hostmem-file: fix pmem file size check
[qemu.git] / exec.c
blob0d47788f5f97c9a4974f1d856bda7a4817919da7
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "qemu/timer.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/qemu-print.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include "qemu.h"
44 #else /* !CONFIG_USER_ONLY */
45 #include "exec/memory.h"
46 #include "exec/ioport.h"
47 #include "sysemu/dma.h"
48 #include "sysemu/hostmem.h"
49 #include "sysemu/hw_accel.h"
50 #include "exec/address-spaces.h"
51 #include "sysemu/xen-mapcache.h"
52 #include "trace-root.h"
54 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
55 #include <linux/falloc.h>
56 #endif
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
68 #include "migration/vmstate.h"
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
75 #include "monitor/monitor.h"
77 //#define DEBUG_SUBPAGE
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
91 MemoryRegion io_mem_rom, io_mem_notdirty;
92 static MemoryRegion io_mem_unassigned;
93 #endif
95 #ifdef TARGET_PAGE_BITS_VARY
96 int target_page_bits;
97 bool target_page_bits_decided;
98 #endif
100 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
102 /* current CPU in the current thread. It is only valid inside
103 cpu_exec() */
104 __thread CPUState *current_cpu;
105 /* 0 = Do not count executed instructions.
106 1 = Precise instruction counting.
107 2 = Adaptive rate instruction counting. */
108 int use_icount;
110 uintptr_t qemu_host_page_size;
111 intptr_t qemu_host_page_mask;
113 bool set_preferred_target_page_bits(int bits)
115 /* The target page size is the lowest common denominator for all
116 * the CPUs in the system, so we can only make it smaller, never
117 * larger. And we can't make it smaller once we've committed to
118 * a particular size.
120 #ifdef TARGET_PAGE_BITS_VARY
121 assert(bits >= TARGET_PAGE_BITS_MIN);
122 if (target_page_bits == 0 || target_page_bits > bits) {
123 if (target_page_bits_decided) {
124 return false;
126 target_page_bits = bits;
128 #endif
129 return true;
132 #if !defined(CONFIG_USER_ONLY)
134 static void finalize_target_page_bits(void)
136 #ifdef TARGET_PAGE_BITS_VARY
137 if (target_page_bits == 0) {
138 target_page_bits = TARGET_PAGE_BITS_MIN;
140 target_page_bits_decided = true;
141 #endif
144 typedef struct PhysPageEntry PhysPageEntry;
146 struct PhysPageEntry {
147 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
148 uint32_t skip : 6;
149 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
150 uint32_t ptr : 26;
153 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
155 /* Size of the L2 (and L3, etc) page tables. */
156 #define ADDR_SPACE_BITS 64
158 #define P_L2_BITS 9
159 #define P_L2_SIZE (1 << P_L2_BITS)
161 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
163 typedef PhysPageEntry Node[P_L2_SIZE];
165 typedef struct PhysPageMap {
166 struct rcu_head rcu;
168 unsigned sections_nb;
169 unsigned sections_nb_alloc;
170 unsigned nodes_nb;
171 unsigned nodes_nb_alloc;
172 Node *nodes;
173 MemoryRegionSection *sections;
174 } PhysPageMap;
176 struct AddressSpaceDispatch {
177 MemoryRegionSection *mru_section;
178 /* This is a multi-level map on the physical address space.
179 * The bottom level has pointers to MemoryRegionSections.
181 PhysPageEntry phys_map;
182 PhysPageMap map;
185 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
186 typedef struct subpage_t {
187 MemoryRegion iomem;
188 FlatView *fv;
189 hwaddr base;
190 uint16_t sub_section[];
191 } subpage_t;
193 #define PHYS_SECTION_UNASSIGNED 0
194 #define PHYS_SECTION_NOTDIRTY 1
195 #define PHYS_SECTION_ROM 2
196 #define PHYS_SECTION_WATCH 3
198 static void io_mem_init(void);
199 static void memory_map_init(void);
200 static void tcg_log_global_after_sync(MemoryListener *listener);
201 static void tcg_commit(MemoryListener *listener);
203 static MemoryRegion io_mem_watch;
206 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
207 * @cpu: the CPU whose AddressSpace this is
208 * @as: the AddressSpace itself
209 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
210 * @tcg_as_listener: listener for tracking changes to the AddressSpace
212 struct CPUAddressSpace {
213 CPUState *cpu;
214 AddressSpace *as;
215 struct AddressSpaceDispatch *memory_dispatch;
216 MemoryListener tcg_as_listener;
219 struct DirtyBitmapSnapshot {
220 ram_addr_t start;
221 ram_addr_t end;
222 unsigned long dirty[];
225 #endif
227 #if !defined(CONFIG_USER_ONLY)
229 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
231 static unsigned alloc_hint = 16;
232 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
233 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
234 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
235 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
236 alloc_hint = map->nodes_nb_alloc;
240 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
242 unsigned i;
243 uint32_t ret;
244 PhysPageEntry e;
245 PhysPageEntry *p;
247 ret = map->nodes_nb++;
248 p = map->nodes[ret];
249 assert(ret != PHYS_MAP_NODE_NIL);
250 assert(ret != map->nodes_nb_alloc);
252 e.skip = leaf ? 0 : 1;
253 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
254 for (i = 0; i < P_L2_SIZE; ++i) {
255 memcpy(&p[i], &e, sizeof(e));
257 return ret;
260 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
261 hwaddr *index, hwaddr *nb, uint16_t leaf,
262 int level)
264 PhysPageEntry *p;
265 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
267 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
268 lp->ptr = phys_map_node_alloc(map, level == 0);
270 p = map->nodes[lp->ptr];
271 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
273 while (*nb && lp < &p[P_L2_SIZE]) {
274 if ((*index & (step - 1)) == 0 && *nb >= step) {
275 lp->skip = 0;
276 lp->ptr = leaf;
277 *index += step;
278 *nb -= step;
279 } else {
280 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
282 ++lp;
286 static void phys_page_set(AddressSpaceDispatch *d,
287 hwaddr index, hwaddr nb,
288 uint16_t leaf)
290 /* Wildly overreserve - it doesn't matter much. */
291 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
293 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
296 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
297 * and update our entry so we can skip it and go directly to the destination.
299 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
301 unsigned valid_ptr = P_L2_SIZE;
302 int valid = 0;
303 PhysPageEntry *p;
304 int i;
306 if (lp->ptr == PHYS_MAP_NODE_NIL) {
307 return;
310 p = nodes[lp->ptr];
311 for (i = 0; i < P_L2_SIZE; i++) {
312 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
313 continue;
316 valid_ptr = i;
317 valid++;
318 if (p[i].skip) {
319 phys_page_compact(&p[i], nodes);
323 /* We can only compress if there's only one child. */
324 if (valid != 1) {
325 return;
328 assert(valid_ptr < P_L2_SIZE);
330 /* Don't compress if it won't fit in the # of bits we have. */
331 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
332 return;
335 lp->ptr = p[valid_ptr].ptr;
336 if (!p[valid_ptr].skip) {
337 /* If our only child is a leaf, make this a leaf. */
338 /* By design, we should have made this node a leaf to begin with so we
339 * should never reach here.
340 * But since it's so simple to handle this, let's do it just in case we
341 * change this rule.
343 lp->skip = 0;
344 } else {
345 lp->skip += p[valid_ptr].skip;
349 void address_space_dispatch_compact(AddressSpaceDispatch *d)
351 if (d->phys_map.skip) {
352 phys_page_compact(&d->phys_map, d->map.nodes);
356 static inline bool section_covers_addr(const MemoryRegionSection *section,
357 hwaddr addr)
359 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
360 * the section must cover the entire address space.
362 return int128_gethi(section->size) ||
363 range_covers_byte(section->offset_within_address_space,
364 int128_getlo(section->size), addr);
367 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
369 PhysPageEntry lp = d->phys_map, *p;
370 Node *nodes = d->map.nodes;
371 MemoryRegionSection *sections = d->map.sections;
372 hwaddr index = addr >> TARGET_PAGE_BITS;
373 int i;
375 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
376 if (lp.ptr == PHYS_MAP_NODE_NIL) {
377 return &sections[PHYS_SECTION_UNASSIGNED];
379 p = nodes[lp.ptr];
380 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
383 if (section_covers_addr(&sections[lp.ptr], addr)) {
384 return &sections[lp.ptr];
385 } else {
386 return &sections[PHYS_SECTION_UNASSIGNED];
390 /* Called from RCU critical section */
391 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
392 hwaddr addr,
393 bool resolve_subpage)
395 MemoryRegionSection *section = atomic_read(&d->mru_section);
396 subpage_t *subpage;
398 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
399 !section_covers_addr(section, addr)) {
400 section = phys_page_find(d, addr);
401 atomic_set(&d->mru_section, section);
403 if (resolve_subpage && section->mr->subpage) {
404 subpage = container_of(section->mr, subpage_t, iomem);
405 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
407 return section;
410 /* Called from RCU critical section */
411 static MemoryRegionSection *
412 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
413 hwaddr *plen, bool resolve_subpage)
415 MemoryRegionSection *section;
416 MemoryRegion *mr;
417 Int128 diff;
419 section = address_space_lookup_region(d, addr, resolve_subpage);
420 /* Compute offset within MemoryRegionSection */
421 addr -= section->offset_within_address_space;
423 /* Compute offset within MemoryRegion */
424 *xlat = addr + section->offset_within_region;
426 mr = section->mr;
428 /* MMIO registers can be expected to perform full-width accesses based only
429 * on their address, without considering adjacent registers that could
430 * decode to completely different MemoryRegions. When such registers
431 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
432 * regions overlap wildly. For this reason we cannot clamp the accesses
433 * here.
435 * If the length is small (as is the case for address_space_ldl/stl),
436 * everything works fine. If the incoming length is large, however,
437 * the caller really has to do the clamping through memory_access_size.
439 if (memory_region_is_ram(mr)) {
440 diff = int128_sub(section->size, int128_make64(addr));
441 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
443 return section;
447 * address_space_translate_iommu - translate an address through an IOMMU
448 * memory region and then through the target address space.
450 * @iommu_mr: the IOMMU memory region that we start the translation from
451 * @addr: the address to be translated through the MMU
452 * @xlat: the translated address offset within the destination memory region.
453 * It cannot be %NULL.
454 * @plen_out: valid read/write length of the translated address. It
455 * cannot be %NULL.
456 * @page_mask_out: page mask for the translated address. This
457 * should only be meaningful for IOMMU translated
458 * addresses, since there may be huge pages that this bit
459 * would tell. It can be %NULL if we don't care about it.
460 * @is_write: whether the translation operation is for write
461 * @is_mmio: whether this can be MMIO, set true if it can
462 * @target_as: the address space targeted by the IOMMU
463 * @attrs: transaction attributes
465 * This function is called from RCU critical section. It is the common
466 * part of flatview_do_translate and address_space_translate_cached.
468 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
469 hwaddr *xlat,
470 hwaddr *plen_out,
471 hwaddr *page_mask_out,
472 bool is_write,
473 bool is_mmio,
474 AddressSpace **target_as,
475 MemTxAttrs attrs)
477 MemoryRegionSection *section;
478 hwaddr page_mask = (hwaddr)-1;
480 do {
481 hwaddr addr = *xlat;
482 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
483 int iommu_idx = 0;
484 IOMMUTLBEntry iotlb;
486 if (imrc->attrs_to_index) {
487 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
490 iotlb = imrc->translate(iommu_mr, addr, is_write ?
491 IOMMU_WO : IOMMU_RO, iommu_idx);
493 if (!(iotlb.perm & (1 << is_write))) {
494 goto unassigned;
497 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
498 | (addr & iotlb.addr_mask));
499 page_mask &= iotlb.addr_mask;
500 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
501 *target_as = iotlb.target_as;
503 section = address_space_translate_internal(
504 address_space_to_dispatch(iotlb.target_as), addr, xlat,
505 plen_out, is_mmio);
507 iommu_mr = memory_region_get_iommu(section->mr);
508 } while (unlikely(iommu_mr));
510 if (page_mask_out) {
511 *page_mask_out = page_mask;
513 return *section;
515 unassigned:
516 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
520 * flatview_do_translate - translate an address in FlatView
522 * @fv: the flat view that we want to translate on
523 * @addr: the address to be translated in above address space
524 * @xlat: the translated address offset within memory region. It
525 * cannot be @NULL.
526 * @plen_out: valid read/write length of the translated address. It
527 * can be @NULL when we don't care about it.
528 * @page_mask_out: page mask for the translated address. This
529 * should only be meaningful for IOMMU translated
530 * addresses, since there may be huge pages that this bit
531 * would tell. It can be @NULL if we don't care about it.
532 * @is_write: whether the translation operation is for write
533 * @is_mmio: whether this can be MMIO, set true if it can
534 * @target_as: the address space targeted by the IOMMU
535 * @attrs: memory transaction attributes
537 * This function is called from RCU critical section
539 static MemoryRegionSection flatview_do_translate(FlatView *fv,
540 hwaddr addr,
541 hwaddr *xlat,
542 hwaddr *plen_out,
543 hwaddr *page_mask_out,
544 bool is_write,
545 bool is_mmio,
546 AddressSpace **target_as,
547 MemTxAttrs attrs)
549 MemoryRegionSection *section;
550 IOMMUMemoryRegion *iommu_mr;
551 hwaddr plen = (hwaddr)(-1);
553 if (!plen_out) {
554 plen_out = &plen;
557 section = address_space_translate_internal(
558 flatview_to_dispatch(fv), addr, xlat,
559 plen_out, is_mmio);
561 iommu_mr = memory_region_get_iommu(section->mr);
562 if (unlikely(iommu_mr)) {
563 return address_space_translate_iommu(iommu_mr, xlat,
564 plen_out, page_mask_out,
565 is_write, is_mmio,
566 target_as, attrs);
568 if (page_mask_out) {
569 /* Not behind an IOMMU, use default page size. */
570 *page_mask_out = ~TARGET_PAGE_MASK;
573 return *section;
576 /* Called from RCU critical section */
577 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
578 bool is_write, MemTxAttrs attrs)
580 MemoryRegionSection section;
581 hwaddr xlat, page_mask;
584 * This can never be MMIO, and we don't really care about plen,
585 * but page mask.
587 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
588 NULL, &page_mask, is_write, false, &as,
589 attrs);
591 /* Illegal translation */
592 if (section.mr == &io_mem_unassigned) {
593 goto iotlb_fail;
596 /* Convert memory region offset into address space offset */
597 xlat += section.offset_within_address_space -
598 section.offset_within_region;
600 return (IOMMUTLBEntry) {
601 .target_as = as,
602 .iova = addr & ~page_mask,
603 .translated_addr = xlat & ~page_mask,
604 .addr_mask = page_mask,
605 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
606 .perm = IOMMU_RW,
609 iotlb_fail:
610 return (IOMMUTLBEntry) {0};
613 /* Called from RCU critical section */
614 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
615 hwaddr *plen, bool is_write,
616 MemTxAttrs attrs)
618 MemoryRegion *mr;
619 MemoryRegionSection section;
620 AddressSpace *as = NULL;
622 /* This can be MMIO, so setup MMIO bit. */
623 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
624 is_write, true, &as, attrs);
625 mr = section.mr;
627 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
628 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
629 *plen = MIN(page, *plen);
632 return mr;
635 typedef struct TCGIOMMUNotifier {
636 IOMMUNotifier n;
637 MemoryRegion *mr;
638 CPUState *cpu;
639 int iommu_idx;
640 bool active;
641 } TCGIOMMUNotifier;
643 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
645 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
647 if (!notifier->active) {
648 return;
650 tlb_flush(notifier->cpu);
651 notifier->active = false;
652 /* We leave the notifier struct on the list to avoid reallocating it later.
653 * Generally the number of IOMMUs a CPU deals with will be small.
654 * In any case we can't unregister the iommu notifier from a notify
655 * callback.
659 static void tcg_register_iommu_notifier(CPUState *cpu,
660 IOMMUMemoryRegion *iommu_mr,
661 int iommu_idx)
663 /* Make sure this CPU has an IOMMU notifier registered for this
664 * IOMMU/IOMMU index combination, so that we can flush its TLB
665 * when the IOMMU tells us the mappings we've cached have changed.
667 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
668 TCGIOMMUNotifier *notifier;
669 int i;
671 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
672 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
673 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
674 break;
677 if (i == cpu->iommu_notifiers->len) {
678 /* Not found, add a new entry at the end of the array */
679 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
680 notifier = g_new0(TCGIOMMUNotifier, 1);
681 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
683 notifier->mr = mr;
684 notifier->iommu_idx = iommu_idx;
685 notifier->cpu = cpu;
686 /* Rather than trying to register interest in the specific part
687 * of the iommu's address space that we've accessed and then
688 * expand it later as subsequent accesses touch more of it, we
689 * just register interest in the whole thing, on the assumption
690 * that iommu reconfiguration will be rare.
692 iommu_notifier_init(&notifier->n,
693 tcg_iommu_unmap_notify,
694 IOMMU_NOTIFIER_UNMAP,
696 HWADDR_MAX,
697 iommu_idx);
698 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
701 if (!notifier->active) {
702 notifier->active = true;
706 static void tcg_iommu_free_notifier_list(CPUState *cpu)
708 /* Destroy the CPU's notifier list */
709 int i;
710 TCGIOMMUNotifier *notifier;
712 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
713 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
714 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
715 g_free(notifier);
717 g_array_free(cpu->iommu_notifiers, true);
720 /* Called from RCU critical section */
721 MemoryRegionSection *
722 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
723 hwaddr *xlat, hwaddr *plen,
724 MemTxAttrs attrs, int *prot)
726 MemoryRegionSection *section;
727 IOMMUMemoryRegion *iommu_mr;
728 IOMMUMemoryRegionClass *imrc;
729 IOMMUTLBEntry iotlb;
730 int iommu_idx;
731 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
733 for (;;) {
734 section = address_space_translate_internal(d, addr, &addr, plen, false);
736 iommu_mr = memory_region_get_iommu(section->mr);
737 if (!iommu_mr) {
738 break;
741 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
743 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
744 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
745 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
746 * doesn't short-cut its translation table walk.
748 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
749 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
750 | (addr & iotlb.addr_mask));
751 /* Update the caller's prot bits to remove permissions the IOMMU
752 * is giving us a failure response for. If we get down to no
753 * permissions left at all we can give up now.
755 if (!(iotlb.perm & IOMMU_RO)) {
756 *prot &= ~(PAGE_READ | PAGE_EXEC);
758 if (!(iotlb.perm & IOMMU_WO)) {
759 *prot &= ~PAGE_WRITE;
762 if (!*prot) {
763 goto translate_fail;
766 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
769 assert(!memory_region_is_iommu(section->mr));
770 *xlat = addr;
771 return section;
773 translate_fail:
774 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
776 #endif
778 #if !defined(CONFIG_USER_ONLY)
780 static int cpu_common_post_load(void *opaque, int version_id)
782 CPUState *cpu = opaque;
784 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
785 version_id is increased. */
786 cpu->interrupt_request &= ~0x01;
787 tlb_flush(cpu);
789 /* loadvm has just updated the content of RAM, bypassing the
790 * usual mechanisms that ensure we flush TBs for writes to
791 * memory we've translated code from. So we must flush all TBs,
792 * which will now be stale.
794 tb_flush(cpu);
796 return 0;
799 static int cpu_common_pre_load(void *opaque)
801 CPUState *cpu = opaque;
803 cpu->exception_index = -1;
805 return 0;
808 static bool cpu_common_exception_index_needed(void *opaque)
810 CPUState *cpu = opaque;
812 return tcg_enabled() && cpu->exception_index != -1;
815 static const VMStateDescription vmstate_cpu_common_exception_index = {
816 .name = "cpu_common/exception_index",
817 .version_id = 1,
818 .minimum_version_id = 1,
819 .needed = cpu_common_exception_index_needed,
820 .fields = (VMStateField[]) {
821 VMSTATE_INT32(exception_index, CPUState),
822 VMSTATE_END_OF_LIST()
826 static bool cpu_common_crash_occurred_needed(void *opaque)
828 CPUState *cpu = opaque;
830 return cpu->crash_occurred;
833 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
834 .name = "cpu_common/crash_occurred",
835 .version_id = 1,
836 .minimum_version_id = 1,
837 .needed = cpu_common_crash_occurred_needed,
838 .fields = (VMStateField[]) {
839 VMSTATE_BOOL(crash_occurred, CPUState),
840 VMSTATE_END_OF_LIST()
844 const VMStateDescription vmstate_cpu_common = {
845 .name = "cpu_common",
846 .version_id = 1,
847 .minimum_version_id = 1,
848 .pre_load = cpu_common_pre_load,
849 .post_load = cpu_common_post_load,
850 .fields = (VMStateField[]) {
851 VMSTATE_UINT32(halted, CPUState),
852 VMSTATE_UINT32(interrupt_request, CPUState),
853 VMSTATE_END_OF_LIST()
855 .subsections = (const VMStateDescription*[]) {
856 &vmstate_cpu_common_exception_index,
857 &vmstate_cpu_common_crash_occurred,
858 NULL
862 #endif
864 CPUState *qemu_get_cpu(int index)
866 CPUState *cpu;
868 CPU_FOREACH(cpu) {
869 if (cpu->cpu_index == index) {
870 return cpu;
874 return NULL;
877 #if !defined(CONFIG_USER_ONLY)
878 void cpu_address_space_init(CPUState *cpu, int asidx,
879 const char *prefix, MemoryRegion *mr)
881 CPUAddressSpace *newas;
882 AddressSpace *as = g_new0(AddressSpace, 1);
883 char *as_name;
885 assert(mr);
886 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
887 address_space_init(as, mr, as_name);
888 g_free(as_name);
890 /* Target code should have set num_ases before calling us */
891 assert(asidx < cpu->num_ases);
893 if (asidx == 0) {
894 /* address space 0 gets the convenience alias */
895 cpu->as = as;
898 /* KVM cannot currently support multiple address spaces. */
899 assert(asidx == 0 || !kvm_enabled());
901 if (!cpu->cpu_ases) {
902 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
905 newas = &cpu->cpu_ases[asidx];
906 newas->cpu = cpu;
907 newas->as = as;
908 if (tcg_enabled()) {
909 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
910 newas->tcg_as_listener.commit = tcg_commit;
911 memory_listener_register(&newas->tcg_as_listener, as);
915 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
917 /* Return the AddressSpace corresponding to the specified index */
918 return cpu->cpu_ases[asidx].as;
920 #endif
922 void cpu_exec_unrealizefn(CPUState *cpu)
924 CPUClass *cc = CPU_GET_CLASS(cpu);
926 cpu_list_remove(cpu);
928 if (cc->vmsd != NULL) {
929 vmstate_unregister(NULL, cc->vmsd, cpu);
931 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
932 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
934 #ifndef CONFIG_USER_ONLY
935 tcg_iommu_free_notifier_list(cpu);
936 #endif
939 Property cpu_common_props[] = {
940 #ifndef CONFIG_USER_ONLY
941 /* Create a memory property for softmmu CPU object,
942 * so users can wire up its memory. (This can't go in hw/core/cpu.c
943 * because that file is compiled only once for both user-mode
944 * and system builds.) The default if no link is set up is to use
945 * the system address space.
947 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
948 MemoryRegion *),
949 #endif
950 DEFINE_PROP_END_OF_LIST(),
953 void cpu_exec_initfn(CPUState *cpu)
955 cpu->as = NULL;
956 cpu->num_ases = 0;
958 #ifndef CONFIG_USER_ONLY
959 cpu->thread_id = qemu_get_thread_id();
960 cpu->memory = system_memory;
961 object_ref(OBJECT(cpu->memory));
962 #endif
965 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
967 CPUClass *cc = CPU_GET_CLASS(cpu);
968 static bool tcg_target_initialized;
970 cpu_list_add(cpu);
972 if (tcg_enabled() && !tcg_target_initialized) {
973 tcg_target_initialized = true;
974 cc->tcg_initialize();
976 tlb_init(cpu);
978 #ifndef CONFIG_USER_ONLY
979 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
980 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
982 if (cc->vmsd != NULL) {
983 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
986 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
987 #endif
990 const char *parse_cpu_option(const char *cpu_option)
992 ObjectClass *oc;
993 CPUClass *cc;
994 gchar **model_pieces;
995 const char *cpu_type;
997 model_pieces = g_strsplit(cpu_option, ",", 2);
998 if (!model_pieces[0]) {
999 error_report("-cpu option cannot be empty");
1000 exit(1);
1003 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1004 if (oc == NULL) {
1005 error_report("unable to find CPU model '%s'", model_pieces[0]);
1006 g_strfreev(model_pieces);
1007 exit(EXIT_FAILURE);
1010 cpu_type = object_class_get_name(oc);
1011 cc = CPU_CLASS(oc);
1012 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1013 g_strfreev(model_pieces);
1014 return cpu_type;
1017 #if defined(CONFIG_USER_ONLY)
1018 void tb_invalidate_phys_addr(target_ulong addr)
1020 mmap_lock();
1021 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1022 mmap_unlock();
1025 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1027 tb_invalidate_phys_addr(pc);
1029 #else
1030 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1032 ram_addr_t ram_addr;
1033 MemoryRegion *mr;
1034 hwaddr l = 1;
1036 if (!tcg_enabled()) {
1037 return;
1040 rcu_read_lock();
1041 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1042 if (!(memory_region_is_ram(mr)
1043 || memory_region_is_romd(mr))) {
1044 rcu_read_unlock();
1045 return;
1047 ram_addr = memory_region_get_ram_addr(mr) + addr;
1048 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1049 rcu_read_unlock();
1052 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1054 MemTxAttrs attrs;
1055 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1056 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1057 if (phys != -1) {
1058 /* Locks grabbed by tb_invalidate_phys_addr */
1059 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1060 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1063 #endif
1065 #if defined(CONFIG_USER_ONLY)
1066 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1071 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1072 int flags)
1074 return -ENOSYS;
1077 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1081 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1082 int flags, CPUWatchpoint **watchpoint)
1084 return -ENOSYS;
1086 #else
1087 /* Add a watchpoint. */
1088 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1089 int flags, CPUWatchpoint **watchpoint)
1091 CPUWatchpoint *wp;
1093 /* forbid ranges which are empty or run off the end of the address space */
1094 if (len == 0 || (addr + len - 1) < addr) {
1095 error_report("tried to set invalid watchpoint at %"
1096 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1097 return -EINVAL;
1099 wp = g_malloc(sizeof(*wp));
1101 wp->vaddr = addr;
1102 wp->len = len;
1103 wp->flags = flags;
1105 /* keep all GDB-injected watchpoints in front */
1106 if (flags & BP_GDB) {
1107 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1108 } else {
1109 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1112 tlb_flush_page(cpu, addr);
1114 if (watchpoint)
1115 *watchpoint = wp;
1116 return 0;
1119 /* Remove a specific watchpoint. */
1120 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1121 int flags)
1123 CPUWatchpoint *wp;
1125 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1126 if (addr == wp->vaddr && len == wp->len
1127 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1128 cpu_watchpoint_remove_by_ref(cpu, wp);
1129 return 0;
1132 return -ENOENT;
1135 /* Remove a specific watchpoint by reference. */
1136 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1138 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1140 tlb_flush_page(cpu, watchpoint->vaddr);
1142 g_free(watchpoint);
1145 /* Remove all matching watchpoints. */
1146 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1148 CPUWatchpoint *wp, *next;
1150 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1151 if (wp->flags & mask) {
1152 cpu_watchpoint_remove_by_ref(cpu, wp);
1157 /* Return true if this watchpoint address matches the specified
1158 * access (ie the address range covered by the watchpoint overlaps
1159 * partially or completely with the address range covered by the
1160 * access).
1162 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1163 vaddr addr,
1164 vaddr len)
1166 /* We know the lengths are non-zero, but a little caution is
1167 * required to avoid errors in the case where the range ends
1168 * exactly at the top of the address space and so addr + len
1169 * wraps round to zero.
1171 vaddr wpend = wp->vaddr + wp->len - 1;
1172 vaddr addrend = addr + len - 1;
1174 return !(addr > wpend || wp->vaddr > addrend);
1177 #endif
1179 /* Add a breakpoint. */
1180 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1181 CPUBreakpoint **breakpoint)
1183 CPUBreakpoint *bp;
1185 bp = g_malloc(sizeof(*bp));
1187 bp->pc = pc;
1188 bp->flags = flags;
1190 /* keep all GDB-injected breakpoints in front */
1191 if (flags & BP_GDB) {
1192 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1193 } else {
1194 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1197 breakpoint_invalidate(cpu, pc);
1199 if (breakpoint) {
1200 *breakpoint = bp;
1202 return 0;
1205 /* Remove a specific breakpoint. */
1206 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1208 CPUBreakpoint *bp;
1210 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1211 if (bp->pc == pc && bp->flags == flags) {
1212 cpu_breakpoint_remove_by_ref(cpu, bp);
1213 return 0;
1216 return -ENOENT;
1219 /* Remove a specific breakpoint by reference. */
1220 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1222 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1224 breakpoint_invalidate(cpu, breakpoint->pc);
1226 g_free(breakpoint);
1229 /* Remove all matching breakpoints. */
1230 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1232 CPUBreakpoint *bp, *next;
1234 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1235 if (bp->flags & mask) {
1236 cpu_breakpoint_remove_by_ref(cpu, bp);
1241 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1242 CPU loop after each instruction */
1243 void cpu_single_step(CPUState *cpu, int enabled)
1245 if (cpu->singlestep_enabled != enabled) {
1246 cpu->singlestep_enabled = enabled;
1247 if (kvm_enabled()) {
1248 kvm_update_guest_debug(cpu, 0);
1249 } else {
1250 /* must flush all the translated code to avoid inconsistencies */
1251 /* XXX: only flush what is necessary */
1252 tb_flush(cpu);
1257 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1259 va_list ap;
1260 va_list ap2;
1262 va_start(ap, fmt);
1263 va_copy(ap2, ap);
1264 fprintf(stderr, "qemu: fatal: ");
1265 vfprintf(stderr, fmt, ap);
1266 fprintf(stderr, "\n");
1267 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1268 if (qemu_log_separate()) {
1269 qemu_log_lock();
1270 qemu_log("qemu: fatal: ");
1271 qemu_log_vprintf(fmt, ap2);
1272 qemu_log("\n");
1273 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1274 qemu_log_flush();
1275 qemu_log_unlock();
1276 qemu_log_close();
1278 va_end(ap2);
1279 va_end(ap);
1280 replay_finish();
1281 #if defined(CONFIG_USER_ONLY)
1283 struct sigaction act;
1284 sigfillset(&act.sa_mask);
1285 act.sa_handler = SIG_DFL;
1286 act.sa_flags = 0;
1287 sigaction(SIGABRT, &act, NULL);
1289 #endif
1290 abort();
1293 #if !defined(CONFIG_USER_ONLY)
1294 /* Called from RCU critical section */
1295 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1297 RAMBlock *block;
1299 block = atomic_rcu_read(&ram_list.mru_block);
1300 if (block && addr - block->offset < block->max_length) {
1301 return block;
1303 RAMBLOCK_FOREACH(block) {
1304 if (addr - block->offset < block->max_length) {
1305 goto found;
1309 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1310 abort();
1312 found:
1313 /* It is safe to write mru_block outside the iothread lock. This
1314 * is what happens:
1316 * mru_block = xxx
1317 * rcu_read_unlock()
1318 * xxx removed from list
1319 * rcu_read_lock()
1320 * read mru_block
1321 * mru_block = NULL;
1322 * call_rcu(reclaim_ramblock, xxx);
1323 * rcu_read_unlock()
1325 * atomic_rcu_set is not needed here. The block was already published
1326 * when it was placed into the list. Here we're just making an extra
1327 * copy of the pointer.
1329 ram_list.mru_block = block;
1330 return block;
1333 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1335 CPUState *cpu;
1336 ram_addr_t start1;
1337 RAMBlock *block;
1338 ram_addr_t end;
1340 assert(tcg_enabled());
1341 end = TARGET_PAGE_ALIGN(start + length);
1342 start &= TARGET_PAGE_MASK;
1344 rcu_read_lock();
1345 block = qemu_get_ram_block(start);
1346 assert(block == qemu_get_ram_block(end - 1));
1347 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1348 CPU_FOREACH(cpu) {
1349 tlb_reset_dirty(cpu, start1, length);
1351 rcu_read_unlock();
1354 /* Note: start and end must be within the same ram block. */
1355 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1356 ram_addr_t length,
1357 unsigned client)
1359 DirtyMemoryBlocks *blocks;
1360 unsigned long end, page;
1361 bool dirty = false;
1362 RAMBlock *ramblock;
1363 uint64_t mr_offset, mr_size;
1365 if (length == 0) {
1366 return false;
1369 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1370 page = start >> TARGET_PAGE_BITS;
1372 rcu_read_lock();
1374 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1375 ramblock = qemu_get_ram_block(start);
1376 /* Range sanity check on the ramblock */
1377 assert(start >= ramblock->offset &&
1378 start + length <= ramblock->offset + ramblock->used_length);
1380 while (page < end) {
1381 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1382 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1383 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1385 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1386 offset, num);
1387 page += num;
1390 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1391 mr_size = (end - page) << TARGET_PAGE_BITS;
1392 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1394 rcu_read_unlock();
1396 if (dirty && tcg_enabled()) {
1397 tlb_reset_dirty_range_all(start, length);
1400 return dirty;
1403 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1404 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1406 DirtyMemoryBlocks *blocks;
1407 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1408 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1409 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1410 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1411 DirtyBitmapSnapshot *snap;
1412 unsigned long page, end, dest;
1414 snap = g_malloc0(sizeof(*snap) +
1415 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1416 snap->start = first;
1417 snap->end = last;
1419 page = first >> TARGET_PAGE_BITS;
1420 end = last >> TARGET_PAGE_BITS;
1421 dest = 0;
1423 rcu_read_lock();
1425 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1427 while (page < end) {
1428 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1429 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1430 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1432 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1433 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1434 offset >>= BITS_PER_LEVEL;
1436 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1437 blocks->blocks[idx] + offset,
1438 num);
1439 page += num;
1440 dest += num >> BITS_PER_LEVEL;
1443 rcu_read_unlock();
1445 if (tcg_enabled()) {
1446 tlb_reset_dirty_range_all(start, length);
1449 memory_region_clear_dirty_bitmap(mr, offset, length);
1451 return snap;
1454 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1455 ram_addr_t start,
1456 ram_addr_t length)
1458 unsigned long page, end;
1460 assert(start >= snap->start);
1461 assert(start + length <= snap->end);
1463 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1464 page = (start - snap->start) >> TARGET_PAGE_BITS;
1466 while (page < end) {
1467 if (test_bit(page, snap->dirty)) {
1468 return true;
1470 page++;
1472 return false;
1475 /* Called from RCU critical section */
1476 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1477 MemoryRegionSection *section,
1478 target_ulong vaddr,
1479 hwaddr paddr, hwaddr xlat,
1480 int prot,
1481 target_ulong *address)
1483 hwaddr iotlb;
1484 CPUWatchpoint *wp;
1486 if (memory_region_is_ram(section->mr)) {
1487 /* Normal RAM. */
1488 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1489 if (!section->readonly) {
1490 iotlb |= PHYS_SECTION_NOTDIRTY;
1491 } else {
1492 iotlb |= PHYS_SECTION_ROM;
1494 } else {
1495 AddressSpaceDispatch *d;
1497 d = flatview_to_dispatch(section->fv);
1498 iotlb = section - d->map.sections;
1499 iotlb += xlat;
1502 /* Make accesses to pages with watchpoints go via the
1503 watchpoint trap routines. */
1504 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1505 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1506 /* Avoid trapping reads of pages with a write breakpoint. */
1507 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1508 iotlb = PHYS_SECTION_WATCH + paddr;
1509 *address |= TLB_MMIO;
1510 break;
1515 return iotlb;
1517 #endif /* defined(CONFIG_USER_ONLY) */
1519 #if !defined(CONFIG_USER_ONLY)
1521 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1522 uint16_t section);
1523 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1525 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1526 qemu_anon_ram_alloc;
1529 * Set a custom physical guest memory alloator.
1530 * Accelerators with unusual needs may need this. Hopefully, we can
1531 * get rid of it eventually.
1533 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1535 phys_mem_alloc = alloc;
1538 static uint16_t phys_section_add(PhysPageMap *map,
1539 MemoryRegionSection *section)
1541 /* The physical section number is ORed with a page-aligned
1542 * pointer to produce the iotlb entries. Thus it should
1543 * never overflow into the page-aligned value.
1545 assert(map->sections_nb < TARGET_PAGE_SIZE);
1547 if (map->sections_nb == map->sections_nb_alloc) {
1548 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1549 map->sections = g_renew(MemoryRegionSection, map->sections,
1550 map->sections_nb_alloc);
1552 map->sections[map->sections_nb] = *section;
1553 memory_region_ref(section->mr);
1554 return map->sections_nb++;
1557 static void phys_section_destroy(MemoryRegion *mr)
1559 bool have_sub_page = mr->subpage;
1561 memory_region_unref(mr);
1563 if (have_sub_page) {
1564 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1565 object_unref(OBJECT(&subpage->iomem));
1566 g_free(subpage);
1570 static void phys_sections_free(PhysPageMap *map)
1572 while (map->sections_nb > 0) {
1573 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1574 phys_section_destroy(section->mr);
1576 g_free(map->sections);
1577 g_free(map->nodes);
1580 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1582 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1583 subpage_t *subpage;
1584 hwaddr base = section->offset_within_address_space
1585 & TARGET_PAGE_MASK;
1586 MemoryRegionSection *existing = phys_page_find(d, base);
1587 MemoryRegionSection subsection = {
1588 .offset_within_address_space = base,
1589 .size = int128_make64(TARGET_PAGE_SIZE),
1591 hwaddr start, end;
1593 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1595 if (!(existing->mr->subpage)) {
1596 subpage = subpage_init(fv, base);
1597 subsection.fv = fv;
1598 subsection.mr = &subpage->iomem;
1599 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1600 phys_section_add(&d->map, &subsection));
1601 } else {
1602 subpage = container_of(existing->mr, subpage_t, iomem);
1604 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1605 end = start + int128_get64(section->size) - 1;
1606 subpage_register(subpage, start, end,
1607 phys_section_add(&d->map, section));
1611 static void register_multipage(FlatView *fv,
1612 MemoryRegionSection *section)
1614 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1615 hwaddr start_addr = section->offset_within_address_space;
1616 uint16_t section_index = phys_section_add(&d->map, section);
1617 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1618 TARGET_PAGE_BITS));
1620 assert(num_pages);
1621 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1625 * The range in *section* may look like this:
1627 * |s|PPPPPPP|s|
1629 * where s stands for subpage and P for page.
1631 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1633 MemoryRegionSection remain = *section;
1634 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1636 /* register first subpage */
1637 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1638 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1639 - remain.offset_within_address_space;
1641 MemoryRegionSection now = remain;
1642 now.size = int128_min(int128_make64(left), now.size);
1643 register_subpage(fv, &now);
1644 if (int128_eq(remain.size, now.size)) {
1645 return;
1647 remain.size = int128_sub(remain.size, now.size);
1648 remain.offset_within_address_space += int128_get64(now.size);
1649 remain.offset_within_region += int128_get64(now.size);
1652 /* register whole pages */
1653 if (int128_ge(remain.size, page_size)) {
1654 MemoryRegionSection now = remain;
1655 now.size = int128_and(now.size, int128_neg(page_size));
1656 register_multipage(fv, &now);
1657 if (int128_eq(remain.size, now.size)) {
1658 return;
1660 remain.size = int128_sub(remain.size, now.size);
1661 remain.offset_within_address_space += int128_get64(now.size);
1662 remain.offset_within_region += int128_get64(now.size);
1665 /* register last subpage */
1666 register_subpage(fv, &remain);
1669 void qemu_flush_coalesced_mmio_buffer(void)
1671 if (kvm_enabled())
1672 kvm_flush_coalesced_mmio_buffer();
1675 void qemu_mutex_lock_ramlist(void)
1677 qemu_mutex_lock(&ram_list.mutex);
1680 void qemu_mutex_unlock_ramlist(void)
1682 qemu_mutex_unlock(&ram_list.mutex);
1685 void ram_block_dump(Monitor *mon)
1687 RAMBlock *block;
1688 char *psize;
1690 rcu_read_lock();
1691 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1692 "Block Name", "PSize", "Offset", "Used", "Total");
1693 RAMBLOCK_FOREACH(block) {
1694 psize = size_to_str(block->page_size);
1695 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1696 " 0x%016" PRIx64 "\n", block->idstr, psize,
1697 (uint64_t)block->offset,
1698 (uint64_t)block->used_length,
1699 (uint64_t)block->max_length);
1700 g_free(psize);
1702 rcu_read_unlock();
1705 #ifdef __linux__
1707 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1708 * may or may not name the same files / on the same filesystem now as
1709 * when we actually open and map them. Iterate over the file
1710 * descriptors instead, and use qemu_fd_getpagesize().
1712 static int find_min_backend_pagesize(Object *obj, void *opaque)
1714 long *hpsize_min = opaque;
1716 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1717 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1718 long hpsize = host_memory_backend_pagesize(backend);
1720 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1721 *hpsize_min = hpsize;
1725 return 0;
1728 static int find_max_backend_pagesize(Object *obj, void *opaque)
1730 long *hpsize_max = opaque;
1732 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1733 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1734 long hpsize = host_memory_backend_pagesize(backend);
1736 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1737 *hpsize_max = hpsize;
1741 return 0;
1745 * TODO: We assume right now that all mapped host memory backends are
1746 * used as RAM, however some might be used for different purposes.
1748 long qemu_minrampagesize(void)
1750 long hpsize = LONG_MAX;
1751 long mainrampagesize;
1752 Object *memdev_root;
1753 MachineState *ms = MACHINE(qdev_get_machine());
1755 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1757 /* it's possible we have memory-backend objects with
1758 * hugepage-backed RAM. these may get mapped into system
1759 * address space via -numa parameters or memory hotplug
1760 * hooks. we want to take these into account, but we
1761 * also want to make sure these supported hugepage
1762 * sizes are applicable across the entire range of memory
1763 * we may boot from, so we take the min across all
1764 * backends, and assume normal pages in cases where a
1765 * backend isn't backed by hugepages.
1767 memdev_root = object_resolve_path("/objects", NULL);
1768 if (memdev_root) {
1769 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1771 if (hpsize == LONG_MAX) {
1772 /* No additional memory regions found ==> Report main RAM page size */
1773 return mainrampagesize;
1776 /* If NUMA is disabled or the NUMA nodes are not backed with a
1777 * memory-backend, then there is at least one node using "normal" RAM,
1778 * so if its page size is smaller we have got to report that size instead.
1780 if (hpsize > mainrampagesize &&
1781 (ms->numa_state == NULL ||
1782 ms->numa_state->num_nodes == 0 ||
1783 ms->numa_state->nodes[0].node_memdev == NULL)) {
1784 static bool warned;
1785 if (!warned) {
1786 error_report("Huge page support disabled (n/a for main memory).");
1787 warned = true;
1789 return mainrampagesize;
1792 return hpsize;
1795 long qemu_maxrampagesize(void)
1797 long pagesize = qemu_mempath_getpagesize(mem_path);
1798 Object *memdev_root = object_resolve_path("/objects", NULL);
1800 if (memdev_root) {
1801 object_child_foreach(memdev_root, find_max_backend_pagesize,
1802 &pagesize);
1804 return pagesize;
1806 #else
1807 long qemu_minrampagesize(void)
1809 return getpagesize();
1811 long qemu_maxrampagesize(void)
1813 return getpagesize();
1815 #endif
1817 #ifdef CONFIG_POSIX
1818 static int64_t get_file_size(int fd)
1820 int64_t size = lseek(fd, 0, SEEK_END);
1821 if (size < 0) {
1822 return -errno;
1824 return size;
1827 static int file_ram_open(const char *path,
1828 const char *region_name,
1829 bool *created,
1830 Error **errp)
1832 char *filename;
1833 char *sanitized_name;
1834 char *c;
1835 int fd = -1;
1837 *created = false;
1838 for (;;) {
1839 fd = open(path, O_RDWR);
1840 if (fd >= 0) {
1841 /* @path names an existing file, use it */
1842 break;
1844 if (errno == ENOENT) {
1845 /* @path names a file that doesn't exist, create it */
1846 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1847 if (fd >= 0) {
1848 *created = true;
1849 break;
1851 } else if (errno == EISDIR) {
1852 /* @path names a directory, create a file there */
1853 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1854 sanitized_name = g_strdup(region_name);
1855 for (c = sanitized_name; *c != '\0'; c++) {
1856 if (*c == '/') {
1857 *c = '_';
1861 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1862 sanitized_name);
1863 g_free(sanitized_name);
1865 fd = mkstemp(filename);
1866 if (fd >= 0) {
1867 unlink(filename);
1868 g_free(filename);
1869 break;
1871 g_free(filename);
1873 if (errno != EEXIST && errno != EINTR) {
1874 error_setg_errno(errp, errno,
1875 "can't open backing store %s for guest RAM",
1876 path);
1877 return -1;
1880 * Try again on EINTR and EEXIST. The latter happens when
1881 * something else creates the file between our two open().
1885 return fd;
1888 static void *file_ram_alloc(RAMBlock *block,
1889 ram_addr_t memory,
1890 int fd,
1891 bool truncate,
1892 Error **errp)
1894 MachineState *ms = MACHINE(qdev_get_machine());
1895 void *area;
1897 block->page_size = qemu_fd_getpagesize(fd);
1898 if (block->mr->align % block->page_size) {
1899 error_setg(errp, "alignment 0x%" PRIx64
1900 " must be multiples of page size 0x%zx",
1901 block->mr->align, block->page_size);
1902 return NULL;
1903 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1904 error_setg(errp, "alignment 0x%" PRIx64
1905 " must be a power of two", block->mr->align);
1906 return NULL;
1908 block->mr->align = MAX(block->page_size, block->mr->align);
1909 #if defined(__s390x__)
1910 if (kvm_enabled()) {
1911 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1913 #endif
1915 if (memory < block->page_size) {
1916 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1917 "or larger than page size 0x%zx",
1918 memory, block->page_size);
1919 return NULL;
1922 memory = ROUND_UP(memory, block->page_size);
1925 * ftruncate is not supported by hugetlbfs in older
1926 * hosts, so don't bother bailing out on errors.
1927 * If anything goes wrong with it under other filesystems,
1928 * mmap will fail.
1930 * Do not truncate the non-empty backend file to avoid corrupting
1931 * the existing data in the file. Disabling shrinking is not
1932 * enough. For example, the current vNVDIMM implementation stores
1933 * the guest NVDIMM labels at the end of the backend file. If the
1934 * backend file is later extended, QEMU will not be able to find
1935 * those labels. Therefore, extending the non-empty backend file
1936 * is disabled as well.
1938 if (truncate && ftruncate(fd, memory)) {
1939 perror("ftruncate");
1942 area = qemu_ram_mmap(fd, memory, block->mr->align,
1943 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1944 if (area == MAP_FAILED) {
1945 error_setg_errno(errp, errno,
1946 "unable to map backing store for guest RAM");
1947 return NULL;
1950 if (mem_prealloc) {
1951 os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1952 if (errp && *errp) {
1953 qemu_ram_munmap(fd, area, memory);
1954 return NULL;
1958 block->fd = fd;
1959 return area;
1961 #endif
1963 /* Allocate space within the ram_addr_t space that governs the
1964 * dirty bitmaps.
1965 * Called with the ramlist lock held.
1967 static ram_addr_t find_ram_offset(ram_addr_t size)
1969 RAMBlock *block, *next_block;
1970 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1972 assert(size != 0); /* it would hand out same offset multiple times */
1974 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1975 return 0;
1978 RAMBLOCK_FOREACH(block) {
1979 ram_addr_t candidate, next = RAM_ADDR_MAX;
1981 /* Align blocks to start on a 'long' in the bitmap
1982 * which makes the bitmap sync'ing take the fast path.
1984 candidate = block->offset + block->max_length;
1985 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1987 /* Search for the closest following block
1988 * and find the gap.
1990 RAMBLOCK_FOREACH(next_block) {
1991 if (next_block->offset >= candidate) {
1992 next = MIN(next, next_block->offset);
1996 /* If it fits remember our place and remember the size
1997 * of gap, but keep going so that we might find a smaller
1998 * gap to fill so avoiding fragmentation.
2000 if (next - candidate >= size && next - candidate < mingap) {
2001 offset = candidate;
2002 mingap = next - candidate;
2005 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
2008 if (offset == RAM_ADDR_MAX) {
2009 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2010 (uint64_t)size);
2011 abort();
2014 trace_find_ram_offset(size, offset);
2016 return offset;
2019 static unsigned long last_ram_page(void)
2021 RAMBlock *block;
2022 ram_addr_t last = 0;
2024 rcu_read_lock();
2025 RAMBLOCK_FOREACH(block) {
2026 last = MAX(last, block->offset + block->max_length);
2028 rcu_read_unlock();
2029 return last >> TARGET_PAGE_BITS;
2032 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2034 int ret;
2036 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2037 if (!machine_dump_guest_core(current_machine)) {
2038 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2039 if (ret) {
2040 perror("qemu_madvise");
2041 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2042 "but dump_guest_core=off specified\n");
2047 const char *qemu_ram_get_idstr(RAMBlock *rb)
2049 return rb->idstr;
2052 void *qemu_ram_get_host_addr(RAMBlock *rb)
2054 return rb->host;
2057 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2059 return rb->offset;
2062 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2064 return rb->used_length;
2067 bool qemu_ram_is_shared(RAMBlock *rb)
2069 return rb->flags & RAM_SHARED;
2072 /* Note: Only set at the start of postcopy */
2073 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2075 return rb->flags & RAM_UF_ZEROPAGE;
2078 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2080 rb->flags |= RAM_UF_ZEROPAGE;
2083 bool qemu_ram_is_migratable(RAMBlock *rb)
2085 return rb->flags & RAM_MIGRATABLE;
2088 void qemu_ram_set_migratable(RAMBlock *rb)
2090 rb->flags |= RAM_MIGRATABLE;
2093 void qemu_ram_unset_migratable(RAMBlock *rb)
2095 rb->flags &= ~RAM_MIGRATABLE;
2098 /* Called with iothread lock held. */
2099 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2101 RAMBlock *block;
2103 assert(new_block);
2104 assert(!new_block->idstr[0]);
2106 if (dev) {
2107 char *id = qdev_get_dev_path(dev);
2108 if (id) {
2109 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2110 g_free(id);
2113 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2115 rcu_read_lock();
2116 RAMBLOCK_FOREACH(block) {
2117 if (block != new_block &&
2118 !strcmp(block->idstr, new_block->idstr)) {
2119 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2120 new_block->idstr);
2121 abort();
2124 rcu_read_unlock();
2127 /* Called with iothread lock held. */
2128 void qemu_ram_unset_idstr(RAMBlock *block)
2130 /* FIXME: arch_init.c assumes that this is not called throughout
2131 * migration. Ignore the problem since hot-unplug during migration
2132 * does not work anyway.
2134 if (block) {
2135 memset(block->idstr, 0, sizeof(block->idstr));
2139 size_t qemu_ram_pagesize(RAMBlock *rb)
2141 return rb->page_size;
2144 /* Returns the largest size of page in use */
2145 size_t qemu_ram_pagesize_largest(void)
2147 RAMBlock *block;
2148 size_t largest = 0;
2150 RAMBLOCK_FOREACH(block) {
2151 largest = MAX(largest, qemu_ram_pagesize(block));
2154 return largest;
2157 static int memory_try_enable_merging(void *addr, size_t len)
2159 if (!machine_mem_merge(current_machine)) {
2160 /* disabled by the user */
2161 return 0;
2164 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2167 /* Only legal before guest might have detected the memory size: e.g. on
2168 * incoming migration, or right after reset.
2170 * As memory core doesn't know how is memory accessed, it is up to
2171 * resize callback to update device state and/or add assertions to detect
2172 * misuse, if necessary.
2174 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2176 assert(block);
2178 newsize = HOST_PAGE_ALIGN(newsize);
2180 if (block->used_length == newsize) {
2181 return 0;
2184 if (!(block->flags & RAM_RESIZEABLE)) {
2185 error_setg_errno(errp, EINVAL,
2186 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2187 " in != 0x" RAM_ADDR_FMT, block->idstr,
2188 newsize, block->used_length);
2189 return -EINVAL;
2192 if (block->max_length < newsize) {
2193 error_setg_errno(errp, EINVAL,
2194 "Length too large: %s: 0x" RAM_ADDR_FMT
2195 " > 0x" RAM_ADDR_FMT, block->idstr,
2196 newsize, block->max_length);
2197 return -EINVAL;
2200 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2201 block->used_length = newsize;
2202 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2203 DIRTY_CLIENTS_ALL);
2204 memory_region_set_size(block->mr, newsize);
2205 if (block->resized) {
2206 block->resized(block->idstr, newsize, block->host);
2208 return 0;
2211 /* Called with ram_list.mutex held */
2212 static void dirty_memory_extend(ram_addr_t old_ram_size,
2213 ram_addr_t new_ram_size)
2215 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2216 DIRTY_MEMORY_BLOCK_SIZE);
2217 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2218 DIRTY_MEMORY_BLOCK_SIZE);
2219 int i;
2221 /* Only need to extend if block count increased */
2222 if (new_num_blocks <= old_num_blocks) {
2223 return;
2226 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2227 DirtyMemoryBlocks *old_blocks;
2228 DirtyMemoryBlocks *new_blocks;
2229 int j;
2231 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2232 new_blocks = g_malloc(sizeof(*new_blocks) +
2233 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2235 if (old_num_blocks) {
2236 memcpy(new_blocks->blocks, old_blocks->blocks,
2237 old_num_blocks * sizeof(old_blocks->blocks[0]));
2240 for (j = old_num_blocks; j < new_num_blocks; j++) {
2241 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2244 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2246 if (old_blocks) {
2247 g_free_rcu(old_blocks, rcu);
2252 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2254 RAMBlock *block;
2255 RAMBlock *last_block = NULL;
2256 ram_addr_t old_ram_size, new_ram_size;
2257 Error *err = NULL;
2259 old_ram_size = last_ram_page();
2261 qemu_mutex_lock_ramlist();
2262 new_block->offset = find_ram_offset(new_block->max_length);
2264 if (!new_block->host) {
2265 if (xen_enabled()) {
2266 xen_ram_alloc(new_block->offset, new_block->max_length,
2267 new_block->mr, &err);
2268 if (err) {
2269 error_propagate(errp, err);
2270 qemu_mutex_unlock_ramlist();
2271 return;
2273 } else {
2274 new_block->host = phys_mem_alloc(new_block->max_length,
2275 &new_block->mr->align, shared);
2276 if (!new_block->host) {
2277 error_setg_errno(errp, errno,
2278 "cannot set up guest memory '%s'",
2279 memory_region_name(new_block->mr));
2280 qemu_mutex_unlock_ramlist();
2281 return;
2283 memory_try_enable_merging(new_block->host, new_block->max_length);
2287 new_ram_size = MAX(old_ram_size,
2288 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2289 if (new_ram_size > old_ram_size) {
2290 dirty_memory_extend(old_ram_size, new_ram_size);
2292 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2293 * QLIST (which has an RCU-friendly variant) does not have insertion at
2294 * tail, so save the last element in last_block.
2296 RAMBLOCK_FOREACH(block) {
2297 last_block = block;
2298 if (block->max_length < new_block->max_length) {
2299 break;
2302 if (block) {
2303 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2304 } else if (last_block) {
2305 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2306 } else { /* list is empty */
2307 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2309 ram_list.mru_block = NULL;
2311 /* Write list before version */
2312 smp_wmb();
2313 ram_list.version++;
2314 qemu_mutex_unlock_ramlist();
2316 cpu_physical_memory_set_dirty_range(new_block->offset,
2317 new_block->used_length,
2318 DIRTY_CLIENTS_ALL);
2320 if (new_block->host) {
2321 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2322 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2323 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2324 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2325 ram_block_notify_add(new_block->host, new_block->max_length);
2329 #ifdef CONFIG_POSIX
2330 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2331 uint32_t ram_flags, int fd,
2332 Error **errp)
2334 RAMBlock *new_block;
2335 Error *local_err = NULL;
2336 int64_t file_size;
2338 /* Just support these ram flags by now. */
2339 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2341 if (xen_enabled()) {
2342 error_setg(errp, "-mem-path not supported with Xen");
2343 return NULL;
2346 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2347 error_setg(errp,
2348 "host lacks kvm mmu notifiers, -mem-path unsupported");
2349 return NULL;
2352 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2354 * file_ram_alloc() needs to allocate just like
2355 * phys_mem_alloc, but we haven't bothered to provide
2356 * a hook there.
2358 error_setg(errp,
2359 "-mem-path not supported with this accelerator");
2360 return NULL;
2363 size = HOST_PAGE_ALIGN(size);
2364 file_size = get_file_size(fd);
2365 if (file_size > 0 && file_size < size) {
2366 error_setg(errp, "backing store %s size 0x%" PRIx64
2367 " does not match 'size' option 0x" RAM_ADDR_FMT,
2368 mem_path, file_size, size);
2369 return NULL;
2372 new_block = g_malloc0(sizeof(*new_block));
2373 new_block->mr = mr;
2374 new_block->used_length = size;
2375 new_block->max_length = size;
2376 new_block->flags = ram_flags;
2377 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2378 if (!new_block->host) {
2379 g_free(new_block);
2380 return NULL;
2383 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2384 if (local_err) {
2385 g_free(new_block);
2386 error_propagate(errp, local_err);
2387 return NULL;
2389 return new_block;
2394 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2395 uint32_t ram_flags, const char *mem_path,
2396 Error **errp)
2398 int fd;
2399 bool created;
2400 RAMBlock *block;
2402 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2403 if (fd < 0) {
2404 return NULL;
2407 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2408 if (!block) {
2409 if (created) {
2410 unlink(mem_path);
2412 close(fd);
2413 return NULL;
2416 return block;
2418 #endif
2420 static
2421 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2422 void (*resized)(const char*,
2423 uint64_t length,
2424 void *host),
2425 void *host, bool resizeable, bool share,
2426 MemoryRegion *mr, Error **errp)
2428 RAMBlock *new_block;
2429 Error *local_err = NULL;
2431 size = HOST_PAGE_ALIGN(size);
2432 max_size = HOST_PAGE_ALIGN(max_size);
2433 new_block = g_malloc0(sizeof(*new_block));
2434 new_block->mr = mr;
2435 new_block->resized = resized;
2436 new_block->used_length = size;
2437 new_block->max_length = max_size;
2438 assert(max_size >= size);
2439 new_block->fd = -1;
2440 new_block->page_size = getpagesize();
2441 new_block->host = host;
2442 if (host) {
2443 new_block->flags |= RAM_PREALLOC;
2445 if (resizeable) {
2446 new_block->flags |= RAM_RESIZEABLE;
2448 ram_block_add(new_block, &local_err, share);
2449 if (local_err) {
2450 g_free(new_block);
2451 error_propagate(errp, local_err);
2452 return NULL;
2454 return new_block;
2457 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2458 MemoryRegion *mr, Error **errp)
2460 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2461 false, mr, errp);
2464 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2465 MemoryRegion *mr, Error **errp)
2467 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2468 share, mr, errp);
2471 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2472 void (*resized)(const char*,
2473 uint64_t length,
2474 void *host),
2475 MemoryRegion *mr, Error **errp)
2477 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2478 false, mr, errp);
2481 static void reclaim_ramblock(RAMBlock *block)
2483 if (block->flags & RAM_PREALLOC) {
2485 } else if (xen_enabled()) {
2486 xen_invalidate_map_cache_entry(block->host);
2487 #ifndef _WIN32
2488 } else if (block->fd >= 0) {
2489 qemu_ram_munmap(block->fd, block->host, block->max_length);
2490 close(block->fd);
2491 #endif
2492 } else {
2493 qemu_anon_ram_free(block->host, block->max_length);
2495 g_free(block);
2498 void qemu_ram_free(RAMBlock *block)
2500 if (!block) {
2501 return;
2504 if (block->host) {
2505 ram_block_notify_remove(block->host, block->max_length);
2508 qemu_mutex_lock_ramlist();
2509 QLIST_REMOVE_RCU(block, next);
2510 ram_list.mru_block = NULL;
2511 /* Write list before version */
2512 smp_wmb();
2513 ram_list.version++;
2514 call_rcu(block, reclaim_ramblock, rcu);
2515 qemu_mutex_unlock_ramlist();
2518 #ifndef _WIN32
2519 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2521 RAMBlock *block;
2522 ram_addr_t offset;
2523 int flags;
2524 void *area, *vaddr;
2526 RAMBLOCK_FOREACH(block) {
2527 offset = addr - block->offset;
2528 if (offset < block->max_length) {
2529 vaddr = ramblock_ptr(block, offset);
2530 if (block->flags & RAM_PREALLOC) {
2532 } else if (xen_enabled()) {
2533 abort();
2534 } else {
2535 flags = MAP_FIXED;
2536 if (block->fd >= 0) {
2537 flags |= (block->flags & RAM_SHARED ?
2538 MAP_SHARED : MAP_PRIVATE);
2539 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2540 flags, block->fd, offset);
2541 } else {
2543 * Remap needs to match alloc. Accelerators that
2544 * set phys_mem_alloc never remap. If they did,
2545 * we'd need a remap hook here.
2547 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2549 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2550 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2551 flags, -1, 0);
2553 if (area != vaddr) {
2554 error_report("Could not remap addr: "
2555 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2556 length, addr);
2557 exit(1);
2559 memory_try_enable_merging(vaddr, length);
2560 qemu_ram_setup_dump(vaddr, length);
2565 #endif /* !_WIN32 */
2567 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2568 * This should not be used for general purpose DMA. Use address_space_map
2569 * or address_space_rw instead. For local memory (e.g. video ram) that the
2570 * device owns, use memory_region_get_ram_ptr.
2572 * Called within RCU critical section.
2574 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2576 RAMBlock *block = ram_block;
2578 if (block == NULL) {
2579 block = qemu_get_ram_block(addr);
2580 addr -= block->offset;
2583 if (xen_enabled() && block->host == NULL) {
2584 /* We need to check if the requested address is in the RAM
2585 * because we don't want to map the entire memory in QEMU.
2586 * In that case just map until the end of the page.
2588 if (block->offset == 0) {
2589 return xen_map_cache(addr, 0, 0, false);
2592 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2594 return ramblock_ptr(block, addr);
2597 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2598 * but takes a size argument.
2600 * Called within RCU critical section.
2602 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2603 hwaddr *size, bool lock)
2605 RAMBlock *block = ram_block;
2606 if (*size == 0) {
2607 return NULL;
2610 if (block == NULL) {
2611 block = qemu_get_ram_block(addr);
2612 addr -= block->offset;
2614 *size = MIN(*size, block->max_length - addr);
2616 if (xen_enabled() && block->host == NULL) {
2617 /* We need to check if the requested address is in the RAM
2618 * because we don't want to map the entire memory in QEMU.
2619 * In that case just map the requested area.
2621 if (block->offset == 0) {
2622 return xen_map_cache(addr, *size, lock, lock);
2625 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2628 return ramblock_ptr(block, addr);
2631 /* Return the offset of a hostpointer within a ramblock */
2632 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2634 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2635 assert((uintptr_t)host >= (uintptr_t)rb->host);
2636 assert(res < rb->max_length);
2638 return res;
2642 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2643 * in that RAMBlock.
2645 * ptr: Host pointer to look up
2646 * round_offset: If true round the result offset down to a page boundary
2647 * *ram_addr: set to result ram_addr
2648 * *offset: set to result offset within the RAMBlock
2650 * Returns: RAMBlock (or NULL if not found)
2652 * By the time this function returns, the returned pointer is not protected
2653 * by RCU anymore. If the caller is not within an RCU critical section and
2654 * does not hold the iothread lock, it must have other means of protecting the
2655 * pointer, such as a reference to the region that includes the incoming
2656 * ram_addr_t.
2658 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2659 ram_addr_t *offset)
2661 RAMBlock *block;
2662 uint8_t *host = ptr;
2664 if (xen_enabled()) {
2665 ram_addr_t ram_addr;
2666 rcu_read_lock();
2667 ram_addr = xen_ram_addr_from_mapcache(ptr);
2668 block = qemu_get_ram_block(ram_addr);
2669 if (block) {
2670 *offset = ram_addr - block->offset;
2672 rcu_read_unlock();
2673 return block;
2676 rcu_read_lock();
2677 block = atomic_rcu_read(&ram_list.mru_block);
2678 if (block && block->host && host - block->host < block->max_length) {
2679 goto found;
2682 RAMBLOCK_FOREACH(block) {
2683 /* This case append when the block is not mapped. */
2684 if (block->host == NULL) {
2685 continue;
2687 if (host - block->host < block->max_length) {
2688 goto found;
2692 rcu_read_unlock();
2693 return NULL;
2695 found:
2696 *offset = (host - block->host);
2697 if (round_offset) {
2698 *offset &= TARGET_PAGE_MASK;
2700 rcu_read_unlock();
2701 return block;
2705 * Finds the named RAMBlock
2707 * name: The name of RAMBlock to find
2709 * Returns: RAMBlock (or NULL if not found)
2711 RAMBlock *qemu_ram_block_by_name(const char *name)
2713 RAMBlock *block;
2715 RAMBLOCK_FOREACH(block) {
2716 if (!strcmp(name, block->idstr)) {
2717 return block;
2721 return NULL;
2724 /* Some of the softmmu routines need to translate from a host pointer
2725 (typically a TLB entry) back to a ram offset. */
2726 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2728 RAMBlock *block;
2729 ram_addr_t offset;
2731 block = qemu_ram_block_from_host(ptr, false, &offset);
2732 if (!block) {
2733 return RAM_ADDR_INVALID;
2736 return block->offset + offset;
2739 /* Called within RCU critical section. */
2740 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2741 CPUState *cpu,
2742 vaddr mem_vaddr,
2743 ram_addr_t ram_addr,
2744 unsigned size)
2746 ndi->cpu = cpu;
2747 ndi->ram_addr = ram_addr;
2748 ndi->mem_vaddr = mem_vaddr;
2749 ndi->size = size;
2750 ndi->pages = NULL;
2752 assert(tcg_enabled());
2753 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2754 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2755 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2759 /* Called within RCU critical section. */
2760 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2762 if (ndi->pages) {
2763 assert(tcg_enabled());
2764 page_collection_unlock(ndi->pages);
2765 ndi->pages = NULL;
2768 /* Set both VGA and migration bits for simplicity and to remove
2769 * the notdirty callback faster.
2771 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2772 DIRTY_CLIENTS_NOCODE);
2773 /* we remove the notdirty callback only if the code has been
2774 flushed */
2775 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2776 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2780 /* Called within RCU critical section. */
2781 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2782 uint64_t val, unsigned size)
2784 NotDirtyInfo ndi;
2786 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2787 ram_addr, size);
2789 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2790 memory_notdirty_write_complete(&ndi);
2793 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2794 unsigned size, bool is_write,
2795 MemTxAttrs attrs)
2797 return is_write;
2800 static const MemoryRegionOps notdirty_mem_ops = {
2801 .write = notdirty_mem_write,
2802 .valid.accepts = notdirty_mem_accepts,
2803 .endianness = DEVICE_NATIVE_ENDIAN,
2804 .valid = {
2805 .min_access_size = 1,
2806 .max_access_size = 8,
2807 .unaligned = false,
2809 .impl = {
2810 .min_access_size = 1,
2811 .max_access_size = 8,
2812 .unaligned = false,
2816 /* Generate a debug exception if a watchpoint has been hit. */
2817 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2819 CPUState *cpu = current_cpu;
2820 CPUClass *cc = CPU_GET_CLASS(cpu);
2821 target_ulong vaddr;
2822 CPUWatchpoint *wp;
2824 assert(tcg_enabled());
2825 if (cpu->watchpoint_hit) {
2826 /* We re-entered the check after replacing the TB. Now raise
2827 * the debug interrupt so that is will trigger after the
2828 * current instruction. */
2829 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2830 return;
2832 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2833 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2834 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2835 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2836 && (wp->flags & flags)) {
2837 if (flags == BP_MEM_READ) {
2838 wp->flags |= BP_WATCHPOINT_HIT_READ;
2839 } else {
2840 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2842 wp->hitaddr = vaddr;
2843 wp->hitattrs = attrs;
2844 if (!cpu->watchpoint_hit) {
2845 if (wp->flags & BP_CPU &&
2846 !cc->debug_check_watchpoint(cpu, wp)) {
2847 wp->flags &= ~BP_WATCHPOINT_HIT;
2848 continue;
2850 cpu->watchpoint_hit = wp;
2852 mmap_lock();
2853 tb_check_watchpoint(cpu);
2854 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2855 cpu->exception_index = EXCP_DEBUG;
2856 mmap_unlock();
2857 cpu_loop_exit(cpu);
2858 } else {
2859 /* Force execution of one insn next time. */
2860 cpu->cflags_next_tb = 1 | curr_cflags();
2861 mmap_unlock();
2862 cpu_loop_exit_noexc(cpu);
2865 } else {
2866 wp->flags &= ~BP_WATCHPOINT_HIT;
2871 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2872 so these check for a hit then pass through to the normal out-of-line
2873 phys routines. */
2874 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2875 unsigned size, MemTxAttrs attrs)
2877 MemTxResult res;
2878 uint64_t data;
2879 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2880 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2882 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2883 switch (size) {
2884 case 1:
2885 data = address_space_ldub(as, addr, attrs, &res);
2886 break;
2887 case 2:
2888 data = address_space_lduw(as, addr, attrs, &res);
2889 break;
2890 case 4:
2891 data = address_space_ldl(as, addr, attrs, &res);
2892 break;
2893 case 8:
2894 data = address_space_ldq(as, addr, attrs, &res);
2895 break;
2896 default: abort();
2898 *pdata = data;
2899 return res;
2902 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2903 uint64_t val, unsigned size,
2904 MemTxAttrs attrs)
2906 MemTxResult res;
2907 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2908 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2910 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2911 switch (size) {
2912 case 1:
2913 address_space_stb(as, addr, val, attrs, &res);
2914 break;
2915 case 2:
2916 address_space_stw(as, addr, val, attrs, &res);
2917 break;
2918 case 4:
2919 address_space_stl(as, addr, val, attrs, &res);
2920 break;
2921 case 8:
2922 address_space_stq(as, addr, val, attrs, &res);
2923 break;
2924 default: abort();
2926 return res;
2929 static const MemoryRegionOps watch_mem_ops = {
2930 .read_with_attrs = watch_mem_read,
2931 .write_with_attrs = watch_mem_write,
2932 .endianness = DEVICE_NATIVE_ENDIAN,
2933 .valid = {
2934 .min_access_size = 1,
2935 .max_access_size = 8,
2936 .unaligned = false,
2938 .impl = {
2939 .min_access_size = 1,
2940 .max_access_size = 8,
2941 .unaligned = false,
2945 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2946 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2947 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2948 const uint8_t *buf, hwaddr len);
2949 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2950 bool is_write, MemTxAttrs attrs);
2952 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2953 unsigned len, MemTxAttrs attrs)
2955 subpage_t *subpage = opaque;
2956 uint8_t buf[8];
2957 MemTxResult res;
2959 #if defined(DEBUG_SUBPAGE)
2960 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2961 subpage, len, addr);
2962 #endif
2963 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2964 if (res) {
2965 return res;
2967 *data = ldn_p(buf, len);
2968 return MEMTX_OK;
2971 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2972 uint64_t value, unsigned len, MemTxAttrs attrs)
2974 subpage_t *subpage = opaque;
2975 uint8_t buf[8];
2977 #if defined(DEBUG_SUBPAGE)
2978 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2979 " value %"PRIx64"\n",
2980 __func__, subpage, len, addr, value);
2981 #endif
2982 stn_p(buf, len, value);
2983 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2986 static bool subpage_accepts(void *opaque, hwaddr addr,
2987 unsigned len, bool is_write,
2988 MemTxAttrs attrs)
2990 subpage_t *subpage = opaque;
2991 #if defined(DEBUG_SUBPAGE)
2992 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2993 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2994 #endif
2996 return flatview_access_valid(subpage->fv, addr + subpage->base,
2997 len, is_write, attrs);
3000 static const MemoryRegionOps subpage_ops = {
3001 .read_with_attrs = subpage_read,
3002 .write_with_attrs = subpage_write,
3003 .impl.min_access_size = 1,
3004 .impl.max_access_size = 8,
3005 .valid.min_access_size = 1,
3006 .valid.max_access_size = 8,
3007 .valid.accepts = subpage_accepts,
3008 .endianness = DEVICE_NATIVE_ENDIAN,
3011 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3012 uint16_t section)
3014 int idx, eidx;
3016 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3017 return -1;
3018 idx = SUBPAGE_IDX(start);
3019 eidx = SUBPAGE_IDX(end);
3020 #if defined(DEBUG_SUBPAGE)
3021 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
3022 __func__, mmio, start, end, idx, eidx, section);
3023 #endif
3024 for (; idx <= eidx; idx++) {
3025 mmio->sub_section[idx] = section;
3028 return 0;
3031 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
3033 subpage_t *mmio;
3035 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
3036 mmio->fv = fv;
3037 mmio->base = base;
3038 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
3039 NULL, TARGET_PAGE_SIZE);
3040 mmio->iomem.subpage = true;
3041 #if defined(DEBUG_SUBPAGE)
3042 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
3043 mmio, base, TARGET_PAGE_SIZE);
3044 #endif
3045 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
3047 return mmio;
3050 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
3052 assert(fv);
3053 MemoryRegionSection section = {
3054 .fv = fv,
3055 .mr = mr,
3056 .offset_within_address_space = 0,
3057 .offset_within_region = 0,
3058 .size = int128_2_64(),
3061 return phys_section_add(map, &section);
3064 static void readonly_mem_write(void *opaque, hwaddr addr,
3065 uint64_t val, unsigned size)
3067 /* Ignore any write to ROM. */
3070 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
3071 unsigned size, bool is_write,
3072 MemTxAttrs attrs)
3074 return is_write;
3077 /* This will only be used for writes, because reads are special cased
3078 * to directly access the underlying host ram.
3080 static const MemoryRegionOps readonly_mem_ops = {
3081 .write = readonly_mem_write,
3082 .valid.accepts = readonly_mem_accepts,
3083 .endianness = DEVICE_NATIVE_ENDIAN,
3084 .valid = {
3085 .min_access_size = 1,
3086 .max_access_size = 8,
3087 .unaligned = false,
3089 .impl = {
3090 .min_access_size = 1,
3091 .max_access_size = 8,
3092 .unaligned = false,
3096 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3097 hwaddr index, MemTxAttrs attrs)
3099 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3100 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3101 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3102 MemoryRegionSection *sections = d->map.sections;
3104 return &sections[index & ~TARGET_PAGE_MASK];
3107 static void io_mem_init(void)
3109 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3110 NULL, NULL, UINT64_MAX);
3111 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3112 NULL, UINT64_MAX);
3114 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3115 * which can be called without the iothread mutex.
3117 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3118 NULL, UINT64_MAX);
3119 memory_region_clear_global_locking(&io_mem_notdirty);
3121 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3122 NULL, UINT64_MAX);
3125 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3127 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3128 uint16_t n;
3130 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3131 assert(n == PHYS_SECTION_UNASSIGNED);
3132 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3133 assert(n == PHYS_SECTION_NOTDIRTY);
3134 n = dummy_section(&d->map, fv, &io_mem_rom);
3135 assert(n == PHYS_SECTION_ROM);
3136 n = dummy_section(&d->map, fv, &io_mem_watch);
3137 assert(n == PHYS_SECTION_WATCH);
3139 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3141 return d;
3144 void address_space_dispatch_free(AddressSpaceDispatch *d)
3146 phys_sections_free(&d->map);
3147 g_free(d);
3150 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
3154 static void tcg_log_global_after_sync(MemoryListener *listener)
3156 CPUAddressSpace *cpuas;
3158 /* Wait for the CPU to end the current TB. This avoids the following
3159 * incorrect race:
3161 * vCPU migration
3162 * ---------------------- -------------------------
3163 * TLB check -> slow path
3164 * notdirty_mem_write
3165 * write to RAM
3166 * mark dirty
3167 * clear dirty flag
3168 * TLB check -> fast path
3169 * read memory
3170 * write to RAM
3172 * by pushing the migration thread's memory read after the vCPU thread has
3173 * written the memory.
3175 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3176 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
3179 static void tcg_commit(MemoryListener *listener)
3181 CPUAddressSpace *cpuas;
3182 AddressSpaceDispatch *d;
3184 assert(tcg_enabled());
3185 /* since each CPU stores ram addresses in its TLB cache, we must
3186 reset the modified entries */
3187 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3188 cpu_reloading_memory_map();
3189 /* The CPU and TLB are protected by the iothread lock.
3190 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3191 * may have split the RCU critical section.
3193 d = address_space_to_dispatch(cpuas->as);
3194 atomic_rcu_set(&cpuas->memory_dispatch, d);
3195 tlb_flush(cpuas->cpu);
3198 static void memory_map_init(void)
3200 system_memory = g_malloc(sizeof(*system_memory));
3202 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3203 address_space_init(&address_space_memory, system_memory, "memory");
3205 system_io = g_malloc(sizeof(*system_io));
3206 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3207 65536);
3208 address_space_init(&address_space_io, system_io, "I/O");
3211 MemoryRegion *get_system_memory(void)
3213 return system_memory;
3216 MemoryRegion *get_system_io(void)
3218 return system_io;
3221 #endif /* !defined(CONFIG_USER_ONLY) */
3223 /* physical memory access (slow version, mainly for debug) */
3224 #if defined(CONFIG_USER_ONLY)
3225 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3226 uint8_t *buf, target_ulong len, int is_write)
3228 int flags;
3229 target_ulong l, page;
3230 void * p;
3232 while (len > 0) {
3233 page = addr & TARGET_PAGE_MASK;
3234 l = (page + TARGET_PAGE_SIZE) - addr;
3235 if (l > len)
3236 l = len;
3237 flags = page_get_flags(page);
3238 if (!(flags & PAGE_VALID))
3239 return -1;
3240 if (is_write) {
3241 if (!(flags & PAGE_WRITE))
3242 return -1;
3243 /* XXX: this code should not depend on lock_user */
3244 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3245 return -1;
3246 memcpy(p, buf, l);
3247 unlock_user(p, addr, l);
3248 } else {
3249 if (!(flags & PAGE_READ))
3250 return -1;
3251 /* XXX: this code should not depend on lock_user */
3252 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3253 return -1;
3254 memcpy(buf, p, l);
3255 unlock_user(p, addr, 0);
3257 len -= l;
3258 buf += l;
3259 addr += l;
3261 return 0;
3264 #else
3266 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3267 hwaddr length)
3269 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3270 addr += memory_region_get_ram_addr(mr);
3272 /* No early return if dirty_log_mask is or becomes 0, because
3273 * cpu_physical_memory_set_dirty_range will still call
3274 * xen_modified_memory.
3276 if (dirty_log_mask) {
3277 dirty_log_mask =
3278 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3280 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3281 assert(tcg_enabled());
3282 tb_invalidate_phys_range(addr, addr + length);
3283 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3285 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3288 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3291 * In principle this function would work on other memory region types too,
3292 * but the ROM device use case is the only one where this operation is
3293 * necessary. Other memory regions should use the
3294 * address_space_read/write() APIs.
3296 assert(memory_region_is_romd(mr));
3298 invalidate_and_set_dirty(mr, addr, size);
3301 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3303 unsigned access_size_max = mr->ops->valid.max_access_size;
3305 /* Regions are assumed to support 1-4 byte accesses unless
3306 otherwise specified. */
3307 if (access_size_max == 0) {
3308 access_size_max = 4;
3311 /* Bound the maximum access by the alignment of the address. */
3312 if (!mr->ops->impl.unaligned) {
3313 unsigned align_size_max = addr & -addr;
3314 if (align_size_max != 0 && align_size_max < access_size_max) {
3315 access_size_max = align_size_max;
3319 /* Don't attempt accesses larger than the maximum. */
3320 if (l > access_size_max) {
3321 l = access_size_max;
3323 l = pow2floor(l);
3325 return l;
3328 static bool prepare_mmio_access(MemoryRegion *mr)
3330 bool unlocked = !qemu_mutex_iothread_locked();
3331 bool release_lock = false;
3333 if (unlocked && mr->global_locking) {
3334 qemu_mutex_lock_iothread();
3335 unlocked = false;
3336 release_lock = true;
3338 if (mr->flush_coalesced_mmio) {
3339 if (unlocked) {
3340 qemu_mutex_lock_iothread();
3342 qemu_flush_coalesced_mmio_buffer();
3343 if (unlocked) {
3344 qemu_mutex_unlock_iothread();
3348 return release_lock;
3351 /* Called within RCU critical section. */
3352 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3353 MemTxAttrs attrs,
3354 const uint8_t *buf,
3355 hwaddr len, hwaddr addr1,
3356 hwaddr l, MemoryRegion *mr)
3358 uint8_t *ptr;
3359 uint64_t val;
3360 MemTxResult result = MEMTX_OK;
3361 bool release_lock = false;
3363 for (;;) {
3364 if (!memory_access_is_direct(mr, true)) {
3365 release_lock |= prepare_mmio_access(mr);
3366 l = memory_access_size(mr, l, addr1);
3367 /* XXX: could force current_cpu to NULL to avoid
3368 potential bugs */
3369 val = ldn_p(buf, l);
3370 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3371 } else {
3372 /* RAM case */
3373 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3374 memcpy(ptr, buf, l);
3375 invalidate_and_set_dirty(mr, addr1, l);
3378 if (release_lock) {
3379 qemu_mutex_unlock_iothread();
3380 release_lock = false;
3383 len -= l;
3384 buf += l;
3385 addr += l;
3387 if (!len) {
3388 break;
3391 l = len;
3392 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3395 return result;
3398 /* Called from RCU critical section. */
3399 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3400 const uint8_t *buf, hwaddr len)
3402 hwaddr l;
3403 hwaddr addr1;
3404 MemoryRegion *mr;
3405 MemTxResult result = MEMTX_OK;
3407 l = len;
3408 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3409 result = flatview_write_continue(fv, addr, attrs, buf, len,
3410 addr1, l, mr);
3412 return result;
3415 /* Called within RCU critical section. */
3416 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3417 MemTxAttrs attrs, uint8_t *buf,
3418 hwaddr len, hwaddr addr1, hwaddr l,
3419 MemoryRegion *mr)
3421 uint8_t *ptr;
3422 uint64_t val;
3423 MemTxResult result = MEMTX_OK;
3424 bool release_lock = false;
3426 for (;;) {
3427 if (!memory_access_is_direct(mr, false)) {
3428 /* I/O case */
3429 release_lock |= prepare_mmio_access(mr);
3430 l = memory_access_size(mr, l, addr1);
3431 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3432 stn_p(buf, l, val);
3433 } else {
3434 /* RAM case */
3435 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3436 memcpy(buf, ptr, l);
3439 if (release_lock) {
3440 qemu_mutex_unlock_iothread();
3441 release_lock = false;
3444 len -= l;
3445 buf += l;
3446 addr += l;
3448 if (!len) {
3449 break;
3452 l = len;
3453 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3456 return result;
3459 /* Called from RCU critical section. */
3460 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3461 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3463 hwaddr l;
3464 hwaddr addr1;
3465 MemoryRegion *mr;
3467 l = len;
3468 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3469 return flatview_read_continue(fv, addr, attrs, buf, len,
3470 addr1, l, mr);
3473 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3474 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3476 MemTxResult result = MEMTX_OK;
3477 FlatView *fv;
3479 if (len > 0) {
3480 rcu_read_lock();
3481 fv = address_space_to_flatview(as);
3482 result = flatview_read(fv, addr, attrs, buf, len);
3483 rcu_read_unlock();
3486 return result;
3489 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3490 MemTxAttrs attrs,
3491 const uint8_t *buf, hwaddr len)
3493 MemTxResult result = MEMTX_OK;
3494 FlatView *fv;
3496 if (len > 0) {
3497 rcu_read_lock();
3498 fv = address_space_to_flatview(as);
3499 result = flatview_write(fv, addr, attrs, buf, len);
3500 rcu_read_unlock();
3503 return result;
3506 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3507 uint8_t *buf, hwaddr len, bool is_write)
3509 if (is_write) {
3510 return address_space_write(as, addr, attrs, buf, len);
3511 } else {
3512 return address_space_read_full(as, addr, attrs, buf, len);
3516 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3517 hwaddr len, int is_write)
3519 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3520 buf, len, is_write);
3523 enum write_rom_type {
3524 WRITE_DATA,
3525 FLUSH_CACHE,
3528 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3529 hwaddr addr,
3530 MemTxAttrs attrs,
3531 const uint8_t *buf,
3532 hwaddr len,
3533 enum write_rom_type type)
3535 hwaddr l;
3536 uint8_t *ptr;
3537 hwaddr addr1;
3538 MemoryRegion *mr;
3540 rcu_read_lock();
3541 while (len > 0) {
3542 l = len;
3543 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3545 if (!(memory_region_is_ram(mr) ||
3546 memory_region_is_romd(mr))) {
3547 l = memory_access_size(mr, l, addr1);
3548 } else {
3549 /* ROM/RAM case */
3550 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3551 switch (type) {
3552 case WRITE_DATA:
3553 memcpy(ptr, buf, l);
3554 invalidate_and_set_dirty(mr, addr1, l);
3555 break;
3556 case FLUSH_CACHE:
3557 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3558 break;
3561 len -= l;
3562 buf += l;
3563 addr += l;
3565 rcu_read_unlock();
3566 return MEMTX_OK;
3569 /* used for ROM loading : can write in RAM and ROM */
3570 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3571 MemTxAttrs attrs,
3572 const uint8_t *buf, hwaddr len)
3574 return address_space_write_rom_internal(as, addr, attrs,
3575 buf, len, WRITE_DATA);
3578 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3581 * This function should do the same thing as an icache flush that was
3582 * triggered from within the guest. For TCG we are always cache coherent,
3583 * so there is no need to flush anything. For KVM / Xen we need to flush
3584 * the host's instruction cache at least.
3586 if (tcg_enabled()) {
3587 return;
3590 address_space_write_rom_internal(&address_space_memory,
3591 start, MEMTXATTRS_UNSPECIFIED,
3592 NULL, len, FLUSH_CACHE);
3595 typedef struct {
3596 MemoryRegion *mr;
3597 void *buffer;
3598 hwaddr addr;
3599 hwaddr len;
3600 bool in_use;
3601 } BounceBuffer;
3603 static BounceBuffer bounce;
3605 typedef struct MapClient {
3606 QEMUBH *bh;
3607 QLIST_ENTRY(MapClient) link;
3608 } MapClient;
3610 QemuMutex map_client_list_lock;
3611 static QLIST_HEAD(, MapClient) map_client_list
3612 = QLIST_HEAD_INITIALIZER(map_client_list);
3614 static void cpu_unregister_map_client_do(MapClient *client)
3616 QLIST_REMOVE(client, link);
3617 g_free(client);
3620 static void cpu_notify_map_clients_locked(void)
3622 MapClient *client;
3624 while (!QLIST_EMPTY(&map_client_list)) {
3625 client = QLIST_FIRST(&map_client_list);
3626 qemu_bh_schedule(client->bh);
3627 cpu_unregister_map_client_do(client);
3631 void cpu_register_map_client(QEMUBH *bh)
3633 MapClient *client = g_malloc(sizeof(*client));
3635 qemu_mutex_lock(&map_client_list_lock);
3636 client->bh = bh;
3637 QLIST_INSERT_HEAD(&map_client_list, client, link);
3638 if (!atomic_read(&bounce.in_use)) {
3639 cpu_notify_map_clients_locked();
3641 qemu_mutex_unlock(&map_client_list_lock);
3644 void cpu_exec_init_all(void)
3646 qemu_mutex_init(&ram_list.mutex);
3647 /* The data structures we set up here depend on knowing the page size,
3648 * so no more changes can be made after this point.
3649 * In an ideal world, nothing we did before we had finished the
3650 * machine setup would care about the target page size, and we could
3651 * do this much later, rather than requiring board models to state
3652 * up front what their requirements are.
3654 finalize_target_page_bits();
3655 io_mem_init();
3656 memory_map_init();
3657 qemu_mutex_init(&map_client_list_lock);
3660 void cpu_unregister_map_client(QEMUBH *bh)
3662 MapClient *client;
3664 qemu_mutex_lock(&map_client_list_lock);
3665 QLIST_FOREACH(client, &map_client_list, link) {
3666 if (client->bh == bh) {
3667 cpu_unregister_map_client_do(client);
3668 break;
3671 qemu_mutex_unlock(&map_client_list_lock);
3674 static void cpu_notify_map_clients(void)
3676 qemu_mutex_lock(&map_client_list_lock);
3677 cpu_notify_map_clients_locked();
3678 qemu_mutex_unlock(&map_client_list_lock);
3681 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3682 bool is_write, MemTxAttrs attrs)
3684 MemoryRegion *mr;
3685 hwaddr l, xlat;
3687 while (len > 0) {
3688 l = len;
3689 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3690 if (!memory_access_is_direct(mr, is_write)) {
3691 l = memory_access_size(mr, l, addr);
3692 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3693 return false;
3697 len -= l;
3698 addr += l;
3700 return true;
3703 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3704 hwaddr len, bool is_write,
3705 MemTxAttrs attrs)
3707 FlatView *fv;
3708 bool result;
3710 rcu_read_lock();
3711 fv = address_space_to_flatview(as);
3712 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3713 rcu_read_unlock();
3714 return result;
3717 static hwaddr
3718 flatview_extend_translation(FlatView *fv, hwaddr addr,
3719 hwaddr target_len,
3720 MemoryRegion *mr, hwaddr base, hwaddr len,
3721 bool is_write, MemTxAttrs attrs)
3723 hwaddr done = 0;
3724 hwaddr xlat;
3725 MemoryRegion *this_mr;
3727 for (;;) {
3728 target_len -= len;
3729 addr += len;
3730 done += len;
3731 if (target_len == 0) {
3732 return done;
3735 len = target_len;
3736 this_mr = flatview_translate(fv, addr, &xlat,
3737 &len, is_write, attrs);
3738 if (this_mr != mr || xlat != base + done) {
3739 return done;
3744 /* Map a physical memory region into a host virtual address.
3745 * May map a subset of the requested range, given by and returned in *plen.
3746 * May return NULL if resources needed to perform the mapping are exhausted.
3747 * Use only for reads OR writes - not for read-modify-write operations.
3748 * Use cpu_register_map_client() to know when retrying the map operation is
3749 * likely to succeed.
3751 void *address_space_map(AddressSpace *as,
3752 hwaddr addr,
3753 hwaddr *plen,
3754 bool is_write,
3755 MemTxAttrs attrs)
3757 hwaddr len = *plen;
3758 hwaddr l, xlat;
3759 MemoryRegion *mr;
3760 void *ptr;
3761 FlatView *fv;
3763 if (len == 0) {
3764 return NULL;
3767 l = len;
3768 rcu_read_lock();
3769 fv = address_space_to_flatview(as);
3770 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3772 if (!memory_access_is_direct(mr, is_write)) {
3773 if (atomic_xchg(&bounce.in_use, true)) {
3774 rcu_read_unlock();
3775 return NULL;
3777 /* Avoid unbounded allocations */
3778 l = MIN(l, TARGET_PAGE_SIZE);
3779 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3780 bounce.addr = addr;
3781 bounce.len = l;
3783 memory_region_ref(mr);
3784 bounce.mr = mr;
3785 if (!is_write) {
3786 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3787 bounce.buffer, l);
3790 rcu_read_unlock();
3791 *plen = l;
3792 return bounce.buffer;
3796 memory_region_ref(mr);
3797 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3798 l, is_write, attrs);
3799 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3800 rcu_read_unlock();
3802 return ptr;
3805 /* Unmaps a memory region previously mapped by address_space_map().
3806 * Will also mark the memory as dirty if is_write == 1. access_len gives
3807 * the amount of memory that was actually read or written by the caller.
3809 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3810 int is_write, hwaddr access_len)
3812 if (buffer != bounce.buffer) {
3813 MemoryRegion *mr;
3814 ram_addr_t addr1;
3816 mr = memory_region_from_host(buffer, &addr1);
3817 assert(mr != NULL);
3818 if (is_write) {
3819 invalidate_and_set_dirty(mr, addr1, access_len);
3821 if (xen_enabled()) {
3822 xen_invalidate_map_cache_entry(buffer);
3824 memory_region_unref(mr);
3825 return;
3827 if (is_write) {
3828 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3829 bounce.buffer, access_len);
3831 qemu_vfree(bounce.buffer);
3832 bounce.buffer = NULL;
3833 memory_region_unref(bounce.mr);
3834 atomic_mb_set(&bounce.in_use, false);
3835 cpu_notify_map_clients();
3838 void *cpu_physical_memory_map(hwaddr addr,
3839 hwaddr *plen,
3840 int is_write)
3842 return address_space_map(&address_space_memory, addr, plen, is_write,
3843 MEMTXATTRS_UNSPECIFIED);
3846 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3847 int is_write, hwaddr access_len)
3849 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3852 #define ARG1_DECL AddressSpace *as
3853 #define ARG1 as
3854 #define SUFFIX
3855 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3856 #define RCU_READ_LOCK(...) rcu_read_lock()
3857 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3858 #include "memory_ldst.inc.c"
3860 int64_t address_space_cache_init(MemoryRegionCache *cache,
3861 AddressSpace *as,
3862 hwaddr addr,
3863 hwaddr len,
3864 bool is_write)
3866 AddressSpaceDispatch *d;
3867 hwaddr l;
3868 MemoryRegion *mr;
3870 assert(len > 0);
3872 l = len;
3873 cache->fv = address_space_get_flatview(as);
3874 d = flatview_to_dispatch(cache->fv);
3875 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3877 mr = cache->mrs.mr;
3878 memory_region_ref(mr);
3879 if (memory_access_is_direct(mr, is_write)) {
3880 /* We don't care about the memory attributes here as we're only
3881 * doing this if we found actual RAM, which behaves the same
3882 * regardless of attributes; so UNSPECIFIED is fine.
3884 l = flatview_extend_translation(cache->fv, addr, len, mr,
3885 cache->xlat, l, is_write,
3886 MEMTXATTRS_UNSPECIFIED);
3887 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3888 } else {
3889 cache->ptr = NULL;
3892 cache->len = l;
3893 cache->is_write = is_write;
3894 return l;
3897 void address_space_cache_invalidate(MemoryRegionCache *cache,
3898 hwaddr addr,
3899 hwaddr access_len)
3901 assert(cache->is_write);
3902 if (likely(cache->ptr)) {
3903 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3907 void address_space_cache_destroy(MemoryRegionCache *cache)
3909 if (!cache->mrs.mr) {
3910 return;
3913 if (xen_enabled()) {
3914 xen_invalidate_map_cache_entry(cache->ptr);
3916 memory_region_unref(cache->mrs.mr);
3917 flatview_unref(cache->fv);
3918 cache->mrs.mr = NULL;
3919 cache->fv = NULL;
3922 /* Called from RCU critical section. This function has the same
3923 * semantics as address_space_translate, but it only works on a
3924 * predefined range of a MemoryRegion that was mapped with
3925 * address_space_cache_init.
3927 static inline MemoryRegion *address_space_translate_cached(
3928 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3929 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3931 MemoryRegionSection section;
3932 MemoryRegion *mr;
3933 IOMMUMemoryRegion *iommu_mr;
3934 AddressSpace *target_as;
3936 assert(!cache->ptr);
3937 *xlat = addr + cache->xlat;
3939 mr = cache->mrs.mr;
3940 iommu_mr = memory_region_get_iommu(mr);
3941 if (!iommu_mr) {
3942 /* MMIO region. */
3943 return mr;
3946 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3947 NULL, is_write, true,
3948 &target_as, attrs);
3949 return section.mr;
3952 /* Called from RCU critical section. address_space_read_cached uses this
3953 * out of line function when the target is an MMIO or IOMMU region.
3955 void
3956 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3957 void *buf, hwaddr len)
3959 hwaddr addr1, l;
3960 MemoryRegion *mr;
3962 l = len;
3963 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3964 MEMTXATTRS_UNSPECIFIED);
3965 flatview_read_continue(cache->fv,
3966 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3967 addr1, l, mr);
3970 /* Called from RCU critical section. address_space_write_cached uses this
3971 * out of line function when the target is an MMIO or IOMMU region.
3973 void
3974 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3975 const void *buf, hwaddr len)
3977 hwaddr addr1, l;
3978 MemoryRegion *mr;
3980 l = len;
3981 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3982 MEMTXATTRS_UNSPECIFIED);
3983 flatview_write_continue(cache->fv,
3984 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3985 addr1, l, mr);
3988 #define ARG1_DECL MemoryRegionCache *cache
3989 #define ARG1 cache
3990 #define SUFFIX _cached_slow
3991 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3992 #define RCU_READ_LOCK() ((void)0)
3993 #define RCU_READ_UNLOCK() ((void)0)
3994 #include "memory_ldst.inc.c"
3996 /* virtual memory access for debug (includes writing to ROM) */
3997 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3998 uint8_t *buf, target_ulong len, int is_write)
4000 hwaddr phys_addr;
4001 target_ulong l, page;
4003 cpu_synchronize_state(cpu);
4004 while (len > 0) {
4005 int asidx;
4006 MemTxAttrs attrs;
4008 page = addr & TARGET_PAGE_MASK;
4009 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
4010 asidx = cpu_asidx_from_attrs(cpu, attrs);
4011 /* if no physical page mapped, return an error */
4012 if (phys_addr == -1)
4013 return -1;
4014 l = (page + TARGET_PAGE_SIZE) - addr;
4015 if (l > len)
4016 l = len;
4017 phys_addr += (addr & ~TARGET_PAGE_MASK);
4018 if (is_write) {
4019 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
4020 attrs, buf, l);
4021 } else {
4022 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
4023 attrs, buf, l, 0);
4025 len -= l;
4026 buf += l;
4027 addr += l;
4029 return 0;
4033 * Allows code that needs to deal with migration bitmaps etc to still be built
4034 * target independent.
4036 size_t qemu_target_page_size(void)
4038 return TARGET_PAGE_SIZE;
4041 int qemu_target_page_bits(void)
4043 return TARGET_PAGE_BITS;
4046 int qemu_target_page_bits_min(void)
4048 return TARGET_PAGE_BITS_MIN;
4050 #endif
4052 bool target_words_bigendian(void)
4054 #if defined(TARGET_WORDS_BIGENDIAN)
4055 return true;
4056 #else
4057 return false;
4058 #endif
4061 #ifndef CONFIG_USER_ONLY
4062 bool cpu_physical_memory_is_io(hwaddr phys_addr)
4064 MemoryRegion*mr;
4065 hwaddr l = 1;
4066 bool res;
4068 rcu_read_lock();
4069 mr = address_space_translate(&address_space_memory,
4070 phys_addr, &phys_addr, &l, false,
4071 MEMTXATTRS_UNSPECIFIED);
4073 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
4074 rcu_read_unlock();
4075 return res;
4078 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
4080 RAMBlock *block;
4081 int ret = 0;
4083 rcu_read_lock();
4084 RAMBLOCK_FOREACH(block) {
4085 ret = func(block, opaque);
4086 if (ret) {
4087 break;
4090 rcu_read_unlock();
4091 return ret;
4095 * Unmap pages of memory from start to start+length such that
4096 * they a) read as 0, b) Trigger whatever fault mechanism
4097 * the OS provides for postcopy.
4098 * The pages must be unmapped by the end of the function.
4099 * Returns: 0 on success, none-0 on failure
4102 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4104 int ret = -1;
4106 uint8_t *host_startaddr = rb->host + start;
4108 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4109 error_report("ram_block_discard_range: Unaligned start address: %p",
4110 host_startaddr);
4111 goto err;
4114 if ((start + length) <= rb->used_length) {
4115 bool need_madvise, need_fallocate;
4116 uint8_t *host_endaddr = host_startaddr + length;
4117 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4118 error_report("ram_block_discard_range: Unaligned end address: %p",
4119 host_endaddr);
4120 goto err;
4123 errno = ENOTSUP; /* If we are missing MADVISE etc */
4125 /* The logic here is messy;
4126 * madvise DONTNEED fails for hugepages
4127 * fallocate works on hugepages and shmem
4129 need_madvise = (rb->page_size == qemu_host_page_size);
4130 need_fallocate = rb->fd != -1;
4131 if (need_fallocate) {
4132 /* For a file, this causes the area of the file to be zero'd
4133 * if read, and for hugetlbfs also causes it to be unmapped
4134 * so a userfault will trigger.
4136 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4137 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4138 start, length);
4139 if (ret) {
4140 ret = -errno;
4141 error_report("ram_block_discard_range: Failed to fallocate "
4142 "%s:%" PRIx64 " +%zx (%d)",
4143 rb->idstr, start, length, ret);
4144 goto err;
4146 #else
4147 ret = -ENOSYS;
4148 error_report("ram_block_discard_range: fallocate not available/file"
4149 "%s:%" PRIx64 " +%zx (%d)",
4150 rb->idstr, start, length, ret);
4151 goto err;
4152 #endif
4154 if (need_madvise) {
4155 /* For normal RAM this causes it to be unmapped,
4156 * for shared memory it causes the local mapping to disappear
4157 * and to fall back on the file contents (which we just
4158 * fallocate'd away).
4160 #if defined(CONFIG_MADVISE)
4161 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4162 if (ret) {
4163 ret = -errno;
4164 error_report("ram_block_discard_range: Failed to discard range "
4165 "%s:%" PRIx64 " +%zx (%d)",
4166 rb->idstr, start, length, ret);
4167 goto err;
4169 #else
4170 ret = -ENOSYS;
4171 error_report("ram_block_discard_range: MADVISE not available"
4172 "%s:%" PRIx64 " +%zx (%d)",
4173 rb->idstr, start, length, ret);
4174 goto err;
4175 #endif
4177 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4178 need_madvise, need_fallocate, ret);
4179 } else {
4180 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4181 "/%zx/" RAM_ADDR_FMT")",
4182 rb->idstr, start, length, rb->used_length);
4185 err:
4186 return ret;
4189 bool ramblock_is_pmem(RAMBlock *rb)
4191 return rb->flags & RAM_PMEM;
4194 #endif
4196 void page_size_init(void)
4198 /* NOTE: we can always suppose that qemu_host_page_size >=
4199 TARGET_PAGE_SIZE */
4200 if (qemu_host_page_size == 0) {
4201 qemu_host_page_size = qemu_real_host_page_size;
4203 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4204 qemu_host_page_size = TARGET_PAGE_SIZE;
4206 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4209 #if !defined(CONFIG_USER_ONLY)
4211 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4213 if (start == end - 1) {
4214 qemu_printf("\t%3d ", start);
4215 } else {
4216 qemu_printf("\t%3d..%-3d ", start, end - 1);
4218 qemu_printf(" skip=%d ", skip);
4219 if (ptr == PHYS_MAP_NODE_NIL) {
4220 qemu_printf(" ptr=NIL");
4221 } else if (!skip) {
4222 qemu_printf(" ptr=#%d", ptr);
4223 } else {
4224 qemu_printf(" ptr=[%d]", ptr);
4226 qemu_printf("\n");
4229 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4230 int128_sub((size), int128_one())) : 0)
4232 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4234 int i;
4236 qemu_printf(" Dispatch\n");
4237 qemu_printf(" Physical sections\n");
4239 for (i = 0; i < d->map.sections_nb; ++i) {
4240 MemoryRegionSection *s = d->map.sections + i;
4241 const char *names[] = { " [unassigned]", " [not dirty]",
4242 " [ROM]", " [watch]" };
4244 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4245 " %s%s%s%s%s",
4247 s->offset_within_address_space,
4248 s->offset_within_address_space + MR_SIZE(s->mr->size),
4249 s->mr->name ? s->mr->name : "(noname)",
4250 i < ARRAY_SIZE(names) ? names[i] : "",
4251 s->mr == root ? " [ROOT]" : "",
4252 s == d->mru_section ? " [MRU]" : "",
4253 s->mr->is_iommu ? " [iommu]" : "");
4255 if (s->mr->alias) {
4256 qemu_printf(" alias=%s", s->mr->alias->name ?
4257 s->mr->alias->name : "noname");
4259 qemu_printf("\n");
4262 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4263 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4264 for (i = 0; i < d->map.nodes_nb; ++i) {
4265 int j, jprev;
4266 PhysPageEntry prev;
4267 Node *n = d->map.nodes + i;
4269 qemu_printf(" [%d]\n", i);
4271 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4272 PhysPageEntry *pe = *n + j;
4274 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4275 continue;
4278 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4280 jprev = j;
4281 prev = *pe;
4284 if (jprev != ARRAY_SIZE(*n)) {
4285 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4290 #endif