1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
5 #include <sys/resource.h>
8 #include "disas/disas.h"
21 #define ELF_OSABI ELFOSABI_SYSV
23 /* from personality.h */
26 * Flags for bug emulation.
28 * These occupy the top three bytes.
31 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO
= 0x0100000,
35 ADDR_COMPAT_LAYOUT
= 0x0200000,
36 READ_IMPLIES_EXEC
= 0x0400000,
37 ADDR_LIMIT_32BIT
= 0x0800000,
38 SHORT_INODE
= 0x1000000,
39 WHOLE_SECONDS
= 0x2000000,
40 STICKY_TIMEOUTS
= 0x4000000,
41 ADDR_LIMIT_3GB
= 0x8000000,
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
52 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
53 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
54 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
55 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
56 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
| SHORT_INODE
,
57 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
58 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
59 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
61 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
62 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
64 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
65 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
66 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
67 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
69 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
70 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
71 PER_OSF4
= 0x000f, /* OSF/1 v4 */
77 * Return the base personality without flags.
79 #define personality(pers) (pers & PER_MASK)
81 /* this flag is uneffective under linux too, should be deleted */
83 #define MAP_DENYWRITE 0
86 /* should probably go in elf.h */
91 #ifdef TARGET_WORDS_BIGENDIAN
92 #define ELF_DATA ELFDATA2MSB
94 #define ELF_DATA ELFDATA2LSB
97 #ifdef TARGET_ABI_MIPSN32
98 typedef abi_ullong target_elf_greg_t
;
99 #define tswapreg(ptr) tswap64(ptr)
101 typedef abi_ulong target_elf_greg_t
;
102 #define tswapreg(ptr) tswapal(ptr)
106 typedef abi_ushort target_uid_t
;
107 typedef abi_ushort target_gid_t
;
109 typedef abi_uint target_uid_t
;
110 typedef abi_uint target_gid_t
;
112 typedef abi_int target_pid_t
;
116 #define ELF_PLATFORM get_elf_platform()
118 static const char *get_elf_platform(void)
120 static char elf_platform
[] = "i386";
121 int family
= object_property_get_int(OBJECT(thread_cpu
), "family", NULL
);
125 elf_platform
[1] = '0' + family
;
129 #define ELF_HWCAP get_elf_hwcap()
131 static uint32_t get_elf_hwcap(void)
133 X86CPU
*cpu
= X86_CPU(thread_cpu
);
135 return cpu
->env
.features
[FEAT_1_EDX
];
139 #define ELF_START_MMAP 0x2aaaaab000ULL
141 #define ELF_CLASS ELFCLASS64
142 #define ELF_ARCH EM_X86_64
144 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
147 regs
->rsp
= infop
->start_stack
;
148 regs
->rip
= infop
->entry
;
152 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
159 * See linux kernel: arch/x86/include/asm/elf.h
161 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
163 (*regs
)[0] = env
->regs
[15];
164 (*regs
)[1] = env
->regs
[14];
165 (*regs
)[2] = env
->regs
[13];
166 (*regs
)[3] = env
->regs
[12];
167 (*regs
)[4] = env
->regs
[R_EBP
];
168 (*regs
)[5] = env
->regs
[R_EBX
];
169 (*regs
)[6] = env
->regs
[11];
170 (*regs
)[7] = env
->regs
[10];
171 (*regs
)[8] = env
->regs
[9];
172 (*regs
)[9] = env
->regs
[8];
173 (*regs
)[10] = env
->regs
[R_EAX
];
174 (*regs
)[11] = env
->regs
[R_ECX
];
175 (*regs
)[12] = env
->regs
[R_EDX
];
176 (*regs
)[13] = env
->regs
[R_ESI
];
177 (*regs
)[14] = env
->regs
[R_EDI
];
178 (*regs
)[15] = env
->regs
[R_EAX
]; /* XXX */
179 (*regs
)[16] = env
->eip
;
180 (*regs
)[17] = env
->segs
[R_CS
].selector
& 0xffff;
181 (*regs
)[18] = env
->eflags
;
182 (*regs
)[19] = env
->regs
[R_ESP
];
183 (*regs
)[20] = env
->segs
[R_SS
].selector
& 0xffff;
184 (*regs
)[21] = env
->segs
[R_FS
].selector
& 0xffff;
185 (*regs
)[22] = env
->segs
[R_GS
].selector
& 0xffff;
186 (*regs
)[23] = env
->segs
[R_DS
].selector
& 0xffff;
187 (*regs
)[24] = env
->segs
[R_ES
].selector
& 0xffff;
188 (*regs
)[25] = env
->segs
[R_FS
].selector
& 0xffff;
189 (*regs
)[26] = env
->segs
[R_GS
].selector
& 0xffff;
194 #define ELF_START_MMAP 0x80000000
197 * This is used to ensure we don't load something for the wrong architecture.
199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
202 * These are used to set parameters in the core dumps.
204 #define ELF_CLASS ELFCLASS32
205 #define ELF_ARCH EM_386
207 static inline void init_thread(struct target_pt_regs
*regs
,
208 struct image_info
*infop
)
210 regs
->esp
= infop
->start_stack
;
211 regs
->eip
= infop
->entry
;
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
219 A value of 0 tells we have no such handler. */
224 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
231 * See linux kernel: arch/x86/include/asm/elf.h
233 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
235 (*regs
)[0] = env
->regs
[R_EBX
];
236 (*regs
)[1] = env
->regs
[R_ECX
];
237 (*regs
)[2] = env
->regs
[R_EDX
];
238 (*regs
)[3] = env
->regs
[R_ESI
];
239 (*regs
)[4] = env
->regs
[R_EDI
];
240 (*regs
)[5] = env
->regs
[R_EBP
];
241 (*regs
)[6] = env
->regs
[R_EAX
];
242 (*regs
)[7] = env
->segs
[R_DS
].selector
& 0xffff;
243 (*regs
)[8] = env
->segs
[R_ES
].selector
& 0xffff;
244 (*regs
)[9] = env
->segs
[R_FS
].selector
& 0xffff;
245 (*regs
)[10] = env
->segs
[R_GS
].selector
& 0xffff;
246 (*regs
)[11] = env
->regs
[R_EAX
]; /* XXX */
247 (*regs
)[12] = env
->eip
;
248 (*regs
)[13] = env
->segs
[R_CS
].selector
& 0xffff;
249 (*regs
)[14] = env
->eflags
;
250 (*regs
)[15] = env
->regs
[R_ESP
];
251 (*regs
)[16] = env
->segs
[R_SS
].selector
& 0xffff;
255 #define USE_ELF_CORE_DUMP
256 #define ELF_EXEC_PAGESIZE 4096
262 #ifndef TARGET_AARCH64
263 /* 32 bit ARM definitions */
265 #define ELF_START_MMAP 0x80000000
267 #define ELF_ARCH EM_ARM
268 #define ELF_CLASS ELFCLASS32
270 static inline void init_thread(struct target_pt_regs
*regs
,
271 struct image_info
*infop
)
273 abi_long stack
= infop
->start_stack
;
274 memset(regs
, 0, sizeof(*regs
));
276 regs
->uregs
[16] = ARM_CPU_MODE_USR
;
277 if (infop
->entry
& 1) {
278 regs
->uregs
[16] |= CPSR_T
;
280 regs
->uregs
[15] = infop
->entry
& 0xfffffffe;
281 regs
->uregs
[13] = infop
->start_stack
;
282 /* FIXME - what to for failure of get_user()? */
283 get_user_ual(regs
->uregs
[2], stack
+ 8); /* envp */
284 get_user_ual(regs
->uregs
[1], stack
+ 4); /* envp */
285 /* XXX: it seems that r0 is zeroed after ! */
287 /* For uClinux PIC binaries. */
288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
289 regs
->uregs
[10] = infop
->start_data
;
293 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
295 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUARMState
*env
)
297 (*regs
)[0] = tswapreg(env
->regs
[0]);
298 (*regs
)[1] = tswapreg(env
->regs
[1]);
299 (*regs
)[2] = tswapreg(env
->regs
[2]);
300 (*regs
)[3] = tswapreg(env
->regs
[3]);
301 (*regs
)[4] = tswapreg(env
->regs
[4]);
302 (*regs
)[5] = tswapreg(env
->regs
[5]);
303 (*regs
)[6] = tswapreg(env
->regs
[6]);
304 (*regs
)[7] = tswapreg(env
->regs
[7]);
305 (*regs
)[8] = tswapreg(env
->regs
[8]);
306 (*regs
)[9] = tswapreg(env
->regs
[9]);
307 (*regs
)[10] = tswapreg(env
->regs
[10]);
308 (*regs
)[11] = tswapreg(env
->regs
[11]);
309 (*regs
)[12] = tswapreg(env
->regs
[12]);
310 (*regs
)[13] = tswapreg(env
->regs
[13]);
311 (*regs
)[14] = tswapreg(env
->regs
[14]);
312 (*regs
)[15] = tswapreg(env
->regs
[15]);
314 (*regs
)[16] = tswapreg(cpsr_read((CPUARMState
*)env
));
315 (*regs
)[17] = tswapreg(env
->regs
[0]); /* XXX */
318 #define USE_ELF_CORE_DUMP
319 #define ELF_EXEC_PAGESIZE 4096
323 ARM_HWCAP_ARM_SWP
= 1 << 0,
324 ARM_HWCAP_ARM_HALF
= 1 << 1,
325 ARM_HWCAP_ARM_THUMB
= 1 << 2,
326 ARM_HWCAP_ARM_26BIT
= 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
328 ARM_HWCAP_ARM_FPA
= 1 << 5,
329 ARM_HWCAP_ARM_VFP
= 1 << 6,
330 ARM_HWCAP_ARM_EDSP
= 1 << 7,
331 ARM_HWCAP_ARM_JAVA
= 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT
= 1 << 9,
333 ARM_HWCAP_ARM_CRUNCH
= 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE
= 1 << 11,
335 ARM_HWCAP_ARM_NEON
= 1 << 12,
336 ARM_HWCAP_ARM_VFPv3
= 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16
= 1 << 14,
338 ARM_HWCAP_ARM_TLS
= 1 << 15,
339 ARM_HWCAP_ARM_VFPv4
= 1 << 16,
340 ARM_HWCAP_ARM_IDIVA
= 1 << 17,
341 ARM_HWCAP_ARM_IDIVT
= 1 << 18,
342 ARM_HWCAP_ARM_VFPD32
= 1 << 19,
343 ARM_HWCAP_ARM_LPAE
= 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM
= 1 << 21,
348 ARM_HWCAP2_ARM_AES
= 1 << 0,
349 ARM_HWCAP2_ARM_PMULL
= 1 << 1,
350 ARM_HWCAP2_ARM_SHA1
= 1 << 2,
351 ARM_HWCAP2_ARM_SHA2
= 1 << 3,
352 ARM_HWCAP2_ARM_CRC32
= 1 << 4,
355 /* The commpage only exists for 32 bit kernels */
357 #define TARGET_HAS_VALIDATE_GUEST_SPACE
358 /* Return 1 if the proposed guest space is suitable for the guest.
359 * Return 0 if the proposed guest space isn't suitable, but another
360 * address space should be tried.
361 * Return -1 if there is no way the proposed guest space can be
362 * valid regardless of the base.
363 * The guest code may leave a page mapped and populate it if the
364 * address is suitable.
366 static int validate_guest_space(unsigned long guest_base
,
367 unsigned long guest_size
)
369 unsigned long real_start
, test_page_addr
;
371 /* We need to check that we can force a fault on access to the
372 * commpage at 0xffff0fxx
374 test_page_addr
= guest_base
+ (0xffff0f00 & qemu_host_page_mask
);
376 /* If the commpage lies within the already allocated guest space,
377 * then there is no way we can allocate it.
379 if (test_page_addr
>= guest_base
380 && test_page_addr
<= (guest_base
+ guest_size
)) {
384 /* Note it needs to be writeable to let us initialise it */
385 real_start
= (unsigned long)
386 mmap((void *)test_page_addr
, qemu_host_page_size
,
387 PROT_READ
| PROT_WRITE
,
388 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
390 /* If we can't map it then try another address */
391 if (real_start
== -1ul) {
395 if (real_start
!= test_page_addr
) {
396 /* OS didn't put the page where we asked - unmap and reject */
397 munmap((void *)real_start
, qemu_host_page_size
);
401 /* Leave the page mapped
402 * Populate it (mmap should have left it all 0'd)
405 /* Kernel helper versions */
406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul
));
408 /* Now it's populated make it RO */
409 if (mprotect((void *)test_page_addr
, qemu_host_page_size
, PROT_READ
)) {
410 perror("Protecting guest commpage");
414 return 1; /* All good */
417 #define ELF_HWCAP get_elf_hwcap()
418 #define ELF_HWCAP2 get_elf_hwcap2()
420 static uint32_t get_elf_hwcap(void)
422 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
425 hwcaps
|= ARM_HWCAP_ARM_SWP
;
426 hwcaps
|= ARM_HWCAP_ARM_HALF
;
427 hwcaps
|= ARM_HWCAP_ARM_THUMB
;
428 hwcaps
|= ARM_HWCAP_ARM_FAST_MULT
;
430 /* probe for the extra features */
431 #define GET_FEATURE(feat, hwcap) \
432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
434 GET_FEATURE(ARM_FEATURE_V5
, ARM_HWCAP_ARM_EDSP
);
435 GET_FEATURE(ARM_FEATURE_VFP
, ARM_HWCAP_ARM_VFP
);
436 GET_FEATURE(ARM_FEATURE_IWMMXT
, ARM_HWCAP_ARM_IWMMXT
);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE
, ARM_HWCAP_ARM_THUMBEE
);
438 GET_FEATURE(ARM_FEATURE_NEON
, ARM_HWCAP_ARM_NEON
);
439 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPv3
);
440 GET_FEATURE(ARM_FEATURE_V6K
, ARM_HWCAP_ARM_TLS
);
441 GET_FEATURE(ARM_FEATURE_VFP4
, ARM_HWCAP_ARM_VFPv4
);
442 GET_FEATURE(ARM_FEATURE_ARM_DIV
, ARM_HWCAP_ARM_IDIVA
);
443 GET_FEATURE(ARM_FEATURE_THUMB_DIV
, ARM_HWCAP_ARM_IDIVT
);
444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
447 * to our VFP_FP16 feature bit.
449 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPD32
);
450 GET_FEATURE(ARM_FEATURE_LPAE
, ARM_HWCAP_ARM_LPAE
);
455 static uint32_t get_elf_hwcap2(void)
457 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
460 GET_FEATURE(ARM_FEATURE_V8_AES
, ARM_HWCAP2_ARM_AES
);
461 GET_FEATURE(ARM_FEATURE_V8_PMULL
, ARM_HWCAP2_ARM_PMULL
);
462 GET_FEATURE(ARM_FEATURE_V8_SHA1
, ARM_HWCAP2_ARM_SHA1
);
463 GET_FEATURE(ARM_FEATURE_V8_SHA256
, ARM_HWCAP2_ARM_SHA2
);
464 GET_FEATURE(ARM_FEATURE_CRC
, ARM_HWCAP2_ARM_CRC32
);
471 /* 64 bit ARM definitions */
472 #define ELF_START_MMAP 0x80000000
474 #define ELF_ARCH EM_AARCH64
475 #define ELF_CLASS ELFCLASS64
476 #define ELF_PLATFORM "aarch64"
478 static inline void init_thread(struct target_pt_regs
*regs
,
479 struct image_info
*infop
)
481 abi_long stack
= infop
->start_stack
;
482 memset(regs
, 0, sizeof(*regs
));
484 regs
->pc
= infop
->entry
& ~0x3ULL
;
489 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
491 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
492 const CPUARMState
*env
)
496 for (i
= 0; i
< 32; i
++) {
497 (*regs
)[i
] = tswapreg(env
->xregs
[i
]);
499 (*regs
)[32] = tswapreg(env
->pc
);
500 (*regs
)[33] = tswapreg(pstate_read((CPUARMState
*)env
));
503 #define USE_ELF_CORE_DUMP
504 #define ELF_EXEC_PAGESIZE 4096
507 ARM_HWCAP_A64_FP
= 1 << 0,
508 ARM_HWCAP_A64_ASIMD
= 1 << 1,
509 ARM_HWCAP_A64_EVTSTRM
= 1 << 2,
510 ARM_HWCAP_A64_AES
= 1 << 3,
511 ARM_HWCAP_A64_PMULL
= 1 << 4,
512 ARM_HWCAP_A64_SHA1
= 1 << 5,
513 ARM_HWCAP_A64_SHA2
= 1 << 6,
514 ARM_HWCAP_A64_CRC32
= 1 << 7,
517 #define ELF_HWCAP get_elf_hwcap()
519 static uint32_t get_elf_hwcap(void)
521 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
524 hwcaps
|= ARM_HWCAP_A64_FP
;
525 hwcaps
|= ARM_HWCAP_A64_ASIMD
;
527 /* probe for the extra features */
528 #define GET_FEATURE(feat, hwcap) \
529 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
530 GET_FEATURE(ARM_FEATURE_V8_AES
, ARM_HWCAP_A64_AES
);
531 GET_FEATURE(ARM_FEATURE_V8_PMULL
, ARM_HWCAP_A64_PMULL
);
532 GET_FEATURE(ARM_FEATURE_V8_SHA1
, ARM_HWCAP_A64_SHA1
);
533 GET_FEATURE(ARM_FEATURE_V8_SHA256
, ARM_HWCAP_A64_SHA2
);
534 GET_FEATURE(ARM_FEATURE_CRC
, ARM_HWCAP_A64_CRC32
);
540 #endif /* not TARGET_AARCH64 */
541 #endif /* TARGET_ARM */
543 #ifdef TARGET_UNICORE32
545 #define ELF_START_MMAP 0x80000000
547 #define ELF_CLASS ELFCLASS32
548 #define ELF_DATA ELFDATA2LSB
549 #define ELF_ARCH EM_UNICORE32
551 static inline void init_thread(struct target_pt_regs
*regs
,
552 struct image_info
*infop
)
554 abi_long stack
= infop
->start_stack
;
555 memset(regs
, 0, sizeof(*regs
));
556 regs
->UC32_REG_asr
= 0x10;
557 regs
->UC32_REG_pc
= infop
->entry
& 0xfffffffe;
558 regs
->UC32_REG_sp
= infop
->start_stack
;
559 /* FIXME - what to for failure of get_user()? */
560 get_user_ual(regs
->UC32_REG_02
, stack
+ 8); /* envp */
561 get_user_ual(regs
->UC32_REG_01
, stack
+ 4); /* envp */
562 /* XXX: it seems that r0 is zeroed after ! */
563 regs
->UC32_REG_00
= 0;
567 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
569 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUUniCore32State
*env
)
571 (*regs
)[0] = env
->regs
[0];
572 (*regs
)[1] = env
->regs
[1];
573 (*regs
)[2] = env
->regs
[2];
574 (*regs
)[3] = env
->regs
[3];
575 (*regs
)[4] = env
->regs
[4];
576 (*regs
)[5] = env
->regs
[5];
577 (*regs
)[6] = env
->regs
[6];
578 (*regs
)[7] = env
->regs
[7];
579 (*regs
)[8] = env
->regs
[8];
580 (*regs
)[9] = env
->regs
[9];
581 (*regs
)[10] = env
->regs
[10];
582 (*regs
)[11] = env
->regs
[11];
583 (*regs
)[12] = env
->regs
[12];
584 (*regs
)[13] = env
->regs
[13];
585 (*regs
)[14] = env
->regs
[14];
586 (*regs
)[15] = env
->regs
[15];
587 (*regs
)[16] = env
->regs
[16];
588 (*regs
)[17] = env
->regs
[17];
589 (*regs
)[18] = env
->regs
[18];
590 (*regs
)[19] = env
->regs
[19];
591 (*regs
)[20] = env
->regs
[20];
592 (*regs
)[21] = env
->regs
[21];
593 (*regs
)[22] = env
->regs
[22];
594 (*regs
)[23] = env
->regs
[23];
595 (*regs
)[24] = env
->regs
[24];
596 (*regs
)[25] = env
->regs
[25];
597 (*regs
)[26] = env
->regs
[26];
598 (*regs
)[27] = env
->regs
[27];
599 (*regs
)[28] = env
->regs
[28];
600 (*regs
)[29] = env
->regs
[29];
601 (*regs
)[30] = env
->regs
[30];
602 (*regs
)[31] = env
->regs
[31];
604 (*regs
)[32] = cpu_asr_read((CPUUniCore32State
*)env
);
605 (*regs
)[33] = env
->regs
[0]; /* XXX */
608 #define USE_ELF_CORE_DUMP
609 #define ELF_EXEC_PAGESIZE 4096
611 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
616 #ifdef TARGET_SPARC64
618 #define ELF_START_MMAP 0x80000000
619 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
620 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
622 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
624 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
627 #define ELF_CLASS ELFCLASS64
628 #define ELF_ARCH EM_SPARCV9
630 #define STACK_BIAS 2047
632 static inline void init_thread(struct target_pt_regs
*regs
,
633 struct image_info
*infop
)
638 regs
->pc
= infop
->entry
;
639 regs
->npc
= regs
->pc
+ 4;
642 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
644 if (personality(infop
->personality
) == PER_LINUX32
)
645 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
647 regs
->u_regs
[14] = infop
->start_stack
- 16 * 8 - STACK_BIAS
;
652 #define ELF_START_MMAP 0x80000000
653 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
654 | HWCAP_SPARC_MULDIV)
656 #define ELF_CLASS ELFCLASS32
657 #define ELF_ARCH EM_SPARC
659 static inline void init_thread(struct target_pt_regs
*regs
,
660 struct image_info
*infop
)
663 regs
->pc
= infop
->entry
;
664 regs
->npc
= regs
->pc
+ 4;
666 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
674 #define ELF_MACHINE PPC_ELF_MACHINE
675 #define ELF_START_MMAP 0x80000000
677 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
679 #define elf_check_arch(x) ( (x) == EM_PPC64 )
681 #define ELF_CLASS ELFCLASS64
685 #define ELF_CLASS ELFCLASS32
689 #define ELF_ARCH EM_PPC
691 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
692 See arch/powerpc/include/asm/cputable.h. */
694 QEMU_PPC_FEATURE_32
= 0x80000000,
695 QEMU_PPC_FEATURE_64
= 0x40000000,
696 QEMU_PPC_FEATURE_601_INSTR
= 0x20000000,
697 QEMU_PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
698 QEMU_PPC_FEATURE_HAS_FPU
= 0x08000000,
699 QEMU_PPC_FEATURE_HAS_MMU
= 0x04000000,
700 QEMU_PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
701 QEMU_PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
702 QEMU_PPC_FEATURE_HAS_SPE
= 0x00800000,
703 QEMU_PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
704 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
705 QEMU_PPC_FEATURE_NO_TB
= 0x00100000,
706 QEMU_PPC_FEATURE_POWER4
= 0x00080000,
707 QEMU_PPC_FEATURE_POWER5
= 0x00040000,
708 QEMU_PPC_FEATURE_POWER5_PLUS
= 0x00020000,
709 QEMU_PPC_FEATURE_CELL
= 0x00010000,
710 QEMU_PPC_FEATURE_BOOKE
= 0x00008000,
711 QEMU_PPC_FEATURE_SMT
= 0x00004000,
712 QEMU_PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
713 QEMU_PPC_FEATURE_ARCH_2_05
= 0x00001000,
714 QEMU_PPC_FEATURE_PA6T
= 0x00000800,
715 QEMU_PPC_FEATURE_HAS_DFP
= 0x00000400,
716 QEMU_PPC_FEATURE_POWER6_EXT
= 0x00000200,
717 QEMU_PPC_FEATURE_ARCH_2_06
= 0x00000100,
718 QEMU_PPC_FEATURE_HAS_VSX
= 0x00000080,
719 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
721 QEMU_PPC_FEATURE_TRUE_LE
= 0x00000002,
722 QEMU_PPC_FEATURE_PPC_LE
= 0x00000001,
724 /* Feature definitions in AT_HWCAP2. */
725 QEMU_PPC_FEATURE2_ARCH_2_07
= 0x80000000, /* ISA 2.07 */
726 QEMU_PPC_FEATURE2_HAS_HTM
= 0x40000000, /* Hardware Transactional Memory */
727 QEMU_PPC_FEATURE2_HAS_DSCR
= 0x20000000, /* Data Stream Control Register */
728 QEMU_PPC_FEATURE2_HAS_EBB
= 0x10000000, /* Event Base Branching */
729 QEMU_PPC_FEATURE2_HAS_ISEL
= 0x08000000, /* Integer Select */
730 QEMU_PPC_FEATURE2_HAS_TAR
= 0x04000000, /* Target Address Register */
733 #define ELF_HWCAP get_elf_hwcap()
735 static uint32_t get_elf_hwcap(void)
737 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
738 uint32_t features
= 0;
740 /* We don't have to be terribly complete here; the high points are
741 Altivec/FP/SPE support. Anything else is just a bonus. */
742 #define GET_FEATURE(flag, feature) \
743 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
744 #define GET_FEATURE2(flags, feature) \
746 if ((cpu->env.insns_flags2 & flags) == flags) { \
747 features |= feature; \
750 GET_FEATURE(PPC_64B
, QEMU_PPC_FEATURE_64
);
751 GET_FEATURE(PPC_FLOAT
, QEMU_PPC_FEATURE_HAS_FPU
);
752 GET_FEATURE(PPC_ALTIVEC
, QEMU_PPC_FEATURE_HAS_ALTIVEC
);
753 GET_FEATURE(PPC_SPE
, QEMU_PPC_FEATURE_HAS_SPE
);
754 GET_FEATURE(PPC_SPE_SINGLE
, QEMU_PPC_FEATURE_HAS_EFP_SINGLE
);
755 GET_FEATURE(PPC_SPE_DOUBLE
, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
);
756 GET_FEATURE(PPC_BOOKE
, QEMU_PPC_FEATURE_BOOKE
);
757 GET_FEATURE(PPC_405_MAC
, QEMU_PPC_FEATURE_HAS_4xxMAC
);
758 GET_FEATURE2(PPC2_DFP
, QEMU_PPC_FEATURE_HAS_DFP
);
759 GET_FEATURE2(PPC2_VSX
, QEMU_PPC_FEATURE_HAS_VSX
);
760 GET_FEATURE2((PPC2_PERM_ISA206
| PPC2_DIVE_ISA206
| PPC2_ATOMIC_ISA206
|
761 PPC2_FP_CVT_ISA206
| PPC2_FP_TST_ISA206
),
762 QEMU_PPC_FEATURE_ARCH_2_06
);
769 #define ELF_HWCAP2 get_elf_hwcap2()
771 static uint32_t get_elf_hwcap2(void)
773 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
774 uint32_t features
= 0;
776 #define GET_FEATURE(flag, feature) \
777 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
778 #define GET_FEATURE2(flag, feature) \
779 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
781 GET_FEATURE(PPC_ISEL
, QEMU_PPC_FEATURE2_HAS_ISEL
);
782 GET_FEATURE2(PPC2_BCTAR_ISA207
, QEMU_PPC_FEATURE2_HAS_TAR
);
783 GET_FEATURE2((PPC2_BCTAR_ISA207
| PPC2_LSQ_ISA207
| PPC2_ALTIVEC_207
|
784 PPC2_ISA207S
), QEMU_PPC_FEATURE2_ARCH_2_07
);
793 * The requirements here are:
794 * - keep the final alignment of sp (sp & 0xf)
795 * - make sure the 32-bit value at the first 16 byte aligned position of
796 * AUXV is greater than 16 for glibc compatibility.
797 * AT_IGNOREPPC is used for that.
798 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
799 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
801 #define DLINFO_ARCH_ITEMS 5
802 #define ARCH_DLINFO \
804 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
806 * Handle glibc compatibility: these magic entries must \
807 * be at the lowest addresses in the final auxv. \
809 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
810 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
811 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
812 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
813 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
816 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
818 _regs
->gpr
[1] = infop
->start_stack
;
819 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
820 if (get_ppc64_abi(infop
) < 2) {
822 get_user_u64(val
, infop
->entry
+ 8);
823 _regs
->gpr
[2] = val
+ infop
->load_bias
;
824 get_user_u64(val
, infop
->entry
);
825 infop
->entry
= val
+ infop
->load_bias
;
827 _regs
->gpr
[12] = infop
->entry
; /* r12 set to global entry address */
830 _regs
->nip
= infop
->entry
;
833 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
835 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
837 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUPPCState
*env
)
840 target_ulong ccr
= 0;
842 for (i
= 0; i
< ARRAY_SIZE(env
->gpr
); i
++) {
843 (*regs
)[i
] = tswapreg(env
->gpr
[i
]);
846 (*regs
)[32] = tswapreg(env
->nip
);
847 (*regs
)[33] = tswapreg(env
->msr
);
848 (*regs
)[35] = tswapreg(env
->ctr
);
849 (*regs
)[36] = tswapreg(env
->lr
);
850 (*regs
)[37] = tswapreg(env
->xer
);
852 for (i
= 0; i
< ARRAY_SIZE(env
->crf
); i
++) {
853 ccr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
855 (*regs
)[38] = tswapreg(ccr
);
858 #define USE_ELF_CORE_DUMP
859 #define ELF_EXEC_PAGESIZE 4096
865 #define ELF_START_MMAP 0x80000000
868 #define ELF_CLASS ELFCLASS64
870 #define ELF_CLASS ELFCLASS32
872 #define ELF_ARCH EM_MIPS
874 static inline void init_thread(struct target_pt_regs
*regs
,
875 struct image_info
*infop
)
877 regs
->cp0_status
= 2 << CP0St_KSU
;
878 regs
->cp0_epc
= infop
->entry
;
879 regs
->regs
[29] = infop
->start_stack
;
882 /* See linux kernel: arch/mips/include/asm/elf.h. */
884 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
886 /* See linux kernel: arch/mips/include/asm/reg.h. */
893 TARGET_EF_R26
= TARGET_EF_R0
+ 26,
894 TARGET_EF_R27
= TARGET_EF_R0
+ 27,
895 TARGET_EF_LO
= TARGET_EF_R0
+ 32,
896 TARGET_EF_HI
= TARGET_EF_R0
+ 33,
897 TARGET_EF_CP0_EPC
= TARGET_EF_R0
+ 34,
898 TARGET_EF_CP0_BADVADDR
= TARGET_EF_R0
+ 35,
899 TARGET_EF_CP0_STATUS
= TARGET_EF_R0
+ 36,
900 TARGET_EF_CP0_CAUSE
= TARGET_EF_R0
+ 37
903 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
904 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMIPSState
*env
)
908 for (i
= 0; i
< TARGET_EF_R0
; i
++) {
911 (*regs
)[TARGET_EF_R0
] = 0;
913 for (i
= 1; i
< ARRAY_SIZE(env
->active_tc
.gpr
); i
++) {
914 (*regs
)[TARGET_EF_R0
+ i
] = tswapreg(env
->active_tc
.gpr
[i
]);
917 (*regs
)[TARGET_EF_R26
] = 0;
918 (*regs
)[TARGET_EF_R27
] = 0;
919 (*regs
)[TARGET_EF_LO
] = tswapreg(env
->active_tc
.LO
[0]);
920 (*regs
)[TARGET_EF_HI
] = tswapreg(env
->active_tc
.HI
[0]);
921 (*regs
)[TARGET_EF_CP0_EPC
] = tswapreg(env
->active_tc
.PC
);
922 (*regs
)[TARGET_EF_CP0_BADVADDR
] = tswapreg(env
->CP0_BadVAddr
);
923 (*regs
)[TARGET_EF_CP0_STATUS
] = tswapreg(env
->CP0_Status
);
924 (*regs
)[TARGET_EF_CP0_CAUSE
] = tswapreg(env
->CP0_Cause
);
927 #define USE_ELF_CORE_DUMP
928 #define ELF_EXEC_PAGESIZE 4096
930 #endif /* TARGET_MIPS */
932 #ifdef TARGET_MICROBLAZE
934 #define ELF_START_MMAP 0x80000000
936 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
938 #define ELF_CLASS ELFCLASS32
939 #define ELF_ARCH EM_MICROBLAZE
941 static inline void init_thread(struct target_pt_regs
*regs
,
942 struct image_info
*infop
)
944 regs
->pc
= infop
->entry
;
945 regs
->r1
= infop
->start_stack
;
949 #define ELF_EXEC_PAGESIZE 4096
951 #define USE_ELF_CORE_DUMP
953 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
955 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
956 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMBState
*env
)
960 for (i
= 0; i
< 32; i
++) {
961 (*regs
)[pos
++] = tswapreg(env
->regs
[i
]);
964 for (i
= 0; i
< 6; i
++) {
965 (*regs
)[pos
++] = tswapreg(env
->sregs
[i
]);
969 #endif /* TARGET_MICROBLAZE */
973 #define ELF_START_MMAP 0x80000000
975 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
977 #define ELF_CLASS ELFCLASS32
978 #define ELF_ARCH EM_ALTERA_NIOS2
980 static void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
982 regs
->ea
= infop
->entry
;
983 regs
->sp
= infop
->start_stack
;
987 #define ELF_EXEC_PAGESIZE 4096
989 #define USE_ELF_CORE_DUMP
991 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
993 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
994 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
995 const CPUNios2State
*env
)
1000 for (i
= 1; i
< 8; i
++) /* r0-r7 */
1001 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1003 for (i
= 8; i
< 16; i
++) /* r8-r15 */
1004 (*regs
)[i
] = tswapreg(env
->regs
[i
- 8]);
1006 for (i
= 16; i
< 24; i
++) /* r16-r23 */
1007 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1008 (*regs
)[24] = -1; /* R_ET */
1009 (*regs
)[25] = -1; /* R_BT */
1010 (*regs
)[26] = tswapreg(env
->regs
[R_GP
]);
1011 (*regs
)[27] = tswapreg(env
->regs
[R_SP
]);
1012 (*regs
)[28] = tswapreg(env
->regs
[R_FP
]);
1013 (*regs
)[29] = tswapreg(env
->regs
[R_EA
]);
1014 (*regs
)[30] = -1; /* R_SSTATUS */
1015 (*regs
)[31] = tswapreg(env
->regs
[R_RA
]);
1017 (*regs
)[32] = tswapreg(env
->regs
[R_PC
]);
1019 (*regs
)[33] = -1; /* R_STATUS */
1020 (*regs
)[34] = tswapreg(env
->regs
[CR_ESTATUS
]);
1022 for (i
= 35; i
< 49; i
++) /* ... */
1026 #endif /* TARGET_NIOS2 */
1028 #ifdef TARGET_OPENRISC
1030 #define ELF_START_MMAP 0x08000000
1032 #define ELF_ARCH EM_OPENRISC
1033 #define ELF_CLASS ELFCLASS32
1034 #define ELF_DATA ELFDATA2MSB
1036 static inline void init_thread(struct target_pt_regs
*regs
,
1037 struct image_info
*infop
)
1039 regs
->pc
= infop
->entry
;
1040 regs
->gpr
[1] = infop
->start_stack
;
1043 #define USE_ELF_CORE_DUMP
1044 #define ELF_EXEC_PAGESIZE 8192
1046 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1047 #define ELF_NREG 34 /* gprs and pc, sr */
1048 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1050 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1051 const CPUOpenRISCState
*env
)
1055 for (i
= 0; i
< 32; i
++) {
1056 (*regs
)[i
] = tswapreg(cpu_get_gpr(env
, i
));
1058 (*regs
)[32] = tswapreg(env
->pc
);
1059 (*regs
)[33] = tswapreg(cpu_get_sr(env
));
1062 #define ELF_PLATFORM NULL
1064 #endif /* TARGET_OPENRISC */
1068 #define ELF_START_MMAP 0x80000000
1070 #define ELF_CLASS ELFCLASS32
1071 #define ELF_ARCH EM_SH
1073 static inline void init_thread(struct target_pt_regs
*regs
,
1074 struct image_info
*infop
)
1076 /* Check other registers XXXXX */
1077 regs
->pc
= infop
->entry
;
1078 regs
->regs
[15] = infop
->start_stack
;
1081 /* See linux kernel: arch/sh/include/asm/elf.h. */
1083 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1085 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1090 TARGET_REG_GBR
= 19,
1091 TARGET_REG_MACH
= 20,
1092 TARGET_REG_MACL
= 21,
1093 TARGET_REG_SYSCALL
= 22
1096 static inline void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1097 const CPUSH4State
*env
)
1101 for (i
= 0; i
< 16; i
++) {
1102 (*regs
)[i
] = tswapreg(env
->gregs
[i
]);
1105 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1106 (*regs
)[TARGET_REG_PR
] = tswapreg(env
->pr
);
1107 (*regs
)[TARGET_REG_SR
] = tswapreg(env
->sr
);
1108 (*regs
)[TARGET_REG_GBR
] = tswapreg(env
->gbr
);
1109 (*regs
)[TARGET_REG_MACH
] = tswapreg(env
->mach
);
1110 (*regs
)[TARGET_REG_MACL
] = tswapreg(env
->macl
);
1111 (*regs
)[TARGET_REG_SYSCALL
] = 0; /* FIXME */
1114 #define USE_ELF_CORE_DUMP
1115 #define ELF_EXEC_PAGESIZE 4096
1118 SH_CPU_HAS_FPU
= 0x0001, /* Hardware FPU support */
1119 SH_CPU_HAS_P2_FLUSH_BUG
= 0x0002, /* Need to flush the cache in P2 area */
1120 SH_CPU_HAS_MMU_PAGE_ASSOC
= 0x0004, /* SH3: TLB way selection bit support */
1121 SH_CPU_HAS_DSP
= 0x0008, /* SH-DSP: DSP support */
1122 SH_CPU_HAS_PERF_COUNTER
= 0x0010, /* Hardware performance counters */
1123 SH_CPU_HAS_PTEA
= 0x0020, /* PTEA register */
1124 SH_CPU_HAS_LLSC
= 0x0040, /* movli.l/movco.l */
1125 SH_CPU_HAS_L2_CACHE
= 0x0080, /* Secondary cache / URAM */
1126 SH_CPU_HAS_OP32
= 0x0100, /* 32-bit instruction support */
1127 SH_CPU_HAS_PTEAEX
= 0x0200, /* PTE ASID Extension support */
1130 #define ELF_HWCAP get_elf_hwcap()
1132 static uint32_t get_elf_hwcap(void)
1134 SuperHCPU
*cpu
= SUPERH_CPU(thread_cpu
);
1137 hwcap
|= SH_CPU_HAS_FPU
;
1139 if (cpu
->env
.features
& SH_FEATURE_SH4A
) {
1140 hwcap
|= SH_CPU_HAS_LLSC
;
1150 #define ELF_START_MMAP 0x80000000
1152 #define ELF_CLASS ELFCLASS32
1153 #define ELF_ARCH EM_CRIS
1155 static inline void init_thread(struct target_pt_regs
*regs
,
1156 struct image_info
*infop
)
1158 regs
->erp
= infop
->entry
;
1161 #define ELF_EXEC_PAGESIZE 8192
1167 #define ELF_START_MMAP 0x80000000
1169 #define ELF_CLASS ELFCLASS32
1170 #define ELF_ARCH EM_68K
1172 /* ??? Does this need to do anything?
1173 #define ELF_PLAT_INIT(_r) */
1175 static inline void init_thread(struct target_pt_regs
*regs
,
1176 struct image_info
*infop
)
1178 regs
->usp
= infop
->start_stack
;
1180 regs
->pc
= infop
->entry
;
1183 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1185 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1187 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUM68KState
*env
)
1189 (*regs
)[0] = tswapreg(env
->dregs
[1]);
1190 (*regs
)[1] = tswapreg(env
->dregs
[2]);
1191 (*regs
)[2] = tswapreg(env
->dregs
[3]);
1192 (*regs
)[3] = tswapreg(env
->dregs
[4]);
1193 (*regs
)[4] = tswapreg(env
->dregs
[5]);
1194 (*regs
)[5] = tswapreg(env
->dregs
[6]);
1195 (*regs
)[6] = tswapreg(env
->dregs
[7]);
1196 (*regs
)[7] = tswapreg(env
->aregs
[0]);
1197 (*regs
)[8] = tswapreg(env
->aregs
[1]);
1198 (*regs
)[9] = tswapreg(env
->aregs
[2]);
1199 (*regs
)[10] = tswapreg(env
->aregs
[3]);
1200 (*regs
)[11] = tswapreg(env
->aregs
[4]);
1201 (*regs
)[12] = tswapreg(env
->aregs
[5]);
1202 (*regs
)[13] = tswapreg(env
->aregs
[6]);
1203 (*regs
)[14] = tswapreg(env
->dregs
[0]);
1204 (*regs
)[15] = tswapreg(env
->aregs
[7]);
1205 (*regs
)[16] = tswapreg(env
->dregs
[0]); /* FIXME: orig_d0 */
1206 (*regs
)[17] = tswapreg(env
->sr
);
1207 (*regs
)[18] = tswapreg(env
->pc
);
1208 (*regs
)[19] = 0; /* FIXME: regs->format | regs->vector */
1211 #define USE_ELF_CORE_DUMP
1212 #define ELF_EXEC_PAGESIZE 8192
1218 #define ELF_START_MMAP (0x30000000000ULL)
1220 #define ELF_CLASS ELFCLASS64
1221 #define ELF_ARCH EM_ALPHA
1223 static inline void init_thread(struct target_pt_regs
*regs
,
1224 struct image_info
*infop
)
1226 regs
->pc
= infop
->entry
;
1228 regs
->usp
= infop
->start_stack
;
1231 #define ELF_EXEC_PAGESIZE 8192
1233 #endif /* TARGET_ALPHA */
1237 #define ELF_START_MMAP (0x20000000000ULL)
1239 #define ELF_CLASS ELFCLASS64
1240 #define ELF_DATA ELFDATA2MSB
1241 #define ELF_ARCH EM_S390
1243 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1245 regs
->psw
.addr
= infop
->entry
;
1246 regs
->psw
.mask
= PSW_MASK_64
| PSW_MASK_32
;
1247 regs
->gprs
[15] = infop
->start_stack
;
1250 #endif /* TARGET_S390X */
1252 #ifdef TARGET_TILEGX
1254 /* 42 bits real used address, a half for user mode */
1255 #define ELF_START_MMAP (0x00000020000000000ULL)
1257 #define elf_check_arch(x) ((x) == EM_TILEGX)
1259 #define ELF_CLASS ELFCLASS64
1260 #define ELF_DATA ELFDATA2LSB
1261 #define ELF_ARCH EM_TILEGX
1263 static inline void init_thread(struct target_pt_regs
*regs
,
1264 struct image_info
*infop
)
1266 regs
->pc
= infop
->entry
;
1267 regs
->sp
= infop
->start_stack
;
1271 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1273 #endif /* TARGET_TILEGX */
1277 #define ELF_START_MMAP 0x80000000
1278 #define ELF_CLASS ELFCLASS32
1279 #define ELF_ARCH EM_PARISC
1280 #define ELF_PLATFORM "PARISC"
1281 #define STACK_GROWS_DOWN 0
1282 #define STACK_ALIGNMENT 64
1284 static inline void init_thread(struct target_pt_regs
*regs
,
1285 struct image_info
*infop
)
1287 regs
->iaoq
[0] = infop
->entry
;
1288 regs
->iaoq
[1] = infop
->entry
+ 4;
1290 regs
->gr
[24] = infop
->arg_start
;
1291 regs
->gr
[25] = (infop
->arg_end
- infop
->arg_start
) / sizeof(abi_ulong
);
1292 /* The top-of-stack contains a linkage buffer. */
1293 regs
->gr
[30] = infop
->start_stack
+ 64;
1294 regs
->gr
[31] = infop
->entry
;
1297 #endif /* TARGET_HPPA */
1299 #ifndef ELF_PLATFORM
1300 #define ELF_PLATFORM (NULL)
1304 #define ELF_MACHINE ELF_ARCH
1307 #ifndef elf_check_arch
1308 #define elf_check_arch(x) ((x) == ELF_ARCH)
1315 #ifndef STACK_GROWS_DOWN
1316 #define STACK_GROWS_DOWN 1
1319 #ifndef STACK_ALIGNMENT
1320 #define STACK_ALIGNMENT 16
1325 #define ELF_CLASS ELFCLASS32
1327 #define bswaptls(ptr) bswap32s(ptr)
1334 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
1335 unsigned int a_text
; /* length of text, in bytes */
1336 unsigned int a_data
; /* length of data, in bytes */
1337 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
1338 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
1339 unsigned int a_entry
; /* start address */
1340 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
1341 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
1345 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1351 /* Necessary parameters */
1352 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1353 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1354 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1355 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1357 #define DLINFO_ITEMS 14
1359 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
1361 memcpy(to
, from
, n
);
1365 static void bswap_ehdr(struct elfhdr
*ehdr
)
1367 bswap16s(&ehdr
->e_type
); /* Object file type */
1368 bswap16s(&ehdr
->e_machine
); /* Architecture */
1369 bswap32s(&ehdr
->e_version
); /* Object file version */
1370 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
1371 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
1372 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
1373 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
1374 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
1375 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
1376 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
1377 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
1378 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
1379 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
1382 static void bswap_phdr(struct elf_phdr
*phdr
, int phnum
)
1385 for (i
= 0; i
< phnum
; ++i
, ++phdr
) {
1386 bswap32s(&phdr
->p_type
); /* Segment type */
1387 bswap32s(&phdr
->p_flags
); /* Segment flags */
1388 bswaptls(&phdr
->p_offset
); /* Segment file offset */
1389 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
1390 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
1391 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
1392 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
1393 bswaptls(&phdr
->p_align
); /* Segment alignment */
1397 static void bswap_shdr(struct elf_shdr
*shdr
, int shnum
)
1400 for (i
= 0; i
< shnum
; ++i
, ++shdr
) {
1401 bswap32s(&shdr
->sh_name
);
1402 bswap32s(&shdr
->sh_type
);
1403 bswaptls(&shdr
->sh_flags
);
1404 bswaptls(&shdr
->sh_addr
);
1405 bswaptls(&shdr
->sh_offset
);
1406 bswaptls(&shdr
->sh_size
);
1407 bswap32s(&shdr
->sh_link
);
1408 bswap32s(&shdr
->sh_info
);
1409 bswaptls(&shdr
->sh_addralign
);
1410 bswaptls(&shdr
->sh_entsize
);
1414 static void bswap_sym(struct elf_sym
*sym
)
1416 bswap32s(&sym
->st_name
);
1417 bswaptls(&sym
->st_value
);
1418 bswaptls(&sym
->st_size
);
1419 bswap16s(&sym
->st_shndx
);
1422 static inline void bswap_ehdr(struct elfhdr
*ehdr
) { }
1423 static inline void bswap_phdr(struct elf_phdr
*phdr
, int phnum
) { }
1424 static inline void bswap_shdr(struct elf_shdr
*shdr
, int shnum
) { }
1425 static inline void bswap_sym(struct elf_sym
*sym
) { }
1428 #ifdef USE_ELF_CORE_DUMP
1429 static int elf_core_dump(int, const CPUArchState
*);
1430 #endif /* USE_ELF_CORE_DUMP */
1431 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
);
1433 /* Verify the portions of EHDR within E_IDENT for the target.
1434 This can be performed before bswapping the entire header. */
1435 static bool elf_check_ident(struct elfhdr
*ehdr
)
1437 return (ehdr
->e_ident
[EI_MAG0
] == ELFMAG0
1438 && ehdr
->e_ident
[EI_MAG1
] == ELFMAG1
1439 && ehdr
->e_ident
[EI_MAG2
] == ELFMAG2
1440 && ehdr
->e_ident
[EI_MAG3
] == ELFMAG3
1441 && ehdr
->e_ident
[EI_CLASS
] == ELF_CLASS
1442 && ehdr
->e_ident
[EI_DATA
] == ELF_DATA
1443 && ehdr
->e_ident
[EI_VERSION
] == EV_CURRENT
);
1446 /* Verify the portions of EHDR outside of E_IDENT for the target.
1447 This has to wait until after bswapping the header. */
1448 static bool elf_check_ehdr(struct elfhdr
*ehdr
)
1450 return (elf_check_arch(ehdr
->e_machine
)
1451 && ehdr
->e_ehsize
== sizeof(struct elfhdr
)
1452 && ehdr
->e_phentsize
== sizeof(struct elf_phdr
)
1453 && (ehdr
->e_type
== ET_EXEC
|| ehdr
->e_type
== ET_DYN
));
1457 * 'copy_elf_strings()' copies argument/envelope strings from user
1458 * memory to free pages in kernel mem. These are in a format ready
1459 * to be put directly into the top of new user memory.
1462 static abi_ulong
copy_elf_strings(int argc
, char **argv
, char *scratch
,
1463 abi_ulong p
, abi_ulong stack_limit
)
1470 return 0; /* bullet-proofing */
1473 if (STACK_GROWS_DOWN
) {
1474 int offset
= ((p
- 1) % TARGET_PAGE_SIZE
) + 1;
1475 for (i
= argc
- 1; i
>= 0; --i
) {
1478 fprintf(stderr
, "VFS: argc is wrong");
1481 len
= strlen(tmp
) + 1;
1484 if (len
> (p
- stack_limit
)) {
1488 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
1489 tmp
-= bytes_to_copy
;
1491 offset
-= bytes_to_copy
;
1492 len
-= bytes_to_copy
;
1494 memcpy_fromfs(scratch
+ offset
, tmp
, bytes_to_copy
);
1497 memcpy_to_target(p
, scratch
, top
- p
);
1499 offset
= TARGET_PAGE_SIZE
;
1504 memcpy_to_target(p
, scratch
+ offset
, top
- p
);
1507 int remaining
= TARGET_PAGE_SIZE
- (p
% TARGET_PAGE_SIZE
);
1508 for (i
= 0; i
< argc
; ++i
) {
1511 fprintf(stderr
, "VFS: argc is wrong");
1514 len
= strlen(tmp
) + 1;
1515 if (len
> (stack_limit
- p
)) {
1519 int bytes_to_copy
= (len
> remaining
) ? remaining
: len
;
1521 memcpy_fromfs(scratch
+ (p
- top
), tmp
, bytes_to_copy
);
1523 tmp
+= bytes_to_copy
;
1524 remaining
-= bytes_to_copy
;
1526 len
-= bytes_to_copy
;
1528 if (remaining
== 0) {
1529 memcpy_to_target(top
, scratch
, p
- top
);
1531 remaining
= TARGET_PAGE_SIZE
;
1536 memcpy_to_target(top
, scratch
, p
- top
);
1543 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1544 * argument/environment space. Newer kernels (>2.6.33) allow more,
1545 * dependent on stack size, but guarantee at least 32 pages for
1546 * backwards compatibility.
1548 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1550 static abi_ulong
setup_arg_pages(struct linux_binprm
*bprm
,
1551 struct image_info
*info
)
1553 abi_ulong size
, error
, guard
;
1555 size
= guest_stack_size
;
1556 if (size
< STACK_LOWER_LIMIT
) {
1557 size
= STACK_LOWER_LIMIT
;
1559 guard
= TARGET_PAGE_SIZE
;
1560 if (guard
< qemu_real_host_page_size
) {
1561 guard
= qemu_real_host_page_size
;
1564 error
= target_mmap(0, size
+ guard
, PROT_READ
| PROT_WRITE
,
1565 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1567 perror("mmap stack");
1571 /* We reserve one extra page at the top of the stack as guard. */
1572 if (STACK_GROWS_DOWN
) {
1573 target_mprotect(error
, guard
, PROT_NONE
);
1574 info
->stack_limit
= error
+ guard
;
1575 return info
->stack_limit
+ size
- sizeof(void *);
1577 target_mprotect(error
+ size
, guard
, PROT_NONE
);
1578 info
->stack_limit
= error
+ size
;
1583 /* Map and zero the bss. We need to explicitly zero any fractional pages
1584 after the data section (i.e. bss). */
1585 static void zero_bss(abi_ulong elf_bss
, abi_ulong last_bss
, int prot
)
1587 uintptr_t host_start
, host_map_start
, host_end
;
1589 last_bss
= TARGET_PAGE_ALIGN(last_bss
);
1591 /* ??? There is confusion between qemu_real_host_page_size and
1592 qemu_host_page_size here and elsewhere in target_mmap, which
1593 may lead to the end of the data section mapping from the file
1594 not being mapped. At least there was an explicit test and
1595 comment for that here, suggesting that "the file size must
1596 be known". The comment probably pre-dates the introduction
1597 of the fstat system call in target_mmap which does in fact
1598 find out the size. What isn't clear is if the workaround
1599 here is still actually needed. For now, continue with it,
1600 but merge it with the "normal" mmap that would allocate the bss. */
1602 host_start
= (uintptr_t) g2h(elf_bss
);
1603 host_end
= (uintptr_t) g2h(last_bss
);
1604 host_map_start
= REAL_HOST_PAGE_ALIGN(host_start
);
1606 if (host_map_start
< host_end
) {
1607 void *p
= mmap((void *)host_map_start
, host_end
- host_map_start
,
1608 prot
, MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1609 if (p
== MAP_FAILED
) {
1610 perror("cannot mmap brk");
1615 /* Ensure that the bss page(s) are valid */
1616 if ((page_get_flags(last_bss
-1) & prot
) != prot
) {
1617 page_set_flags(elf_bss
& TARGET_PAGE_MASK
, last_bss
, prot
| PAGE_VALID
);
1620 if (host_start
< host_map_start
) {
1621 memset((void *)host_start
, 0, host_map_start
- host_start
);
1625 #ifdef CONFIG_USE_FDPIC
1626 static abi_ulong
loader_build_fdpic_loadmap(struct image_info
*info
, abi_ulong sp
)
1629 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
;
1631 /* elf32_fdpic_loadseg */
1635 put_user_u32(loadsegs
[n
].addr
, sp
+0);
1636 put_user_u32(loadsegs
[n
].p_vaddr
, sp
+4);
1637 put_user_u32(loadsegs
[n
].p_memsz
, sp
+8);
1640 /* elf32_fdpic_loadmap */
1642 put_user_u16(0, sp
+0); /* version */
1643 put_user_u16(info
->nsegs
, sp
+2); /* nsegs */
1645 info
->personality
= PER_LINUX_FDPIC
;
1646 info
->loadmap_addr
= sp
;
1652 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
1653 struct elfhdr
*exec
,
1654 struct image_info
*info
,
1655 struct image_info
*interp_info
)
1658 abi_ulong u_argc
, u_argv
, u_envp
, u_auxv
;
1661 abi_ulong u_rand_bytes
;
1662 uint8_t k_rand_bytes
[16];
1663 abi_ulong u_platform
;
1664 const char *k_platform
;
1665 const int n
= sizeof(elf_addr_t
);
1669 #ifdef CONFIG_USE_FDPIC
1670 /* Needs to be before we load the env/argc/... */
1671 if (elf_is_fdpic(exec
)) {
1672 /* Need 4 byte alignment for these structs */
1674 sp
= loader_build_fdpic_loadmap(info
, sp
);
1675 info
->other_info
= interp_info
;
1677 interp_info
->other_info
= info
;
1678 sp
= loader_build_fdpic_loadmap(interp_info
, sp
);
1684 k_platform
= ELF_PLATFORM
;
1686 size_t len
= strlen(k_platform
) + 1;
1687 if (STACK_GROWS_DOWN
) {
1688 sp
-= (len
+ n
- 1) & ~(n
- 1);
1690 /* FIXME - check return value of memcpy_to_target() for failure */
1691 memcpy_to_target(sp
, k_platform
, len
);
1693 memcpy_to_target(sp
, k_platform
, len
);
1699 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1700 * the argv and envp pointers.
1702 if (STACK_GROWS_DOWN
) {
1703 sp
= QEMU_ALIGN_DOWN(sp
, 16);
1705 sp
= QEMU_ALIGN_UP(sp
, 16);
1709 * Generate 16 random bytes for userspace PRNG seeding (not
1710 * cryptically secure but it's not the aim of QEMU).
1712 for (i
= 0; i
< 16; i
++) {
1713 k_rand_bytes
[i
] = rand();
1715 if (STACK_GROWS_DOWN
) {
1718 /* FIXME - check return value of memcpy_to_target() for failure */
1719 memcpy_to_target(sp
, k_rand_bytes
, 16);
1721 memcpy_to_target(sp
, k_rand_bytes
, 16);
1726 size
= (DLINFO_ITEMS
+ 1) * 2;
1729 #ifdef DLINFO_ARCH_ITEMS
1730 size
+= DLINFO_ARCH_ITEMS
* 2;
1735 size
+= envc
+ argc
+ 2;
1736 size
+= 1; /* argc itself */
1739 /* Allocate space and finalize stack alignment for entry now. */
1740 if (STACK_GROWS_DOWN
) {
1741 u_argc
= QEMU_ALIGN_DOWN(sp
- size
, STACK_ALIGNMENT
);
1745 sp
= QEMU_ALIGN_UP(sp
+ size
, STACK_ALIGNMENT
);
1748 u_argv
= u_argc
+ n
;
1749 u_envp
= u_argv
+ (argc
+ 1) * n
;
1750 u_auxv
= u_envp
+ (envc
+ 1) * n
;
1751 info
->saved_auxv
= u_auxv
;
1752 info
->arg_start
= u_argv
;
1753 info
->arg_end
= u_argv
+ argc
* n
;
1755 /* This is correct because Linux defines
1756 * elf_addr_t as Elf32_Off / Elf64_Off
1758 #define NEW_AUX_ENT(id, val) do { \
1759 put_user_ual(id, u_auxv); u_auxv += n; \
1760 put_user_ual(val, u_auxv); u_auxv += n; \
1763 /* There must be exactly DLINFO_ITEMS entries here. */
1766 * ARCH_DLINFO must come first so platform specific code can enforce
1767 * special alignment requirements on the AUXV if necessary (eg. PPC).
1771 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(info
->load_addr
+ exec
->e_phoff
));
1772 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
1773 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
1774 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(MAX(TARGET_PAGE_SIZE
, getpagesize())));
1775 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_info
? interp_info
->load_addr
: 0));
1776 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
1777 NEW_AUX_ENT(AT_ENTRY
, info
->entry
);
1778 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
1779 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
1780 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
1781 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
1782 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
1783 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
1784 NEW_AUX_ENT(AT_RANDOM
, (abi_ulong
) u_rand_bytes
);
1787 NEW_AUX_ENT(AT_HWCAP2
, (abi_ulong
) ELF_HWCAP2
);
1791 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
1793 NEW_AUX_ENT (AT_NULL
, 0);
1796 info
->auxv_len
= u_argv
- info
->saved_auxv
;
1798 put_user_ual(argc
, u_argc
);
1800 p
= info
->arg_strings
;
1801 for (i
= 0; i
< argc
; ++i
) {
1802 put_user_ual(p
, u_argv
);
1804 p
+= target_strlen(p
) + 1;
1806 put_user_ual(0, u_argv
);
1808 p
= info
->env_strings
;
1809 for (i
= 0; i
< envc
; ++i
) {
1810 put_user_ual(p
, u_envp
);
1812 p
+= target_strlen(p
) + 1;
1814 put_user_ual(0, u_envp
);
1819 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1820 /* If the guest doesn't have a validation function just agree */
1821 static int validate_guest_space(unsigned long guest_base
,
1822 unsigned long guest_size
)
1828 unsigned long init_guest_space(unsigned long host_start
,
1829 unsigned long host_size
,
1830 unsigned long guest_start
,
1833 unsigned long current_start
, real_start
;
1836 assert(host_start
|| host_size
);
1838 /* If just a starting address is given, then just verify that
1840 if (host_start
&& !host_size
) {
1841 if (validate_guest_space(host_start
, host_size
) == 1) {
1844 return (unsigned long)-1;
1848 /* Setup the initial flags and start address. */
1849 current_start
= host_start
& qemu_host_page_mask
;
1850 flags
= MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
;
1855 /* Otherwise, a non-zero size region of memory needs to be mapped
1858 unsigned long real_size
= host_size
;
1860 /* Do not use mmap_find_vma here because that is limited to the
1861 * guest address space. We are going to make the
1862 * guest address space fit whatever we're given.
1864 real_start
= (unsigned long)
1865 mmap((void *)current_start
, host_size
, PROT_NONE
, flags
, -1, 0);
1866 if (real_start
== (unsigned long)-1) {
1867 return (unsigned long)-1;
1870 /* Ensure the address is properly aligned. */
1871 if (real_start
& ~qemu_host_page_mask
) {
1872 munmap((void *)real_start
, host_size
);
1873 real_size
= host_size
+ qemu_host_page_size
;
1874 real_start
= (unsigned long)
1875 mmap((void *)real_start
, real_size
, PROT_NONE
, flags
, -1, 0);
1876 if (real_start
== (unsigned long)-1) {
1877 return (unsigned long)-1;
1879 real_start
= HOST_PAGE_ALIGN(real_start
);
1882 /* Check to see if the address is valid. */
1883 if (!host_start
|| real_start
== current_start
) {
1884 int valid
= validate_guest_space(real_start
- guest_start
,
1888 } else if (valid
== -1) {
1889 return (unsigned long)-1;
1891 /* valid == 0, so try again. */
1894 /* That address didn't work. Unmap and try a different one.
1895 * The address the host picked because is typically right at
1896 * the top of the host address space and leaves the guest with
1897 * no usable address space. Resort to a linear search. We
1898 * already compensated for mmap_min_addr, so this should not
1899 * happen often. Probably means we got unlucky and host
1900 * address space randomization put a shared library somewhere
1903 munmap((void *)real_start
, host_size
);
1904 current_start
+= qemu_host_page_size
;
1905 if (host_start
== current_start
) {
1906 /* Theoretically possible if host doesn't have any suitably
1907 * aligned areas. Normally the first mmap will fail.
1909 return (unsigned long)-1;
1913 qemu_log_mask(CPU_LOG_PAGE
, "Reserved 0x%lx bytes of guest address space\n", host_size
);
1918 static void probe_guest_base(const char *image_name
,
1919 abi_ulong loaddr
, abi_ulong hiaddr
)
1921 /* Probe for a suitable guest base address, if the user has not set
1922 * it explicitly, and set guest_base appropriately.
1923 * In case of error we will print a suitable message and exit.
1926 if (!have_guest_base
&& !reserved_va
) {
1927 unsigned long host_start
, real_start
, host_size
;
1929 /* Round addresses to page boundaries. */
1930 loaddr
&= qemu_host_page_mask
;
1931 hiaddr
= HOST_PAGE_ALIGN(hiaddr
);
1933 if (loaddr
< mmap_min_addr
) {
1934 host_start
= HOST_PAGE_ALIGN(mmap_min_addr
);
1936 host_start
= loaddr
;
1937 if (host_start
!= loaddr
) {
1938 errmsg
= "Address overflow loading ELF binary";
1942 host_size
= hiaddr
- loaddr
;
1944 /* Setup the initial guest memory space with ranges gleaned from
1945 * the ELF image that is being loaded.
1947 real_start
= init_guest_space(host_start
, host_size
, loaddr
, false);
1948 if (real_start
== (unsigned long)-1) {
1949 errmsg
= "Unable to find space for application";
1952 guest_base
= real_start
- loaddr
;
1954 qemu_log_mask(CPU_LOG_PAGE
, "Relocating guest address space from 0x"
1955 TARGET_ABI_FMT_lx
" to 0x%lx\n",
1956 loaddr
, real_start
);
1961 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
1966 /* Load an ELF image into the address space.
1968 IMAGE_NAME is the filename of the image, to use in error messages.
1969 IMAGE_FD is the open file descriptor for the image.
1971 BPRM_BUF is a copy of the beginning of the file; this of course
1972 contains the elf file header at offset 0. It is assumed that this
1973 buffer is sufficiently aligned to present no problems to the host
1974 in accessing data at aligned offsets within the buffer.
1976 On return: INFO values will be filled in, as necessary or available. */
1978 static void load_elf_image(const char *image_name
, int image_fd
,
1979 struct image_info
*info
, char **pinterp_name
,
1980 char bprm_buf
[BPRM_BUF_SIZE
])
1982 struct elfhdr
*ehdr
= (struct elfhdr
*)bprm_buf
;
1983 struct elf_phdr
*phdr
;
1984 abi_ulong load_addr
, load_bias
, loaddr
, hiaddr
, error
;
1988 /* First of all, some simple consistency checks */
1989 errmsg
= "Invalid ELF image for this architecture";
1990 if (!elf_check_ident(ehdr
)) {
1994 if (!elf_check_ehdr(ehdr
)) {
1998 i
= ehdr
->e_phnum
* sizeof(struct elf_phdr
);
1999 if (ehdr
->e_phoff
+ i
<= BPRM_BUF_SIZE
) {
2000 phdr
= (struct elf_phdr
*)(bprm_buf
+ ehdr
->e_phoff
);
2002 phdr
= (struct elf_phdr
*) alloca(i
);
2003 retval
= pread(image_fd
, phdr
, i
, ehdr
->e_phoff
);
2008 bswap_phdr(phdr
, ehdr
->e_phnum
);
2010 #ifdef CONFIG_USE_FDPIC
2012 info
->pt_dynamic_addr
= 0;
2017 /* Find the maximum size of the image and allocate an appropriate
2018 amount of memory to handle that. */
2019 loaddr
= -1, hiaddr
= 0;
2020 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
2021 if (phdr
[i
].p_type
== PT_LOAD
) {
2022 abi_ulong a
= phdr
[i
].p_vaddr
- phdr
[i
].p_offset
;
2026 a
= phdr
[i
].p_vaddr
+ phdr
[i
].p_memsz
;
2030 #ifdef CONFIG_USE_FDPIC
2037 if (ehdr
->e_type
== ET_DYN
) {
2038 /* The image indicates that it can be loaded anywhere. Find a
2039 location that can hold the memory space required. If the
2040 image is pre-linked, LOADDR will be non-zero. Since we do
2041 not supply MAP_FIXED here we'll use that address if and
2042 only if it remains available. */
2043 load_addr
= target_mmap(loaddr
, hiaddr
- loaddr
, PROT_NONE
,
2044 MAP_PRIVATE
| MAP_ANON
| MAP_NORESERVE
,
2046 if (load_addr
== -1) {
2049 } else if (pinterp_name
!= NULL
) {
2050 /* This is the main executable. Make sure that the low
2051 address does not conflict with MMAP_MIN_ADDR or the
2052 QEMU application itself. */
2053 probe_guest_base(image_name
, loaddr
, hiaddr
);
2055 load_bias
= load_addr
- loaddr
;
2057 #ifdef CONFIG_USE_FDPIC
2059 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
=
2060 g_malloc(sizeof(*loadsegs
) * info
->nsegs
);
2062 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
2063 switch (phdr
[i
].p_type
) {
2065 info
->pt_dynamic_addr
= phdr
[i
].p_vaddr
+ load_bias
;
2068 loadsegs
->addr
= phdr
[i
].p_vaddr
+ load_bias
;
2069 loadsegs
->p_vaddr
= phdr
[i
].p_vaddr
;
2070 loadsegs
->p_memsz
= phdr
[i
].p_memsz
;
2078 info
->load_bias
= load_bias
;
2079 info
->load_addr
= load_addr
;
2080 info
->entry
= ehdr
->e_entry
+ load_bias
;
2081 info
->start_code
= -1;
2083 info
->start_data
= -1;
2086 info
->elf_flags
= ehdr
->e_flags
;
2088 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
2089 struct elf_phdr
*eppnt
= phdr
+ i
;
2090 if (eppnt
->p_type
== PT_LOAD
) {
2091 abi_ulong vaddr
, vaddr_po
, vaddr_ps
, vaddr_ef
, vaddr_em
;
2094 if (eppnt
->p_flags
& PF_R
) elf_prot
= PROT_READ
;
2095 if (eppnt
->p_flags
& PF_W
) elf_prot
|= PROT_WRITE
;
2096 if (eppnt
->p_flags
& PF_X
) elf_prot
|= PROT_EXEC
;
2098 vaddr
= load_bias
+ eppnt
->p_vaddr
;
2099 vaddr_po
= TARGET_ELF_PAGEOFFSET(vaddr
);
2100 vaddr_ps
= TARGET_ELF_PAGESTART(vaddr
);
2102 error
= target_mmap(vaddr_ps
, eppnt
->p_filesz
+ vaddr_po
,
2103 elf_prot
, MAP_PRIVATE
| MAP_FIXED
,
2104 image_fd
, eppnt
->p_offset
- vaddr_po
);
2109 vaddr_ef
= vaddr
+ eppnt
->p_filesz
;
2110 vaddr_em
= vaddr
+ eppnt
->p_memsz
;
2112 /* If the load segment requests extra zeros (e.g. bss), map it. */
2113 if (vaddr_ef
< vaddr_em
) {
2114 zero_bss(vaddr_ef
, vaddr_em
, elf_prot
);
2117 /* Find the full program boundaries. */
2118 if (elf_prot
& PROT_EXEC
) {
2119 if (vaddr
< info
->start_code
) {
2120 info
->start_code
= vaddr
;
2122 if (vaddr_ef
> info
->end_code
) {
2123 info
->end_code
= vaddr_ef
;
2126 if (elf_prot
& PROT_WRITE
) {
2127 if (vaddr
< info
->start_data
) {
2128 info
->start_data
= vaddr
;
2130 if (vaddr_ef
> info
->end_data
) {
2131 info
->end_data
= vaddr_ef
;
2133 if (vaddr_em
> info
->brk
) {
2134 info
->brk
= vaddr_em
;
2137 } else if (eppnt
->p_type
== PT_INTERP
&& pinterp_name
) {
2140 if (*pinterp_name
) {
2141 errmsg
= "Multiple PT_INTERP entries";
2144 interp_name
= malloc(eppnt
->p_filesz
);
2149 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
2150 memcpy(interp_name
, bprm_buf
+ eppnt
->p_offset
,
2153 retval
= pread(image_fd
, interp_name
, eppnt
->p_filesz
,
2155 if (retval
!= eppnt
->p_filesz
) {
2159 if (interp_name
[eppnt
->p_filesz
- 1] != 0) {
2160 errmsg
= "Invalid PT_INTERP entry";
2163 *pinterp_name
= interp_name
;
2167 if (info
->end_data
== 0) {
2168 info
->start_data
= info
->end_code
;
2169 info
->end_data
= info
->end_code
;
2170 info
->brk
= info
->end_code
;
2173 if (qemu_log_enabled()) {
2174 load_symbols(ehdr
, image_fd
, load_bias
);
2184 errmsg
= "Incomplete read of file header";
2188 errmsg
= strerror(errno
);
2190 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
2194 static void load_elf_interp(const char *filename
, struct image_info
*info
,
2195 char bprm_buf
[BPRM_BUF_SIZE
])
2199 fd
= open(path(filename
), O_RDONLY
);
2204 retval
= read(fd
, bprm_buf
, BPRM_BUF_SIZE
);
2208 if (retval
< BPRM_BUF_SIZE
) {
2209 memset(bprm_buf
+ retval
, 0, BPRM_BUF_SIZE
- retval
);
2212 load_elf_image(filename
, fd
, info
, NULL
, bprm_buf
);
2216 fprintf(stderr
, "%s: %s\n", filename
, strerror(errno
));
2220 static int symfind(const void *s0
, const void *s1
)
2222 target_ulong addr
= *(target_ulong
*)s0
;
2223 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
2225 if (addr
< sym
->st_value
) {
2227 } else if (addr
>= sym
->st_value
+ sym
->st_size
) {
2233 static const char *lookup_symbolxx(struct syminfo
*s
, target_ulong orig_addr
)
2235 #if ELF_CLASS == ELFCLASS32
2236 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
2238 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
2242 struct elf_sym
*sym
;
2244 sym
= bsearch(&orig_addr
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
2246 return s
->disas_strtab
+ sym
->st_name
;
2252 /* FIXME: This should use elf_ops.h */
2253 static int symcmp(const void *s0
, const void *s1
)
2255 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
2256 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
2257 return (sym0
->st_value
< sym1
->st_value
)
2259 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
2262 /* Best attempt to load symbols from this ELF object. */
2263 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
)
2265 int i
, shnum
, nsyms
, sym_idx
= 0, str_idx
= 0;
2267 struct elf_shdr
*shdr
;
2268 char *strings
= NULL
;
2269 struct syminfo
*s
= NULL
;
2270 struct elf_sym
*new_syms
, *syms
= NULL
;
2272 shnum
= hdr
->e_shnum
;
2273 i
= shnum
* sizeof(struct elf_shdr
);
2274 shdr
= (struct elf_shdr
*)alloca(i
);
2275 if (pread(fd
, shdr
, i
, hdr
->e_shoff
) != i
) {
2279 bswap_shdr(shdr
, shnum
);
2280 for (i
= 0; i
< shnum
; ++i
) {
2281 if (shdr
[i
].sh_type
== SHT_SYMTAB
) {
2283 str_idx
= shdr
[i
].sh_link
;
2288 /* There will be no symbol table if the file was stripped. */
2292 /* Now know where the strtab and symtab are. Snarf them. */
2293 s
= g_try_new(struct syminfo
, 1);
2298 segsz
= shdr
[str_idx
].sh_size
;
2299 s
->disas_strtab
= strings
= g_try_malloc(segsz
);
2301 pread(fd
, strings
, segsz
, shdr
[str_idx
].sh_offset
) != segsz
) {
2305 segsz
= shdr
[sym_idx
].sh_size
;
2306 syms
= g_try_malloc(segsz
);
2307 if (!syms
|| pread(fd
, syms
, segsz
, shdr
[sym_idx
].sh_offset
) != segsz
) {
2311 if (segsz
/ sizeof(struct elf_sym
) > INT_MAX
) {
2312 /* Implausibly large symbol table: give up rather than ploughing
2313 * on with the number of symbols calculation overflowing
2317 nsyms
= segsz
/ sizeof(struct elf_sym
);
2318 for (i
= 0; i
< nsyms
; ) {
2319 bswap_sym(syms
+ i
);
2320 /* Throw away entries which we do not need. */
2321 if (syms
[i
].st_shndx
== SHN_UNDEF
2322 || syms
[i
].st_shndx
>= SHN_LORESERVE
2323 || ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
2325 syms
[i
] = syms
[nsyms
];
2328 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2329 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2330 syms
[i
].st_value
&= ~(target_ulong
)1;
2332 syms
[i
].st_value
+= load_bias
;
2337 /* No "useful" symbol. */
2342 /* Attempt to free the storage associated with the local symbols
2343 that we threw away. Whether or not this has any effect on the
2344 memory allocation depends on the malloc implementation and how
2345 many symbols we managed to discard. */
2346 new_syms
= g_try_renew(struct elf_sym
, syms
, nsyms
);
2347 if (new_syms
== NULL
) {
2352 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
2354 s
->disas_num_syms
= nsyms
;
2355 #if ELF_CLASS == ELFCLASS32
2356 s
->disas_symtab
.elf32
= syms
;
2358 s
->disas_symtab
.elf64
= syms
;
2360 s
->lookup_symbol
= lookup_symbolxx
;
2372 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
)
2374 struct image_info interp_info
;
2375 struct elfhdr elf_ex
;
2376 char *elf_interpreter
= NULL
;
2379 info
->start_mmap
= (abi_ulong
)ELF_START_MMAP
;
2381 load_elf_image(bprm
->filename
, bprm
->fd
, info
,
2382 &elf_interpreter
, bprm
->buf
);
2384 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2385 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2386 when we load the interpreter. */
2387 elf_ex
= *(struct elfhdr
*)bprm
->buf
;
2389 /* Do this so that we can load the interpreter, if need be. We will
2390 change some of these later */
2391 bprm
->p
= setup_arg_pages(bprm
, info
);
2393 scratch
= g_new0(char, TARGET_PAGE_SIZE
);
2394 if (STACK_GROWS_DOWN
) {
2395 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
2396 bprm
->p
, info
->stack_limit
);
2397 info
->file_string
= bprm
->p
;
2398 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
2399 bprm
->p
, info
->stack_limit
);
2400 info
->env_strings
= bprm
->p
;
2401 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
2402 bprm
->p
, info
->stack_limit
);
2403 info
->arg_strings
= bprm
->p
;
2405 info
->arg_strings
= bprm
->p
;
2406 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
2407 bprm
->p
, info
->stack_limit
);
2408 info
->env_strings
= bprm
->p
;
2409 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
2410 bprm
->p
, info
->stack_limit
);
2411 info
->file_string
= bprm
->p
;
2412 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
2413 bprm
->p
, info
->stack_limit
);
2419 fprintf(stderr
, "%s: %s\n", bprm
->filename
, strerror(E2BIG
));
2423 if (elf_interpreter
) {
2424 load_elf_interp(elf_interpreter
, &interp_info
, bprm
->buf
);
2426 /* If the program interpreter is one of these two, then assume
2427 an iBCS2 image. Otherwise assume a native linux image. */
2429 if (strcmp(elf_interpreter
, "/usr/lib/libc.so.1") == 0
2430 || strcmp(elf_interpreter
, "/usr/lib/ld.so.1") == 0) {
2431 info
->personality
= PER_SVR4
;
2433 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2434 and some applications "depend" upon this behavior. Since
2435 we do not have the power to recompile these, we emulate
2436 the SVr4 behavior. Sigh. */
2437 target_mmap(0, qemu_host_page_size
, PROT_READ
| PROT_EXEC
,
2438 MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
2442 bprm
->p
= create_elf_tables(bprm
->p
, bprm
->argc
, bprm
->envc
, &elf_ex
,
2443 info
, (elf_interpreter
? &interp_info
: NULL
));
2444 info
->start_stack
= bprm
->p
;
2446 /* If we have an interpreter, set that as the program's entry point.
2447 Copy the load_bias as well, to help PPC64 interpret the entry
2448 point as a function descriptor. Do this after creating elf tables
2449 so that we copy the original program entry point into the AUXV. */
2450 if (elf_interpreter
) {
2451 info
->load_bias
= interp_info
.load_bias
;
2452 info
->entry
= interp_info
.entry
;
2453 free(elf_interpreter
);
2456 #ifdef USE_ELF_CORE_DUMP
2457 bprm
->core_dump
= &elf_core_dump
;
2463 #ifdef USE_ELF_CORE_DUMP
2465 * Definitions to generate Intel SVR4-like core files.
2466 * These mostly have the same names as the SVR4 types with "target_elf_"
2467 * tacked on the front to prevent clashes with linux definitions,
2468 * and the typedef forms have been avoided. This is mostly like
2469 * the SVR4 structure, but more Linuxy, with things that Linux does
2470 * not support and which gdb doesn't really use excluded.
2472 * Fields we don't dump (their contents is zero) in linux-user qemu
2473 * are marked with XXX.
2475 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2477 * Porting ELF coredump for target is (quite) simple process. First you
2478 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2479 * the target resides):
2481 * #define USE_ELF_CORE_DUMP
2483 * Next you define type of register set used for dumping. ELF specification
2484 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2486 * typedef <target_regtype> target_elf_greg_t;
2487 * #define ELF_NREG <number of registers>
2488 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2490 * Last step is to implement target specific function that copies registers
2491 * from given cpu into just specified register set. Prototype is:
2493 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2494 * const CPUArchState *env);
2497 * regs - copy register values into here (allocated and zeroed by caller)
2498 * env - copy registers from here
2500 * Example for ARM target is provided in this file.
2503 /* An ELF note in memory */
2507 size_t namesz_rounded
;
2510 size_t datasz_rounded
;
2515 struct target_elf_siginfo
{
2516 abi_int si_signo
; /* signal number */
2517 abi_int si_code
; /* extra code */
2518 abi_int si_errno
; /* errno */
2521 struct target_elf_prstatus
{
2522 struct target_elf_siginfo pr_info
; /* Info associated with signal */
2523 abi_short pr_cursig
; /* Current signal */
2524 abi_ulong pr_sigpend
; /* XXX */
2525 abi_ulong pr_sighold
; /* XXX */
2526 target_pid_t pr_pid
;
2527 target_pid_t pr_ppid
;
2528 target_pid_t pr_pgrp
;
2529 target_pid_t pr_sid
;
2530 struct target_timeval pr_utime
; /* XXX User time */
2531 struct target_timeval pr_stime
; /* XXX System time */
2532 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
2533 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
2534 target_elf_gregset_t pr_reg
; /* GP registers */
2535 abi_int pr_fpvalid
; /* XXX */
2538 #define ELF_PRARGSZ (80) /* Number of chars for args */
2540 struct target_elf_prpsinfo
{
2541 char pr_state
; /* numeric process state */
2542 char pr_sname
; /* char for pr_state */
2543 char pr_zomb
; /* zombie */
2544 char pr_nice
; /* nice val */
2545 abi_ulong pr_flag
; /* flags */
2546 target_uid_t pr_uid
;
2547 target_gid_t pr_gid
;
2548 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
2550 char pr_fname
[16]; /* filename of executable */
2551 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
2554 /* Here is the structure in which status of each thread is captured. */
2555 struct elf_thread_status
{
2556 QTAILQ_ENTRY(elf_thread_status
) ets_link
;
2557 struct target_elf_prstatus prstatus
; /* NT_PRSTATUS */
2559 elf_fpregset_t fpu
; /* NT_PRFPREG */
2560 struct task_struct
*thread
;
2561 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
2563 struct memelfnote notes
[1];
2567 struct elf_note_info
{
2568 struct memelfnote
*notes
;
2569 struct target_elf_prstatus
*prstatus
; /* NT_PRSTATUS */
2570 struct target_elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
2572 QTAILQ_HEAD(thread_list_head
, elf_thread_status
) thread_list
;
2575 * Current version of ELF coredump doesn't support
2576 * dumping fp regs etc.
2578 elf_fpregset_t
*fpu
;
2579 elf_fpxregset_t
*xfpu
;
2580 int thread_status_size
;
2586 struct vm_area_struct
{
2587 target_ulong vma_start
; /* start vaddr of memory region */
2588 target_ulong vma_end
; /* end vaddr of memory region */
2589 abi_ulong vma_flags
; /* protection etc. flags for the region */
2590 QTAILQ_ENTRY(vm_area_struct
) vma_link
;
2594 QTAILQ_HEAD(, vm_area_struct
) mm_mmap
;
2595 int mm_count
; /* number of mappings */
2598 static struct mm_struct
*vma_init(void);
2599 static void vma_delete(struct mm_struct
*);
2600 static int vma_add_mapping(struct mm_struct
*, target_ulong
,
2601 target_ulong
, abi_ulong
);
2602 static int vma_get_mapping_count(const struct mm_struct
*);
2603 static struct vm_area_struct
*vma_first(const struct mm_struct
*);
2604 static struct vm_area_struct
*vma_next(struct vm_area_struct
*);
2605 static abi_ulong
vma_dump_size(const struct vm_area_struct
*);
2606 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
2607 unsigned long flags
);
2609 static void fill_elf_header(struct elfhdr
*, int, uint16_t, uint32_t);
2610 static void fill_note(struct memelfnote
*, const char *, int,
2611 unsigned int, void *);
2612 static void fill_prstatus(struct target_elf_prstatus
*, const TaskState
*, int);
2613 static int fill_psinfo(struct target_elf_prpsinfo
*, const TaskState
*);
2614 static void fill_auxv_note(struct memelfnote
*, const TaskState
*);
2615 static void fill_elf_note_phdr(struct elf_phdr
*, int, off_t
);
2616 static size_t note_size(const struct memelfnote
*);
2617 static void free_note_info(struct elf_note_info
*);
2618 static int fill_note_info(struct elf_note_info
*, long, const CPUArchState
*);
2619 static void fill_thread_info(struct elf_note_info
*, const CPUArchState
*);
2620 static int core_dump_filename(const TaskState
*, char *, size_t);
2622 static int dump_write(int, const void *, size_t);
2623 static int write_note(struct memelfnote
*, int);
2624 static int write_note_info(struct elf_note_info
*, int);
2627 static void bswap_prstatus(struct target_elf_prstatus
*prstatus
)
2629 prstatus
->pr_info
.si_signo
= tswap32(prstatus
->pr_info
.si_signo
);
2630 prstatus
->pr_info
.si_code
= tswap32(prstatus
->pr_info
.si_code
);
2631 prstatus
->pr_info
.si_errno
= tswap32(prstatus
->pr_info
.si_errno
);
2632 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
2633 prstatus
->pr_sigpend
= tswapal(prstatus
->pr_sigpend
);
2634 prstatus
->pr_sighold
= tswapal(prstatus
->pr_sighold
);
2635 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
2636 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
2637 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
2638 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
2639 /* cpu times are not filled, so we skip them */
2640 /* regs should be in correct format already */
2641 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
2644 static void bswap_psinfo(struct target_elf_prpsinfo
*psinfo
)
2646 psinfo
->pr_flag
= tswapal(psinfo
->pr_flag
);
2647 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
2648 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
2649 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
2650 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
2651 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
2652 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
2655 static void bswap_note(struct elf_note
*en
)
2657 bswap32s(&en
->n_namesz
);
2658 bswap32s(&en
->n_descsz
);
2659 bswap32s(&en
->n_type
);
2662 static inline void bswap_prstatus(struct target_elf_prstatus
*p
) { }
2663 static inline void bswap_psinfo(struct target_elf_prpsinfo
*p
) {}
2664 static inline void bswap_note(struct elf_note
*en
) { }
2665 #endif /* BSWAP_NEEDED */
2668 * Minimal support for linux memory regions. These are needed
2669 * when we are finding out what memory exactly belongs to
2670 * emulated process. No locks needed here, as long as
2671 * thread that received the signal is stopped.
2674 static struct mm_struct
*vma_init(void)
2676 struct mm_struct
*mm
;
2678 if ((mm
= g_malloc(sizeof (*mm
))) == NULL
)
2682 QTAILQ_INIT(&mm
->mm_mmap
);
2687 static void vma_delete(struct mm_struct
*mm
)
2689 struct vm_area_struct
*vma
;
2691 while ((vma
= vma_first(mm
)) != NULL
) {
2692 QTAILQ_REMOVE(&mm
->mm_mmap
, vma
, vma_link
);
2698 static int vma_add_mapping(struct mm_struct
*mm
, target_ulong start
,
2699 target_ulong end
, abi_ulong flags
)
2701 struct vm_area_struct
*vma
;
2703 if ((vma
= g_malloc0(sizeof (*vma
))) == NULL
)
2706 vma
->vma_start
= start
;
2708 vma
->vma_flags
= flags
;
2710 QTAILQ_INSERT_TAIL(&mm
->mm_mmap
, vma
, vma_link
);
2716 static struct vm_area_struct
*vma_first(const struct mm_struct
*mm
)
2718 return (QTAILQ_FIRST(&mm
->mm_mmap
));
2721 static struct vm_area_struct
*vma_next(struct vm_area_struct
*vma
)
2723 return (QTAILQ_NEXT(vma
, vma_link
));
2726 static int vma_get_mapping_count(const struct mm_struct
*mm
)
2728 return (mm
->mm_count
);
2732 * Calculate file (dump) size of given memory region.
2734 static abi_ulong
vma_dump_size(const struct vm_area_struct
*vma
)
2736 /* if we cannot even read the first page, skip it */
2737 if (!access_ok(VERIFY_READ
, vma
->vma_start
, TARGET_PAGE_SIZE
))
2741 * Usually we don't dump executable pages as they contain
2742 * non-writable code that debugger can read directly from
2743 * target library etc. However, thread stacks are marked
2744 * also executable so we read in first page of given region
2745 * and check whether it contains elf header. If there is
2746 * no elf header, we dump it.
2748 if (vma
->vma_flags
& PROT_EXEC
) {
2749 char page
[TARGET_PAGE_SIZE
];
2751 copy_from_user(page
, vma
->vma_start
, sizeof (page
));
2752 if ((page
[EI_MAG0
] == ELFMAG0
) &&
2753 (page
[EI_MAG1
] == ELFMAG1
) &&
2754 (page
[EI_MAG2
] == ELFMAG2
) &&
2755 (page
[EI_MAG3
] == ELFMAG3
)) {
2757 * Mappings are possibly from ELF binary. Don't dump
2764 return (vma
->vma_end
- vma
->vma_start
);
2767 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
2768 unsigned long flags
)
2770 struct mm_struct
*mm
= (struct mm_struct
*)priv
;
2772 vma_add_mapping(mm
, start
, end
, flags
);
2776 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
2777 unsigned int sz
, void *data
)
2779 unsigned int namesz
;
2781 namesz
= strlen(name
) + 1;
2783 note
->namesz
= namesz
;
2784 note
->namesz_rounded
= roundup(namesz
, sizeof (int32_t));
2787 note
->datasz_rounded
= roundup(sz
, sizeof (int32_t));
2792 * We calculate rounded up note size here as specified by
2795 note
->notesz
= sizeof (struct elf_note
) +
2796 note
->namesz_rounded
+ note
->datasz_rounded
;
2799 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
2802 (void) memset(elf
, 0, sizeof(*elf
));
2804 (void) memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
2805 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
2806 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
2807 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
2808 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
2810 elf
->e_type
= ET_CORE
;
2811 elf
->e_machine
= machine
;
2812 elf
->e_version
= EV_CURRENT
;
2813 elf
->e_phoff
= sizeof(struct elfhdr
);
2814 elf
->e_flags
= flags
;
2815 elf
->e_ehsize
= sizeof(struct elfhdr
);
2816 elf
->e_phentsize
= sizeof(struct elf_phdr
);
2817 elf
->e_phnum
= segs
;
2822 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, off_t offset
)
2824 phdr
->p_type
= PT_NOTE
;
2825 phdr
->p_offset
= offset
;
2828 phdr
->p_filesz
= sz
;
2833 bswap_phdr(phdr
, 1);
2836 static size_t note_size(const struct memelfnote
*note
)
2838 return (note
->notesz
);
2841 static void fill_prstatus(struct target_elf_prstatus
*prstatus
,
2842 const TaskState
*ts
, int signr
)
2844 (void) memset(prstatus
, 0, sizeof (*prstatus
));
2845 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
2846 prstatus
->pr_pid
= ts
->ts_tid
;
2847 prstatus
->pr_ppid
= getppid();
2848 prstatus
->pr_pgrp
= getpgrp();
2849 prstatus
->pr_sid
= getsid(0);
2851 bswap_prstatus(prstatus
);
2854 static int fill_psinfo(struct target_elf_prpsinfo
*psinfo
, const TaskState
*ts
)
2856 char *base_filename
;
2857 unsigned int i
, len
;
2859 (void) memset(psinfo
, 0, sizeof (*psinfo
));
2861 len
= ts
->info
->arg_end
- ts
->info
->arg_start
;
2862 if (len
>= ELF_PRARGSZ
)
2863 len
= ELF_PRARGSZ
- 1;
2864 if (copy_from_user(&psinfo
->pr_psargs
, ts
->info
->arg_start
, len
))
2866 for (i
= 0; i
< len
; i
++)
2867 if (psinfo
->pr_psargs
[i
] == 0)
2868 psinfo
->pr_psargs
[i
] = ' ';
2869 psinfo
->pr_psargs
[len
] = 0;
2871 psinfo
->pr_pid
= getpid();
2872 psinfo
->pr_ppid
= getppid();
2873 psinfo
->pr_pgrp
= getpgrp();
2874 psinfo
->pr_sid
= getsid(0);
2875 psinfo
->pr_uid
= getuid();
2876 psinfo
->pr_gid
= getgid();
2878 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
2880 * Using strncpy here is fine: at max-length,
2881 * this field is not NUL-terminated.
2883 (void) strncpy(psinfo
->pr_fname
, base_filename
,
2884 sizeof(psinfo
->pr_fname
));
2886 g_free(base_filename
);
2887 bswap_psinfo(psinfo
);
2891 static void fill_auxv_note(struct memelfnote
*note
, const TaskState
*ts
)
2893 elf_addr_t auxv
= (elf_addr_t
)ts
->info
->saved_auxv
;
2894 elf_addr_t orig_auxv
= auxv
;
2896 int len
= ts
->info
->auxv_len
;
2899 * Auxiliary vector is stored in target process stack. It contains
2900 * {type, value} pairs that we need to dump into note. This is not
2901 * strictly necessary but we do it here for sake of completeness.
2904 /* read in whole auxv vector and copy it to memelfnote */
2905 ptr
= lock_user(VERIFY_READ
, orig_auxv
, len
, 0);
2907 fill_note(note
, "CORE", NT_AUXV
, len
, ptr
);
2908 unlock_user(ptr
, auxv
, len
);
2913 * Constructs name of coredump file. We have following convention
2915 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2917 * Returns 0 in case of success, -1 otherwise (errno is set).
2919 static int core_dump_filename(const TaskState
*ts
, char *buf
,
2923 char *base_filename
= NULL
;
2927 assert(bufsize
>= PATH_MAX
);
2929 if (gettimeofday(&tv
, NULL
) < 0) {
2930 (void) fprintf(stderr
, "unable to get current timestamp: %s",
2935 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
2936 (void) strftime(timestamp
, sizeof (timestamp
), "%Y%m%d-%H%M%S",
2937 localtime_r(&tv
.tv_sec
, &tm
));
2938 (void) snprintf(buf
, bufsize
, "qemu_%s_%s_%d.core",
2939 base_filename
, timestamp
, (int)getpid());
2940 g_free(base_filename
);
2945 static int dump_write(int fd
, const void *ptr
, size_t size
)
2947 const char *bufp
= (const char *)ptr
;
2948 ssize_t bytes_written
, bytes_left
;
2949 struct rlimit dumpsize
;
2953 getrlimit(RLIMIT_CORE
, &dumpsize
);
2954 if ((pos
= lseek(fd
, 0, SEEK_CUR
))==-1) {
2955 if (errno
== ESPIPE
) { /* not a seekable stream */
2961 if (dumpsize
.rlim_cur
<= pos
) {
2963 } else if (dumpsize
.rlim_cur
== RLIM_INFINITY
) {
2966 size_t limit_left
=dumpsize
.rlim_cur
- pos
;
2967 bytes_left
= limit_left
>= size
? size
: limit_left
;
2972 * In normal conditions, single write(2) should do but
2973 * in case of socket etc. this mechanism is more portable.
2976 bytes_written
= write(fd
, bufp
, bytes_left
);
2977 if (bytes_written
< 0) {
2981 } else if (bytes_written
== 0) { /* eof */
2984 bufp
+= bytes_written
;
2985 bytes_left
-= bytes_written
;
2986 } while (bytes_left
> 0);
2991 static int write_note(struct memelfnote
*men
, int fd
)
2995 en
.n_namesz
= men
->namesz
;
2996 en
.n_type
= men
->type
;
2997 en
.n_descsz
= men
->datasz
;
3001 if (dump_write(fd
, &en
, sizeof(en
)) != 0)
3003 if (dump_write(fd
, men
->name
, men
->namesz_rounded
) != 0)
3005 if (dump_write(fd
, men
->data
, men
->datasz_rounded
) != 0)
3011 static void fill_thread_info(struct elf_note_info
*info
, const CPUArchState
*env
)
3013 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
3014 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
3015 struct elf_thread_status
*ets
;
3017 ets
= g_malloc0(sizeof (*ets
));
3018 ets
->num_notes
= 1; /* only prstatus is dumped */
3019 fill_prstatus(&ets
->prstatus
, ts
, 0);
3020 elf_core_copy_regs(&ets
->prstatus
.pr_reg
, env
);
3021 fill_note(&ets
->notes
[0], "CORE", NT_PRSTATUS
, sizeof (ets
->prstatus
),
3024 QTAILQ_INSERT_TAIL(&info
->thread_list
, ets
, ets_link
);
3026 info
->notes_size
+= note_size(&ets
->notes
[0]);
3029 static void init_note_info(struct elf_note_info
*info
)
3031 /* Initialize the elf_note_info structure so that it is at
3032 * least safe to call free_note_info() on it. Must be
3033 * called before calling fill_note_info().
3035 memset(info
, 0, sizeof (*info
));
3036 QTAILQ_INIT(&info
->thread_list
);
3039 static int fill_note_info(struct elf_note_info
*info
,
3040 long signr
, const CPUArchState
*env
)
3043 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
3044 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
3047 info
->notes
= g_new0(struct memelfnote
, NUMNOTES
);
3048 if (info
->notes
== NULL
)
3050 info
->prstatus
= g_malloc0(sizeof (*info
->prstatus
));
3051 if (info
->prstatus
== NULL
)
3053 info
->psinfo
= g_malloc0(sizeof (*info
->psinfo
));
3054 if (info
->prstatus
== NULL
)
3058 * First fill in status (and registers) of current thread
3059 * including process info & aux vector.
3061 fill_prstatus(info
->prstatus
, ts
, signr
);
3062 elf_core_copy_regs(&info
->prstatus
->pr_reg
, env
);
3063 fill_note(&info
->notes
[0], "CORE", NT_PRSTATUS
,
3064 sizeof (*info
->prstatus
), info
->prstatus
);
3065 fill_psinfo(info
->psinfo
, ts
);
3066 fill_note(&info
->notes
[1], "CORE", NT_PRPSINFO
,
3067 sizeof (*info
->psinfo
), info
->psinfo
);
3068 fill_auxv_note(&info
->notes
[2], ts
);
3071 info
->notes_size
= 0;
3072 for (i
= 0; i
< info
->numnote
; i
++)
3073 info
->notes_size
+= note_size(&info
->notes
[i
]);
3075 /* read and fill status of all threads */
3078 if (cpu
== thread_cpu
) {
3081 fill_thread_info(info
, (CPUArchState
*)cpu
->env_ptr
);
3088 static void free_note_info(struct elf_note_info
*info
)
3090 struct elf_thread_status
*ets
;
3092 while (!QTAILQ_EMPTY(&info
->thread_list
)) {
3093 ets
= QTAILQ_FIRST(&info
->thread_list
);
3094 QTAILQ_REMOVE(&info
->thread_list
, ets
, ets_link
);
3098 g_free(info
->prstatus
);
3099 g_free(info
->psinfo
);
3100 g_free(info
->notes
);
3103 static int write_note_info(struct elf_note_info
*info
, int fd
)
3105 struct elf_thread_status
*ets
;
3108 /* write prstatus, psinfo and auxv for current thread */
3109 for (i
= 0; i
< info
->numnote
; i
++)
3110 if ((error
= write_note(&info
->notes
[i
], fd
)) != 0)
3113 /* write prstatus for each thread */
3114 QTAILQ_FOREACH(ets
, &info
->thread_list
, ets_link
) {
3115 if ((error
= write_note(&ets
->notes
[0], fd
)) != 0)
3123 * Write out ELF coredump.
3125 * See documentation of ELF object file format in:
3126 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3128 * Coredump format in linux is following:
3130 * 0 +----------------------+ \
3131 * | ELF header | ET_CORE |
3132 * +----------------------+ |
3133 * | ELF program headers | |--- headers
3134 * | - NOTE section | |
3135 * | - PT_LOAD sections | |
3136 * +----------------------+ /
3141 * +----------------------+ <-- aligned to target page
3142 * | Process memory dump |
3147 * +----------------------+
3149 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3150 * NT_PRSINFO -> struct elf_prpsinfo
3151 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3153 * Format follows System V format as close as possible. Current
3154 * version limitations are as follows:
3155 * - no floating point registers are dumped
3157 * Function returns 0 in case of success, negative errno otherwise.
3159 * TODO: make this work also during runtime: it should be
3160 * possible to force coredump from running process and then
3161 * continue processing. For example qemu could set up SIGUSR2
3162 * handler (provided that target process haven't registered
3163 * handler for that) that does the dump when signal is received.
3165 static int elf_core_dump(int signr
, const CPUArchState
*env
)
3167 const CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
3168 const TaskState
*ts
= (const TaskState
*)cpu
->opaque
;
3169 struct vm_area_struct
*vma
= NULL
;
3170 char corefile
[PATH_MAX
];
3171 struct elf_note_info info
;
3173 struct elf_phdr phdr
;
3174 struct rlimit dumpsize
;
3175 struct mm_struct
*mm
= NULL
;
3176 off_t offset
= 0, data_offset
= 0;
3180 init_note_info(&info
);
3183 getrlimit(RLIMIT_CORE
, &dumpsize
);
3184 if (dumpsize
.rlim_cur
== 0)
3187 if (core_dump_filename(ts
, corefile
, sizeof (corefile
)) < 0)
3190 if ((fd
= open(corefile
, O_WRONLY
| O_CREAT
,
3191 S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH
)) < 0)
3195 * Walk through target process memory mappings and
3196 * set up structure containing this information. After
3197 * this point vma_xxx functions can be used.
3199 if ((mm
= vma_init()) == NULL
)
3202 walk_memory_regions(mm
, vma_walker
);
3203 segs
= vma_get_mapping_count(mm
);
3206 * Construct valid coredump ELF header. We also
3207 * add one more segment for notes.
3209 fill_elf_header(&elf
, segs
+ 1, ELF_MACHINE
, 0);
3210 if (dump_write(fd
, &elf
, sizeof (elf
)) != 0)
3213 /* fill in the in-memory version of notes */
3214 if (fill_note_info(&info
, signr
, env
) < 0)
3217 offset
+= sizeof (elf
); /* elf header */
3218 offset
+= (segs
+ 1) * sizeof (struct elf_phdr
); /* program headers */
3220 /* write out notes program header */
3221 fill_elf_note_phdr(&phdr
, info
.notes_size
, offset
);
3223 offset
+= info
.notes_size
;
3224 if (dump_write(fd
, &phdr
, sizeof (phdr
)) != 0)
3228 * ELF specification wants data to start at page boundary so
3231 data_offset
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
3234 * Write program headers for memory regions mapped in
3235 * the target process.
3237 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3238 (void) memset(&phdr
, 0, sizeof (phdr
));
3240 phdr
.p_type
= PT_LOAD
;
3241 phdr
.p_offset
= offset
;
3242 phdr
.p_vaddr
= vma
->vma_start
;
3244 phdr
.p_filesz
= vma_dump_size(vma
);
3245 offset
+= phdr
.p_filesz
;
3246 phdr
.p_memsz
= vma
->vma_end
- vma
->vma_start
;
3247 phdr
.p_flags
= vma
->vma_flags
& PROT_READ
? PF_R
: 0;
3248 if (vma
->vma_flags
& PROT_WRITE
)
3249 phdr
.p_flags
|= PF_W
;
3250 if (vma
->vma_flags
& PROT_EXEC
)
3251 phdr
.p_flags
|= PF_X
;
3252 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
3254 bswap_phdr(&phdr
, 1);
3255 if (dump_write(fd
, &phdr
, sizeof(phdr
)) != 0) {
3261 * Next we write notes just after program headers. No
3262 * alignment needed here.
3264 if (write_note_info(&info
, fd
) < 0)
3267 /* align data to page boundary */
3268 if (lseek(fd
, data_offset
, SEEK_SET
) != data_offset
)
3272 * Finally we can dump process memory into corefile as well.
3274 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3278 end
= vma
->vma_start
+ vma_dump_size(vma
);
3280 for (addr
= vma
->vma_start
; addr
< end
;
3281 addr
+= TARGET_PAGE_SIZE
) {
3282 char page
[TARGET_PAGE_SIZE
];
3286 * Read in page from target process memory and
3287 * write it to coredump file.
3289 error
= copy_from_user(page
, addr
, sizeof (page
));
3291 (void) fprintf(stderr
, "unable to dump " TARGET_ABI_FMT_lx
"\n",
3296 if (dump_write(fd
, page
, TARGET_PAGE_SIZE
) < 0)
3302 free_note_info(&info
);
3311 #endif /* USE_ELF_CORE_DUMP */
3313 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
3315 init_thread(regs
, infop
);