 with. For authorizing based on TLS x509 certificates, the identity must
4732 be the x509 distinguished name. Note that care must be taken to escape
4733 any commas in the distinguished name.
4735 An example authorization object to validate a x509 distinguished name
4736 would look like:
4737 @example
4738 # $QEMU \
4740 -object 'authz-simple,id=auth0,identity=CN=laptop.example.com,,O=Example Org,,L=London,,ST=London,,C=GB' \
4742 @end example
4744 Note the use of quotes due to the x509 distinguished name containing
4745 whitespace, and escaping of ','.
4747 @item -object authz-listfile,id=@var{id},filename=@var{path},refresh=@var{yes|no}
4749 Create an authorization object that will control access to network services.
4751 The @option{filename} parameter is the fully qualified path to a file
4752 containing the access control list rules in JSON format.
4754 An example set of rules that match against SASL usernames might look
4755 like:
4757 @example
4759 "rules": [
4760 @{ "match": "fred", "policy": "allow", "format": "exact" @},
4761 @{ "match": "bob", "policy": "allow", "format": "exact" @},
4762 @{ "match": "danb", "policy": "deny", "format": "glob" @},
4763 @{ "match": "dan*", "policy": "allow", "format": "exact" @},
4765 "policy": "deny"
4767 @end example
4769 When checking access the object will iterate over all the rules and
4770 the first rule to match will have its @option{policy} value returned
4771 as the result. If no rules match, then the default @option{policy}
4772 value is returned.
4774 The rules can either be an exact string match, or they can use the
4775 simple UNIX glob pattern matching to allow wildcards to be used.
4777 If @option{refresh} is set to true the file will be monitored
4778 and automatically reloaded whenever its content changes.
4780 As with the @code{authz-simple} object, the format of the identity
4781 strings being matched depends on the network service, but is usually
4782 a TLS x509 distinguished name, or a SASL username.
4784 An example authorization object to validate a SASL username
4785 would look like:
4786 @example
4787 # $QEMU \
4789 -object authz-simple,id=auth0,filename=/etc/qemu/vnc-sasl.acl,refresh=yes
4791 @end example
4793 @item -object authz-pam,id=@var{id},service=@var{string}
4795 Create an authorization object that will control access to network services.
4797 The @option{service} parameter provides the name of a PAM service to use
4798 for authorization. It requires that a file @code{/etc/pam.d/@var{service}}
4799 exist to provide the configuration for the @code{account} subsystem.
4801 An example authorization object to validate a TLS x509 distinguished
4802 name would look like:
4804 @example
4805 # $QEMU \
4807 -object authz-pam,id=auth0,service=qemu-vnc
4809 @end example
4811 There would then be a corresponding config file for PAM at
4812 @code{/etc/pam.d/qemu-vnc} that contains:
4814 @example
4815 account requisite pam_listfile.so item=user sense=allow \
4816 file=/etc/qemu/vnc.allow
4817 @end example
4819 Finally the @code{/etc/qemu/vnc.allow} file would contain
4820 the list of x509 distingished names that are permitted
4821 access
4823 @example
4824 CN=laptop.example.com,O=Example Home,L=London,ST=London,C=GB
4825 @end example
4828 @end table
4830 ETEXI
4833 HXCOMM This is the last statement. Insert new options before this line!
4834 STEXI
4835 @end table
4836 ETEXI