target/arm: Mark registers which call pmu_op_start() as ARM_CP_IO
[qemu.git] / target / arm / helper.c
blobfadeed0b6bbef9ee834ca6dedabcb32bf0563487
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "qemu/log.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/host-utils.h"
17 #include "qemu/main-loop.h"
18 #include "qemu/timer.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/cpu-timers.h"
28 #include "sysemu/kvm.h"
29 #include "qemu/range.h"
30 #include "qapi/qapi-commands-machine-target.h"
31 #include "qapi/error.h"
32 #include "qemu/guest-random.h"
33 #ifdef CONFIG_TCG
34 #include "arm_ldst.h"
35 #include "exec/cpu_ldst.h"
36 #include "semihosting/common-semi.h"
37 #endif
38 #include "cpregs.h"
40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
42 static void switch_mode(CPUARMState *env, int mode);
44 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
46 assert(ri->fieldoffset);
47 if (cpreg_field_is_64bit(ri)) {
48 return CPREG_FIELD64(env, ri);
49 } else {
50 return CPREG_FIELD32(env, ri);
54 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
56 assert(ri->fieldoffset);
57 if (cpreg_field_is_64bit(ri)) {
58 CPREG_FIELD64(env, ri) = value;
59 } else {
60 CPREG_FIELD32(env, ri) = value;
64 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
66 return (char *)env + ri->fieldoffset;
69 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
71 /* Raw read of a coprocessor register (as needed for migration, etc). */
72 if (ri->type & ARM_CP_CONST) {
73 return ri->resetvalue;
74 } else if (ri->raw_readfn) {
75 return ri->raw_readfn(env, ri);
76 } else if (ri->readfn) {
77 return ri->readfn(env, ri);
78 } else {
79 return raw_read(env, ri);
83 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
84 uint64_t v)
86 /* Raw write of a coprocessor register (as needed for migration, etc).
87 * Note that constant registers are treated as write-ignored; the
88 * caller should check for success by whether a readback gives the
89 * value written.
91 if (ri->type & ARM_CP_CONST) {
92 return;
93 } else if (ri->raw_writefn) {
94 ri->raw_writefn(env, ri, v);
95 } else if (ri->writefn) {
96 ri->writefn(env, ri, v);
97 } else {
98 raw_write(env, ri, v);
102 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
104 /* Return true if the regdef would cause an assertion if you called
105 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
106 * program bug for it not to have the NO_RAW flag).
107 * NB that returning false here doesn't necessarily mean that calling
108 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
109 * read/write access functions which are safe for raw use" from "has
110 * read/write access functions which have side effects but has forgotten
111 * to provide raw access functions".
112 * The tests here line up with the conditions in read/write_raw_cp_reg()
113 * and assertions in raw_read()/raw_write().
115 if ((ri->type & ARM_CP_CONST) ||
116 ri->fieldoffset ||
117 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
118 return false;
120 return true;
123 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
125 /* Write the coprocessor state from cpu->env to the (index,value) list. */
126 int i;
127 bool ok = true;
129 for (i = 0; i < cpu->cpreg_array_len; i++) {
130 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
131 const ARMCPRegInfo *ri;
132 uint64_t newval;
134 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
135 if (!ri) {
136 ok = false;
137 continue;
139 if (ri->type & ARM_CP_NO_RAW) {
140 continue;
143 newval = read_raw_cp_reg(&cpu->env, ri);
144 if (kvm_sync) {
146 * Only sync if the previous list->cpustate sync succeeded.
147 * Rather than tracking the success/failure state for every
148 * item in the list, we just recheck "does the raw write we must
149 * have made in write_list_to_cpustate() read back OK" here.
151 uint64_t oldval = cpu->cpreg_values[i];
153 if (oldval == newval) {
154 continue;
157 write_raw_cp_reg(&cpu->env, ri, oldval);
158 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
159 continue;
162 write_raw_cp_reg(&cpu->env, ri, newval);
164 cpu->cpreg_values[i] = newval;
166 return ok;
169 bool write_list_to_cpustate(ARMCPU *cpu)
171 int i;
172 bool ok = true;
174 for (i = 0; i < cpu->cpreg_array_len; i++) {
175 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
176 uint64_t v = cpu->cpreg_values[i];
177 const ARMCPRegInfo *ri;
179 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
180 if (!ri) {
181 ok = false;
182 continue;
184 if (ri->type & ARM_CP_NO_RAW) {
185 continue;
187 /* Write value and confirm it reads back as written
188 * (to catch read-only registers and partially read-only
189 * registers where the incoming migration value doesn't match)
191 write_raw_cp_reg(&cpu->env, ri, v);
192 if (read_raw_cp_reg(&cpu->env, ri) != v) {
193 ok = false;
196 return ok;
199 static void add_cpreg_to_list(gpointer key, gpointer opaque)
201 ARMCPU *cpu = opaque;
202 uint32_t regidx = (uintptr_t)key;
203 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
205 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
206 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
207 /* The value array need not be initialized at this point */
208 cpu->cpreg_array_len++;
212 static void count_cpreg(gpointer key, gpointer opaque)
214 ARMCPU *cpu = opaque;
215 const ARMCPRegInfo *ri;
217 ri = g_hash_table_lookup(cpu->cp_regs, key);
219 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
220 cpu->cpreg_array_len++;
224 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
226 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
227 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
229 if (aidx > bidx) {
230 return 1;
232 if (aidx < bidx) {
233 return -1;
235 return 0;
238 void init_cpreg_list(ARMCPU *cpu)
240 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
241 * Note that we require cpreg_tuples[] to be sorted by key ID.
243 GList *keys;
244 int arraylen;
246 keys = g_hash_table_get_keys(cpu->cp_regs);
247 keys = g_list_sort(keys, cpreg_key_compare);
249 cpu->cpreg_array_len = 0;
251 g_list_foreach(keys, count_cpreg, cpu);
253 arraylen = cpu->cpreg_array_len;
254 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
255 cpu->cpreg_values = g_new(uint64_t, arraylen);
256 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
257 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
258 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
259 cpu->cpreg_array_len = 0;
261 g_list_foreach(keys, add_cpreg_to_list, cpu);
263 assert(cpu->cpreg_array_len == arraylen);
265 g_list_free(keys);
269 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
271 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
272 const ARMCPRegInfo *ri,
273 bool isread)
275 if (!is_a64(env) && arm_current_el(env) == 3 &&
276 arm_is_secure_below_el3(env)) {
277 return CP_ACCESS_TRAP_UNCATEGORIZED;
279 return CP_ACCESS_OK;
282 /* Some secure-only AArch32 registers trap to EL3 if used from
283 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
284 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
285 * We assume that the .access field is set to PL1_RW.
287 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
288 const ARMCPRegInfo *ri,
289 bool isread)
291 if (arm_current_el(env) == 3) {
292 return CP_ACCESS_OK;
294 if (arm_is_secure_below_el3(env)) {
295 if (env->cp15.scr_el3 & SCR_EEL2) {
296 return CP_ACCESS_TRAP_EL2;
298 return CP_ACCESS_TRAP_EL3;
300 /* This will be EL1 NS and EL2 NS, which just UNDEF */
301 return CP_ACCESS_TRAP_UNCATEGORIZED;
304 /* Check for traps to performance monitor registers, which are controlled
305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
308 bool isread)
310 int el = arm_current_el(env);
311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
314 return CP_ACCESS_TRAP_EL2;
316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
317 return CP_ACCESS_TRAP_EL3;
319 return CP_ACCESS_OK;
322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
323 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
324 bool isread)
326 if (arm_current_el(env) == 1) {
327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
328 if (arm_hcr_el2_eff(env) & trap) {
329 return CP_ACCESS_TRAP_EL2;
332 return CP_ACCESS_OK;
335 /* Check for traps from EL1 due to HCR_EL2.TSW. */
336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
337 bool isread)
339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
340 return CP_ACCESS_TRAP_EL2;
342 return CP_ACCESS_OK;
345 /* Check for traps from EL1 due to HCR_EL2.TACR. */
346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
347 bool isread)
349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
350 return CP_ACCESS_TRAP_EL2;
352 return CP_ACCESS_OK;
355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
357 bool isread)
359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
360 return CP_ACCESS_TRAP_EL2;
362 return CP_ACCESS_OK;
365 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
367 ARMCPU *cpu = env_archcpu(env);
369 raw_write(env, ri, value);
370 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
373 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
375 ARMCPU *cpu = env_archcpu(env);
377 if (raw_read(env, ri) != value) {
378 /* Unlike real hardware the qemu TLB uses virtual addresses,
379 * not modified virtual addresses, so this causes a TLB flush.
381 tlb_flush(CPU(cpu));
382 raw_write(env, ri, value);
386 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
387 uint64_t value)
389 ARMCPU *cpu = env_archcpu(env);
391 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
392 && !extended_addresses_enabled(env)) {
393 /* For VMSA (when not using the LPAE long descriptor page table
394 * format) this register includes the ASID, so do a TLB flush.
395 * For PMSA it is purely a process ID and no action is needed.
397 tlb_flush(CPU(cpu));
399 raw_write(env, ri, value);
402 /* IS variants of TLB operations must affect all cores */
403 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
404 uint64_t value)
406 CPUState *cs = env_cpu(env);
408 tlb_flush_all_cpus_synced(cs);
411 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
412 uint64_t value)
414 CPUState *cs = env_cpu(env);
416 tlb_flush_all_cpus_synced(cs);
419 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
420 uint64_t value)
422 CPUState *cs = env_cpu(env);
424 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
427 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
428 uint64_t value)
430 CPUState *cs = env_cpu(env);
432 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
436 * Non-IS variants of TLB operations are upgraded to
437 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
438 * force broadcast of these operations.
440 static bool tlb_force_broadcast(CPUARMState *env)
442 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
445 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
446 uint64_t value)
448 /* Invalidate all (TLBIALL) */
449 CPUState *cs = env_cpu(env);
451 if (tlb_force_broadcast(env)) {
452 tlb_flush_all_cpus_synced(cs);
453 } else {
454 tlb_flush(cs);
458 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
459 uint64_t value)
461 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
462 CPUState *cs = env_cpu(env);
464 value &= TARGET_PAGE_MASK;
465 if (tlb_force_broadcast(env)) {
466 tlb_flush_page_all_cpus_synced(cs, value);
467 } else {
468 tlb_flush_page(cs, value);
472 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
473 uint64_t value)
475 /* Invalidate by ASID (TLBIASID) */
476 CPUState *cs = env_cpu(env);
478 if (tlb_force_broadcast(env)) {
479 tlb_flush_all_cpus_synced(cs);
480 } else {
481 tlb_flush(cs);
485 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
486 uint64_t value)
488 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
489 CPUState *cs = env_cpu(env);
491 value &= TARGET_PAGE_MASK;
492 if (tlb_force_broadcast(env)) {
493 tlb_flush_page_all_cpus_synced(cs, value);
494 } else {
495 tlb_flush_page(cs, value);
499 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
502 CPUState *cs = env_cpu(env);
504 tlb_flush_by_mmuidx(cs,
505 ARMMMUIdxBit_E10_1 |
506 ARMMMUIdxBit_E10_1_PAN |
507 ARMMMUIdxBit_E10_0);
510 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
511 uint64_t value)
513 CPUState *cs = env_cpu(env);
515 tlb_flush_by_mmuidx_all_cpus_synced(cs,
516 ARMMMUIdxBit_E10_1 |
517 ARMMMUIdxBit_E10_1_PAN |
518 ARMMMUIdxBit_E10_0);
522 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
523 uint64_t value)
525 CPUState *cs = env_cpu(env);
527 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
530 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
531 uint64_t value)
533 CPUState *cs = env_cpu(env);
535 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
538 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
539 uint64_t value)
541 CPUState *cs = env_cpu(env);
542 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
544 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
547 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
548 uint64_t value)
550 CPUState *cs = env_cpu(env);
551 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
553 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
554 ARMMMUIdxBit_E2);
557 static const ARMCPRegInfo cp_reginfo[] = {
558 /* Define the secure and non-secure FCSE identifier CP registers
559 * separately because there is no secure bank in V8 (no _EL3). This allows
560 * the secure register to be properly reset and migrated. There is also no
561 * v8 EL1 version of the register so the non-secure instance stands alone.
563 { .name = "FCSEIDR",
564 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
565 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
566 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
567 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
568 { .name = "FCSEIDR_S",
569 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
570 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
571 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
572 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
573 /* Define the secure and non-secure context identifier CP registers
574 * separately because there is no secure bank in V8 (no _EL3). This allows
575 * the secure register to be properly reset and migrated. In the
576 * non-secure case, the 32-bit register will have reset and migration
577 * disabled during registration as it is handled by the 64-bit instance.
579 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
580 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
581 .access = PL1_RW, .accessfn = access_tvm_trvm,
582 .secure = ARM_CP_SECSTATE_NS,
583 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
584 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
585 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
586 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
587 .access = PL1_RW, .accessfn = access_tvm_trvm,
588 .secure = ARM_CP_SECSTATE_S,
589 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
590 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
593 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
594 /* NB: Some of these registers exist in v8 but with more precise
595 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
597 /* MMU Domain access control / MPU write buffer control */
598 { .name = "DACR",
599 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
600 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
601 .writefn = dacr_write, .raw_writefn = raw_write,
602 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
603 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
604 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
605 * For v6 and v5, these mappings are overly broad.
607 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
608 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
609 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
610 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
611 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
612 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
613 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
614 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
615 /* Cache maintenance ops; some of this space may be overridden later. */
616 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
617 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
618 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
621 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
622 /* Not all pre-v6 cores implemented this WFI, so this is slightly
623 * over-broad.
625 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
626 .access = PL1_W, .type = ARM_CP_WFI },
629 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
630 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
631 * is UNPREDICTABLE; we choose to NOP as most implementations do).
633 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
634 .access = PL1_W, .type = ARM_CP_WFI },
635 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
636 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
637 * OMAPCP will override this space.
639 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
640 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
641 .resetvalue = 0 },
642 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
643 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
644 .resetvalue = 0 },
645 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
646 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
647 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
648 .resetvalue = 0 },
649 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
650 * implementing it as RAZ means the "debug architecture version" bits
651 * will read as a reserved value, which should cause Linux to not try
652 * to use the debug hardware.
654 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
655 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
656 /* MMU TLB control. Note that the wildcarding means we cover not just
657 * the unified TLB ops but also the dside/iside/inner-shareable variants.
659 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
660 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
661 .type = ARM_CP_NO_RAW },
662 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
663 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
664 .type = ARM_CP_NO_RAW },
665 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
666 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
667 .type = ARM_CP_NO_RAW },
668 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
669 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
670 .type = ARM_CP_NO_RAW },
671 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
672 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
673 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
674 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
677 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
678 uint64_t value)
680 uint32_t mask = 0;
682 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
683 if (!arm_feature(env, ARM_FEATURE_V8)) {
684 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
685 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
686 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
688 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
689 /* VFP coprocessor: cp10 & cp11 [23:20] */
690 mask |= R_CPACR_ASEDIS_MASK |
691 R_CPACR_D32DIS_MASK |
692 R_CPACR_CP11_MASK |
693 R_CPACR_CP10_MASK;
695 if (!arm_feature(env, ARM_FEATURE_NEON)) {
696 /* ASEDIS [31] bit is RAO/WI */
697 value |= R_CPACR_ASEDIS_MASK;
700 /* VFPv3 and upwards with NEON implement 32 double precision
701 * registers (D0-D31).
703 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
704 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
705 value |= R_CPACR_D32DIS_MASK;
708 value &= mask;
712 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
713 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
715 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
716 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
717 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
718 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
721 env->cp15.cpacr_el1 = value;
724 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
727 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
728 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
730 uint64_t value = env->cp15.cpacr_el1;
732 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
733 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
734 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
736 return value;
740 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
742 /* Call cpacr_write() so that we reset with the correct RAO bits set
743 * for our CPU features.
745 cpacr_write(env, ri, 0);
748 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
749 bool isread)
751 if (arm_feature(env, ARM_FEATURE_V8)) {
752 /* Check if CPACR accesses are to be trapped to EL2 */
753 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
754 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
755 return CP_ACCESS_TRAP_EL2;
756 /* Check if CPACR accesses are to be trapped to EL3 */
757 } else if (arm_current_el(env) < 3 &&
758 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
759 return CP_ACCESS_TRAP_EL3;
763 return CP_ACCESS_OK;
766 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
767 bool isread)
769 /* Check if CPTR accesses are set to trap to EL3 */
770 if (arm_current_el(env) == 2 &&
771 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
772 return CP_ACCESS_TRAP_EL3;
775 return CP_ACCESS_OK;
778 static const ARMCPRegInfo v6_cp_reginfo[] = {
779 /* prefetch by MVA in v6, NOP in v7 */
780 { .name = "MVA_prefetch",
781 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
782 .access = PL1_W, .type = ARM_CP_NOP },
783 /* We need to break the TB after ISB to execute self-modifying code
784 * correctly and also to take any pending interrupts immediately.
785 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
787 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
788 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
789 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
790 .access = PL0_W, .type = ARM_CP_NOP },
791 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
792 .access = PL0_W, .type = ARM_CP_NOP },
793 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
794 .access = PL1_RW, .accessfn = access_tvm_trvm,
795 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
796 offsetof(CPUARMState, cp15.ifar_ns) },
797 .resetvalue = 0, },
798 /* Watchpoint Fault Address Register : should actually only be present
799 * for 1136, 1176, 11MPCore.
801 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
802 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
803 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
804 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
805 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
806 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
809 typedef struct pm_event {
810 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
811 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
812 bool (*supported)(CPUARMState *);
814 * Retrieve the current count of the underlying event. The programmed
815 * counters hold a difference from the return value from this function
817 uint64_t (*get_count)(CPUARMState *);
819 * Return how many nanoseconds it will take (at a minimum) for count events
820 * to occur. A negative value indicates the counter will never overflow, or
821 * that the counter has otherwise arranged for the overflow bit to be set
822 * and the PMU interrupt to be raised on overflow.
824 int64_t (*ns_per_count)(uint64_t);
825 } pm_event;
827 static bool event_always_supported(CPUARMState *env)
829 return true;
832 static uint64_t swinc_get_count(CPUARMState *env)
835 * SW_INCR events are written directly to the pmevcntr's by writes to
836 * PMSWINC, so there is no underlying count maintained by the PMU itself
838 return 0;
841 static int64_t swinc_ns_per(uint64_t ignored)
843 return -1;
847 * Return the underlying cycle count for the PMU cycle counters. If we're in
848 * usermode, simply return 0.
850 static uint64_t cycles_get_count(CPUARMState *env)
852 #ifndef CONFIG_USER_ONLY
853 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
854 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
855 #else
856 return cpu_get_host_ticks();
857 #endif
860 #ifndef CONFIG_USER_ONLY
861 static int64_t cycles_ns_per(uint64_t cycles)
863 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
866 static bool instructions_supported(CPUARMState *env)
868 return icount_enabled() == 1; /* Precise instruction counting */
871 static uint64_t instructions_get_count(CPUARMState *env)
873 return (uint64_t)icount_get_raw();
876 static int64_t instructions_ns_per(uint64_t icount)
878 return icount_to_ns((int64_t)icount);
880 #endif
882 static bool pmuv3p1_events_supported(CPUARMState *env)
884 /* For events which are supported in any v8.1 PMU */
885 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
888 static bool pmuv3p4_events_supported(CPUARMState *env)
890 /* For events which are supported in any v8.1 PMU */
891 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
894 static uint64_t zero_event_get_count(CPUARMState *env)
896 /* For events which on QEMU never fire, so their count is always zero */
897 return 0;
900 static int64_t zero_event_ns_per(uint64_t cycles)
902 /* An event which never fires can never overflow */
903 return -1;
906 static const pm_event pm_events[] = {
907 { .number = 0x000, /* SW_INCR */
908 .supported = event_always_supported,
909 .get_count = swinc_get_count,
910 .ns_per_count = swinc_ns_per,
912 #ifndef CONFIG_USER_ONLY
913 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
914 .supported = instructions_supported,
915 .get_count = instructions_get_count,
916 .ns_per_count = instructions_ns_per,
918 { .number = 0x011, /* CPU_CYCLES, Cycle */
919 .supported = event_always_supported,
920 .get_count = cycles_get_count,
921 .ns_per_count = cycles_ns_per,
923 #endif
924 { .number = 0x023, /* STALL_FRONTEND */
925 .supported = pmuv3p1_events_supported,
926 .get_count = zero_event_get_count,
927 .ns_per_count = zero_event_ns_per,
929 { .number = 0x024, /* STALL_BACKEND */
930 .supported = pmuv3p1_events_supported,
931 .get_count = zero_event_get_count,
932 .ns_per_count = zero_event_ns_per,
934 { .number = 0x03c, /* STALL */
935 .supported = pmuv3p4_events_supported,
936 .get_count = zero_event_get_count,
937 .ns_per_count = zero_event_ns_per,
942 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
943 * events (i.e. the statistical profiling extension), this implementation
944 * should first be updated to something sparse instead of the current
945 * supported_event_map[] array.
947 #define MAX_EVENT_ID 0x3c
948 #define UNSUPPORTED_EVENT UINT16_MAX
949 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
952 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
953 * of ARM event numbers to indices in our pm_events array.
955 * Note: Events in the 0x40XX range are not currently supported.
957 void pmu_init(ARMCPU *cpu)
959 unsigned int i;
962 * Empty supported_event_map and cpu->pmceid[01] before adding supported
963 * events to them
965 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
966 supported_event_map[i] = UNSUPPORTED_EVENT;
968 cpu->pmceid0 = 0;
969 cpu->pmceid1 = 0;
971 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
972 const pm_event *cnt = &pm_events[i];
973 assert(cnt->number <= MAX_EVENT_ID);
974 /* We do not currently support events in the 0x40xx range */
975 assert(cnt->number <= 0x3f);
977 if (cnt->supported(&cpu->env)) {
978 supported_event_map[cnt->number] = i;
979 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
980 if (cnt->number & 0x20) {
981 cpu->pmceid1 |= event_mask;
982 } else {
983 cpu->pmceid0 |= event_mask;
990 * Check at runtime whether a PMU event is supported for the current machine
992 static bool event_supported(uint16_t number)
994 if (number > MAX_EVENT_ID) {
995 return false;
997 return supported_event_map[number] != UNSUPPORTED_EVENT;
1000 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1001 bool isread)
1003 /* Performance monitor registers user accessibility is controlled
1004 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1005 * trapping to EL2 or EL3 for other accesses.
1007 int el = arm_current_el(env);
1008 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1010 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1011 return CP_ACCESS_TRAP;
1013 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1014 return CP_ACCESS_TRAP_EL2;
1016 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1017 return CP_ACCESS_TRAP_EL3;
1020 return CP_ACCESS_OK;
1023 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1024 const ARMCPRegInfo *ri,
1025 bool isread)
1027 /* ER: event counter read trap control */
1028 if (arm_feature(env, ARM_FEATURE_V8)
1029 && arm_current_el(env) == 0
1030 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1031 && isread) {
1032 return CP_ACCESS_OK;
1035 return pmreg_access(env, ri, isread);
1038 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1039 const ARMCPRegInfo *ri,
1040 bool isread)
1042 /* SW: software increment write trap control */
1043 if (arm_feature(env, ARM_FEATURE_V8)
1044 && arm_current_el(env) == 0
1045 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1046 && !isread) {
1047 return CP_ACCESS_OK;
1050 return pmreg_access(env, ri, isread);
1053 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1054 const ARMCPRegInfo *ri,
1055 bool isread)
1057 /* ER: event counter read trap control */
1058 if (arm_feature(env, ARM_FEATURE_V8)
1059 && arm_current_el(env) == 0
1060 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1061 return CP_ACCESS_OK;
1064 return pmreg_access(env, ri, isread);
1067 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1068 const ARMCPRegInfo *ri,
1069 bool isread)
1071 /* CR: cycle counter read trap control */
1072 if (arm_feature(env, ARM_FEATURE_V8)
1073 && arm_current_el(env) == 0
1074 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1075 && isread) {
1076 return CP_ACCESS_OK;
1079 return pmreg_access(env, ri, isread);
1083 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1084 * We use these to decide whether we need to wrap a write to MDCR_EL2
1085 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1087 #define MDCR_EL2_PMU_ENABLE_BITS \
1088 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1089 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1091 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1092 * the current EL, security state, and register configuration.
1094 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1096 uint64_t filter;
1097 bool e, p, u, nsk, nsu, nsh, m;
1098 bool enabled, prohibited = false, filtered;
1099 bool secure = arm_is_secure(env);
1100 int el = arm_current_el(env);
1101 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1102 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1104 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1105 return false;
1108 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1109 (counter < hpmn || counter == 31)) {
1110 e = env->cp15.c9_pmcr & PMCRE;
1111 } else {
1112 e = mdcr_el2 & MDCR_HPME;
1114 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1116 /* Is event counting prohibited? */
1117 if (el == 2 && (counter < hpmn || counter == 31)) {
1118 prohibited = mdcr_el2 & MDCR_HPMD;
1120 if (secure) {
1121 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1124 if (counter == 31) {
1126 * The cycle counter defaults to running. PMCR.DP says "disable
1127 * the cycle counter when event counting is prohibited".
1128 * Some MDCR bits disable the cycle counter specifically.
1130 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1131 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1132 if (secure) {
1133 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1135 if (el == 2) {
1136 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1141 if (counter == 31) {
1142 filter = env->cp15.pmccfiltr_el0;
1143 } else {
1144 filter = env->cp15.c14_pmevtyper[counter];
1147 p = filter & PMXEVTYPER_P;
1148 u = filter & PMXEVTYPER_U;
1149 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1150 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1151 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1152 m = arm_el_is_aa64(env, 1) &&
1153 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1155 if (el == 0) {
1156 filtered = secure ? u : u != nsu;
1157 } else if (el == 1) {
1158 filtered = secure ? p : p != nsk;
1159 } else if (el == 2) {
1160 filtered = !nsh;
1161 } else { /* EL3 */
1162 filtered = m != p;
1165 if (counter != 31) {
1167 * If not checking PMCCNTR, ensure the counter is setup to an event we
1168 * support
1170 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1171 if (!event_supported(event)) {
1172 return false;
1176 return enabled && !prohibited && !filtered;
1179 static void pmu_update_irq(CPUARMState *env)
1181 ARMCPU *cpu = env_archcpu(env);
1182 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1183 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1186 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1189 * Return true if the clock divider is enabled and the cycle counter
1190 * is supposed to tick only once every 64 clock cycles. This is
1191 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1192 * (64-bit) cycle counter PMCR.D has no effect.
1194 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1197 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1199 /* Return true if the specified event counter is configured to be 64 bit */
1201 /* This isn't intended to be used with the cycle counter */
1202 assert(counter < 31);
1204 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1205 return false;
1208 if (arm_feature(env, ARM_FEATURE_EL2)) {
1210 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1211 * current security state, so we don't use arm_mdcr_el2_eff() here.
1213 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1214 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1216 if (hpmn != 0 && counter >= hpmn) {
1217 return hlp;
1220 return env->cp15.c9_pmcr & PMCRLP;
1224 * Ensure c15_ccnt is the guest-visible count so that operations such as
1225 * enabling/disabling the counter or filtering, modifying the count itself,
1226 * etc. can be done logically. This is essentially a no-op if the counter is
1227 * not enabled at the time of the call.
1229 static void pmccntr_op_start(CPUARMState *env)
1231 uint64_t cycles = cycles_get_count(env);
1233 if (pmu_counter_enabled(env, 31)) {
1234 uint64_t eff_cycles = cycles;
1235 if (pmccntr_clockdiv_enabled(env)) {
1236 eff_cycles /= 64;
1239 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1241 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1242 1ull << 63 : 1ull << 31;
1243 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1244 env->cp15.c9_pmovsr |= (1ULL << 31);
1245 pmu_update_irq(env);
1248 env->cp15.c15_ccnt = new_pmccntr;
1250 env->cp15.c15_ccnt_delta = cycles;
1254 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1255 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1256 * pmccntr_op_start.
1258 static void pmccntr_op_finish(CPUARMState *env)
1260 if (pmu_counter_enabled(env, 31)) {
1261 #ifndef CONFIG_USER_ONLY
1262 /* Calculate when the counter will next overflow */
1263 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1264 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1265 remaining_cycles = (uint32_t)remaining_cycles;
1267 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1269 if (overflow_in > 0) {
1270 int64_t overflow_at;
1272 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1273 overflow_in, &overflow_at)) {
1274 ARMCPU *cpu = env_archcpu(env);
1275 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1278 #endif
1280 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1281 if (pmccntr_clockdiv_enabled(env)) {
1282 prev_cycles /= 64;
1284 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1288 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1291 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1292 uint64_t count = 0;
1293 if (event_supported(event)) {
1294 uint16_t event_idx = supported_event_map[event];
1295 count = pm_events[event_idx].get_count(env);
1298 if (pmu_counter_enabled(env, counter)) {
1299 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1300 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1301 1ULL << 63 : 1ULL << 31;
1303 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1304 env->cp15.c9_pmovsr |= (1 << counter);
1305 pmu_update_irq(env);
1307 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1309 env->cp15.c14_pmevcntr_delta[counter] = count;
1312 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1314 if (pmu_counter_enabled(env, counter)) {
1315 #ifndef CONFIG_USER_ONLY
1316 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1317 uint16_t event_idx = supported_event_map[event];
1318 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1319 int64_t overflow_in;
1321 if (!pmevcntr_is_64_bit(env, counter)) {
1322 delta = (uint32_t)delta;
1324 overflow_in = pm_events[event_idx].ns_per_count(delta);
1326 if (overflow_in > 0) {
1327 int64_t overflow_at;
1329 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1330 overflow_in, &overflow_at)) {
1331 ARMCPU *cpu = env_archcpu(env);
1332 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1335 #endif
1337 env->cp15.c14_pmevcntr_delta[counter] -=
1338 env->cp15.c14_pmevcntr[counter];
1342 void pmu_op_start(CPUARMState *env)
1344 unsigned int i;
1345 pmccntr_op_start(env);
1346 for (i = 0; i < pmu_num_counters(env); i++) {
1347 pmevcntr_op_start(env, i);
1351 void pmu_op_finish(CPUARMState *env)
1353 unsigned int i;
1354 pmccntr_op_finish(env);
1355 for (i = 0; i < pmu_num_counters(env); i++) {
1356 pmevcntr_op_finish(env, i);
1360 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1362 pmu_op_start(&cpu->env);
1365 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1367 pmu_op_finish(&cpu->env);
1370 void arm_pmu_timer_cb(void *opaque)
1372 ARMCPU *cpu = opaque;
1375 * Update all the counter values based on the current underlying counts,
1376 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1377 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1378 * counter may expire.
1380 pmu_op_start(&cpu->env);
1381 pmu_op_finish(&cpu->env);
1384 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1385 uint64_t value)
1387 pmu_op_start(env);
1389 if (value & PMCRC) {
1390 /* The counter has been reset */
1391 env->cp15.c15_ccnt = 0;
1394 if (value & PMCRP) {
1395 unsigned int i;
1396 for (i = 0; i < pmu_num_counters(env); i++) {
1397 env->cp15.c14_pmevcntr[i] = 0;
1401 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1402 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1404 pmu_op_finish(env);
1407 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1408 uint64_t value)
1410 unsigned int i;
1411 uint64_t overflow_mask, new_pmswinc;
1413 for (i = 0; i < pmu_num_counters(env); i++) {
1414 /* Increment a counter's count iff: */
1415 if ((value & (1 << i)) && /* counter's bit is set */
1416 /* counter is enabled and not filtered */
1417 pmu_counter_enabled(env, i) &&
1418 /* counter is SW_INCR */
1419 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1420 pmevcntr_op_start(env, i);
1423 * Detect if this write causes an overflow since we can't predict
1424 * PMSWINC overflows like we can for other events
1426 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1428 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1429 1ULL << 63 : 1ULL << 31;
1431 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1432 env->cp15.c9_pmovsr |= (1 << i);
1433 pmu_update_irq(env);
1436 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1438 pmevcntr_op_finish(env, i);
1443 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1445 uint64_t ret;
1446 pmccntr_op_start(env);
1447 ret = env->cp15.c15_ccnt;
1448 pmccntr_op_finish(env);
1449 return ret;
1452 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1453 uint64_t value)
1455 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1456 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1457 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1458 * accessed.
1460 env->cp15.c9_pmselr = value & 0x1f;
1463 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1464 uint64_t value)
1466 pmccntr_op_start(env);
1467 env->cp15.c15_ccnt = value;
1468 pmccntr_op_finish(env);
1471 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1472 uint64_t value)
1474 uint64_t cur_val = pmccntr_read(env, NULL);
1476 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1479 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1480 uint64_t value)
1482 pmccntr_op_start(env);
1483 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1484 pmccntr_op_finish(env);
1487 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1488 uint64_t value)
1490 pmccntr_op_start(env);
1491 /* M is not accessible from AArch32 */
1492 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1493 (value & PMCCFILTR);
1494 pmccntr_op_finish(env);
1497 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1499 /* M is not visible in AArch32 */
1500 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1503 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1504 uint64_t value)
1506 pmu_op_start(env);
1507 value &= pmu_counter_mask(env);
1508 env->cp15.c9_pmcnten |= value;
1509 pmu_op_finish(env);
1512 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1513 uint64_t value)
1515 pmu_op_start(env);
1516 value &= pmu_counter_mask(env);
1517 env->cp15.c9_pmcnten &= ~value;
1518 pmu_op_finish(env);
1521 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1522 uint64_t value)
1524 value &= pmu_counter_mask(env);
1525 env->cp15.c9_pmovsr &= ~value;
1526 pmu_update_irq(env);
1529 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1530 uint64_t value)
1532 value &= pmu_counter_mask(env);
1533 env->cp15.c9_pmovsr |= value;
1534 pmu_update_irq(env);
1537 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1538 uint64_t value, const uint8_t counter)
1540 if (counter == 31) {
1541 pmccfiltr_write(env, ri, value);
1542 } else if (counter < pmu_num_counters(env)) {
1543 pmevcntr_op_start(env, counter);
1546 * If this counter's event type is changing, store the current
1547 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1548 * pmevcntr_op_finish has the correct baseline when it converts back to
1549 * a delta.
1551 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1552 PMXEVTYPER_EVTCOUNT;
1553 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1554 if (old_event != new_event) {
1555 uint64_t count = 0;
1556 if (event_supported(new_event)) {
1557 uint16_t event_idx = supported_event_map[new_event];
1558 count = pm_events[event_idx].get_count(env);
1560 env->cp15.c14_pmevcntr_delta[counter] = count;
1563 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1564 pmevcntr_op_finish(env, counter);
1566 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1567 * PMSELR value is equal to or greater than the number of implemented
1568 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1572 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1573 const uint8_t counter)
1575 if (counter == 31) {
1576 return env->cp15.pmccfiltr_el0;
1577 } else if (counter < pmu_num_counters(env)) {
1578 return env->cp15.c14_pmevtyper[counter];
1579 } else {
1581 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1582 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1584 return 0;
1588 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1589 uint64_t value)
1591 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1592 pmevtyper_write(env, ri, value, counter);
1595 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1596 uint64_t value)
1598 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1599 env->cp15.c14_pmevtyper[counter] = value;
1602 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1603 * pmu_op_finish calls when loading saved state for a migration. Because
1604 * we're potentially updating the type of event here, the value written to
1605 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1606 * different counter type. Therefore, we need to set this value to the
1607 * current count for the counter type we're writing so that pmu_op_finish
1608 * has the correct count for its calculation.
1610 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1611 if (event_supported(event)) {
1612 uint16_t event_idx = supported_event_map[event];
1613 env->cp15.c14_pmevcntr_delta[counter] =
1614 pm_events[event_idx].get_count(env);
1618 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1620 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1621 return pmevtyper_read(env, ri, counter);
1624 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1625 uint64_t value)
1627 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1630 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1632 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1635 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1636 uint64_t value, uint8_t counter)
1638 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1639 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1640 value &= MAKE_64BIT_MASK(0, 32);
1642 if (counter < pmu_num_counters(env)) {
1643 pmevcntr_op_start(env, counter);
1644 env->cp15.c14_pmevcntr[counter] = value;
1645 pmevcntr_op_finish(env, counter);
1648 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1649 * are CONSTRAINED UNPREDICTABLE.
1653 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1654 uint8_t counter)
1656 if (counter < pmu_num_counters(env)) {
1657 uint64_t ret;
1658 pmevcntr_op_start(env, counter);
1659 ret = env->cp15.c14_pmevcntr[counter];
1660 pmevcntr_op_finish(env, counter);
1661 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1662 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1663 ret &= MAKE_64BIT_MASK(0, 32);
1665 return ret;
1666 } else {
1667 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1668 * are CONSTRAINED UNPREDICTABLE. */
1669 return 0;
1673 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1674 uint64_t value)
1676 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1677 pmevcntr_write(env, ri, value, counter);
1680 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1682 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1683 return pmevcntr_read(env, ri, counter);
1686 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1687 uint64_t value)
1689 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1690 assert(counter < pmu_num_counters(env));
1691 env->cp15.c14_pmevcntr[counter] = value;
1692 pmevcntr_write(env, ri, value, counter);
1695 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1697 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1698 assert(counter < pmu_num_counters(env));
1699 return env->cp15.c14_pmevcntr[counter];
1702 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1703 uint64_t value)
1705 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1708 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1710 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1713 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1714 uint64_t value)
1716 if (arm_feature(env, ARM_FEATURE_V8)) {
1717 env->cp15.c9_pmuserenr = value & 0xf;
1718 } else {
1719 env->cp15.c9_pmuserenr = value & 1;
1723 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1724 uint64_t value)
1726 /* We have no event counters so only the C bit can be changed */
1727 value &= pmu_counter_mask(env);
1728 env->cp15.c9_pminten |= value;
1729 pmu_update_irq(env);
1732 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1733 uint64_t value)
1735 value &= pmu_counter_mask(env);
1736 env->cp15.c9_pminten &= ~value;
1737 pmu_update_irq(env);
1740 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1741 uint64_t value)
1743 /* Note that even though the AArch64 view of this register has bits
1744 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1745 * architectural requirements for bits which are RES0 only in some
1746 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1747 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1749 raw_write(env, ri, value & ~0x1FULL);
1752 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1754 /* Begin with base v8.0 state. */
1755 uint32_t valid_mask = 0x3fff;
1756 ARMCPU *cpu = env_archcpu(env);
1759 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1760 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1761 * Instead, choose the format based on the mode of EL3.
1763 if (arm_el_is_aa64(env, 3)) {
1764 value |= SCR_FW | SCR_AW; /* RES1 */
1765 valid_mask &= ~SCR_NET; /* RES0 */
1767 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1768 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1769 value |= SCR_RW; /* RAO/WI */
1771 if (cpu_isar_feature(aa64_ras, cpu)) {
1772 valid_mask |= SCR_TERR;
1774 if (cpu_isar_feature(aa64_lor, cpu)) {
1775 valid_mask |= SCR_TLOR;
1777 if (cpu_isar_feature(aa64_pauth, cpu)) {
1778 valid_mask |= SCR_API | SCR_APK;
1780 if (cpu_isar_feature(aa64_sel2, cpu)) {
1781 valid_mask |= SCR_EEL2;
1783 if (cpu_isar_feature(aa64_mte, cpu)) {
1784 valid_mask |= SCR_ATA;
1786 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1787 valid_mask |= SCR_ENSCXT;
1789 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1790 valid_mask |= SCR_EASE | SCR_NMEA;
1792 } else {
1793 valid_mask &= ~(SCR_RW | SCR_ST);
1794 if (cpu_isar_feature(aa32_ras, cpu)) {
1795 valid_mask |= SCR_TERR;
1799 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1800 valid_mask &= ~SCR_HCE;
1802 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1803 * supported if EL2 exists. The bit is UNK/SBZP when
1804 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1805 * when EL2 is unavailable.
1806 * On ARMv8, this bit is always available.
1808 if (arm_feature(env, ARM_FEATURE_V7) &&
1809 !arm_feature(env, ARM_FEATURE_V8)) {
1810 valid_mask &= ~SCR_SMD;
1814 /* Clear all-context RES0 bits. */
1815 value &= valid_mask;
1816 raw_write(env, ri, value);
1819 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1822 * scr_write will set the RES1 bits on an AArch64-only CPU.
1823 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1825 scr_write(env, ri, 0);
1828 static CPAccessResult access_aa64_tid2(CPUARMState *env,
1829 const ARMCPRegInfo *ri,
1830 bool isread)
1832 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1833 return CP_ACCESS_TRAP_EL2;
1836 return CP_ACCESS_OK;
1839 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1841 ARMCPU *cpu = env_archcpu(env);
1843 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1844 * bank
1846 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1847 ri->secure & ARM_CP_SECSTATE_S);
1849 return cpu->ccsidr[index];
1852 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1853 uint64_t value)
1855 raw_write(env, ri, value & 0xf);
1858 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1860 CPUState *cs = env_cpu(env);
1861 bool el1 = arm_current_el(env) == 1;
1862 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1863 uint64_t ret = 0;
1865 if (hcr_el2 & HCR_IMO) {
1866 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1867 ret |= CPSR_I;
1869 } else {
1870 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1871 ret |= CPSR_I;
1875 if (hcr_el2 & HCR_FMO) {
1876 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1877 ret |= CPSR_F;
1879 } else {
1880 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1881 ret |= CPSR_F;
1885 if (hcr_el2 & HCR_AMO) {
1886 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1887 ret |= CPSR_A;
1891 return ret;
1894 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1895 bool isread)
1897 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1898 return CP_ACCESS_TRAP_EL2;
1901 return CP_ACCESS_OK;
1904 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1905 bool isread)
1907 if (arm_feature(env, ARM_FEATURE_V8)) {
1908 return access_aa64_tid1(env, ri, isread);
1911 return CP_ACCESS_OK;
1914 static const ARMCPRegInfo v7_cp_reginfo[] = {
1915 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1916 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1917 .access = PL1_W, .type = ARM_CP_NOP },
1918 /* Performance monitors are implementation defined in v7,
1919 * but with an ARM recommended set of registers, which we
1920 * follow.
1922 * Performance registers fall into three categories:
1923 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1924 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1925 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1926 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1927 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1929 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1930 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
1931 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1932 .writefn = pmcntenset_write,
1933 .accessfn = pmreg_access,
1934 .raw_writefn = raw_write },
1935 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
1936 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1937 .access = PL0_RW, .accessfn = pmreg_access,
1938 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1939 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1940 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1941 .access = PL0_RW,
1942 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1943 .accessfn = pmreg_access,
1944 .writefn = pmcntenclr_write,
1945 .type = ARM_CP_ALIAS | ARM_CP_IO },
1946 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1947 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1948 .access = PL0_RW, .accessfn = pmreg_access,
1949 .type = ARM_CP_ALIAS | ARM_CP_IO,
1950 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1951 .writefn = pmcntenclr_write },
1952 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1953 .access = PL0_RW, .type = ARM_CP_IO,
1954 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1955 .accessfn = pmreg_access,
1956 .writefn = pmovsr_write,
1957 .raw_writefn = raw_write },
1958 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1959 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1960 .access = PL0_RW, .accessfn = pmreg_access,
1961 .type = ARM_CP_ALIAS | ARM_CP_IO,
1962 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1963 .writefn = pmovsr_write,
1964 .raw_writefn = raw_write },
1965 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1966 .access = PL0_W, .accessfn = pmreg_access_swinc,
1967 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1968 .writefn = pmswinc_write },
1969 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1970 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1971 .access = PL0_W, .accessfn = pmreg_access_swinc,
1972 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1973 .writefn = pmswinc_write },
1974 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1975 .access = PL0_RW, .type = ARM_CP_ALIAS,
1976 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1977 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1978 .raw_writefn = raw_write},
1979 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1980 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1981 .access = PL0_RW, .accessfn = pmreg_access_selr,
1982 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1983 .writefn = pmselr_write, .raw_writefn = raw_write, },
1984 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1985 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1986 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1987 .accessfn = pmreg_access_ccntr },
1988 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1989 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1990 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1991 .type = ARM_CP_IO,
1992 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
1993 .readfn = pmccntr_read, .writefn = pmccntr_write,
1994 .raw_readfn = raw_read, .raw_writefn = raw_write, },
1995 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
1996 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
1997 .access = PL0_RW, .accessfn = pmreg_access,
1998 .type = ARM_CP_ALIAS | ARM_CP_IO,
1999 .resetvalue = 0, },
2000 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2001 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2002 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2003 .access = PL0_RW, .accessfn = pmreg_access,
2004 .type = ARM_CP_IO,
2005 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2006 .resetvalue = 0, },
2007 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2008 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2009 .accessfn = pmreg_access,
2010 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2011 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2012 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2013 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2014 .accessfn = pmreg_access,
2015 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2016 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2017 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2018 .accessfn = pmreg_access_xevcntr,
2019 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2020 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2021 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2022 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2023 .accessfn = pmreg_access_xevcntr,
2024 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2025 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2026 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2027 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2028 .resetvalue = 0,
2029 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2030 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2031 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2032 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2033 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2034 .resetvalue = 0,
2035 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2036 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2037 .access = PL1_RW, .accessfn = access_tpm,
2038 .type = ARM_CP_ALIAS | ARM_CP_IO,
2039 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2040 .resetvalue = 0,
2041 .writefn = pmintenset_write, .raw_writefn = raw_write },
2042 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2043 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2044 .access = PL1_RW, .accessfn = access_tpm,
2045 .type = ARM_CP_IO,
2046 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2047 .writefn = pmintenset_write, .raw_writefn = raw_write,
2048 .resetvalue = 0x0 },
2049 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2050 .access = PL1_RW, .accessfn = access_tpm,
2051 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2052 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2053 .writefn = pmintenclr_write, },
2054 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2055 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2056 .access = PL1_RW, .accessfn = access_tpm,
2057 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2058 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2059 .writefn = pmintenclr_write },
2060 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2061 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2062 .access = PL1_R,
2063 .accessfn = access_aa64_tid2,
2064 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2065 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2066 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2067 .access = PL1_RW,
2068 .accessfn = access_aa64_tid2,
2069 .writefn = csselr_write, .resetvalue = 0,
2070 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2071 offsetof(CPUARMState, cp15.csselr_ns) } },
2072 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2073 * just RAZ for all cores:
2075 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2076 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2077 .access = PL1_R, .type = ARM_CP_CONST,
2078 .accessfn = access_aa64_tid1,
2079 .resetvalue = 0 },
2080 /* Auxiliary fault status registers: these also are IMPDEF, and we
2081 * choose to RAZ/WI for all cores.
2083 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2084 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2085 .access = PL1_RW, .accessfn = access_tvm_trvm,
2086 .type = ARM_CP_CONST, .resetvalue = 0 },
2087 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2088 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2089 .access = PL1_RW, .accessfn = access_tvm_trvm,
2090 .type = ARM_CP_CONST, .resetvalue = 0 },
2091 /* MAIR can just read-as-written because we don't implement caches
2092 * and so don't need to care about memory attributes.
2094 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2095 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2096 .access = PL1_RW, .accessfn = access_tvm_trvm,
2097 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2098 .resetvalue = 0 },
2099 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2100 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2101 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2102 .resetvalue = 0 },
2103 /* For non-long-descriptor page tables these are PRRR and NMRR;
2104 * regardless they still act as reads-as-written for QEMU.
2106 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2107 * allows them to assign the correct fieldoffset based on the endianness
2108 * handled in the field definitions.
2110 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2111 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2112 .access = PL1_RW, .accessfn = access_tvm_trvm,
2113 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2114 offsetof(CPUARMState, cp15.mair0_ns) },
2115 .resetfn = arm_cp_reset_ignore },
2116 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2117 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2118 .access = PL1_RW, .accessfn = access_tvm_trvm,
2119 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2120 offsetof(CPUARMState, cp15.mair1_ns) },
2121 .resetfn = arm_cp_reset_ignore },
2122 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2123 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2124 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2125 /* 32 bit ITLB invalidates */
2126 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2127 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2128 .writefn = tlbiall_write },
2129 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2130 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2131 .writefn = tlbimva_write },
2132 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2133 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2134 .writefn = tlbiasid_write },
2135 /* 32 bit DTLB invalidates */
2136 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2137 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2138 .writefn = tlbiall_write },
2139 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2140 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2141 .writefn = tlbimva_write },
2142 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2143 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2144 .writefn = tlbiasid_write },
2145 /* 32 bit TLB invalidates */
2146 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2147 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2148 .writefn = tlbiall_write },
2149 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2150 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2151 .writefn = tlbimva_write },
2152 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2153 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2154 .writefn = tlbiasid_write },
2155 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2156 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2157 .writefn = tlbimvaa_write },
2160 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2161 /* 32 bit TLB invalidates, Inner Shareable */
2162 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2163 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2164 .writefn = tlbiall_is_write },
2165 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2166 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2167 .writefn = tlbimva_is_write },
2168 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2169 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2170 .writefn = tlbiasid_is_write },
2171 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2172 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2173 .writefn = tlbimvaa_is_write },
2176 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2177 /* PMOVSSET is not implemented in v7 before v7ve */
2178 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2179 .access = PL0_RW, .accessfn = pmreg_access,
2180 .type = ARM_CP_ALIAS | ARM_CP_IO,
2181 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2182 .writefn = pmovsset_write,
2183 .raw_writefn = raw_write },
2184 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2185 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2186 .access = PL0_RW, .accessfn = pmreg_access,
2187 .type = ARM_CP_ALIAS | ARM_CP_IO,
2188 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2189 .writefn = pmovsset_write,
2190 .raw_writefn = raw_write },
2193 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2194 uint64_t value)
2196 value &= 1;
2197 env->teecr = value;
2200 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2201 bool isread)
2204 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2205 * at all, so we don't need to check whether we're v8A.
2207 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2208 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2209 return CP_ACCESS_TRAP_EL2;
2211 return CP_ACCESS_OK;
2214 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2215 bool isread)
2217 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2218 return CP_ACCESS_TRAP;
2220 return teecr_access(env, ri, isread);
2223 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2224 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2225 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2226 .resetvalue = 0,
2227 .writefn = teecr_write, .accessfn = teecr_access },
2228 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2229 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2230 .accessfn = teehbr_access, .resetvalue = 0 },
2233 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2234 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2235 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2236 .access = PL0_RW,
2237 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2238 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2239 .access = PL0_RW,
2240 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2241 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2242 .resetfn = arm_cp_reset_ignore },
2243 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2244 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2245 .access = PL0_R|PL1_W,
2246 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2247 .resetvalue = 0},
2248 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2249 .access = PL0_R|PL1_W,
2250 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2251 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2252 .resetfn = arm_cp_reset_ignore },
2253 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2254 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2255 .access = PL1_RW,
2256 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2257 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2258 .access = PL1_RW,
2259 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2260 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2261 .resetvalue = 0 },
2264 #ifndef CONFIG_USER_ONLY
2266 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2267 bool isread)
2269 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2270 * Writable only at the highest implemented exception level.
2272 int el = arm_current_el(env);
2273 uint64_t hcr;
2274 uint32_t cntkctl;
2276 switch (el) {
2277 case 0:
2278 hcr = arm_hcr_el2_eff(env);
2279 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2280 cntkctl = env->cp15.cnthctl_el2;
2281 } else {
2282 cntkctl = env->cp15.c14_cntkctl;
2284 if (!extract32(cntkctl, 0, 2)) {
2285 return CP_ACCESS_TRAP;
2287 break;
2288 case 1:
2289 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2290 arm_is_secure_below_el3(env)) {
2291 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2292 return CP_ACCESS_TRAP_UNCATEGORIZED;
2294 break;
2295 case 2:
2296 case 3:
2297 break;
2300 if (!isread && el < arm_highest_el(env)) {
2301 return CP_ACCESS_TRAP_UNCATEGORIZED;
2304 return CP_ACCESS_OK;
2307 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2308 bool isread)
2310 unsigned int cur_el = arm_current_el(env);
2311 bool has_el2 = arm_is_el2_enabled(env);
2312 uint64_t hcr = arm_hcr_el2_eff(env);
2314 switch (cur_el) {
2315 case 0:
2316 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2317 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2318 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2319 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2322 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2323 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2324 return CP_ACCESS_TRAP;
2327 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2328 if (hcr & HCR_E2H) {
2329 if (timeridx == GTIMER_PHYS &&
2330 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2331 return CP_ACCESS_TRAP_EL2;
2333 } else {
2334 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2335 if (has_el2 && timeridx == GTIMER_PHYS &&
2336 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2337 return CP_ACCESS_TRAP_EL2;
2340 break;
2342 case 1:
2343 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2344 if (has_el2 && timeridx == GTIMER_PHYS &&
2345 (hcr & HCR_E2H
2346 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2347 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2348 return CP_ACCESS_TRAP_EL2;
2350 break;
2352 return CP_ACCESS_OK;
2355 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2356 bool isread)
2358 unsigned int cur_el = arm_current_el(env);
2359 bool has_el2 = arm_is_el2_enabled(env);
2360 uint64_t hcr = arm_hcr_el2_eff(env);
2362 switch (cur_el) {
2363 case 0:
2364 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2365 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2366 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2367 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2371 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2372 * EL0 if EL0[PV]TEN is zero.
2374 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2375 return CP_ACCESS_TRAP;
2377 /* fall through */
2379 case 1:
2380 if (has_el2 && timeridx == GTIMER_PHYS) {
2381 if (hcr & HCR_E2H) {
2382 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2383 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2384 return CP_ACCESS_TRAP_EL2;
2386 } else {
2387 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2388 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2389 return CP_ACCESS_TRAP_EL2;
2393 break;
2395 return CP_ACCESS_OK;
2398 static CPAccessResult gt_pct_access(CPUARMState *env,
2399 const ARMCPRegInfo *ri,
2400 bool isread)
2402 return gt_counter_access(env, GTIMER_PHYS, isread);
2405 static CPAccessResult gt_vct_access(CPUARMState *env,
2406 const ARMCPRegInfo *ri,
2407 bool isread)
2409 return gt_counter_access(env, GTIMER_VIRT, isread);
2412 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2413 bool isread)
2415 return gt_timer_access(env, GTIMER_PHYS, isread);
2418 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2419 bool isread)
2421 return gt_timer_access(env, GTIMER_VIRT, isread);
2424 static CPAccessResult gt_stimer_access(CPUARMState *env,
2425 const ARMCPRegInfo *ri,
2426 bool isread)
2428 /* The AArch64 register view of the secure physical timer is
2429 * always accessible from EL3, and configurably accessible from
2430 * Secure EL1.
2432 switch (arm_current_el(env)) {
2433 case 1:
2434 if (!arm_is_secure(env)) {
2435 return CP_ACCESS_TRAP;
2437 if (!(env->cp15.scr_el3 & SCR_ST)) {
2438 return CP_ACCESS_TRAP_EL3;
2440 return CP_ACCESS_OK;
2441 case 0:
2442 case 2:
2443 return CP_ACCESS_TRAP;
2444 case 3:
2445 return CP_ACCESS_OK;
2446 default:
2447 g_assert_not_reached();
2451 static uint64_t gt_get_countervalue(CPUARMState *env)
2453 ARMCPU *cpu = env_archcpu(env);
2455 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2458 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2460 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2462 if (gt->ctl & 1) {
2463 /* Timer enabled: calculate and set current ISTATUS, irq, and
2464 * reset timer to when ISTATUS next has to change
2466 uint64_t offset = timeridx == GTIMER_VIRT ?
2467 cpu->env.cp15.cntvoff_el2 : 0;
2468 uint64_t count = gt_get_countervalue(&cpu->env);
2469 /* Note that this must be unsigned 64 bit arithmetic: */
2470 int istatus = count - offset >= gt->cval;
2471 uint64_t nexttick;
2472 int irqstate;
2474 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2476 irqstate = (istatus && !(gt->ctl & 2));
2477 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2479 if (istatus) {
2480 /* Next transition is when count rolls back over to zero */
2481 nexttick = UINT64_MAX;
2482 } else {
2483 /* Next transition is when we hit cval */
2484 nexttick = gt->cval + offset;
2486 /* Note that the desired next expiry time might be beyond the
2487 * signed-64-bit range of a QEMUTimer -- in this case we just
2488 * set the timer for as far in the future as possible. When the
2489 * timer expires we will reset the timer for any remaining period.
2491 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2492 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2493 } else {
2494 timer_mod(cpu->gt_timer[timeridx], nexttick);
2496 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2497 } else {
2498 /* Timer disabled: ISTATUS and timer output always clear */
2499 gt->ctl &= ~4;
2500 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2501 timer_del(cpu->gt_timer[timeridx]);
2502 trace_arm_gt_recalc_disabled(timeridx);
2506 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2507 int timeridx)
2509 ARMCPU *cpu = env_archcpu(env);
2511 timer_del(cpu->gt_timer[timeridx]);
2514 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2516 return gt_get_countervalue(env);
2519 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2521 uint64_t hcr;
2523 switch (arm_current_el(env)) {
2524 case 2:
2525 hcr = arm_hcr_el2_eff(env);
2526 if (hcr & HCR_E2H) {
2527 return 0;
2529 break;
2530 case 0:
2531 hcr = arm_hcr_el2_eff(env);
2532 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2533 return 0;
2535 break;
2538 return env->cp15.cntvoff_el2;
2541 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2543 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2546 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2547 int timeridx,
2548 uint64_t value)
2550 trace_arm_gt_cval_write(timeridx, value);
2551 env->cp15.c14_timer[timeridx].cval = value;
2552 gt_recalc_timer(env_archcpu(env), timeridx);
2555 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2556 int timeridx)
2558 uint64_t offset = 0;
2560 switch (timeridx) {
2561 case GTIMER_VIRT:
2562 case GTIMER_HYPVIRT:
2563 offset = gt_virt_cnt_offset(env);
2564 break;
2567 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2568 (gt_get_countervalue(env) - offset));
2571 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2572 int timeridx,
2573 uint64_t value)
2575 uint64_t offset = 0;
2577 switch (timeridx) {
2578 case GTIMER_VIRT:
2579 case GTIMER_HYPVIRT:
2580 offset = gt_virt_cnt_offset(env);
2581 break;
2584 trace_arm_gt_tval_write(timeridx, value);
2585 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2586 sextract64(value, 0, 32);
2587 gt_recalc_timer(env_archcpu(env), timeridx);
2590 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2591 int timeridx,
2592 uint64_t value)
2594 ARMCPU *cpu = env_archcpu(env);
2595 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2597 trace_arm_gt_ctl_write(timeridx, value);
2598 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2599 if ((oldval ^ value) & 1) {
2600 /* Enable toggled */
2601 gt_recalc_timer(cpu, timeridx);
2602 } else if ((oldval ^ value) & 2) {
2603 /* IMASK toggled: don't need to recalculate,
2604 * just set the interrupt line based on ISTATUS
2606 int irqstate = (oldval & 4) && !(value & 2);
2608 trace_arm_gt_imask_toggle(timeridx, irqstate);
2609 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2613 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2615 gt_timer_reset(env, ri, GTIMER_PHYS);
2618 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2619 uint64_t value)
2621 gt_cval_write(env, ri, GTIMER_PHYS, value);
2624 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2626 return gt_tval_read(env, ri, GTIMER_PHYS);
2629 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2630 uint64_t value)
2632 gt_tval_write(env, ri, GTIMER_PHYS, value);
2635 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2636 uint64_t value)
2638 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2641 static int gt_phys_redir_timeridx(CPUARMState *env)
2643 switch (arm_mmu_idx(env)) {
2644 case ARMMMUIdx_E20_0:
2645 case ARMMMUIdx_E20_2:
2646 case ARMMMUIdx_E20_2_PAN:
2647 case ARMMMUIdx_SE20_0:
2648 case ARMMMUIdx_SE20_2:
2649 case ARMMMUIdx_SE20_2_PAN:
2650 return GTIMER_HYP;
2651 default:
2652 return GTIMER_PHYS;
2656 static int gt_virt_redir_timeridx(CPUARMState *env)
2658 switch (arm_mmu_idx(env)) {
2659 case ARMMMUIdx_E20_0:
2660 case ARMMMUIdx_E20_2:
2661 case ARMMMUIdx_E20_2_PAN:
2662 case ARMMMUIdx_SE20_0:
2663 case ARMMMUIdx_SE20_2:
2664 case ARMMMUIdx_SE20_2_PAN:
2665 return GTIMER_HYPVIRT;
2666 default:
2667 return GTIMER_VIRT;
2671 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2672 const ARMCPRegInfo *ri)
2674 int timeridx = gt_phys_redir_timeridx(env);
2675 return env->cp15.c14_timer[timeridx].cval;
2678 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2679 uint64_t value)
2681 int timeridx = gt_phys_redir_timeridx(env);
2682 gt_cval_write(env, ri, timeridx, value);
2685 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2686 const ARMCPRegInfo *ri)
2688 int timeridx = gt_phys_redir_timeridx(env);
2689 return gt_tval_read(env, ri, timeridx);
2692 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2693 uint64_t value)
2695 int timeridx = gt_phys_redir_timeridx(env);
2696 gt_tval_write(env, ri, timeridx, value);
2699 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2700 const ARMCPRegInfo *ri)
2702 int timeridx = gt_phys_redir_timeridx(env);
2703 return env->cp15.c14_timer[timeridx].ctl;
2706 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2707 uint64_t value)
2709 int timeridx = gt_phys_redir_timeridx(env);
2710 gt_ctl_write(env, ri, timeridx, value);
2713 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2715 gt_timer_reset(env, ri, GTIMER_VIRT);
2718 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2719 uint64_t value)
2721 gt_cval_write(env, ri, GTIMER_VIRT, value);
2724 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2726 return gt_tval_read(env, ri, GTIMER_VIRT);
2729 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2730 uint64_t value)
2732 gt_tval_write(env, ri, GTIMER_VIRT, value);
2735 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2736 uint64_t value)
2738 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2741 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2742 uint64_t value)
2744 ARMCPU *cpu = env_archcpu(env);
2746 trace_arm_gt_cntvoff_write(value);
2747 raw_write(env, ri, value);
2748 gt_recalc_timer(cpu, GTIMER_VIRT);
2751 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2752 const ARMCPRegInfo *ri)
2754 int timeridx = gt_virt_redir_timeridx(env);
2755 return env->cp15.c14_timer[timeridx].cval;
2758 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2759 uint64_t value)
2761 int timeridx = gt_virt_redir_timeridx(env);
2762 gt_cval_write(env, ri, timeridx, value);
2765 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2766 const ARMCPRegInfo *ri)
2768 int timeridx = gt_virt_redir_timeridx(env);
2769 return gt_tval_read(env, ri, timeridx);
2772 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2773 uint64_t value)
2775 int timeridx = gt_virt_redir_timeridx(env);
2776 gt_tval_write(env, ri, timeridx, value);
2779 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2780 const ARMCPRegInfo *ri)
2782 int timeridx = gt_virt_redir_timeridx(env);
2783 return env->cp15.c14_timer[timeridx].ctl;
2786 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2787 uint64_t value)
2789 int timeridx = gt_virt_redir_timeridx(env);
2790 gt_ctl_write(env, ri, timeridx, value);
2793 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2795 gt_timer_reset(env, ri, GTIMER_HYP);
2798 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2799 uint64_t value)
2801 gt_cval_write(env, ri, GTIMER_HYP, value);
2804 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2806 return gt_tval_read(env, ri, GTIMER_HYP);
2809 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2810 uint64_t value)
2812 gt_tval_write(env, ri, GTIMER_HYP, value);
2815 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2816 uint64_t value)
2818 gt_ctl_write(env, ri, GTIMER_HYP, value);
2821 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2823 gt_timer_reset(env, ri, GTIMER_SEC);
2826 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2827 uint64_t value)
2829 gt_cval_write(env, ri, GTIMER_SEC, value);
2832 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2834 return gt_tval_read(env, ri, GTIMER_SEC);
2837 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2838 uint64_t value)
2840 gt_tval_write(env, ri, GTIMER_SEC, value);
2843 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2844 uint64_t value)
2846 gt_ctl_write(env, ri, GTIMER_SEC, value);
2849 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2851 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2854 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2855 uint64_t value)
2857 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2860 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2862 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2865 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2866 uint64_t value)
2868 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2871 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2872 uint64_t value)
2874 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2877 void arm_gt_ptimer_cb(void *opaque)
2879 ARMCPU *cpu = opaque;
2881 gt_recalc_timer(cpu, GTIMER_PHYS);
2884 void arm_gt_vtimer_cb(void *opaque)
2886 ARMCPU *cpu = opaque;
2888 gt_recalc_timer(cpu, GTIMER_VIRT);
2891 void arm_gt_htimer_cb(void *opaque)
2893 ARMCPU *cpu = opaque;
2895 gt_recalc_timer(cpu, GTIMER_HYP);
2898 void arm_gt_stimer_cb(void *opaque)
2900 ARMCPU *cpu = opaque;
2902 gt_recalc_timer(cpu, GTIMER_SEC);
2905 void arm_gt_hvtimer_cb(void *opaque)
2907 ARMCPU *cpu = opaque;
2909 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
2912 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2914 ARMCPU *cpu = env_archcpu(env);
2916 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2919 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2920 /* Note that CNTFRQ is purely reads-as-written for the benefit
2921 * of software; writing it doesn't actually change the timer frequency.
2922 * Our reset value matches the fixed frequency we implement the timer at.
2924 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2925 .type = ARM_CP_ALIAS,
2926 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2927 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2929 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2930 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2931 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2932 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2933 .resetfn = arm_gt_cntfrq_reset,
2935 /* overall control: mostly access permissions */
2936 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2937 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2938 .access = PL1_RW,
2939 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2940 .resetvalue = 0,
2942 /* per-timer control */
2943 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2944 .secure = ARM_CP_SECSTATE_NS,
2945 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2946 .accessfn = gt_ptimer_access,
2947 .fieldoffset = offsetoflow32(CPUARMState,
2948 cp15.c14_timer[GTIMER_PHYS].ctl),
2949 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2950 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2952 { .name = "CNTP_CTL_S",
2953 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2954 .secure = ARM_CP_SECSTATE_S,
2955 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2956 .accessfn = gt_ptimer_access,
2957 .fieldoffset = offsetoflow32(CPUARMState,
2958 cp15.c14_timer[GTIMER_SEC].ctl),
2959 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2961 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2962 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2963 .type = ARM_CP_IO, .access = PL0_RW,
2964 .accessfn = gt_ptimer_access,
2965 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2966 .resetvalue = 0,
2967 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2968 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2970 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2971 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2972 .accessfn = gt_vtimer_access,
2973 .fieldoffset = offsetoflow32(CPUARMState,
2974 cp15.c14_timer[GTIMER_VIRT].ctl),
2975 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2976 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2978 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2979 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2980 .type = ARM_CP_IO, .access = PL0_RW,
2981 .accessfn = gt_vtimer_access,
2982 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2983 .resetvalue = 0,
2984 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2985 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2987 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2988 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2989 .secure = ARM_CP_SECSTATE_NS,
2990 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2991 .accessfn = gt_ptimer_access,
2992 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2994 { .name = "CNTP_TVAL_S",
2995 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2996 .secure = ARM_CP_SECSTATE_S,
2997 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2998 .accessfn = gt_ptimer_access,
2999 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3001 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3002 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3003 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3004 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3005 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3007 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3008 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3009 .accessfn = gt_vtimer_access,
3010 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3012 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3013 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3014 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3015 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3016 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3018 /* The counter itself */
3019 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3020 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3021 .accessfn = gt_pct_access,
3022 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3024 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3025 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3026 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3027 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3029 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3030 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3031 .accessfn = gt_vct_access,
3032 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3034 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3035 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3036 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3037 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3039 /* Comparison value, indicating when the timer goes off */
3040 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3041 .secure = ARM_CP_SECSTATE_NS,
3042 .access = PL0_RW,
3043 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3044 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3045 .accessfn = gt_ptimer_access,
3046 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3047 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3049 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3050 .secure = ARM_CP_SECSTATE_S,
3051 .access = PL0_RW,
3052 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3053 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3054 .accessfn = gt_ptimer_access,
3055 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3057 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3058 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3059 .access = PL0_RW,
3060 .type = ARM_CP_IO,
3061 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3062 .resetvalue = 0, .accessfn = gt_ptimer_access,
3063 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3064 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3066 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3067 .access = PL0_RW,
3068 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3069 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3070 .accessfn = gt_vtimer_access,
3071 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3072 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3074 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3075 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3076 .access = PL0_RW,
3077 .type = ARM_CP_IO,
3078 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3079 .resetvalue = 0, .accessfn = gt_vtimer_access,
3080 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3081 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3083 /* Secure timer -- this is actually restricted to only EL3
3084 * and configurably Secure-EL1 via the accessfn.
3086 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3087 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3088 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3089 .accessfn = gt_stimer_access,
3090 .readfn = gt_sec_tval_read,
3091 .writefn = gt_sec_tval_write,
3092 .resetfn = gt_sec_timer_reset,
3094 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3095 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3096 .type = ARM_CP_IO, .access = PL1_RW,
3097 .accessfn = gt_stimer_access,
3098 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3099 .resetvalue = 0,
3100 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3102 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3103 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3104 .type = ARM_CP_IO, .access = PL1_RW,
3105 .accessfn = gt_stimer_access,
3106 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3107 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3111 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3112 bool isread)
3114 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3115 return CP_ACCESS_TRAP;
3117 return CP_ACCESS_OK;
3120 #else
3122 /* In user-mode most of the generic timer registers are inaccessible
3123 * however modern kernels (4.12+) allow access to cntvct_el0
3126 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3128 ARMCPU *cpu = env_archcpu(env);
3130 /* Currently we have no support for QEMUTimer in linux-user so we
3131 * can't call gt_get_countervalue(env), instead we directly
3132 * call the lower level functions.
3134 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3137 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3138 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3139 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3140 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3141 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3142 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3144 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3145 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3146 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3147 .readfn = gt_virt_cnt_read,
3151 #endif
3153 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3155 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3156 raw_write(env, ri, value);
3157 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3158 raw_write(env, ri, value & 0xfffff6ff);
3159 } else {
3160 raw_write(env, ri, value & 0xfffff1ff);
3164 #ifndef CONFIG_USER_ONLY
3165 /* get_phys_addr() isn't present for user-mode-only targets */
3167 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3168 bool isread)
3170 if (ri->opc2 & 4) {
3171 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3172 * Secure EL1 (which can only happen if EL3 is AArch64).
3173 * They are simply UNDEF if executed from NS EL1.
3174 * They function normally from EL2 or EL3.
3176 if (arm_current_el(env) == 1) {
3177 if (arm_is_secure_below_el3(env)) {
3178 if (env->cp15.scr_el3 & SCR_EEL2) {
3179 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3181 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3183 return CP_ACCESS_TRAP_UNCATEGORIZED;
3186 return CP_ACCESS_OK;
3189 #ifdef CONFIG_TCG
3190 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3191 MMUAccessType access_type, ARMMMUIdx mmu_idx)
3193 bool ret;
3194 uint64_t par64;
3195 bool format64 = false;
3196 ARMMMUFaultInfo fi = {};
3197 GetPhysAddrResult res = {};
3199 ret = get_phys_addr(env, value, access_type, mmu_idx, &res, &fi);
3202 * ATS operations only do S1 or S1+S2 translations, so we never
3203 * have to deal with the ARMCacheAttrs format for S2 only.
3205 assert(!res.cacheattrs.is_s2_format);
3207 if (ret) {
3209 * Some kinds of translation fault must cause exceptions rather
3210 * than being reported in the PAR.
3212 int current_el = arm_current_el(env);
3213 int target_el;
3214 uint32_t syn, fsr, fsc;
3215 bool take_exc = false;
3217 if (fi.s1ptw && current_el == 1
3218 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3220 * Synchronous stage 2 fault on an access made as part of the
3221 * translation table walk for AT S1E0* or AT S1E1* insn
3222 * executed from NS EL1. If this is a synchronous external abort
3223 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3224 * to EL3. Otherwise the fault is taken as an exception to EL2,
3225 * and HPFAR_EL2 holds the faulting IPA.
3227 if (fi.type == ARMFault_SyncExternalOnWalk &&
3228 (env->cp15.scr_el3 & SCR_EA)) {
3229 target_el = 3;
3230 } else {
3231 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3232 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3233 env->cp15.hpfar_el2 |= HPFAR_NS;
3235 target_el = 2;
3237 take_exc = true;
3238 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3240 * Synchronous external aborts during a translation table walk
3241 * are taken as Data Abort exceptions.
3243 if (fi.stage2) {
3244 if (current_el == 3) {
3245 target_el = 3;
3246 } else {
3247 target_el = 2;
3249 } else {
3250 target_el = exception_target_el(env);
3252 take_exc = true;
3255 if (take_exc) {
3256 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3257 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3258 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3259 fsr = arm_fi_to_lfsc(&fi);
3260 fsc = extract32(fsr, 0, 6);
3261 } else {
3262 fsr = arm_fi_to_sfsc(&fi);
3263 fsc = 0x3f;
3266 * Report exception with ESR indicating a fault due to a
3267 * translation table walk for a cache maintenance instruction.
3269 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3270 fi.ea, 1, fi.s1ptw, 1, fsc);
3271 env->exception.vaddress = value;
3272 env->exception.fsr = fsr;
3273 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3277 if (is_a64(env)) {
3278 format64 = true;
3279 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3281 * ATS1Cxx:
3282 * * TTBCR.EAE determines whether the result is returned using the
3283 * 32-bit or the 64-bit PAR format
3284 * * Instructions executed in Hyp mode always use the 64bit format
3286 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3287 * * The Non-secure TTBCR.EAE bit is set to 1
3288 * * The implementation includes EL2, and the value of HCR.VM is 1
3290 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3292 * ATS1Hx always uses the 64bit format.
3294 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3296 if (arm_feature(env, ARM_FEATURE_EL2)) {
3297 if (mmu_idx == ARMMMUIdx_E10_0 ||
3298 mmu_idx == ARMMMUIdx_E10_1 ||
3299 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3300 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3301 } else {
3302 format64 |= arm_current_el(env) == 2;
3307 if (format64) {
3308 /* Create a 64-bit PAR */
3309 par64 = (1 << 11); /* LPAE bit always set */
3310 if (!ret) {
3311 par64 |= res.phys & ~0xfffULL;
3312 if (!res.attrs.secure) {
3313 par64 |= (1 << 9); /* NS */
3315 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3316 par64 |= res.cacheattrs.shareability << 7; /* SH */
3317 } else {
3318 uint32_t fsr = arm_fi_to_lfsc(&fi);
3320 par64 |= 1; /* F */
3321 par64 |= (fsr & 0x3f) << 1; /* FS */
3322 if (fi.stage2) {
3323 par64 |= (1 << 9); /* S */
3325 if (fi.s1ptw) {
3326 par64 |= (1 << 8); /* PTW */
3329 } else {
3330 /* fsr is a DFSR/IFSR value for the short descriptor
3331 * translation table format (with WnR always clear).
3332 * Convert it to a 32-bit PAR.
3334 if (!ret) {
3335 /* We do not set any attribute bits in the PAR */
3336 if (res.page_size == (1 << 24)
3337 && arm_feature(env, ARM_FEATURE_V7)) {
3338 par64 = (res.phys & 0xff000000) | (1 << 1);
3339 } else {
3340 par64 = res.phys & 0xfffff000;
3342 if (!res.attrs.secure) {
3343 par64 |= (1 << 9); /* NS */
3345 } else {
3346 uint32_t fsr = arm_fi_to_sfsc(&fi);
3348 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3349 ((fsr & 0xf) << 1) | 1;
3352 return par64;
3354 #endif /* CONFIG_TCG */
3356 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3358 #ifdef CONFIG_TCG
3359 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3360 uint64_t par64;
3361 ARMMMUIdx mmu_idx;
3362 int el = arm_current_el(env);
3363 bool secure = arm_is_secure_below_el3(env);
3365 switch (ri->opc2 & 6) {
3366 case 0:
3367 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3368 switch (el) {
3369 case 3:
3370 mmu_idx = ARMMMUIdx_SE3;
3371 break;
3372 case 2:
3373 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3374 /* fall through */
3375 case 1:
3376 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3377 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3378 : ARMMMUIdx_Stage1_E1_PAN);
3379 } else {
3380 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3382 break;
3383 default:
3384 g_assert_not_reached();
3386 break;
3387 case 2:
3388 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3389 switch (el) {
3390 case 3:
3391 mmu_idx = ARMMMUIdx_SE10_0;
3392 break;
3393 case 2:
3394 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3395 mmu_idx = ARMMMUIdx_Stage1_E0;
3396 break;
3397 case 1:
3398 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3399 break;
3400 default:
3401 g_assert_not_reached();
3403 break;
3404 case 4:
3405 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3406 mmu_idx = ARMMMUIdx_E10_1;
3407 break;
3408 case 6:
3409 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3410 mmu_idx = ARMMMUIdx_E10_0;
3411 break;
3412 default:
3413 g_assert_not_reached();
3416 par64 = do_ats_write(env, value, access_type, mmu_idx);
3418 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3419 #else
3420 /* Handled by hardware accelerator. */
3421 g_assert_not_reached();
3422 #endif /* CONFIG_TCG */
3425 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3426 uint64_t value)
3428 #ifdef CONFIG_TCG
3429 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3430 uint64_t par64;
3432 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3434 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3435 #else
3436 /* Handled by hardware accelerator. */
3437 g_assert_not_reached();
3438 #endif /* CONFIG_TCG */
3441 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3442 bool isread)
3444 if (arm_current_el(env) == 3 &&
3445 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3446 return CP_ACCESS_TRAP;
3448 return CP_ACCESS_OK;
3451 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3452 uint64_t value)
3454 #ifdef CONFIG_TCG
3455 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3456 ARMMMUIdx mmu_idx;
3457 int secure = arm_is_secure_below_el3(env);
3459 switch (ri->opc2 & 6) {
3460 case 0:
3461 switch (ri->opc1) {
3462 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3463 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3464 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3465 : ARMMMUIdx_Stage1_E1_PAN);
3466 } else {
3467 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3469 break;
3470 case 4: /* AT S1E2R, AT S1E2W */
3471 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3472 break;
3473 case 6: /* AT S1E3R, AT S1E3W */
3474 mmu_idx = ARMMMUIdx_SE3;
3475 break;
3476 default:
3477 g_assert_not_reached();
3479 break;
3480 case 2: /* AT S1E0R, AT S1E0W */
3481 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3482 break;
3483 case 4: /* AT S12E1R, AT S12E1W */
3484 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3485 break;
3486 case 6: /* AT S12E0R, AT S12E0W */
3487 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3488 break;
3489 default:
3490 g_assert_not_reached();
3493 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3494 #else
3495 /* Handled by hardware accelerator. */
3496 g_assert_not_reached();
3497 #endif /* CONFIG_TCG */
3499 #endif
3501 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3502 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3503 .access = PL1_RW, .resetvalue = 0,
3504 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3505 offsetoflow32(CPUARMState, cp15.par_ns) },
3506 .writefn = par_write },
3507 #ifndef CONFIG_USER_ONLY
3508 /* This underdecoding is safe because the reginfo is NO_RAW. */
3509 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3510 .access = PL1_W, .accessfn = ats_access,
3511 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3512 #endif
3515 /* Return basic MPU access permission bits. */
3516 static uint32_t simple_mpu_ap_bits(uint32_t val)
3518 uint32_t ret;
3519 uint32_t mask;
3520 int i;
3521 ret = 0;
3522 mask = 3;
3523 for (i = 0; i < 16; i += 2) {
3524 ret |= (val >> i) & mask;
3525 mask <<= 2;
3527 return ret;
3530 /* Pad basic MPU access permission bits to extended format. */
3531 static uint32_t extended_mpu_ap_bits(uint32_t val)
3533 uint32_t ret;
3534 uint32_t mask;
3535 int i;
3536 ret = 0;
3537 mask = 3;
3538 for (i = 0; i < 16; i += 2) {
3539 ret |= (val & mask) << i;
3540 mask <<= 2;
3542 return ret;
3545 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3546 uint64_t value)
3548 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3551 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3553 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3556 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3557 uint64_t value)
3559 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3562 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3564 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3567 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3569 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3571 if (!u32p) {
3572 return 0;
3575 u32p += env->pmsav7.rnr[M_REG_NS];
3576 return *u32p;
3579 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3580 uint64_t value)
3582 ARMCPU *cpu = env_archcpu(env);
3583 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3585 if (!u32p) {
3586 return;
3589 u32p += env->pmsav7.rnr[M_REG_NS];
3590 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3591 *u32p = value;
3594 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3595 uint64_t value)
3597 ARMCPU *cpu = env_archcpu(env);
3598 uint32_t nrgs = cpu->pmsav7_dregion;
3600 if (value >= nrgs) {
3601 qemu_log_mask(LOG_GUEST_ERROR,
3602 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3603 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3604 return;
3607 raw_write(env, ri, value);
3610 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3611 /* Reset for all these registers is handled in arm_cpu_reset(),
3612 * because the PMSAv7 is also used by M-profile CPUs, which do
3613 * not register cpregs but still need the state to be reset.
3615 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3616 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3617 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3618 .readfn = pmsav7_read, .writefn = pmsav7_write,
3619 .resetfn = arm_cp_reset_ignore },
3620 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3621 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3622 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3623 .readfn = pmsav7_read, .writefn = pmsav7_write,
3624 .resetfn = arm_cp_reset_ignore },
3625 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3626 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3627 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3628 .readfn = pmsav7_read, .writefn = pmsav7_write,
3629 .resetfn = arm_cp_reset_ignore },
3630 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3631 .access = PL1_RW,
3632 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3633 .writefn = pmsav7_rgnr_write,
3634 .resetfn = arm_cp_reset_ignore },
3637 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3638 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3639 .access = PL1_RW, .type = ARM_CP_ALIAS,
3640 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3641 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3642 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3643 .access = PL1_RW, .type = ARM_CP_ALIAS,
3644 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3645 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3646 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3647 .access = PL1_RW,
3648 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3649 .resetvalue = 0, },
3650 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3651 .access = PL1_RW,
3652 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3653 .resetvalue = 0, },
3654 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3655 .access = PL1_RW,
3656 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3657 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3658 .access = PL1_RW,
3659 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3660 /* Protection region base and size registers */
3661 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3662 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3663 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3664 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3665 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3666 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3667 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3668 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3669 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3670 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3671 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3672 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3673 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3674 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3675 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3676 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3677 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3678 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3679 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3680 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3681 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3682 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3683 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3684 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3687 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3688 uint64_t value)
3690 ARMCPU *cpu = env_archcpu(env);
3692 if (!arm_feature(env, ARM_FEATURE_V8)) {
3693 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3695 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3696 * using Long-descriptor translation table format
3698 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3699 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3701 * In an implementation that includes the Security Extensions
3702 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3703 * Short-descriptor translation table format.
3705 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3706 } else {
3707 value &= TTBCR_N;
3711 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3712 /* With LPAE the TTBCR could result in a change of ASID
3713 * via the TTBCR.A1 bit, so do a TLB flush.
3715 tlb_flush(CPU(cpu));
3717 raw_write(env, ri, value);
3720 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3721 uint64_t value)
3723 ARMCPU *cpu = env_archcpu(env);
3725 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3726 tlb_flush(CPU(cpu));
3727 raw_write(env, ri, value);
3730 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3731 uint64_t value)
3733 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3734 if (cpreg_field_is_64bit(ri) &&
3735 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3736 ARMCPU *cpu = env_archcpu(env);
3737 tlb_flush(CPU(cpu));
3739 raw_write(env, ri, value);
3742 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3743 uint64_t value)
3746 * If we are running with E2&0 regime, then an ASID is active.
3747 * Flush if that might be changing. Note we're not checking
3748 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3749 * holds the active ASID, only checking the field that might.
3751 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3752 (arm_hcr_el2_eff(env) & HCR_E2H)) {
3753 uint16_t mask = ARMMMUIdxBit_E20_2 |
3754 ARMMMUIdxBit_E20_2_PAN |
3755 ARMMMUIdxBit_E20_0;
3757 if (arm_is_secure_below_el3(env)) {
3758 mask >>= ARM_MMU_IDX_A_NS;
3761 tlb_flush_by_mmuidx(env_cpu(env), mask);
3763 raw_write(env, ri, value);
3766 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3767 uint64_t value)
3769 ARMCPU *cpu = env_archcpu(env);
3770 CPUState *cs = CPU(cpu);
3773 * A change in VMID to the stage2 page table (Stage2) invalidates
3774 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
3776 if (raw_read(env, ri) != value) {
3777 uint16_t mask = ARMMMUIdxBit_E10_1 |
3778 ARMMMUIdxBit_E10_1_PAN |
3779 ARMMMUIdxBit_E10_0;
3781 if (arm_is_secure_below_el3(env)) {
3782 mask >>= ARM_MMU_IDX_A_NS;
3785 tlb_flush_by_mmuidx(cs, mask);
3786 raw_write(env, ri, value);
3790 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3791 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3792 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
3793 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3794 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3795 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3796 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3797 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3798 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3799 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3800 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3801 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3802 offsetof(CPUARMState, cp15.dfar_ns) } },
3803 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3804 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3805 .access = PL1_RW, .accessfn = access_tvm_trvm,
3806 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3807 .resetvalue = 0, },
3810 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3811 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3812 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3813 .access = PL1_RW, .accessfn = access_tvm_trvm,
3814 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3815 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3816 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3817 .access = PL1_RW, .accessfn = access_tvm_trvm,
3818 .writefn = vmsa_ttbr_write, .resetvalue = 0,
3819 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3820 offsetof(CPUARMState, cp15.ttbr0_ns) } },
3821 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3822 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3823 .access = PL1_RW, .accessfn = access_tvm_trvm,
3824 .writefn = vmsa_ttbr_write, .resetvalue = 0,
3825 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3826 offsetof(CPUARMState, cp15.ttbr1_ns) } },
3827 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3828 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3829 .access = PL1_RW, .accessfn = access_tvm_trvm,
3830 .writefn = vmsa_tcr_el12_write,
3831 .raw_writefn = raw_write,
3832 .resetvalue = 0,
3833 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3834 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3835 .access = PL1_RW, .accessfn = access_tvm_trvm,
3836 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3837 .raw_writefn = raw_write,
3838 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3839 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3842 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3843 * qemu tlbs nor adjusting cached masks.
3845 static const ARMCPRegInfo ttbcr2_reginfo = {
3846 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3847 .access = PL1_RW, .accessfn = access_tvm_trvm,
3848 .type = ARM_CP_ALIAS,
3849 .bank_fieldoffsets = {
3850 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3851 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
3855 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3856 uint64_t value)
3858 env->cp15.c15_ticonfig = value & 0xe7;
3859 /* The OS_TYPE bit in this register changes the reported CPUID! */
3860 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3861 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3864 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3865 uint64_t value)
3867 env->cp15.c15_threadid = value & 0xffff;
3870 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3871 uint64_t value)
3873 /* Wait-for-interrupt (deprecated) */
3874 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3877 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3878 uint64_t value)
3880 /* On OMAP there are registers indicating the max/min index of dcache lines
3881 * containing a dirty line; cache flush operations have to reset these.
3883 env->cp15.c15_i_max = 0x000;
3884 env->cp15.c15_i_min = 0xff0;
3887 static const ARMCPRegInfo omap_cp_reginfo[] = {
3888 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3889 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3890 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3891 .resetvalue = 0, },
3892 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3893 .access = PL1_RW, .type = ARM_CP_NOP },
3894 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3895 .access = PL1_RW,
3896 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3897 .writefn = omap_ticonfig_write },
3898 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3899 .access = PL1_RW,
3900 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3901 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3902 .access = PL1_RW, .resetvalue = 0xff0,
3903 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3904 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3905 .access = PL1_RW,
3906 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3907 .writefn = omap_threadid_write },
3908 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3909 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3910 .type = ARM_CP_NO_RAW,
3911 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3912 /* TODO: Peripheral port remap register:
3913 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3914 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3915 * when MMU is off.
3917 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3918 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3919 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3920 .writefn = omap_cachemaint_write },
3921 { .name = "C9", .cp = 15, .crn = 9,
3922 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3923 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3926 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3927 uint64_t value)
3929 env->cp15.c15_cpar = value & 0x3fff;
3932 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3933 { .name = "XSCALE_CPAR",
3934 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3935 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3936 .writefn = xscale_cpar_write, },
3937 { .name = "XSCALE_AUXCR",
3938 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3939 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3940 .resetvalue = 0, },
3941 /* XScale specific cache-lockdown: since we have no cache we NOP these
3942 * and hope the guest does not really rely on cache behaviour.
3944 { .name = "XSCALE_LOCK_ICACHE_LINE",
3945 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3946 .access = PL1_W, .type = ARM_CP_NOP },
3947 { .name = "XSCALE_UNLOCK_ICACHE",
3948 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3949 .access = PL1_W, .type = ARM_CP_NOP },
3950 { .name = "XSCALE_DCACHE_LOCK",
3951 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3952 .access = PL1_RW, .type = ARM_CP_NOP },
3953 { .name = "XSCALE_UNLOCK_DCACHE",
3954 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3955 .access = PL1_W, .type = ARM_CP_NOP },
3958 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3959 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3960 * implementation of this implementation-defined space.
3961 * Ideally this should eventually disappear in favour of actually
3962 * implementing the correct behaviour for all cores.
3964 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3965 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3966 .access = PL1_RW,
3967 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3968 .resetvalue = 0 },
3971 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3972 /* Cache status: RAZ because we have no cache so it's always clean */
3973 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3974 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3975 .resetvalue = 0 },
3978 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3979 /* We never have a block transfer operation in progress */
3980 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3981 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3982 .resetvalue = 0 },
3983 /* The cache ops themselves: these all NOP for QEMU */
3984 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3985 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3986 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3987 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3988 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3989 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3990 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3991 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3992 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3993 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3994 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3995 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3998 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3999 /* The cache test-and-clean instructions always return (1 << 30)
4000 * to indicate that there are no dirty cache lines.
4002 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4003 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4004 .resetvalue = (1 << 30) },
4005 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4006 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4007 .resetvalue = (1 << 30) },
4010 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4011 /* Ignore ReadBuffer accesses */
4012 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4013 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4014 .access = PL1_RW, .resetvalue = 0,
4015 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4018 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4020 unsigned int cur_el = arm_current_el(env);
4022 if (arm_is_el2_enabled(env) && cur_el == 1) {
4023 return env->cp15.vpidr_el2;
4025 return raw_read(env, ri);
4028 static uint64_t mpidr_read_val(CPUARMState *env)
4030 ARMCPU *cpu = env_archcpu(env);
4031 uint64_t mpidr = cpu->mp_affinity;
4033 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4034 mpidr |= (1U << 31);
4035 /* Cores which are uniprocessor (non-coherent)
4036 * but still implement the MP extensions set
4037 * bit 30. (For instance, Cortex-R5).
4039 if (cpu->mp_is_up) {
4040 mpidr |= (1u << 30);
4043 return mpidr;
4046 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4048 unsigned int cur_el = arm_current_el(env);
4050 if (arm_is_el2_enabled(env) && cur_el == 1) {
4051 return env->cp15.vmpidr_el2;
4053 return mpidr_read_val(env);
4056 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4057 /* NOP AMAIR0/1 */
4058 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4059 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4060 .access = PL1_RW, .accessfn = access_tvm_trvm,
4061 .type = ARM_CP_CONST, .resetvalue = 0 },
4062 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4063 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4064 .access = PL1_RW, .accessfn = access_tvm_trvm,
4065 .type = ARM_CP_CONST, .resetvalue = 0 },
4066 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4067 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4068 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4069 offsetof(CPUARMState, cp15.par_ns)} },
4070 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4071 .access = PL1_RW, .accessfn = access_tvm_trvm,
4072 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4073 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4074 offsetof(CPUARMState, cp15.ttbr0_ns) },
4075 .writefn = vmsa_ttbr_write, },
4076 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4077 .access = PL1_RW, .accessfn = access_tvm_trvm,
4078 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4079 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4080 offsetof(CPUARMState, cp15.ttbr1_ns) },
4081 .writefn = vmsa_ttbr_write, },
4084 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4086 return vfp_get_fpcr(env);
4089 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4090 uint64_t value)
4092 vfp_set_fpcr(env, value);
4095 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4097 return vfp_get_fpsr(env);
4100 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4101 uint64_t value)
4103 vfp_set_fpsr(env, value);
4106 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4107 bool isread)
4109 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4110 return CP_ACCESS_TRAP;
4112 return CP_ACCESS_OK;
4115 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4116 uint64_t value)
4118 env->daif = value & PSTATE_DAIF;
4121 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4123 return env->pstate & PSTATE_PAN;
4126 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4127 uint64_t value)
4129 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4132 static const ARMCPRegInfo pan_reginfo = {
4133 .name = "PAN", .state = ARM_CP_STATE_AA64,
4134 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4135 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4136 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4139 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4141 return env->pstate & PSTATE_UAO;
4144 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4145 uint64_t value)
4147 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4150 static const ARMCPRegInfo uao_reginfo = {
4151 .name = "UAO", .state = ARM_CP_STATE_AA64,
4152 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4153 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4154 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4157 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4159 return env->pstate & PSTATE_DIT;
4162 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4163 uint64_t value)
4165 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4168 static const ARMCPRegInfo dit_reginfo = {
4169 .name = "DIT", .state = ARM_CP_STATE_AA64,
4170 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4171 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4172 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4175 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4177 return env->pstate & PSTATE_SSBS;
4180 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4181 uint64_t value)
4183 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4186 static const ARMCPRegInfo ssbs_reginfo = {
4187 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4188 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4189 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4190 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4193 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4194 const ARMCPRegInfo *ri,
4195 bool isread)
4197 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4198 switch (arm_current_el(env)) {
4199 case 0:
4200 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4201 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4202 return CP_ACCESS_TRAP;
4204 /* fall through */
4205 case 1:
4206 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4207 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4208 return CP_ACCESS_TRAP_EL2;
4210 break;
4212 return CP_ACCESS_OK;
4215 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4216 const ARMCPRegInfo *ri,
4217 bool isread)
4219 /* Cache invalidate/clean to Point of Unification... */
4220 switch (arm_current_el(env)) {
4221 case 0:
4222 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4223 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4224 return CP_ACCESS_TRAP;
4226 /* fall through */
4227 case 1:
4228 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
4229 if (arm_hcr_el2_eff(env) & HCR_TPU) {
4230 return CP_ACCESS_TRAP_EL2;
4232 break;
4234 return CP_ACCESS_OK;
4237 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4238 * Page D4-1736 (DDI0487A.b)
4241 static int vae1_tlbmask(CPUARMState *env)
4243 uint64_t hcr = arm_hcr_el2_eff(env);
4244 uint16_t mask;
4246 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4247 mask = ARMMMUIdxBit_E20_2 |
4248 ARMMMUIdxBit_E20_2_PAN |
4249 ARMMMUIdxBit_E20_0;
4250 } else {
4251 mask = ARMMMUIdxBit_E10_1 |
4252 ARMMMUIdxBit_E10_1_PAN |
4253 ARMMMUIdxBit_E10_0;
4256 if (arm_is_secure_below_el3(env)) {
4257 mask >>= ARM_MMU_IDX_A_NS;
4260 return mask;
4263 /* Return 56 if TBI is enabled, 64 otherwise. */
4264 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4265 uint64_t addr)
4267 uint64_t tcr = regime_tcr(env, mmu_idx);
4268 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4269 int select = extract64(addr, 55, 1);
4271 return (tbi >> select) & 1 ? 56 : 64;
4274 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4276 uint64_t hcr = arm_hcr_el2_eff(env);
4277 ARMMMUIdx mmu_idx;
4279 /* Only the regime of the mmu_idx below is significant. */
4280 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4281 mmu_idx = ARMMMUIdx_E20_0;
4282 } else {
4283 mmu_idx = ARMMMUIdx_E10_0;
4286 if (arm_is_secure_below_el3(env)) {
4287 mmu_idx &= ~ARM_MMU_IDX_A_NS;
4290 return tlbbits_for_regime(env, mmu_idx, addr);
4293 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4294 uint64_t value)
4296 CPUState *cs = env_cpu(env);
4297 int mask = vae1_tlbmask(env);
4299 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4302 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4303 uint64_t value)
4305 CPUState *cs = env_cpu(env);
4306 int mask = vae1_tlbmask(env);
4308 if (tlb_force_broadcast(env)) {
4309 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4310 } else {
4311 tlb_flush_by_mmuidx(cs, mask);
4315 static int alle1_tlbmask(CPUARMState *env)
4318 * Note that the 'ALL' scope must invalidate both stage 1 and
4319 * stage 2 translations, whereas most other scopes only invalidate
4320 * stage 1 translations.
4322 if (arm_is_secure_below_el3(env)) {
4323 return ARMMMUIdxBit_SE10_1 |
4324 ARMMMUIdxBit_SE10_1_PAN |
4325 ARMMMUIdxBit_SE10_0;
4326 } else {
4327 return ARMMMUIdxBit_E10_1 |
4328 ARMMMUIdxBit_E10_1_PAN |
4329 ARMMMUIdxBit_E10_0;
4333 static int e2_tlbmask(CPUARMState *env)
4335 if (arm_is_secure_below_el3(env)) {
4336 return ARMMMUIdxBit_SE20_0 |
4337 ARMMMUIdxBit_SE20_2 |
4338 ARMMMUIdxBit_SE20_2_PAN |
4339 ARMMMUIdxBit_SE2;
4340 } else {
4341 return ARMMMUIdxBit_E20_0 |
4342 ARMMMUIdxBit_E20_2 |
4343 ARMMMUIdxBit_E20_2_PAN |
4344 ARMMMUIdxBit_E2;
4348 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4349 uint64_t value)
4351 CPUState *cs = env_cpu(env);
4352 int mask = alle1_tlbmask(env);
4354 tlb_flush_by_mmuidx(cs, mask);
4357 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4358 uint64_t value)
4360 CPUState *cs = env_cpu(env);
4361 int mask = e2_tlbmask(env);
4363 tlb_flush_by_mmuidx(cs, mask);
4366 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4367 uint64_t value)
4369 ARMCPU *cpu = env_archcpu(env);
4370 CPUState *cs = CPU(cpu);
4372 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4375 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4376 uint64_t value)
4378 CPUState *cs = env_cpu(env);
4379 int mask = alle1_tlbmask(env);
4381 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4384 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4385 uint64_t value)
4387 CPUState *cs = env_cpu(env);
4388 int mask = e2_tlbmask(env);
4390 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4393 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4394 uint64_t value)
4396 CPUState *cs = env_cpu(env);
4398 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4401 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4402 uint64_t value)
4404 /* Invalidate by VA, EL2
4405 * Currently handles both VAE2 and VALE2, since we don't support
4406 * flush-last-level-only.
4408 CPUState *cs = env_cpu(env);
4409 int mask = e2_tlbmask(env);
4410 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4412 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4415 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4416 uint64_t value)
4418 /* Invalidate by VA, EL3
4419 * Currently handles both VAE3 and VALE3, since we don't support
4420 * flush-last-level-only.
4422 ARMCPU *cpu = env_archcpu(env);
4423 CPUState *cs = CPU(cpu);
4424 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4426 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4429 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4430 uint64_t value)
4432 CPUState *cs = env_cpu(env);
4433 int mask = vae1_tlbmask(env);
4434 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4435 int bits = vae1_tlbbits(env, pageaddr);
4437 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4440 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4441 uint64_t value)
4443 /* Invalidate by VA, EL1&0 (AArch64 version).
4444 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4445 * since we don't support flush-for-specific-ASID-only or
4446 * flush-last-level-only.
4448 CPUState *cs = env_cpu(env);
4449 int mask = vae1_tlbmask(env);
4450 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4451 int bits = vae1_tlbbits(env, pageaddr);
4453 if (tlb_force_broadcast(env)) {
4454 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4455 } else {
4456 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4460 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4461 uint64_t value)
4463 CPUState *cs = env_cpu(env);
4464 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4465 bool secure = arm_is_secure_below_el3(env);
4466 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4467 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4468 pageaddr);
4470 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4473 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4474 uint64_t value)
4476 CPUState *cs = env_cpu(env);
4477 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4478 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4480 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4481 ARMMMUIdxBit_SE3, bits);
4484 #ifdef TARGET_AARCH64
4485 typedef struct {
4486 uint64_t base;
4487 uint64_t length;
4488 } TLBIRange;
4490 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4491 uint64_t value)
4493 unsigned int page_size_granule, page_shift, num, scale, exponent;
4494 /* Extract one bit to represent the va selector in use. */
4495 uint64_t select = sextract64(value, 36, 1);
4496 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true);
4497 TLBIRange ret = { };
4499 page_size_granule = extract64(value, 46, 2);
4501 /* The granule encoded in value must match the granule in use. */
4502 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) {
4503 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4504 page_size_granule);
4505 return ret;
4508 page_shift = (page_size_granule - 1) * 2 + 12;
4509 num = extract64(value, 39, 5);
4510 scale = extract64(value, 44, 2);
4511 exponent = (5 * scale) + 1;
4513 ret.length = (num + 1) << (exponent + page_shift);
4515 if (param.select) {
4516 ret.base = sextract64(value, 0, 37);
4517 } else {
4518 ret.base = extract64(value, 0, 37);
4520 if (param.ds) {
4522 * With DS=1, BaseADDR is always shifted 16 so that it is able
4523 * to address all 52 va bits. The input address is perforce
4524 * aligned on a 64k boundary regardless of translation granule.
4526 page_shift = 16;
4528 ret.base <<= page_shift;
4530 return ret;
4533 static void do_rvae_write(CPUARMState *env, uint64_t value,
4534 int idxmap, bool synced)
4536 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4537 TLBIRange range;
4538 int bits;
4540 range = tlbi_aa64_get_range(env, one_idx, value);
4541 bits = tlbbits_for_regime(env, one_idx, range.base);
4543 if (synced) {
4544 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4545 range.base,
4546 range.length,
4547 idxmap,
4548 bits);
4549 } else {
4550 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4551 range.length, idxmap, bits);
4555 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4556 const ARMCPRegInfo *ri,
4557 uint64_t value)
4560 * Invalidate by VA range, EL1&0.
4561 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4562 * since we don't support flush-for-specific-ASID-only or
4563 * flush-last-level-only.
4566 do_rvae_write(env, value, vae1_tlbmask(env),
4567 tlb_force_broadcast(env));
4570 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4571 const ARMCPRegInfo *ri,
4572 uint64_t value)
4575 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4576 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4577 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4578 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4579 * shareable specific flushes.
4582 do_rvae_write(env, value, vae1_tlbmask(env), true);
4585 static int vae2_tlbmask(CPUARMState *env)
4587 return (arm_is_secure_below_el3(env)
4588 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4591 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4592 const ARMCPRegInfo *ri,
4593 uint64_t value)
4596 * Invalidate by VA range, EL2.
4597 * Currently handles all of RVAE2 and RVALE2,
4598 * since we don't support flush-for-specific-ASID-only or
4599 * flush-last-level-only.
4602 do_rvae_write(env, value, vae2_tlbmask(env),
4603 tlb_force_broadcast(env));
4608 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4609 const ARMCPRegInfo *ri,
4610 uint64_t value)
4613 * Invalidate by VA range, Inner/Outer Shareable, EL2.
4614 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4615 * since we don't support flush-for-specific-ASID-only,
4616 * flush-last-level-only or inner/outer shareable specific flushes.
4619 do_rvae_write(env, value, vae2_tlbmask(env), true);
4623 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4624 const ARMCPRegInfo *ri,
4625 uint64_t value)
4628 * Invalidate by VA range, EL3.
4629 * Currently handles all of RVAE3 and RVALE3,
4630 * since we don't support flush-for-specific-ASID-only or
4631 * flush-last-level-only.
4634 do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4635 tlb_force_broadcast(env));
4638 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4639 const ARMCPRegInfo *ri,
4640 uint64_t value)
4643 * Invalidate by VA range, EL3, Inner/Outer Shareable.
4644 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4645 * since we don't support flush-for-specific-ASID-only,
4646 * flush-last-level-only or inner/outer specific flushes.
4649 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4651 #endif
4653 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4654 bool isread)
4656 int cur_el = arm_current_el(env);
4658 if (cur_el < 2) {
4659 uint64_t hcr = arm_hcr_el2_eff(env);
4661 if (cur_el == 0) {
4662 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4663 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4664 return CP_ACCESS_TRAP_EL2;
4666 } else {
4667 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4668 return CP_ACCESS_TRAP;
4670 if (hcr & HCR_TDZ) {
4671 return CP_ACCESS_TRAP_EL2;
4674 } else if (hcr & HCR_TDZ) {
4675 return CP_ACCESS_TRAP_EL2;
4678 return CP_ACCESS_OK;
4681 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4683 ARMCPU *cpu = env_archcpu(env);
4684 int dzp_bit = 1 << 4;
4686 /* DZP indicates whether DC ZVA access is allowed */
4687 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4688 dzp_bit = 0;
4690 return cpu->dcz_blocksize | dzp_bit;
4693 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4694 bool isread)
4696 if (!(env->pstate & PSTATE_SP)) {
4697 /* Access to SP_EL0 is undefined if it's being used as
4698 * the stack pointer.
4700 return CP_ACCESS_TRAP_UNCATEGORIZED;
4702 return CP_ACCESS_OK;
4705 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4707 return env->pstate & PSTATE_SP;
4710 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4712 update_spsel(env, val);
4715 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4716 uint64_t value)
4718 ARMCPU *cpu = env_archcpu(env);
4720 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4721 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4722 value &= ~SCTLR_M;
4725 /* ??? Lots of these bits are not implemented. */
4727 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4728 if (ri->opc1 == 6) { /* SCTLR_EL3 */
4729 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4730 } else {
4731 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4732 SCTLR_ATA0 | SCTLR_ATA);
4736 if (raw_read(env, ri) == value) {
4737 /* Skip the TLB flush if nothing actually changed; Linux likes
4738 * to do a lot of pointless SCTLR writes.
4740 return;
4743 raw_write(env, ri, value);
4745 /* This may enable/disable the MMU, so do a TLB flush. */
4746 tlb_flush(CPU(cpu));
4748 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4750 * Normally we would always end the TB on an SCTLR write; see the
4751 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4752 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4753 * of hflags from the translator, so do it here.
4755 arm_rebuild_hflags(env);
4759 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4760 uint64_t value)
4763 * Some MDCR_EL3 bits affect whether PMU counters are running:
4764 * if we are trying to change any of those then we must
4765 * bracket this update with PMU start/finish calls.
4767 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
4769 if (pmu_op) {
4770 pmu_op_start(env);
4772 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4773 if (pmu_op) {
4774 pmu_op_finish(env);
4778 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4779 uint64_t value)
4782 * Some MDCR_EL2 bits affect whether PMU counters are running:
4783 * if we are trying to change any of those then we must
4784 * bracket this update with PMU start/finish calls.
4786 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
4788 if (pmu_op) {
4789 pmu_op_start(env);
4791 env->cp15.mdcr_el2 = value;
4792 if (pmu_op) {
4793 pmu_op_finish(env);
4797 static const ARMCPRegInfo v8_cp_reginfo[] = {
4798 /* Minimal set of EL0-visible registers. This will need to be expanded
4799 * significantly for system emulation of AArch64 CPUs.
4801 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4802 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4803 .access = PL0_RW, .type = ARM_CP_NZCV },
4804 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4805 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4806 .type = ARM_CP_NO_RAW,
4807 .access = PL0_RW, .accessfn = aa64_daif_access,
4808 .fieldoffset = offsetof(CPUARMState, daif),
4809 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4810 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4811 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4812 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4813 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4814 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4815 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4816 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4817 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4818 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4819 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4820 .access = PL0_R, .type = ARM_CP_NO_RAW,
4821 .readfn = aa64_dczid_read },
4822 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4823 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4824 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4825 #ifndef CONFIG_USER_ONLY
4826 /* Avoid overhead of an access check that always passes in user-mode */
4827 .accessfn = aa64_zva_access,
4828 #endif
4830 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4831 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4832 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4833 /* Cache ops: all NOPs since we don't emulate caches */
4834 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4835 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4836 .access = PL1_W, .type = ARM_CP_NOP,
4837 .accessfn = aa64_cacheop_pou_access },
4838 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4839 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4840 .access = PL1_W, .type = ARM_CP_NOP,
4841 .accessfn = aa64_cacheop_pou_access },
4842 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4843 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4844 .access = PL0_W, .type = ARM_CP_NOP,
4845 .accessfn = aa64_cacheop_pou_access },
4846 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4847 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4848 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4849 .type = ARM_CP_NOP },
4850 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4851 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4852 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4853 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4854 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4855 .access = PL0_W, .type = ARM_CP_NOP,
4856 .accessfn = aa64_cacheop_poc_access },
4857 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4858 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4859 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4860 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4861 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4862 .access = PL0_W, .type = ARM_CP_NOP,
4863 .accessfn = aa64_cacheop_pou_access },
4864 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4865 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4866 .access = PL0_W, .type = ARM_CP_NOP,
4867 .accessfn = aa64_cacheop_poc_access },
4868 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4869 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4870 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4871 /* TLBI operations */
4872 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4873 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4874 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4875 .writefn = tlbi_aa64_vmalle1is_write },
4876 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4877 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4878 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4879 .writefn = tlbi_aa64_vae1is_write },
4880 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4881 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4882 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4883 .writefn = tlbi_aa64_vmalle1is_write },
4884 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4885 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4886 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4887 .writefn = tlbi_aa64_vae1is_write },
4888 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4889 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4890 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4891 .writefn = tlbi_aa64_vae1is_write },
4892 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4893 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4894 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4895 .writefn = tlbi_aa64_vae1is_write },
4896 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4897 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4898 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4899 .writefn = tlbi_aa64_vmalle1_write },
4900 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4901 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4902 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4903 .writefn = tlbi_aa64_vae1_write },
4904 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4905 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4906 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4907 .writefn = tlbi_aa64_vmalle1_write },
4908 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4909 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4910 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4911 .writefn = tlbi_aa64_vae1_write },
4912 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4913 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4914 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4915 .writefn = tlbi_aa64_vae1_write },
4916 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4917 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4918 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4919 .writefn = tlbi_aa64_vae1_write },
4920 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4921 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4922 .access = PL2_W, .type = ARM_CP_NOP },
4923 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4924 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4925 .access = PL2_W, .type = ARM_CP_NOP },
4926 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4927 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4928 .access = PL2_W, .type = ARM_CP_NO_RAW,
4929 .writefn = tlbi_aa64_alle1is_write },
4930 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4931 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4932 .access = PL2_W, .type = ARM_CP_NO_RAW,
4933 .writefn = tlbi_aa64_alle1is_write },
4934 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4935 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4936 .access = PL2_W, .type = ARM_CP_NOP },
4937 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4938 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4939 .access = PL2_W, .type = ARM_CP_NOP },
4940 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4941 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4942 .access = PL2_W, .type = ARM_CP_NO_RAW,
4943 .writefn = tlbi_aa64_alle1_write },
4944 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4945 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4946 .access = PL2_W, .type = ARM_CP_NO_RAW,
4947 .writefn = tlbi_aa64_alle1is_write },
4948 #ifndef CONFIG_USER_ONLY
4949 /* 64 bit address translation operations */
4950 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4951 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4952 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4953 .writefn = ats_write64 },
4954 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4955 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4956 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4957 .writefn = ats_write64 },
4958 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4959 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4960 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4961 .writefn = ats_write64 },
4962 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4963 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4964 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4965 .writefn = ats_write64 },
4966 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4967 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4968 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4969 .writefn = ats_write64 },
4970 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4971 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4972 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4973 .writefn = ats_write64 },
4974 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4975 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4976 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4977 .writefn = ats_write64 },
4978 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4979 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4980 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4981 .writefn = ats_write64 },
4982 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4983 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4984 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4985 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4986 .writefn = ats_write64 },
4987 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4988 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4989 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4990 .writefn = ats_write64 },
4991 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4992 .type = ARM_CP_ALIAS,
4993 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4994 .access = PL1_RW, .resetvalue = 0,
4995 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4996 .writefn = par_write },
4997 #endif
4998 /* TLB invalidate last level of translation table walk */
4999 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5000 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5001 .writefn = tlbimva_is_write },
5002 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5003 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5004 .writefn = tlbimvaa_is_write },
5005 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5006 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5007 .writefn = tlbimva_write },
5008 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5009 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5010 .writefn = tlbimvaa_write },
5011 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5012 .type = ARM_CP_NO_RAW, .access = PL2_W,
5013 .writefn = tlbimva_hyp_write },
5014 { .name = "TLBIMVALHIS",
5015 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5016 .type = ARM_CP_NO_RAW, .access = PL2_W,
5017 .writefn = tlbimva_hyp_is_write },
5018 { .name = "TLBIIPAS2",
5019 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5020 .type = ARM_CP_NOP, .access = PL2_W },
5021 { .name = "TLBIIPAS2IS",
5022 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5023 .type = ARM_CP_NOP, .access = PL2_W },
5024 { .name = "TLBIIPAS2L",
5025 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5026 .type = ARM_CP_NOP, .access = PL2_W },
5027 { .name = "TLBIIPAS2LIS",
5028 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5029 .type = ARM_CP_NOP, .access = PL2_W },
5030 /* 32 bit cache operations */
5031 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5032 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5033 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5034 .type = ARM_CP_NOP, .access = PL1_W },
5035 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5036 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5037 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5038 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5039 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5040 .type = ARM_CP_NOP, .access = PL1_W },
5041 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5042 .type = ARM_CP_NOP, .access = PL1_W },
5043 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5044 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5045 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5046 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5047 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5048 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5049 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5050 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5051 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5052 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5053 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5054 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5055 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5056 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5057 /* MMU Domain access control / MPU write buffer control */
5058 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5059 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5060 .writefn = dacr_write, .raw_writefn = raw_write,
5061 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5062 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5063 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5064 .type = ARM_CP_ALIAS,
5065 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5066 .access = PL1_RW,
5067 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5068 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5069 .type = ARM_CP_ALIAS,
5070 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5071 .access = PL1_RW,
5072 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5073 /* We rely on the access checks not allowing the guest to write to the
5074 * state field when SPSel indicates that it's being used as the stack
5075 * pointer.
5077 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5078 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5079 .access = PL1_RW, .accessfn = sp_el0_access,
5080 .type = ARM_CP_ALIAS,
5081 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5082 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5083 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5084 .access = PL2_RW, .type = ARM_CP_ALIAS,
5085 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5086 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5087 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5088 .type = ARM_CP_NO_RAW,
5089 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5090 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5091 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5092 .access = PL2_RW,
5093 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5094 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5095 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5096 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5097 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5098 .writefn = dacr_write, .raw_writefn = raw_write,
5099 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5100 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5101 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5102 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5103 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5104 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5105 .type = ARM_CP_ALIAS,
5106 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5107 .access = PL2_RW,
5108 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5109 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5110 .type = ARM_CP_ALIAS,
5111 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5112 .access = PL2_RW,
5113 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5114 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5115 .type = ARM_CP_ALIAS,
5116 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5117 .access = PL2_RW,
5118 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5119 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5120 .type = ARM_CP_ALIAS,
5121 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5122 .access = PL2_RW,
5123 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5124 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5125 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5126 .resetvalue = 0,
5127 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5128 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5129 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5130 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5131 .writefn = sdcr_write,
5132 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5135 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5137 ARMCPU *cpu = env_archcpu(env);
5139 if (arm_feature(env, ARM_FEATURE_V8)) {
5140 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5141 } else {
5142 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5145 if (arm_feature(env, ARM_FEATURE_EL3)) {
5146 valid_mask &= ~HCR_HCD;
5147 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5148 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5149 * However, if we're using the SMC PSCI conduit then QEMU is
5150 * effectively acting like EL3 firmware and so the guest at
5151 * EL2 should retain the ability to prevent EL1 from being
5152 * able to make SMC calls into the ersatz firmware, so in
5153 * that case HCR.TSC should be read/write.
5155 valid_mask &= ~HCR_TSC;
5158 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5159 if (cpu_isar_feature(aa64_vh, cpu)) {
5160 valid_mask |= HCR_E2H;
5162 if (cpu_isar_feature(aa64_ras, cpu)) {
5163 valid_mask |= HCR_TERR | HCR_TEA;
5165 if (cpu_isar_feature(aa64_lor, cpu)) {
5166 valid_mask |= HCR_TLOR;
5168 if (cpu_isar_feature(aa64_pauth, cpu)) {
5169 valid_mask |= HCR_API | HCR_APK;
5171 if (cpu_isar_feature(aa64_mte, cpu)) {
5172 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5174 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5175 valid_mask |= HCR_ENSCXT;
5177 if (cpu_isar_feature(aa64_fwb, cpu)) {
5178 valid_mask |= HCR_FWB;
5182 /* Clear RES0 bits. */
5183 value &= valid_mask;
5186 * These bits change the MMU setup:
5187 * HCR_VM enables stage 2 translation
5188 * HCR_PTW forbids certain page-table setups
5189 * HCR_DC disables stage1 and enables stage2 translation
5190 * HCR_DCT enables tagging on (disabled) stage1 translation
5191 * HCR_FWB changes the interpretation of stage2 descriptor bits
5193 if ((env->cp15.hcr_el2 ^ value) &
5194 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5195 tlb_flush(CPU(cpu));
5197 env->cp15.hcr_el2 = value;
5200 * Updates to VI and VF require us to update the status of
5201 * virtual interrupts, which are the logical OR of these bits
5202 * and the state of the input lines from the GIC. (This requires
5203 * that we have the iothread lock, which is done by marking the
5204 * reginfo structs as ARM_CP_IO.)
5205 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5206 * possible for it to be taken immediately, because VIRQ and
5207 * VFIQ are masked unless running at EL0 or EL1, and HCR
5208 * can only be written at EL2.
5210 g_assert(qemu_mutex_iothread_locked());
5211 arm_cpu_update_virq(cpu);
5212 arm_cpu_update_vfiq(cpu);
5213 arm_cpu_update_vserr(cpu);
5216 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5218 do_hcr_write(env, value, 0);
5221 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5222 uint64_t value)
5224 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5225 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5226 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5229 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5230 uint64_t value)
5232 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5233 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5234 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5238 * Return the effective value of HCR_EL2.
5239 * Bits that are not included here:
5240 * RW (read from SCR_EL3.RW as needed)
5242 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5244 uint64_t ret = env->cp15.hcr_el2;
5246 if (!arm_is_el2_enabled(env)) {
5248 * "This register has no effect if EL2 is not enabled in the
5249 * current Security state". This is ARMv8.4-SecEL2 speak for
5250 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5252 * Prior to that, the language was "In an implementation that
5253 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5254 * as if this field is 0 for all purposes other than a direct
5255 * read or write access of HCR_EL2". With lots of enumeration
5256 * on a per-field basis. In current QEMU, this is condition
5257 * is arm_is_secure_below_el3.
5259 * Since the v8.4 language applies to the entire register, and
5260 * appears to be backward compatible, use that.
5262 return 0;
5266 * For a cpu that supports both aarch64 and aarch32, we can set bits
5267 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5268 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5270 if (!arm_el_is_aa64(env, 2)) {
5271 uint64_t aa32_valid;
5274 * These bits are up-to-date as of ARMv8.6.
5275 * For HCR, it's easiest to list just the 2 bits that are invalid.
5276 * For HCR2, list those that are valid.
5278 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5279 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5280 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5281 ret &= aa32_valid;
5284 if (ret & HCR_TGE) {
5285 /* These bits are up-to-date as of ARMv8.6. */
5286 if (ret & HCR_E2H) {
5287 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5288 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5289 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5290 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5291 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5292 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5293 } else {
5294 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5296 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5297 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5298 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5299 HCR_TLOR);
5302 return ret;
5306 * Corresponds to ARM pseudocode function ELIsInHost().
5308 bool el_is_in_host(CPUARMState *env, int el)
5310 uint64_t mask;
5313 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5314 * Perform the simplest bit tests first, and validate EL2 afterward.
5316 if (el & 1) {
5317 return false; /* EL1 or EL3 */
5321 * Note that hcr_write() checks isar_feature_aa64_vh(),
5322 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5324 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5325 if ((env->cp15.hcr_el2 & mask) != mask) {
5326 return false;
5329 /* TGE and/or E2H set: double check those bits are currently legal. */
5330 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5333 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5334 uint64_t value)
5336 uint64_t valid_mask = 0;
5338 /* No features adding bits to HCRX are implemented. */
5340 /* Clear RES0 bits. */
5341 env->cp15.hcrx_el2 = value & valid_mask;
5344 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5345 bool isread)
5347 if (arm_current_el(env) < 3
5348 && arm_feature(env, ARM_FEATURE_EL3)
5349 && !(env->cp15.scr_el3 & SCR_HXEN)) {
5350 return CP_ACCESS_TRAP_EL3;
5352 return CP_ACCESS_OK;
5355 static const ARMCPRegInfo hcrx_el2_reginfo = {
5356 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5357 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5358 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5359 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5362 /* Return the effective value of HCRX_EL2. */
5363 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5366 * The bits in this register behave as 0 for all purposes other than
5367 * direct reads of the register if:
5368 * - EL2 is not enabled in the current security state,
5369 * - SCR_EL3.HXEn is 0.
5371 if (!arm_is_el2_enabled(env)
5372 || (arm_feature(env, ARM_FEATURE_EL3)
5373 && !(env->cp15.scr_el3 & SCR_HXEN))) {
5374 return 0;
5376 return env->cp15.hcrx_el2;
5379 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5380 uint64_t value)
5383 * For A-profile AArch32 EL3, if NSACR.CP10
5384 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5386 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5387 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5388 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5389 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5391 env->cp15.cptr_el[2] = value;
5394 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5397 * For A-profile AArch32 EL3, if NSACR.CP10
5398 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5400 uint64_t value = env->cp15.cptr_el[2];
5402 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5403 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5404 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5406 return value;
5409 static const ARMCPRegInfo el2_cp_reginfo[] = {
5410 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5411 .type = ARM_CP_IO,
5412 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5413 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5414 .writefn = hcr_write },
5415 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5416 .type = ARM_CP_ALIAS | ARM_CP_IO,
5417 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5418 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5419 .writefn = hcr_writelow },
5420 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5421 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5422 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5423 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5424 .type = ARM_CP_ALIAS,
5425 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5426 .access = PL2_RW,
5427 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5428 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5429 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5430 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5431 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5432 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5433 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5434 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5435 .type = ARM_CP_ALIAS,
5436 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5437 .access = PL2_RW,
5438 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5439 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5440 .type = ARM_CP_ALIAS,
5441 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5442 .access = PL2_RW,
5443 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5444 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5445 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5446 .access = PL2_RW, .writefn = vbar_write,
5447 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5448 .resetvalue = 0 },
5449 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5450 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5451 .access = PL3_RW, .type = ARM_CP_ALIAS,
5452 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5453 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5454 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5455 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5456 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5457 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5458 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5459 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5460 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5461 .resetvalue = 0 },
5462 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5463 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5464 .access = PL2_RW, .type = ARM_CP_ALIAS,
5465 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5466 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5467 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5468 .access = PL2_RW, .type = ARM_CP_CONST,
5469 .resetvalue = 0 },
5470 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5471 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5472 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5473 .access = PL2_RW, .type = ARM_CP_CONST,
5474 .resetvalue = 0 },
5475 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5476 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5477 .access = PL2_RW, .type = ARM_CP_CONST,
5478 .resetvalue = 0 },
5479 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5480 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5481 .access = PL2_RW, .type = ARM_CP_CONST,
5482 .resetvalue = 0 },
5483 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5484 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5485 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5486 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5487 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5488 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5489 .type = ARM_CP_ALIAS,
5490 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5491 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
5492 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5493 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5494 .access = PL2_RW,
5495 /* no .writefn needed as this can't cause an ASID change */
5496 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5497 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5498 .cp = 15, .opc1 = 6, .crm = 2,
5499 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5500 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5501 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5502 .writefn = vttbr_write },
5503 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5504 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5505 .access = PL2_RW, .writefn = vttbr_write,
5506 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5507 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5508 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5509 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5510 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5511 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5512 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5513 .access = PL2_RW, .resetvalue = 0,
5514 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5515 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5516 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5517 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5518 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5519 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5520 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5521 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5522 { .name = "TLBIALLNSNH",
5523 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5524 .type = ARM_CP_NO_RAW, .access = PL2_W,
5525 .writefn = tlbiall_nsnh_write },
5526 { .name = "TLBIALLNSNHIS",
5527 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5528 .type = ARM_CP_NO_RAW, .access = PL2_W,
5529 .writefn = tlbiall_nsnh_is_write },
5530 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5531 .type = ARM_CP_NO_RAW, .access = PL2_W,
5532 .writefn = tlbiall_hyp_write },
5533 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5534 .type = ARM_CP_NO_RAW, .access = PL2_W,
5535 .writefn = tlbiall_hyp_is_write },
5536 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5537 .type = ARM_CP_NO_RAW, .access = PL2_W,
5538 .writefn = tlbimva_hyp_write },
5539 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5540 .type = ARM_CP_NO_RAW, .access = PL2_W,
5541 .writefn = tlbimva_hyp_is_write },
5542 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5543 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5544 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5545 .writefn = tlbi_aa64_alle2_write },
5546 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5547 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5548 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5549 .writefn = tlbi_aa64_vae2_write },
5550 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5551 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5552 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5553 .writefn = tlbi_aa64_vae2_write },
5554 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5555 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5556 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5557 .writefn = tlbi_aa64_alle2is_write },
5558 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5559 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5560 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5561 .writefn = tlbi_aa64_vae2is_write },
5562 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5563 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5564 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5565 .writefn = tlbi_aa64_vae2is_write },
5566 #ifndef CONFIG_USER_ONLY
5567 /* Unlike the other EL2-related AT operations, these must
5568 * UNDEF from EL3 if EL2 is not implemented, which is why we
5569 * define them here rather than with the rest of the AT ops.
5571 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5572 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5573 .access = PL2_W, .accessfn = at_s1e2_access,
5574 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5575 .writefn = ats_write64 },
5576 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5577 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5578 .access = PL2_W, .accessfn = at_s1e2_access,
5579 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5580 .writefn = ats_write64 },
5581 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5582 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5583 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5584 * to behave as if SCR.NS was 1.
5586 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5587 .access = PL2_W,
5588 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5589 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5590 .access = PL2_W,
5591 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5592 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5593 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5594 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5595 * reset values as IMPDEF. We choose to reset to 3 to comply with
5596 * both ARMv7 and ARMv8.
5598 .access = PL2_RW, .resetvalue = 3,
5599 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5600 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5601 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5602 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5603 .writefn = gt_cntvoff_write,
5604 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5605 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5606 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5607 .writefn = gt_cntvoff_write,
5608 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5609 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5610 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5611 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5612 .type = ARM_CP_IO, .access = PL2_RW,
5613 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5614 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5615 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5616 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5617 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5618 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5619 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5620 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5621 .resetfn = gt_hyp_timer_reset,
5622 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5623 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5624 .type = ARM_CP_IO,
5625 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5626 .access = PL2_RW,
5627 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5628 .resetvalue = 0,
5629 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5630 #endif
5631 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5632 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5633 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5634 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5635 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5636 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5637 .access = PL2_RW,
5638 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5639 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5640 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5641 .access = PL2_RW,
5642 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5645 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5646 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5647 .type = ARM_CP_ALIAS | ARM_CP_IO,
5648 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5649 .access = PL2_RW,
5650 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5651 .writefn = hcr_writehigh },
5654 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5655 bool isread)
5657 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5658 return CP_ACCESS_OK;
5660 return CP_ACCESS_TRAP_UNCATEGORIZED;
5663 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5664 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5665 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5666 .access = PL2_RW, .accessfn = sel2_access,
5667 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5668 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5669 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5670 .access = PL2_RW, .accessfn = sel2_access,
5671 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5674 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5675 bool isread)
5677 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5678 * At Secure EL1 it traps to EL3 or EL2.
5680 if (arm_current_el(env) == 3) {
5681 return CP_ACCESS_OK;
5683 if (arm_is_secure_below_el3(env)) {
5684 if (env->cp15.scr_el3 & SCR_EEL2) {
5685 return CP_ACCESS_TRAP_EL2;
5687 return CP_ACCESS_TRAP_EL3;
5689 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5690 if (isread) {
5691 return CP_ACCESS_OK;
5693 return CP_ACCESS_TRAP_UNCATEGORIZED;
5696 static const ARMCPRegInfo el3_cp_reginfo[] = {
5697 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5698 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5699 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5700 .resetfn = scr_reset, .writefn = scr_write },
5701 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5702 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5703 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5704 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5705 .writefn = scr_write },
5706 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5707 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5708 .access = PL3_RW, .resetvalue = 0,
5709 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5710 { .name = "SDER",
5711 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5712 .access = PL3_RW, .resetvalue = 0,
5713 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5714 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5715 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5716 .writefn = vbar_write, .resetvalue = 0,
5717 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5718 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5719 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5720 .access = PL3_RW, .resetvalue = 0,
5721 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5722 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5723 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5724 .access = PL3_RW,
5725 /* no .writefn needed as this can't cause an ASID change */
5726 .resetvalue = 0,
5727 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5728 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5729 .type = ARM_CP_ALIAS,
5730 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5731 .access = PL3_RW,
5732 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5733 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5734 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5735 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5736 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5737 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5738 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5739 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5740 .type = ARM_CP_ALIAS,
5741 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5742 .access = PL3_RW,
5743 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5744 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5745 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5746 .access = PL3_RW, .writefn = vbar_write,
5747 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5748 .resetvalue = 0 },
5749 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5750 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5751 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5752 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5753 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5754 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5755 .access = PL3_RW, .resetvalue = 0,
5756 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5757 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5758 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5759 .access = PL3_RW, .type = ARM_CP_CONST,
5760 .resetvalue = 0 },
5761 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5762 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5763 .access = PL3_RW, .type = ARM_CP_CONST,
5764 .resetvalue = 0 },
5765 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5766 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5767 .access = PL3_RW, .type = ARM_CP_CONST,
5768 .resetvalue = 0 },
5769 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5770 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5771 .access = PL3_W, .type = ARM_CP_NO_RAW,
5772 .writefn = tlbi_aa64_alle3is_write },
5773 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5774 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5775 .access = PL3_W, .type = ARM_CP_NO_RAW,
5776 .writefn = tlbi_aa64_vae3is_write },
5777 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5778 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5779 .access = PL3_W, .type = ARM_CP_NO_RAW,
5780 .writefn = tlbi_aa64_vae3is_write },
5781 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5782 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5783 .access = PL3_W, .type = ARM_CP_NO_RAW,
5784 .writefn = tlbi_aa64_alle3_write },
5785 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5786 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5787 .access = PL3_W, .type = ARM_CP_NO_RAW,
5788 .writefn = tlbi_aa64_vae3_write },
5789 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5790 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5791 .access = PL3_W, .type = ARM_CP_NO_RAW,
5792 .writefn = tlbi_aa64_vae3_write },
5795 #ifndef CONFIG_USER_ONLY
5796 /* Test if system register redirection is to occur in the current state. */
5797 static bool redirect_for_e2h(CPUARMState *env)
5799 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5802 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5804 CPReadFn *readfn;
5806 if (redirect_for_e2h(env)) {
5807 /* Switch to the saved EL2 version of the register. */
5808 ri = ri->opaque;
5809 readfn = ri->readfn;
5810 } else {
5811 readfn = ri->orig_readfn;
5813 if (readfn == NULL) {
5814 readfn = raw_read;
5816 return readfn(env, ri);
5819 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5820 uint64_t value)
5822 CPWriteFn *writefn;
5824 if (redirect_for_e2h(env)) {
5825 /* Switch to the saved EL2 version of the register. */
5826 ri = ri->opaque;
5827 writefn = ri->writefn;
5828 } else {
5829 writefn = ri->orig_writefn;
5831 if (writefn == NULL) {
5832 writefn = raw_write;
5834 writefn(env, ri, value);
5837 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5839 struct E2HAlias {
5840 uint32_t src_key, dst_key, new_key;
5841 const char *src_name, *dst_name, *new_name;
5842 bool (*feature)(const ARMISARegisters *id);
5845 #define K(op0, op1, crn, crm, op2) \
5846 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5848 static const struct E2HAlias aliases[] = {
5849 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
5850 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5851 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
5852 "CPACR", "CPTR_EL2", "CPACR_EL12" },
5853 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
5854 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5855 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
5856 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5857 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
5858 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5859 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
5860 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5861 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
5862 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5863 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
5864 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5865 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
5866 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5867 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
5868 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5869 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
5870 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5871 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5872 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5873 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5874 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5875 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5876 "VBAR", "VBAR_EL2", "VBAR_EL12" },
5877 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5878 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5879 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5880 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5883 * Note that redirection of ZCR is mentioned in the description
5884 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5885 * not in the summary table.
5887 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
5888 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5889 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
5890 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
5892 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
5893 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5895 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
5896 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
5897 isar_feature_aa64_scxtnum },
5899 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5900 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5902 #undef K
5904 size_t i;
5906 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5907 const struct E2HAlias *a = &aliases[i];
5908 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
5909 bool ok;
5911 if (a->feature && !a->feature(&cpu->isar)) {
5912 continue;
5915 src_reg = g_hash_table_lookup(cpu->cp_regs,
5916 (gpointer)(uintptr_t)a->src_key);
5917 dst_reg = g_hash_table_lookup(cpu->cp_regs,
5918 (gpointer)(uintptr_t)a->dst_key);
5919 g_assert(src_reg != NULL);
5920 g_assert(dst_reg != NULL);
5922 /* Cross-compare names to detect typos in the keys. */
5923 g_assert(strcmp(src_reg->name, a->src_name) == 0);
5924 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5926 /* None of the core system registers use opaque; we will. */
5927 g_assert(src_reg->opaque == NULL);
5929 /* Create alias before redirection so we dup the right data. */
5930 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5932 new_reg->name = a->new_name;
5933 new_reg->type |= ARM_CP_ALIAS;
5934 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
5935 new_reg->access &= PL2_RW | PL3_RW;
5937 ok = g_hash_table_insert(cpu->cp_regs,
5938 (gpointer)(uintptr_t)a->new_key, new_reg);
5939 g_assert(ok);
5941 src_reg->opaque = dst_reg;
5942 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5943 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5944 if (!src_reg->raw_readfn) {
5945 src_reg->raw_readfn = raw_read;
5947 if (!src_reg->raw_writefn) {
5948 src_reg->raw_writefn = raw_write;
5950 src_reg->readfn = el2_e2h_read;
5951 src_reg->writefn = el2_e2h_write;
5954 #endif
5956 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5957 bool isread)
5959 int cur_el = arm_current_el(env);
5961 if (cur_el < 2) {
5962 uint64_t hcr = arm_hcr_el2_eff(env);
5964 if (cur_el == 0) {
5965 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5966 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5967 return CP_ACCESS_TRAP_EL2;
5969 } else {
5970 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5971 return CP_ACCESS_TRAP;
5973 if (hcr & HCR_TID2) {
5974 return CP_ACCESS_TRAP_EL2;
5977 } else if (hcr & HCR_TID2) {
5978 return CP_ACCESS_TRAP_EL2;
5982 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
5983 return CP_ACCESS_TRAP_EL2;
5986 return CP_ACCESS_OK;
5990 * Check for traps to RAS registers, which are controlled
5991 * by HCR_EL2.TERR and SCR_EL3.TERR.
5993 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
5994 bool isread)
5996 int el = arm_current_el(env);
5998 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
5999 return CP_ACCESS_TRAP_EL2;
6001 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6002 return CP_ACCESS_TRAP_EL3;
6004 return CP_ACCESS_OK;
6007 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6009 int el = arm_current_el(env);
6011 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6012 return env->cp15.vdisr_el2;
6014 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6015 return 0; /* RAZ/WI */
6017 return env->cp15.disr_el1;
6020 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6022 int el = arm_current_el(env);
6024 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6025 env->cp15.vdisr_el2 = val;
6026 return;
6028 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6029 return; /* RAZ/WI */
6031 env->cp15.disr_el1 = val;
6035 * Minimal RAS implementation with no Error Records.
6036 * Which means that all of the Error Record registers:
6037 * ERXADDR_EL1
6038 * ERXCTLR_EL1
6039 * ERXFR_EL1
6040 * ERXMISC0_EL1
6041 * ERXMISC1_EL1
6042 * ERXMISC2_EL1
6043 * ERXMISC3_EL1
6044 * ERXPFGCDN_EL1 (RASv1p1)
6045 * ERXPFGCTL_EL1 (RASv1p1)
6046 * ERXPFGF_EL1 (RASv1p1)
6047 * ERXSTATUS_EL1
6048 * and
6049 * ERRSELR_EL1
6050 * may generate UNDEFINED, which is the effect we get by not
6051 * listing them at all.
6053 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6054 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6055 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6056 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6057 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6058 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6059 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6060 .access = PL1_R, .accessfn = access_terr,
6061 .type = ARM_CP_CONST, .resetvalue = 0 },
6062 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6063 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6064 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6065 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6066 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6067 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6071 * Return the exception level to which exceptions should be taken
6072 * via SVEAccessTrap. This excludes the check for whether the exception
6073 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6074 * be found by testing 0 < fp_exception_el < sve_exception_el.
6076 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6077 * pseudocode does *not* separate out the FP trap checks, but has them
6078 * all in one function.
6080 int sve_exception_el(CPUARMState *env, int el)
6082 #ifndef CONFIG_USER_ONLY
6083 if (el <= 1 && !el_is_in_host(env, el)) {
6084 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6085 case 1:
6086 if (el != 0) {
6087 break;
6089 /* fall through */
6090 case 0:
6091 case 2:
6092 return 1;
6096 if (el <= 2 && arm_is_el2_enabled(env)) {
6097 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6098 if (env->cp15.hcr_el2 & HCR_E2H) {
6099 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6100 case 1:
6101 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6102 break;
6104 /* fall through */
6105 case 0:
6106 case 2:
6107 return 2;
6109 } else {
6110 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6111 return 2;
6116 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6117 if (arm_feature(env, ARM_FEATURE_EL3)
6118 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6119 return 3;
6121 #endif
6122 return 0;
6126 * Return the exception level to which exceptions should be taken for SME.
6127 * C.f. the ARM pseudocode function CheckSMEAccess.
6129 int sme_exception_el(CPUARMState *env, int el)
6131 #ifndef CONFIG_USER_ONLY
6132 if (el <= 1 && !el_is_in_host(env, el)) {
6133 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6134 case 1:
6135 if (el != 0) {
6136 break;
6138 /* fall through */
6139 case 0:
6140 case 2:
6141 return 1;
6145 if (el <= 2 && arm_is_el2_enabled(env)) {
6146 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6147 if (env->cp15.hcr_el2 & HCR_E2H) {
6148 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6149 case 1:
6150 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6151 break;
6153 /* fall through */
6154 case 0:
6155 case 2:
6156 return 2;
6158 } else {
6159 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6160 return 2;
6165 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
6166 if (arm_feature(env, ARM_FEATURE_EL3)
6167 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6168 return 3;
6170 #endif
6171 return 0;
6174 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */
6175 static bool sme_fa64(CPUARMState *env, int el)
6177 if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) {
6178 return false;
6181 if (el <= 1 && !el_is_in_host(env, el)) {
6182 if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) {
6183 return false;
6186 if (el <= 2 && arm_is_el2_enabled(env)) {
6187 if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) {
6188 return false;
6191 if (arm_feature(env, ARM_FEATURE_EL3)) {
6192 if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) {
6193 return false;
6197 return true;
6201 * Given that SVE is enabled, return the vector length for EL.
6203 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6205 ARMCPU *cpu = env_archcpu(env);
6206 uint64_t *cr = env->vfp.zcr_el;
6207 uint32_t map = cpu->sve_vq.map;
6208 uint32_t len = ARM_MAX_VQ - 1;
6210 if (sm) {
6211 cr = env->vfp.smcr_el;
6212 map = cpu->sme_vq.map;
6215 if (el <= 1 && !el_is_in_host(env, el)) {
6216 len = MIN(len, 0xf & (uint32_t)cr[1]);
6218 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6219 len = MIN(len, 0xf & (uint32_t)cr[2]);
6221 if (arm_feature(env, ARM_FEATURE_EL3)) {
6222 len = MIN(len, 0xf & (uint32_t)cr[3]);
6225 map &= MAKE_64BIT_MASK(0, len + 1);
6226 if (map != 0) {
6227 return 31 - clz32(map);
6230 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6231 assert(sm);
6232 return ctz32(cpu->sme_vq.map);
6235 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6237 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6240 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6241 uint64_t value)
6243 int cur_el = arm_current_el(env);
6244 int old_len = sve_vqm1_for_el(env, cur_el);
6245 int new_len;
6247 /* Bits other than [3:0] are RAZ/WI. */
6248 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6249 raw_write(env, ri, value & 0xf);
6252 * Because we arrived here, we know both FP and SVE are enabled;
6253 * otherwise we would have trapped access to the ZCR_ELn register.
6255 new_len = sve_vqm1_for_el(env, cur_el);
6256 if (new_len < old_len) {
6257 aarch64_sve_narrow_vq(env, new_len + 1);
6261 static const ARMCPRegInfo zcr_reginfo[] = {
6262 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6263 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6264 .access = PL1_RW, .type = ARM_CP_SVE,
6265 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6266 .writefn = zcr_write, .raw_writefn = raw_write },
6267 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6268 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6269 .access = PL2_RW, .type = ARM_CP_SVE,
6270 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6271 .writefn = zcr_write, .raw_writefn = raw_write },
6272 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6273 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6274 .access = PL3_RW, .type = ARM_CP_SVE,
6275 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6276 .writefn = zcr_write, .raw_writefn = raw_write },
6279 #ifdef TARGET_AARCH64
6280 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6281 bool isread)
6283 int el = arm_current_el(env);
6285 if (el == 0) {
6286 uint64_t sctlr = arm_sctlr(env, el);
6287 if (!(sctlr & SCTLR_EnTP2)) {
6288 return CP_ACCESS_TRAP;
6291 /* TODO: FEAT_FGT */
6292 if (el < 3
6293 && arm_feature(env, ARM_FEATURE_EL3)
6294 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6295 return CP_ACCESS_TRAP_EL3;
6297 return CP_ACCESS_OK;
6300 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6301 bool isread)
6303 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6304 if (arm_current_el(env) < 3
6305 && arm_feature(env, ARM_FEATURE_EL3)
6306 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6307 return CP_ACCESS_TRAP_EL3;
6309 return CP_ACCESS_OK;
6312 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6313 uint64_t value)
6315 helper_set_pstate_sm(env, FIELD_EX64(value, SVCR, SM));
6316 helper_set_pstate_za(env, FIELD_EX64(value, SVCR, ZA));
6317 arm_rebuild_hflags(env);
6320 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6321 uint64_t value)
6323 int cur_el = arm_current_el(env);
6324 int old_len = sve_vqm1_for_el(env, cur_el);
6325 int new_len;
6327 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6328 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6329 raw_write(env, ri, value);
6332 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6333 * when SVL is widened (old values kept, or zeros). Choose to keep the
6334 * current values for simplicity. But for QEMU internals, we must still
6335 * apply the narrower SVL to the Zregs and Pregs -- see the comment
6336 * above aarch64_sve_narrow_vq.
6338 new_len = sve_vqm1_for_el(env, cur_el);
6339 if (new_len < old_len) {
6340 aarch64_sve_narrow_vq(env, new_len + 1);
6344 static const ARMCPRegInfo sme_reginfo[] = {
6345 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
6346 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
6347 .access = PL0_RW, .accessfn = access_tpidr2,
6348 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
6349 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
6350 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
6351 .access = PL0_RW, .type = ARM_CP_SME,
6352 .fieldoffset = offsetof(CPUARMState, svcr),
6353 .writefn = svcr_write, .raw_writefn = raw_write },
6354 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
6355 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
6356 .access = PL1_RW, .type = ARM_CP_SME,
6357 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
6358 .writefn = smcr_write, .raw_writefn = raw_write },
6359 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
6360 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
6361 .access = PL2_RW, .type = ARM_CP_SME,
6362 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
6363 .writefn = smcr_write, .raw_writefn = raw_write },
6364 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
6365 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
6366 .access = PL3_RW, .type = ARM_CP_SME,
6367 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
6368 .writefn = smcr_write, .raw_writefn = raw_write },
6369 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
6370 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
6371 .access = PL1_R, .accessfn = access_aa64_tid1,
6373 * IMPLEMENTOR = 0 (software)
6374 * REVISION = 0 (implementation defined)
6375 * SMPS = 0 (no streaming execution priority in QEMU)
6376 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
6378 .type = ARM_CP_CONST, .resetvalue = 0, },
6380 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
6382 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
6383 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
6384 .access = PL1_RW, .accessfn = access_esm,
6385 .type = ARM_CP_CONST, .resetvalue = 0 },
6386 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
6387 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
6388 .access = PL2_RW, .accessfn = access_esm,
6389 .type = ARM_CP_CONST, .resetvalue = 0 },
6391 #endif /* TARGET_AARCH64 */
6393 static void define_pmu_regs(ARMCPU *cpu)
6396 * v7 performance monitor control register: same implementor
6397 * field as main ID register, and we implement four counters in
6398 * addition to the cycle count register.
6400 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
6401 ARMCPRegInfo pmcr = {
6402 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6403 .access = PL0_RW,
6404 .type = ARM_CP_IO | ARM_CP_ALIAS,
6405 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6406 .accessfn = pmreg_access, .writefn = pmcr_write,
6407 .raw_writefn = raw_write,
6409 ARMCPRegInfo pmcr64 = {
6410 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6411 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6412 .access = PL0_RW, .accessfn = pmreg_access,
6413 .type = ARM_CP_IO,
6414 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6415 .resetvalue = cpu->isar.reset_pmcr_el0,
6416 .writefn = pmcr_write, .raw_writefn = raw_write,
6419 define_one_arm_cp_reg(cpu, &pmcr);
6420 define_one_arm_cp_reg(cpu, &pmcr64);
6421 for (i = 0; i < pmcrn; i++) {
6422 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6423 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6424 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6425 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6426 ARMCPRegInfo pmev_regs[] = {
6427 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6428 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6429 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6430 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6431 .accessfn = pmreg_access_xevcntr },
6432 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6433 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6434 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
6435 .type = ARM_CP_IO,
6436 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6437 .raw_readfn = pmevcntr_rawread,
6438 .raw_writefn = pmevcntr_rawwrite },
6439 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6440 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6441 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6442 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6443 .accessfn = pmreg_access },
6444 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6445 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6446 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6447 .type = ARM_CP_IO,
6448 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6449 .raw_writefn = pmevtyper_rawwrite },
6451 define_arm_cp_regs(cpu, pmev_regs);
6452 g_free(pmevcntr_name);
6453 g_free(pmevcntr_el0_name);
6454 g_free(pmevtyper_name);
6455 g_free(pmevtyper_el0_name);
6457 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
6458 ARMCPRegInfo v81_pmu_regs[] = {
6459 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6460 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6461 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6462 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6463 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6464 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6465 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6466 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6468 define_arm_cp_regs(cpu, v81_pmu_regs);
6470 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
6471 static const ARMCPRegInfo v84_pmmir = {
6472 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6473 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6474 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6475 .resetvalue = 0
6477 define_one_arm_cp_reg(cpu, &v84_pmmir);
6481 /* We don't know until after realize whether there's a GICv3
6482 * attached, and that is what registers the gicv3 sysregs.
6483 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6484 * at runtime.
6486 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6488 ARMCPU *cpu = env_archcpu(env);
6489 uint64_t pfr1 = cpu->isar.id_pfr1;
6491 if (env->gicv3state) {
6492 pfr1 |= 1 << 28;
6494 return pfr1;
6497 #ifndef CONFIG_USER_ONLY
6498 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6500 ARMCPU *cpu = env_archcpu(env);
6501 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6503 if (env->gicv3state) {
6504 pfr0 |= 1 << 24;
6506 return pfr0;
6508 #endif
6510 /* Shared logic between LORID and the rest of the LOR* registers.
6511 * Secure state exclusion has already been dealt with.
6513 static CPAccessResult access_lor_ns(CPUARMState *env,
6514 const ARMCPRegInfo *ri, bool isread)
6516 int el = arm_current_el(env);
6518 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6519 return CP_ACCESS_TRAP_EL2;
6521 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6522 return CP_ACCESS_TRAP_EL3;
6524 return CP_ACCESS_OK;
6527 static CPAccessResult access_lor_other(CPUARMState *env,
6528 const ARMCPRegInfo *ri, bool isread)
6530 if (arm_is_secure_below_el3(env)) {
6531 /* Access denied in secure mode. */
6532 return CP_ACCESS_TRAP;
6534 return access_lor_ns(env, ri, isread);
6538 * A trivial implementation of ARMv8.1-LOR leaves all of these
6539 * registers fixed at 0, which indicates that there are zero
6540 * supported Limited Ordering regions.
6542 static const ARMCPRegInfo lor_reginfo[] = {
6543 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6544 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6545 .access = PL1_RW, .accessfn = access_lor_other,
6546 .type = ARM_CP_CONST, .resetvalue = 0 },
6547 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6548 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6549 .access = PL1_RW, .accessfn = access_lor_other,
6550 .type = ARM_CP_CONST, .resetvalue = 0 },
6551 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6552 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6553 .access = PL1_RW, .accessfn = access_lor_other,
6554 .type = ARM_CP_CONST, .resetvalue = 0 },
6555 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6556 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6557 .access = PL1_RW, .accessfn = access_lor_other,
6558 .type = ARM_CP_CONST, .resetvalue = 0 },
6559 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6560 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6561 .access = PL1_R, .accessfn = access_lor_ns,
6562 .type = ARM_CP_CONST, .resetvalue = 0 },
6565 #ifdef TARGET_AARCH64
6566 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6567 bool isread)
6569 int el = arm_current_el(env);
6571 if (el < 2 &&
6572 arm_is_el2_enabled(env) &&
6573 !(arm_hcr_el2_eff(env) & HCR_APK)) {
6574 return CP_ACCESS_TRAP_EL2;
6576 if (el < 3 &&
6577 arm_feature(env, ARM_FEATURE_EL3) &&
6578 !(env->cp15.scr_el3 & SCR_APK)) {
6579 return CP_ACCESS_TRAP_EL3;
6581 return CP_ACCESS_OK;
6584 static const ARMCPRegInfo pauth_reginfo[] = {
6585 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6586 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6587 .access = PL1_RW, .accessfn = access_pauth,
6588 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6589 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6590 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6591 .access = PL1_RW, .accessfn = access_pauth,
6592 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6593 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6594 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6595 .access = PL1_RW, .accessfn = access_pauth,
6596 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6597 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6598 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6599 .access = PL1_RW, .accessfn = access_pauth,
6600 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6601 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6602 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6603 .access = PL1_RW, .accessfn = access_pauth,
6604 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6605 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6606 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6607 .access = PL1_RW, .accessfn = access_pauth,
6608 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6609 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6610 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6611 .access = PL1_RW, .accessfn = access_pauth,
6612 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6613 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6614 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6615 .access = PL1_RW, .accessfn = access_pauth,
6616 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6617 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6618 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6619 .access = PL1_RW, .accessfn = access_pauth,
6620 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6621 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6622 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6623 .access = PL1_RW, .accessfn = access_pauth,
6624 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6627 static const ARMCPRegInfo tlbirange_reginfo[] = {
6628 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
6629 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
6630 .access = PL1_W, .type = ARM_CP_NO_RAW,
6631 .writefn = tlbi_aa64_rvae1is_write },
6632 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
6633 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
6634 .access = PL1_W, .type = ARM_CP_NO_RAW,
6635 .writefn = tlbi_aa64_rvae1is_write },
6636 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
6637 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
6638 .access = PL1_W, .type = ARM_CP_NO_RAW,
6639 .writefn = tlbi_aa64_rvae1is_write },
6640 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
6641 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
6642 .access = PL1_W, .type = ARM_CP_NO_RAW,
6643 .writefn = tlbi_aa64_rvae1is_write },
6644 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
6645 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
6646 .access = PL1_W, .type = ARM_CP_NO_RAW,
6647 .writefn = tlbi_aa64_rvae1is_write },
6648 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
6649 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
6650 .access = PL1_W, .type = ARM_CP_NO_RAW,
6651 .writefn = tlbi_aa64_rvae1is_write },
6652 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
6653 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
6654 .access = PL1_W, .type = ARM_CP_NO_RAW,
6655 .writefn = tlbi_aa64_rvae1is_write },
6656 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
6657 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
6658 .access = PL1_W, .type = ARM_CP_NO_RAW,
6659 .writefn = tlbi_aa64_rvae1is_write },
6660 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
6661 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
6662 .access = PL1_W, .type = ARM_CP_NO_RAW,
6663 .writefn = tlbi_aa64_rvae1_write },
6664 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
6665 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
6666 .access = PL1_W, .type = ARM_CP_NO_RAW,
6667 .writefn = tlbi_aa64_rvae1_write },
6668 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
6669 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
6670 .access = PL1_W, .type = ARM_CP_NO_RAW,
6671 .writefn = tlbi_aa64_rvae1_write },
6672 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
6673 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
6674 .access = PL1_W, .type = ARM_CP_NO_RAW,
6675 .writefn = tlbi_aa64_rvae1_write },
6676 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
6677 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
6678 .access = PL2_W, .type = ARM_CP_NOP },
6679 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
6680 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
6681 .access = PL2_W, .type = ARM_CP_NOP },
6682 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
6683 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
6684 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6685 .writefn = tlbi_aa64_rvae2is_write },
6686 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
6687 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
6688 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6689 .writefn = tlbi_aa64_rvae2is_write },
6690 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
6691 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
6692 .access = PL2_W, .type = ARM_CP_NOP },
6693 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
6694 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
6695 .access = PL2_W, .type = ARM_CP_NOP },
6696 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
6697 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
6698 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6699 .writefn = tlbi_aa64_rvae2is_write },
6700 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
6701 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
6702 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6703 .writefn = tlbi_aa64_rvae2is_write },
6704 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
6705 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
6706 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6707 .writefn = tlbi_aa64_rvae2_write },
6708 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
6709 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
6710 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6711 .writefn = tlbi_aa64_rvae2_write },
6712 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
6713 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
6714 .access = PL3_W, .type = ARM_CP_NO_RAW,
6715 .writefn = tlbi_aa64_rvae3is_write },
6716 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
6717 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
6718 .access = PL3_W, .type = ARM_CP_NO_RAW,
6719 .writefn = tlbi_aa64_rvae3is_write },
6720 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
6721 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
6722 .access = PL3_W, .type = ARM_CP_NO_RAW,
6723 .writefn = tlbi_aa64_rvae3is_write },
6724 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
6725 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
6726 .access = PL3_W, .type = ARM_CP_NO_RAW,
6727 .writefn = tlbi_aa64_rvae3is_write },
6728 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
6729 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
6730 .access = PL3_W, .type = ARM_CP_NO_RAW,
6731 .writefn = tlbi_aa64_rvae3_write },
6732 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
6733 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
6734 .access = PL3_W, .type = ARM_CP_NO_RAW,
6735 .writefn = tlbi_aa64_rvae3_write },
6738 static const ARMCPRegInfo tlbios_reginfo[] = {
6739 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
6740 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
6741 .access = PL1_W, .type = ARM_CP_NO_RAW,
6742 .writefn = tlbi_aa64_vmalle1is_write },
6743 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
6744 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
6745 .access = PL1_W, .type = ARM_CP_NO_RAW,
6746 .writefn = tlbi_aa64_vae1is_write },
6747 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
6748 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
6749 .access = PL1_W, .type = ARM_CP_NO_RAW,
6750 .writefn = tlbi_aa64_vmalle1is_write },
6751 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
6752 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
6753 .access = PL1_W, .type = ARM_CP_NO_RAW,
6754 .writefn = tlbi_aa64_vae1is_write },
6755 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
6756 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
6757 .access = PL1_W, .type = ARM_CP_NO_RAW,
6758 .writefn = tlbi_aa64_vae1is_write },
6759 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
6760 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
6761 .access = PL1_W, .type = ARM_CP_NO_RAW,
6762 .writefn = tlbi_aa64_vae1is_write },
6763 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
6764 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
6765 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6766 .writefn = tlbi_aa64_alle2is_write },
6767 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
6768 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
6769 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6770 .writefn = tlbi_aa64_vae2is_write },
6771 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
6772 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
6773 .access = PL2_W, .type = ARM_CP_NO_RAW,
6774 .writefn = tlbi_aa64_alle1is_write },
6775 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
6776 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
6777 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6778 .writefn = tlbi_aa64_vae2is_write },
6779 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
6780 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
6781 .access = PL2_W, .type = ARM_CP_NO_RAW,
6782 .writefn = tlbi_aa64_alle1is_write },
6783 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
6784 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
6785 .access = PL2_W, .type = ARM_CP_NOP },
6786 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
6787 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
6788 .access = PL2_W, .type = ARM_CP_NOP },
6789 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
6790 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
6791 .access = PL2_W, .type = ARM_CP_NOP },
6792 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
6793 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
6794 .access = PL2_W, .type = ARM_CP_NOP },
6795 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
6796 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
6797 .access = PL3_W, .type = ARM_CP_NO_RAW,
6798 .writefn = tlbi_aa64_alle3is_write },
6799 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
6800 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
6801 .access = PL3_W, .type = ARM_CP_NO_RAW,
6802 .writefn = tlbi_aa64_vae3is_write },
6803 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
6804 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
6805 .access = PL3_W, .type = ARM_CP_NO_RAW,
6806 .writefn = tlbi_aa64_vae3is_write },
6809 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6811 Error *err = NULL;
6812 uint64_t ret;
6814 /* Success sets NZCV = 0000. */
6815 env->NF = env->CF = env->VF = 0, env->ZF = 1;
6817 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6819 * ??? Failed, for unknown reasons in the crypto subsystem.
6820 * The best we can do is log the reason and return the
6821 * timed-out indication to the guest. There is no reason
6822 * we know to expect this failure to be transitory, so the
6823 * guest may well hang retrying the operation.
6825 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6826 ri->name, error_get_pretty(err));
6827 error_free(err);
6829 env->ZF = 0; /* NZCF = 0100 */
6830 return 0;
6832 return ret;
6835 /* We do not support re-seeding, so the two registers operate the same. */
6836 static const ARMCPRegInfo rndr_reginfo[] = {
6837 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6838 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6839 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6840 .access = PL0_R, .readfn = rndr_readfn },
6841 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6842 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6843 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6844 .access = PL0_R, .readfn = rndr_readfn },
6847 #ifndef CONFIG_USER_ONLY
6848 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6849 uint64_t value)
6851 ARMCPU *cpu = env_archcpu(env);
6852 /* CTR_EL0 System register -> DminLine, bits [19:16] */
6853 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6854 uint64_t vaddr_in = (uint64_t) value;
6855 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6856 void *haddr;
6857 int mem_idx = cpu_mmu_index(env, false);
6859 /* This won't be crossing page boundaries */
6860 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6861 if (haddr) {
6863 ram_addr_t offset;
6864 MemoryRegion *mr;
6866 /* RCU lock is already being held */
6867 mr = memory_region_from_host(haddr, &offset);
6869 if (mr) {
6870 memory_region_writeback(mr, offset, dline_size);
6875 static const ARMCPRegInfo dcpop_reg[] = {
6876 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6877 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6878 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6879 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6882 static const ARMCPRegInfo dcpodp_reg[] = {
6883 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6884 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6885 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6886 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6888 #endif /*CONFIG_USER_ONLY*/
6890 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
6891 bool isread)
6893 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
6894 return CP_ACCESS_TRAP_EL2;
6897 return CP_ACCESS_OK;
6900 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
6901 bool isread)
6903 int el = arm_current_el(env);
6905 if (el < 2 && arm_is_el2_enabled(env)) {
6906 uint64_t hcr = arm_hcr_el2_eff(env);
6907 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
6908 return CP_ACCESS_TRAP_EL2;
6911 if (el < 3 &&
6912 arm_feature(env, ARM_FEATURE_EL3) &&
6913 !(env->cp15.scr_el3 & SCR_ATA)) {
6914 return CP_ACCESS_TRAP_EL3;
6916 return CP_ACCESS_OK;
6919 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
6921 return env->pstate & PSTATE_TCO;
6924 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6926 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
6929 static const ARMCPRegInfo mte_reginfo[] = {
6930 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
6931 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
6932 .access = PL1_RW, .accessfn = access_mte,
6933 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
6934 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
6935 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
6936 .access = PL1_RW, .accessfn = access_mte,
6937 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
6938 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
6939 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
6940 .access = PL2_RW, .accessfn = access_mte,
6941 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
6942 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
6943 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
6944 .access = PL3_RW,
6945 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
6946 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
6947 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
6948 .access = PL1_RW, .accessfn = access_mte,
6949 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
6950 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
6951 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
6952 .access = PL1_RW, .accessfn = access_mte,
6953 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
6954 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
6955 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
6956 .access = PL1_R, .accessfn = access_aa64_tid5,
6957 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
6958 { .name = "TCO", .state = ARM_CP_STATE_AA64,
6959 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6960 .type = ARM_CP_NO_RAW,
6961 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
6962 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
6963 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
6964 .type = ARM_CP_NOP, .access = PL1_W,
6965 .accessfn = aa64_cacheop_poc_access },
6966 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
6967 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
6968 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6969 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
6970 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
6971 .type = ARM_CP_NOP, .access = PL1_W,
6972 .accessfn = aa64_cacheop_poc_access },
6973 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
6974 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
6975 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6976 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
6977 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
6978 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6979 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
6980 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
6981 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6982 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
6983 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
6984 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6985 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
6986 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
6987 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6990 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
6991 { .name = "TCO", .state = ARM_CP_STATE_AA64,
6992 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6993 .type = ARM_CP_CONST, .access = PL0_RW, },
6996 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
6997 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
6998 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
6999 .type = ARM_CP_NOP, .access = PL0_W,
7000 .accessfn = aa64_cacheop_poc_access },
7001 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7002 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7003 .type = ARM_CP_NOP, .access = PL0_W,
7004 .accessfn = aa64_cacheop_poc_access },
7005 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7006 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7007 .type = ARM_CP_NOP, .access = PL0_W,
7008 .accessfn = aa64_cacheop_poc_access },
7009 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7010 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7011 .type = ARM_CP_NOP, .access = PL0_W,
7012 .accessfn = aa64_cacheop_poc_access },
7013 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7014 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7015 .type = ARM_CP_NOP, .access = PL0_W,
7016 .accessfn = aa64_cacheop_poc_access },
7017 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7018 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7019 .type = ARM_CP_NOP, .access = PL0_W,
7020 .accessfn = aa64_cacheop_poc_access },
7021 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7022 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7023 .type = ARM_CP_NOP, .access = PL0_W,
7024 .accessfn = aa64_cacheop_poc_access },
7025 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7026 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7027 .type = ARM_CP_NOP, .access = PL0_W,
7028 .accessfn = aa64_cacheop_poc_access },
7029 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7030 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7031 .access = PL0_W, .type = ARM_CP_DC_GVA,
7032 #ifndef CONFIG_USER_ONLY
7033 /* Avoid overhead of an access check that always passes in user-mode */
7034 .accessfn = aa64_zva_access,
7035 #endif
7037 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7038 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7039 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7040 #ifndef CONFIG_USER_ONLY
7041 /* Avoid overhead of an access check that always passes in user-mode */
7042 .accessfn = aa64_zva_access,
7043 #endif
7047 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7048 bool isread)
7050 uint64_t hcr = arm_hcr_el2_eff(env);
7051 int el = arm_current_el(env);
7053 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7054 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7055 if (hcr & HCR_TGE) {
7056 return CP_ACCESS_TRAP_EL2;
7058 return CP_ACCESS_TRAP;
7060 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7061 return CP_ACCESS_TRAP_EL2;
7063 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7064 return CP_ACCESS_TRAP_EL2;
7066 if (el < 3
7067 && arm_feature(env, ARM_FEATURE_EL3)
7068 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7069 return CP_ACCESS_TRAP_EL3;
7071 return CP_ACCESS_OK;
7074 static const ARMCPRegInfo scxtnum_reginfo[] = {
7075 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7076 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7077 .access = PL0_RW, .accessfn = access_scxtnum,
7078 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7079 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7080 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7081 .access = PL1_RW, .accessfn = access_scxtnum,
7082 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7083 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7084 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7085 .access = PL2_RW, .accessfn = access_scxtnum,
7086 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7087 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7088 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7089 .access = PL3_RW,
7090 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7092 #endif /* TARGET_AARCH64 */
7094 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7095 bool isread)
7097 int el = arm_current_el(env);
7099 if (el == 0) {
7100 uint64_t sctlr = arm_sctlr(env, el);
7101 if (!(sctlr & SCTLR_EnRCTX)) {
7102 return CP_ACCESS_TRAP;
7104 } else if (el == 1) {
7105 uint64_t hcr = arm_hcr_el2_eff(env);
7106 if (hcr & HCR_NV) {
7107 return CP_ACCESS_TRAP_EL2;
7110 return CP_ACCESS_OK;
7113 static const ARMCPRegInfo predinv_reginfo[] = {
7114 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7115 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7116 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7117 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7118 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7119 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7120 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7121 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7122 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7124 * Note the AArch32 opcodes have a different OPC1.
7126 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7127 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7128 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7129 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7130 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7131 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7132 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7133 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7134 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7137 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7139 /* Read the high 32 bits of the current CCSIDR */
7140 return extract64(ccsidr_read(env, ri), 32, 32);
7143 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7144 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7145 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7146 .access = PL1_R,
7147 .accessfn = access_aa64_tid2,
7148 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7151 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7152 bool isread)
7154 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7155 return CP_ACCESS_TRAP_EL2;
7158 return CP_ACCESS_OK;
7161 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7162 bool isread)
7164 if (arm_feature(env, ARM_FEATURE_V8)) {
7165 return access_aa64_tid3(env, ri, isread);
7168 return CP_ACCESS_OK;
7171 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7172 bool isread)
7174 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7175 return CP_ACCESS_TRAP_EL2;
7178 return CP_ACCESS_OK;
7181 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7182 const ARMCPRegInfo *ri, bool isread)
7185 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7186 * in v7A, not in v8A.
7188 if (!arm_feature(env, ARM_FEATURE_V8) &&
7189 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7190 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7191 return CP_ACCESS_TRAP_EL2;
7193 return CP_ACCESS_OK;
7196 static const ARMCPRegInfo jazelle_regs[] = {
7197 { .name = "JIDR",
7198 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7199 .access = PL1_R, .accessfn = access_jazelle,
7200 .type = ARM_CP_CONST, .resetvalue = 0 },
7201 { .name = "JOSCR",
7202 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7203 .accessfn = access_joscr_jmcr,
7204 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7205 { .name = "JMCR",
7206 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7207 .accessfn = access_joscr_jmcr,
7208 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7211 static const ARMCPRegInfo contextidr_el2 = {
7212 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7213 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7214 .access = PL2_RW,
7215 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7218 static const ARMCPRegInfo vhe_reginfo[] = {
7219 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7220 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7221 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7222 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7223 #ifndef CONFIG_USER_ONLY
7224 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7225 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7226 .fieldoffset =
7227 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7228 .type = ARM_CP_IO, .access = PL2_RW,
7229 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7230 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7231 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7232 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7233 .resetfn = gt_hv_timer_reset,
7234 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7235 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7236 .type = ARM_CP_IO,
7237 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7238 .access = PL2_RW,
7239 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7240 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7241 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7242 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7243 .type = ARM_CP_IO | ARM_CP_ALIAS,
7244 .access = PL2_RW, .accessfn = e2h_access,
7245 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7246 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7247 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7248 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7249 .type = ARM_CP_IO | ARM_CP_ALIAS,
7250 .access = PL2_RW, .accessfn = e2h_access,
7251 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7252 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7253 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7254 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7255 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7256 .access = PL2_RW, .accessfn = e2h_access,
7257 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7258 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7259 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7260 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7261 .access = PL2_RW, .accessfn = e2h_access,
7262 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7263 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7264 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7265 .type = ARM_CP_IO | ARM_CP_ALIAS,
7266 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7267 .access = PL2_RW, .accessfn = e2h_access,
7268 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7269 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7270 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7271 .type = ARM_CP_IO | ARM_CP_ALIAS,
7272 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7273 .access = PL2_RW, .accessfn = e2h_access,
7274 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7275 #endif
7278 #ifndef CONFIG_USER_ONLY
7279 static const ARMCPRegInfo ats1e1_reginfo[] = {
7280 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7281 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7282 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7283 .writefn = ats_write64 },
7284 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7285 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7286 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7287 .writefn = ats_write64 },
7290 static const ARMCPRegInfo ats1cp_reginfo[] = {
7291 { .name = "ATS1CPRP",
7292 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7293 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7294 .writefn = ats_write },
7295 { .name = "ATS1CPWP",
7296 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7297 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7298 .writefn = ats_write },
7300 #endif
7303 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7304 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7305 * is non-zero, which is never for ARMv7, optionally in ARMv8
7306 * and mandatorily for ARMv8.2 and up.
7307 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7308 * implementation is RAZ/WI we can ignore this detail, as we
7309 * do for ACTLR.
7311 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7312 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7313 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7314 .access = PL1_RW, .accessfn = access_tacr,
7315 .type = ARM_CP_CONST, .resetvalue = 0 },
7316 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7317 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7318 .access = PL2_RW, .type = ARM_CP_CONST,
7319 .resetvalue = 0 },
7322 void register_cp_regs_for_features(ARMCPU *cpu)
7324 /* Register all the coprocessor registers based on feature bits */
7325 CPUARMState *env = &cpu->env;
7326 if (arm_feature(env, ARM_FEATURE_M)) {
7327 /* M profile has no coprocessor registers */
7328 return;
7331 define_arm_cp_regs(cpu, cp_reginfo);
7332 if (!arm_feature(env, ARM_FEATURE_V8)) {
7333 /* Must go early as it is full of wildcards that may be
7334 * overridden by later definitions.
7336 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7339 if (arm_feature(env, ARM_FEATURE_V6)) {
7340 /* The ID registers all have impdef reset values */
7341 ARMCPRegInfo v6_idregs[] = {
7342 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7343 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7344 .access = PL1_R, .type = ARM_CP_CONST,
7345 .accessfn = access_aa32_tid3,
7346 .resetvalue = cpu->isar.id_pfr0 },
7347 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7348 * the value of the GIC field until after we define these regs.
7350 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7351 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7352 .access = PL1_R, .type = ARM_CP_NO_RAW,
7353 .accessfn = access_aa32_tid3,
7354 .readfn = id_pfr1_read,
7355 .writefn = arm_cp_write_ignore },
7356 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7357 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7358 .access = PL1_R, .type = ARM_CP_CONST,
7359 .accessfn = access_aa32_tid3,
7360 .resetvalue = cpu->isar.id_dfr0 },
7361 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7362 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7363 .access = PL1_R, .type = ARM_CP_CONST,
7364 .accessfn = access_aa32_tid3,
7365 .resetvalue = cpu->id_afr0 },
7366 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7367 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7368 .access = PL1_R, .type = ARM_CP_CONST,
7369 .accessfn = access_aa32_tid3,
7370 .resetvalue = cpu->isar.id_mmfr0 },
7371 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7372 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7373 .access = PL1_R, .type = ARM_CP_CONST,
7374 .accessfn = access_aa32_tid3,
7375 .resetvalue = cpu->isar.id_mmfr1 },
7376 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7377 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7378 .access = PL1_R, .type = ARM_CP_CONST,
7379 .accessfn = access_aa32_tid3,
7380 .resetvalue = cpu->isar.id_mmfr2 },
7381 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7382 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7383 .access = PL1_R, .type = ARM_CP_CONST,
7384 .accessfn = access_aa32_tid3,
7385 .resetvalue = cpu->isar.id_mmfr3 },
7386 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7387 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7388 .access = PL1_R, .type = ARM_CP_CONST,
7389 .accessfn = access_aa32_tid3,
7390 .resetvalue = cpu->isar.id_isar0 },
7391 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7392 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7393 .access = PL1_R, .type = ARM_CP_CONST,
7394 .accessfn = access_aa32_tid3,
7395 .resetvalue = cpu->isar.id_isar1 },
7396 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7397 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7398 .access = PL1_R, .type = ARM_CP_CONST,
7399 .accessfn = access_aa32_tid3,
7400 .resetvalue = cpu->isar.id_isar2 },
7401 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7402 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7403 .access = PL1_R, .type = ARM_CP_CONST,
7404 .accessfn = access_aa32_tid3,
7405 .resetvalue = cpu->isar.id_isar3 },
7406 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7407 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7408 .access = PL1_R, .type = ARM_CP_CONST,
7409 .accessfn = access_aa32_tid3,
7410 .resetvalue = cpu->isar.id_isar4 },
7411 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7412 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7413 .access = PL1_R, .type = ARM_CP_CONST,
7414 .accessfn = access_aa32_tid3,
7415 .resetvalue = cpu->isar.id_isar5 },
7416 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7417 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7418 .access = PL1_R, .type = ARM_CP_CONST,
7419 .accessfn = access_aa32_tid3,
7420 .resetvalue = cpu->isar.id_mmfr4 },
7421 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7422 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7423 .access = PL1_R, .type = ARM_CP_CONST,
7424 .accessfn = access_aa32_tid3,
7425 .resetvalue = cpu->isar.id_isar6 },
7427 define_arm_cp_regs(cpu, v6_idregs);
7428 define_arm_cp_regs(cpu, v6_cp_reginfo);
7429 } else {
7430 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7432 if (arm_feature(env, ARM_FEATURE_V6K)) {
7433 define_arm_cp_regs(cpu, v6k_cp_reginfo);
7435 if (arm_feature(env, ARM_FEATURE_V7MP) &&
7436 !arm_feature(env, ARM_FEATURE_PMSA)) {
7437 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7439 if (arm_feature(env, ARM_FEATURE_V7VE)) {
7440 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7442 if (arm_feature(env, ARM_FEATURE_V7)) {
7443 ARMCPRegInfo clidr = {
7444 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7445 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7446 .access = PL1_R, .type = ARM_CP_CONST,
7447 .accessfn = access_aa64_tid2,
7448 .resetvalue = cpu->clidr
7450 define_one_arm_cp_reg(cpu, &clidr);
7451 define_arm_cp_regs(cpu, v7_cp_reginfo);
7452 define_debug_regs(cpu);
7453 define_pmu_regs(cpu);
7454 } else {
7455 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7457 if (arm_feature(env, ARM_FEATURE_V8)) {
7459 * v8 ID registers, which all have impdef reset values.
7460 * Note that within the ID register ranges the unused slots
7461 * must all RAZ, not UNDEF; future architecture versions may
7462 * define new registers here.
7463 * ID registers which are AArch64 views of the AArch32 ID registers
7464 * which already existed in v6 and v7 are handled elsewhere,
7465 * in v6_idregs[].
7467 int i;
7468 ARMCPRegInfo v8_idregs[] = {
7470 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7471 * emulation because we don't know the right value for the
7472 * GIC field until after we define these regs.
7474 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7475 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7476 .access = PL1_R,
7477 #ifdef CONFIG_USER_ONLY
7478 .type = ARM_CP_CONST,
7479 .resetvalue = cpu->isar.id_aa64pfr0
7480 #else
7481 .type = ARM_CP_NO_RAW,
7482 .accessfn = access_aa64_tid3,
7483 .readfn = id_aa64pfr0_read,
7484 .writefn = arm_cp_write_ignore
7485 #endif
7487 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7488 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7489 .access = PL1_R, .type = ARM_CP_CONST,
7490 .accessfn = access_aa64_tid3,
7491 .resetvalue = cpu->isar.id_aa64pfr1},
7492 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7493 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7494 .access = PL1_R, .type = ARM_CP_CONST,
7495 .accessfn = access_aa64_tid3,
7496 .resetvalue = 0 },
7497 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7498 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7499 .access = PL1_R, .type = ARM_CP_CONST,
7500 .accessfn = access_aa64_tid3,
7501 .resetvalue = 0 },
7502 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7503 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7504 .access = PL1_R, .type = ARM_CP_CONST,
7505 .accessfn = access_aa64_tid3,
7506 .resetvalue = cpu->isar.id_aa64zfr0 },
7507 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
7508 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7509 .access = PL1_R, .type = ARM_CP_CONST,
7510 .accessfn = access_aa64_tid3,
7511 .resetvalue = cpu->isar.id_aa64smfr0 },
7512 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7513 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7514 .access = PL1_R, .type = ARM_CP_CONST,
7515 .accessfn = access_aa64_tid3,
7516 .resetvalue = 0 },
7517 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7518 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7519 .access = PL1_R, .type = ARM_CP_CONST,
7520 .accessfn = access_aa64_tid3,
7521 .resetvalue = 0 },
7522 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7523 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7524 .access = PL1_R, .type = ARM_CP_CONST,
7525 .accessfn = access_aa64_tid3,
7526 .resetvalue = cpu->isar.id_aa64dfr0 },
7527 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7528 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7529 .access = PL1_R, .type = ARM_CP_CONST,
7530 .accessfn = access_aa64_tid3,
7531 .resetvalue = cpu->isar.id_aa64dfr1 },
7532 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7533 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7534 .access = PL1_R, .type = ARM_CP_CONST,
7535 .accessfn = access_aa64_tid3,
7536 .resetvalue = 0 },
7537 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7538 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7539 .access = PL1_R, .type = ARM_CP_CONST,
7540 .accessfn = access_aa64_tid3,
7541 .resetvalue = 0 },
7542 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7543 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7544 .access = PL1_R, .type = ARM_CP_CONST,
7545 .accessfn = access_aa64_tid3,
7546 .resetvalue = cpu->id_aa64afr0 },
7547 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7548 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7549 .access = PL1_R, .type = ARM_CP_CONST,
7550 .accessfn = access_aa64_tid3,
7551 .resetvalue = cpu->id_aa64afr1 },
7552 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7553 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7554 .access = PL1_R, .type = ARM_CP_CONST,
7555 .accessfn = access_aa64_tid3,
7556 .resetvalue = 0 },
7557 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7558 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7559 .access = PL1_R, .type = ARM_CP_CONST,
7560 .accessfn = access_aa64_tid3,
7561 .resetvalue = 0 },
7562 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7563 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7564 .access = PL1_R, .type = ARM_CP_CONST,
7565 .accessfn = access_aa64_tid3,
7566 .resetvalue = cpu->isar.id_aa64isar0 },
7567 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7568 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7569 .access = PL1_R, .type = ARM_CP_CONST,
7570 .accessfn = access_aa64_tid3,
7571 .resetvalue = cpu->isar.id_aa64isar1 },
7572 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7573 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7574 .access = PL1_R, .type = ARM_CP_CONST,
7575 .accessfn = access_aa64_tid3,
7576 .resetvalue = 0 },
7577 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7578 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7579 .access = PL1_R, .type = ARM_CP_CONST,
7580 .accessfn = access_aa64_tid3,
7581 .resetvalue = 0 },
7582 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7583 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7584 .access = PL1_R, .type = ARM_CP_CONST,
7585 .accessfn = access_aa64_tid3,
7586 .resetvalue = 0 },
7587 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7588 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7589 .access = PL1_R, .type = ARM_CP_CONST,
7590 .accessfn = access_aa64_tid3,
7591 .resetvalue = 0 },
7592 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7593 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7594 .access = PL1_R, .type = ARM_CP_CONST,
7595 .accessfn = access_aa64_tid3,
7596 .resetvalue = 0 },
7597 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7598 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7599 .access = PL1_R, .type = ARM_CP_CONST,
7600 .accessfn = access_aa64_tid3,
7601 .resetvalue = 0 },
7602 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7603 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7604 .access = PL1_R, .type = ARM_CP_CONST,
7605 .accessfn = access_aa64_tid3,
7606 .resetvalue = cpu->isar.id_aa64mmfr0 },
7607 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7608 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7609 .access = PL1_R, .type = ARM_CP_CONST,
7610 .accessfn = access_aa64_tid3,
7611 .resetvalue = cpu->isar.id_aa64mmfr1 },
7612 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7613 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7614 .access = PL1_R, .type = ARM_CP_CONST,
7615 .accessfn = access_aa64_tid3,
7616 .resetvalue = cpu->isar.id_aa64mmfr2 },
7617 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7618 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7619 .access = PL1_R, .type = ARM_CP_CONST,
7620 .accessfn = access_aa64_tid3,
7621 .resetvalue = 0 },
7622 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7623 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7624 .access = PL1_R, .type = ARM_CP_CONST,
7625 .accessfn = access_aa64_tid3,
7626 .resetvalue = 0 },
7627 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7628 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7629 .access = PL1_R, .type = ARM_CP_CONST,
7630 .accessfn = access_aa64_tid3,
7631 .resetvalue = 0 },
7632 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7633 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7634 .access = PL1_R, .type = ARM_CP_CONST,
7635 .accessfn = access_aa64_tid3,
7636 .resetvalue = 0 },
7637 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7638 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7639 .access = PL1_R, .type = ARM_CP_CONST,
7640 .accessfn = access_aa64_tid3,
7641 .resetvalue = 0 },
7642 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7643 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7644 .access = PL1_R, .type = ARM_CP_CONST,
7645 .accessfn = access_aa64_tid3,
7646 .resetvalue = cpu->isar.mvfr0 },
7647 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7648 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7649 .access = PL1_R, .type = ARM_CP_CONST,
7650 .accessfn = access_aa64_tid3,
7651 .resetvalue = cpu->isar.mvfr1 },
7652 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7653 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7654 .access = PL1_R, .type = ARM_CP_CONST,
7655 .accessfn = access_aa64_tid3,
7656 .resetvalue = cpu->isar.mvfr2 },
7658 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
7659 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
7660 * as RAZ, since it is in the "reserved for future ID
7661 * registers, RAZ" part of the AArch32 encoding space.
7663 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
7664 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7665 .access = PL1_R, .type = ARM_CP_CONST,
7666 .accessfn = access_aa64_tid3,
7667 .resetvalue = 0 },
7668 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
7669 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7670 .access = PL1_R, .type = ARM_CP_CONST,
7671 .accessfn = access_aa64_tid3,
7672 .resetvalue = 0 },
7673 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
7674 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7675 .access = PL1_R, .type = ARM_CP_CONST,
7676 .accessfn = access_aa64_tid3,
7677 .resetvalue = 0 },
7679 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
7680 * they're also RAZ for AArch64, and in v8 are gradually
7681 * being filled with AArch64-view-of-AArch32-ID-register
7682 * for new ID registers.
7684 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
7685 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7686 .access = PL1_R, .type = ARM_CP_CONST,
7687 .accessfn = access_aa64_tid3,
7688 .resetvalue = 0 },
7689 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
7690 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7691 .access = PL1_R, .type = ARM_CP_CONST,
7692 .accessfn = access_aa64_tid3,
7693 .resetvalue = cpu->isar.id_pfr2 },
7694 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
7695 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7696 .access = PL1_R, .type = ARM_CP_CONST,
7697 .accessfn = access_aa64_tid3,
7698 .resetvalue = cpu->isar.id_dfr1 },
7699 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
7700 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7701 .access = PL1_R, .type = ARM_CP_CONST,
7702 .accessfn = access_aa64_tid3,
7703 .resetvalue = cpu->isar.id_mmfr5 },
7704 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
7705 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7706 .access = PL1_R, .type = ARM_CP_CONST,
7707 .accessfn = access_aa64_tid3,
7708 .resetvalue = 0 },
7709 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7710 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7711 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7712 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7713 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7714 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7715 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7716 .resetvalue = cpu->pmceid0 },
7717 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7718 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7719 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7720 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7721 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7722 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7723 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7724 .resetvalue = cpu->pmceid1 },
7726 #ifdef CONFIG_USER_ONLY
7727 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7728 { .name = "ID_AA64PFR0_EL1",
7729 .exported_bits = 0x000f000f00ff0000,
7730 .fixed_bits = 0x0000000000000011 },
7731 { .name = "ID_AA64PFR1_EL1",
7732 .exported_bits = 0x00000000000000f0 },
7733 { .name = "ID_AA64PFR*_EL1_RESERVED",
7734 .is_glob = true },
7735 { .name = "ID_AA64ZFR0_EL1" },
7736 { .name = "ID_AA64MMFR0_EL1",
7737 .fixed_bits = 0x00000000ff000000 },
7738 { .name = "ID_AA64MMFR1_EL1" },
7739 { .name = "ID_AA64MMFR*_EL1_RESERVED",
7740 .is_glob = true },
7741 { .name = "ID_AA64DFR0_EL1",
7742 .fixed_bits = 0x0000000000000006 },
7743 { .name = "ID_AA64DFR1_EL1" },
7744 { .name = "ID_AA64DFR*_EL1_RESERVED",
7745 .is_glob = true },
7746 { .name = "ID_AA64AFR*",
7747 .is_glob = true },
7748 { .name = "ID_AA64ISAR0_EL1",
7749 .exported_bits = 0x00fffffff0fffff0 },
7750 { .name = "ID_AA64ISAR1_EL1",
7751 .exported_bits = 0x000000f0ffffffff },
7752 { .name = "ID_AA64ISAR*_EL1_RESERVED",
7753 .is_glob = true },
7755 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7756 #endif
7757 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7758 if (!arm_feature(env, ARM_FEATURE_EL3) &&
7759 !arm_feature(env, ARM_FEATURE_EL2)) {
7760 ARMCPRegInfo rvbar = {
7761 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7762 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7763 .access = PL1_R,
7764 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7766 define_one_arm_cp_reg(cpu, &rvbar);
7768 define_arm_cp_regs(cpu, v8_idregs);
7769 define_arm_cp_regs(cpu, v8_cp_reginfo);
7771 for (i = 4; i < 16; i++) {
7773 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
7774 * For pre-v8 cores there are RAZ patterns for these in
7775 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
7776 * v8 extends the "must RAZ" part of the ID register space
7777 * to also cover c0, 0, c{8-15}, {0-7}.
7778 * These are STATE_AA32 because in the AArch64 sysreg space
7779 * c4-c7 is where the AArch64 ID registers live (and we've
7780 * already defined those in v8_idregs[]), and c8-c15 are not
7781 * "must RAZ" for AArch64.
7783 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
7784 ARMCPRegInfo v8_aa32_raz_idregs = {
7785 .name = name,
7786 .state = ARM_CP_STATE_AA32,
7787 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
7788 .access = PL1_R, .type = ARM_CP_CONST,
7789 .accessfn = access_aa64_tid3,
7790 .resetvalue = 0 };
7791 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
7796 * Register the base EL2 cpregs.
7797 * Pre v8, these registers are implemented only as part of the
7798 * Virtualization Extensions (EL2 present). Beginning with v8,
7799 * if EL2 is missing but EL3 is enabled, mostly these become
7800 * RES0 from EL3, with some specific exceptions.
7802 if (arm_feature(env, ARM_FEATURE_EL2)
7803 || (arm_feature(env, ARM_FEATURE_EL3)
7804 && arm_feature(env, ARM_FEATURE_V8))) {
7805 uint64_t vmpidr_def = mpidr_read_val(env);
7806 ARMCPRegInfo vpidr_regs[] = {
7807 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7808 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7809 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7810 .resetvalue = cpu->midr,
7811 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
7812 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7813 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7814 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7815 .access = PL2_RW, .resetvalue = cpu->midr,
7816 .type = ARM_CP_EL3_NO_EL2_C_NZ,
7817 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7818 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7819 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7820 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7821 .resetvalue = vmpidr_def,
7822 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
7823 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7824 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7825 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7826 .access = PL2_RW, .resetvalue = vmpidr_def,
7827 .type = ARM_CP_EL3_NO_EL2_C_NZ,
7828 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7831 * The only field of MDCR_EL2 that has a defined architectural reset
7832 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
7834 ARMCPRegInfo mdcr_el2 = {
7835 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
7836 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
7837 .writefn = mdcr_el2_write,
7838 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
7839 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
7841 define_one_arm_cp_reg(cpu, &mdcr_el2);
7842 define_arm_cp_regs(cpu, vpidr_regs);
7843 define_arm_cp_regs(cpu, el2_cp_reginfo);
7844 if (arm_feature(env, ARM_FEATURE_V8)) {
7845 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7847 if (cpu_isar_feature(aa64_sel2, cpu)) {
7848 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
7850 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7851 if (!arm_feature(env, ARM_FEATURE_EL3)) {
7852 ARMCPRegInfo rvbar = {
7853 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7854 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7855 .access = PL2_R,
7856 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7858 define_one_arm_cp_reg(cpu, &rvbar);
7862 /* Register the base EL3 cpregs. */
7863 if (arm_feature(env, ARM_FEATURE_EL3)) {
7864 define_arm_cp_regs(cpu, el3_cp_reginfo);
7865 ARMCPRegInfo el3_regs[] = {
7866 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7867 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7868 .access = PL3_R,
7869 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7871 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7872 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7873 .access = PL3_RW,
7874 .raw_writefn = raw_write, .writefn = sctlr_write,
7875 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7876 .resetvalue = cpu->reset_sctlr },
7879 define_arm_cp_regs(cpu, el3_regs);
7881 /* The behaviour of NSACR is sufficiently various that we don't
7882 * try to describe it in a single reginfo:
7883 * if EL3 is 64 bit, then trap to EL3 from S EL1,
7884 * reads as constant 0xc00 from NS EL1 and NS EL2
7885 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7886 * if v7 without EL3, register doesn't exist
7887 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7889 if (arm_feature(env, ARM_FEATURE_EL3)) {
7890 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7891 static const ARMCPRegInfo nsacr = {
7892 .name = "NSACR", .type = ARM_CP_CONST,
7893 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7894 .access = PL1_RW, .accessfn = nsacr_access,
7895 .resetvalue = 0xc00
7897 define_one_arm_cp_reg(cpu, &nsacr);
7898 } else {
7899 static const ARMCPRegInfo nsacr = {
7900 .name = "NSACR",
7901 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7902 .access = PL3_RW | PL1_R,
7903 .resetvalue = 0,
7904 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7906 define_one_arm_cp_reg(cpu, &nsacr);
7908 } else {
7909 if (arm_feature(env, ARM_FEATURE_V8)) {
7910 static const ARMCPRegInfo nsacr = {
7911 .name = "NSACR", .type = ARM_CP_CONST,
7912 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7913 .access = PL1_R,
7914 .resetvalue = 0xc00
7916 define_one_arm_cp_reg(cpu, &nsacr);
7920 if (arm_feature(env, ARM_FEATURE_PMSA)) {
7921 if (arm_feature(env, ARM_FEATURE_V6)) {
7922 /* PMSAv6 not implemented */
7923 assert(arm_feature(env, ARM_FEATURE_V7));
7924 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7925 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7926 } else {
7927 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7929 } else {
7930 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7931 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7932 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
7933 if (cpu_isar_feature(aa32_hpd, cpu)) {
7934 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7937 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7938 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7940 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7941 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7943 if (arm_feature(env, ARM_FEATURE_VAPA)) {
7944 define_arm_cp_regs(cpu, vapa_cp_reginfo);
7946 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7947 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7949 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7950 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7952 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7953 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7955 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7956 define_arm_cp_regs(cpu, omap_cp_reginfo);
7958 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7959 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7961 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7962 define_arm_cp_regs(cpu, xscale_cp_reginfo);
7964 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7965 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7967 if (arm_feature(env, ARM_FEATURE_LPAE)) {
7968 define_arm_cp_regs(cpu, lpae_cp_reginfo);
7970 if (cpu_isar_feature(aa32_jazelle, cpu)) {
7971 define_arm_cp_regs(cpu, jazelle_regs);
7973 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7974 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7975 * be read-only (ie write causes UNDEF exception).
7978 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7979 /* Pre-v8 MIDR space.
7980 * Note that the MIDR isn't a simple constant register because
7981 * of the TI925 behaviour where writes to another register can
7982 * cause the MIDR value to change.
7984 * Unimplemented registers in the c15 0 0 0 space default to
7985 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7986 * and friends override accordingly.
7988 { .name = "MIDR",
7989 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7990 .access = PL1_R, .resetvalue = cpu->midr,
7991 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
7992 .readfn = midr_read,
7993 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7994 .type = ARM_CP_OVERRIDE },
7995 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
7996 { .name = "DUMMY",
7997 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
7998 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7999 { .name = "DUMMY",
8000 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8001 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8002 { .name = "DUMMY",
8003 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8004 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8005 { .name = "DUMMY",
8006 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8007 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8008 { .name = "DUMMY",
8009 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8010 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8012 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8013 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8015 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8016 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8017 .readfn = midr_read },
8018 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8019 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8020 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8021 .access = PL1_R, .resetvalue = cpu->midr },
8022 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8023 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8024 .access = PL1_R, .resetvalue = cpu->midr },
8025 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8027 .access = PL1_R,
8028 .accessfn = access_aa64_tid1,
8029 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8031 ARMCPRegInfo id_cp_reginfo[] = {
8032 /* These are common to v8 and pre-v8 */
8033 { .name = "CTR",
8034 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8035 .access = PL1_R, .accessfn = ctr_el0_access,
8036 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8037 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8038 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8039 .access = PL0_R, .accessfn = ctr_el0_access,
8040 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8041 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8042 { .name = "TCMTR",
8043 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8044 .access = PL1_R,
8045 .accessfn = access_aa32_tid1,
8046 .type = ARM_CP_CONST, .resetvalue = 0 },
8048 /* TLBTR is specific to VMSA */
8049 ARMCPRegInfo id_tlbtr_reginfo = {
8050 .name = "TLBTR",
8051 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8052 .access = PL1_R,
8053 .accessfn = access_aa32_tid1,
8054 .type = ARM_CP_CONST, .resetvalue = 0,
8056 /* MPUIR is specific to PMSA V6+ */
8057 ARMCPRegInfo id_mpuir_reginfo = {
8058 .name = "MPUIR",
8059 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8060 .access = PL1_R, .type = ARM_CP_CONST,
8061 .resetvalue = cpu->pmsav7_dregion << 8
8063 static const ARMCPRegInfo crn0_wi_reginfo = {
8064 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8065 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8066 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8068 #ifdef CONFIG_USER_ONLY
8069 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8070 { .name = "MIDR_EL1",
8071 .exported_bits = 0x00000000ffffffff },
8072 { .name = "REVIDR_EL1" },
8074 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8075 #endif
8076 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8077 arm_feature(env, ARM_FEATURE_STRONGARM)) {
8078 size_t i;
8079 /* Register the blanket "writes ignored" value first to cover the
8080 * whole space. Then update the specific ID registers to allow write
8081 * access, so that they ignore writes rather than causing them to
8082 * UNDEF.
8084 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8085 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8086 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8088 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8089 id_cp_reginfo[i].access = PL1_RW;
8091 id_mpuir_reginfo.access = PL1_RW;
8092 id_tlbtr_reginfo.access = PL1_RW;
8094 if (arm_feature(env, ARM_FEATURE_V8)) {
8095 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8096 } else {
8097 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8099 define_arm_cp_regs(cpu, id_cp_reginfo);
8100 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8101 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8102 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8103 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8107 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8108 ARMCPRegInfo mpidr_cp_reginfo[] = {
8109 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8110 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8111 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8113 #ifdef CONFIG_USER_ONLY
8114 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8115 { .name = "MPIDR_EL1",
8116 .fixed_bits = 0x0000000080000000 },
8118 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8119 #endif
8120 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8123 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8124 ARMCPRegInfo auxcr_reginfo[] = {
8125 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8126 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8127 .access = PL1_RW, .accessfn = access_tacr,
8128 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8129 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8130 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8131 .access = PL2_RW, .type = ARM_CP_CONST,
8132 .resetvalue = 0 },
8133 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8134 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8135 .access = PL3_RW, .type = ARM_CP_CONST,
8136 .resetvalue = 0 },
8138 define_arm_cp_regs(cpu, auxcr_reginfo);
8139 if (cpu_isar_feature(aa32_ac2, cpu)) {
8140 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8144 if (arm_feature(env, ARM_FEATURE_CBAR)) {
8146 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8147 * There are two flavours:
8148 * (1) older 32-bit only cores have a simple 32-bit CBAR
8149 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8150 * 32-bit register visible to AArch32 at a different encoding
8151 * to the "flavour 1" register and with the bits rearranged to
8152 * be able to squash a 64-bit address into the 32-bit view.
8153 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8154 * in future if we support AArch32-only configs of some of the
8155 * AArch64 cores we might need to add a specific feature flag
8156 * to indicate cores with "flavour 2" CBAR.
8158 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8159 /* 32 bit view is [31:18] 0...0 [43:32]. */
8160 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8161 | extract64(cpu->reset_cbar, 32, 12);
8162 ARMCPRegInfo cbar_reginfo[] = {
8163 { .name = "CBAR",
8164 .type = ARM_CP_CONST,
8165 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8166 .access = PL1_R, .resetvalue = cbar32 },
8167 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8168 .type = ARM_CP_CONST,
8169 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8170 .access = PL1_R, .resetvalue = cpu->reset_cbar },
8172 /* We don't implement a r/w 64 bit CBAR currently */
8173 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8174 define_arm_cp_regs(cpu, cbar_reginfo);
8175 } else {
8176 ARMCPRegInfo cbar = {
8177 .name = "CBAR",
8178 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8179 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8180 .fieldoffset = offsetof(CPUARMState,
8181 cp15.c15_config_base_address)
8183 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8184 cbar.access = PL1_R;
8185 cbar.fieldoffset = 0;
8186 cbar.type = ARM_CP_CONST;
8188 define_one_arm_cp_reg(cpu, &cbar);
8192 if (arm_feature(env, ARM_FEATURE_VBAR)) {
8193 static const ARMCPRegInfo vbar_cp_reginfo[] = {
8194 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8195 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8196 .access = PL1_RW, .writefn = vbar_write,
8197 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8198 offsetof(CPUARMState, cp15.vbar_ns) },
8199 .resetvalue = 0 },
8201 define_arm_cp_regs(cpu, vbar_cp_reginfo);
8204 /* Generic registers whose values depend on the implementation */
8206 ARMCPRegInfo sctlr = {
8207 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8208 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8209 .access = PL1_RW, .accessfn = access_tvm_trvm,
8210 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8211 offsetof(CPUARMState, cp15.sctlr_ns) },
8212 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8213 .raw_writefn = raw_write,
8215 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8216 /* Normally we would always end the TB on an SCTLR write, but Linux
8217 * arch/arm/mach-pxa/sleep.S expects two instructions following
8218 * an MMU enable to execute from cache. Imitate this behaviour.
8220 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8222 define_one_arm_cp_reg(cpu, &sctlr);
8225 if (cpu_isar_feature(aa64_lor, cpu)) {
8226 define_arm_cp_regs(cpu, lor_reginfo);
8228 if (cpu_isar_feature(aa64_pan, cpu)) {
8229 define_one_arm_cp_reg(cpu, &pan_reginfo);
8231 #ifndef CONFIG_USER_ONLY
8232 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8233 define_arm_cp_regs(cpu, ats1e1_reginfo);
8235 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8236 define_arm_cp_regs(cpu, ats1cp_reginfo);
8238 #endif
8239 if (cpu_isar_feature(aa64_uao, cpu)) {
8240 define_one_arm_cp_reg(cpu, &uao_reginfo);
8243 if (cpu_isar_feature(aa64_dit, cpu)) {
8244 define_one_arm_cp_reg(cpu, &dit_reginfo);
8246 if (cpu_isar_feature(aa64_ssbs, cpu)) {
8247 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8249 if (cpu_isar_feature(any_ras, cpu)) {
8250 define_arm_cp_regs(cpu, minimal_ras_reginfo);
8253 if (cpu_isar_feature(aa64_vh, cpu) ||
8254 cpu_isar_feature(aa64_debugv8p2, cpu)) {
8255 define_one_arm_cp_reg(cpu, &contextidr_el2);
8257 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8258 define_arm_cp_regs(cpu, vhe_reginfo);
8261 if (cpu_isar_feature(aa64_sve, cpu)) {
8262 define_arm_cp_regs(cpu, zcr_reginfo);
8265 if (cpu_isar_feature(aa64_hcx, cpu)) {
8266 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
8269 #ifdef TARGET_AARCH64
8270 if (cpu_isar_feature(aa64_sme, cpu)) {
8271 define_arm_cp_regs(cpu, sme_reginfo);
8273 if (cpu_isar_feature(aa64_pauth, cpu)) {
8274 define_arm_cp_regs(cpu, pauth_reginfo);
8276 if (cpu_isar_feature(aa64_rndr, cpu)) {
8277 define_arm_cp_regs(cpu, rndr_reginfo);
8279 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8280 define_arm_cp_regs(cpu, tlbirange_reginfo);
8282 if (cpu_isar_feature(aa64_tlbios, cpu)) {
8283 define_arm_cp_regs(cpu, tlbios_reginfo);
8285 #ifndef CONFIG_USER_ONLY
8286 /* Data Cache clean instructions up to PoP */
8287 if (cpu_isar_feature(aa64_dcpop, cpu)) {
8288 define_one_arm_cp_reg(cpu, dcpop_reg);
8290 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8291 define_one_arm_cp_reg(cpu, dcpodp_reg);
8294 #endif /*CONFIG_USER_ONLY*/
8297 * If full MTE is enabled, add all of the system registers.
8298 * If only "instructions available at EL0" are enabled,
8299 * then define only a RAZ/WI version of PSTATE.TCO.
8301 if (cpu_isar_feature(aa64_mte, cpu)) {
8302 define_arm_cp_regs(cpu, mte_reginfo);
8303 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8304 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8305 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8306 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8309 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
8310 define_arm_cp_regs(cpu, scxtnum_reginfo);
8312 #endif
8314 if (cpu_isar_feature(any_predinv, cpu)) {
8315 define_arm_cp_regs(cpu, predinv_reginfo);
8318 if (cpu_isar_feature(any_ccidx, cpu)) {
8319 define_arm_cp_regs(cpu, ccsidr2_reginfo);
8322 #ifndef CONFIG_USER_ONLY
8324 * Register redirections and aliases must be done last,
8325 * after the registers from the other extensions have been defined.
8327 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8328 define_arm_vh_e2h_redirects_aliases(cpu);
8330 #endif
8333 /* Sort alphabetically by type name, except for "any". */
8334 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8336 ObjectClass *class_a = (ObjectClass *)a;
8337 ObjectClass *class_b = (ObjectClass *)b;
8338 const char *name_a, *name_b;
8340 name_a = object_class_get_name(class_a);
8341 name_b = object_class_get_name(class_b);
8342 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8343 return 1;
8344 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8345 return -1;
8346 } else {
8347 return strcmp(name_a, name_b);
8351 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8353 ObjectClass *oc = data;
8354 CPUClass *cc = CPU_CLASS(oc);
8355 const char *typename;
8356 char *name;
8358 typename = object_class_get_name(oc);
8359 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8360 if (cc->deprecation_note) {
8361 qemu_printf(" %s (deprecated)\n", name);
8362 } else {
8363 qemu_printf(" %s\n", name);
8365 g_free(name);
8368 void arm_cpu_list(void)
8370 GSList *list;
8372 list = object_class_get_list(TYPE_ARM_CPU, false);
8373 list = g_slist_sort(list, arm_cpu_list_compare);
8374 qemu_printf("Available CPUs:\n");
8375 g_slist_foreach(list, arm_cpu_list_entry, NULL);
8376 g_slist_free(list);
8379 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8381 ObjectClass *oc = data;
8382 CpuDefinitionInfoList **cpu_list = user_data;
8383 CpuDefinitionInfo *info;
8384 const char *typename;
8386 typename = object_class_get_name(oc);
8387 info = g_malloc0(sizeof(*info));
8388 info->name = g_strndup(typename,
8389 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8390 info->q_typename = g_strdup(typename);
8392 QAPI_LIST_PREPEND(*cpu_list, info);
8395 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8397 CpuDefinitionInfoList *cpu_list = NULL;
8398 GSList *list;
8400 list = object_class_get_list(TYPE_ARM_CPU, false);
8401 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8402 g_slist_free(list);
8404 return cpu_list;
8408 * Private utility function for define_one_arm_cp_reg_with_opaque():
8409 * add a single reginfo struct to the hash table.
8411 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8412 void *opaque, CPState state,
8413 CPSecureState secstate,
8414 int crm, int opc1, int opc2,
8415 const char *name)
8417 CPUARMState *env = &cpu->env;
8418 uint32_t key;
8419 ARMCPRegInfo *r2;
8420 bool is64 = r->type & ARM_CP_64BIT;
8421 bool ns = secstate & ARM_CP_SECSTATE_NS;
8422 int cp = r->cp;
8423 size_t name_len;
8424 bool make_const;
8426 switch (state) {
8427 case ARM_CP_STATE_AA32:
8428 /* We assume it is a cp15 register if the .cp field is left unset. */
8429 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
8430 cp = 15;
8432 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
8433 break;
8434 case ARM_CP_STATE_AA64:
8436 * To allow abbreviation of ARMCPRegInfo definitions, we treat
8437 * cp == 0 as equivalent to the value for "standard guest-visible
8438 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
8439 * in their AArch64 view (the .cp value may be non-zero for the
8440 * benefit of the AArch32 view).
8442 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8443 cp = CP_REG_ARM64_SYSREG_CP;
8445 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
8446 break;
8447 default:
8448 g_assert_not_reached();
8451 /* Overriding of an existing definition must be explicitly requested. */
8452 if (!(r->type & ARM_CP_OVERRIDE)) {
8453 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
8454 if (oldreg) {
8455 assert(oldreg->type & ARM_CP_OVERRIDE);
8460 * Eliminate registers that are not present because the EL is missing.
8461 * Doing this here makes it easier to put all registers for a given
8462 * feature into the same ARMCPRegInfo array and define them all at once.
8464 make_const = false;
8465 if (arm_feature(env, ARM_FEATURE_EL3)) {
8467 * An EL2 register without EL2 but with EL3 is (usually) RES0.
8468 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
8470 int min_el = ctz32(r->access) / 2;
8471 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
8472 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
8473 return;
8475 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
8477 } else {
8478 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
8479 ? PL2_RW : PL1_RW);
8480 if ((r->access & max_el) == 0) {
8481 return;
8485 /* Combine cpreg and name into one allocation. */
8486 name_len = strlen(name) + 1;
8487 r2 = g_malloc(sizeof(*r2) + name_len);
8488 *r2 = *r;
8489 r2->name = memcpy(r2 + 1, name, name_len);
8492 * Update fields to match the instantiation, overwiting wildcards
8493 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
8495 r2->cp = cp;
8496 r2->crm = crm;
8497 r2->opc1 = opc1;
8498 r2->opc2 = opc2;
8499 r2->state = state;
8500 r2->secure = secstate;
8501 if (opaque) {
8502 r2->opaque = opaque;
8505 if (make_const) {
8506 /* This should not have been a very special register to begin. */
8507 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
8508 assert(old_special == 0 || old_special == ARM_CP_NOP);
8510 * Set the special function to CONST, retaining the other flags.
8511 * This is important for e.g. ARM_CP_SVE so that we still
8512 * take the SVE trap if CPTR_EL3.EZ == 0.
8514 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
8516 * Usually, these registers become RES0, but there are a few
8517 * special cases like VPIDR_EL2 which have a constant non-zero
8518 * value with writes ignored.
8520 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
8521 r2->resetvalue = 0;
8524 * ARM_CP_CONST has precedence, so removing the callbacks and
8525 * offsets are not strictly necessary, but it is potentially
8526 * less confusing to debug later.
8528 r2->readfn = NULL;
8529 r2->writefn = NULL;
8530 r2->raw_readfn = NULL;
8531 r2->raw_writefn = NULL;
8532 r2->resetfn = NULL;
8533 r2->fieldoffset = 0;
8534 r2->bank_fieldoffsets[0] = 0;
8535 r2->bank_fieldoffsets[1] = 0;
8536 } else {
8537 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
8539 if (isbanked) {
8541 * Register is banked (using both entries in array).
8542 * Overwriting fieldoffset as the array is only used to define
8543 * banked registers but later only fieldoffset is used.
8545 r2->fieldoffset = r->bank_fieldoffsets[ns];
8547 if (state == ARM_CP_STATE_AA32) {
8548 if (isbanked) {
8550 * If the register is banked then we don't need to migrate or
8551 * reset the 32-bit instance in certain cases:
8553 * 1) If the register has both 32-bit and 64-bit instances
8554 * then we can count on the 64-bit instance taking care
8555 * of the non-secure bank.
8556 * 2) If ARMv8 is enabled then we can count on a 64-bit
8557 * version taking care of the secure bank. This requires
8558 * that separate 32 and 64-bit definitions are provided.
8560 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8561 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
8562 r2->type |= ARM_CP_ALIAS;
8564 } else if ((secstate != r->secure) && !ns) {
8566 * The register is not banked so we only want to allow
8567 * migration of the non-secure instance.
8569 r2->type |= ARM_CP_ALIAS;
8572 if (HOST_BIG_ENDIAN &&
8573 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
8574 r2->fieldoffset += sizeof(uint32_t);
8580 * By convention, for wildcarded registers only the first
8581 * entry is used for migration; the others are marked as
8582 * ALIAS so we don't try to transfer the register
8583 * multiple times. Special registers (ie NOP/WFI) are
8584 * never migratable and not even raw-accessible.
8586 if (r2->type & ARM_CP_SPECIAL_MASK) {
8587 r2->type |= ARM_CP_NO_RAW;
8589 if (((r->crm == CP_ANY) && crm != 0) ||
8590 ((r->opc1 == CP_ANY) && opc1 != 0) ||
8591 ((r->opc2 == CP_ANY) && opc2 != 0)) {
8592 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8596 * Check that raw accesses are either forbidden or handled. Note that
8597 * we can't assert this earlier because the setup of fieldoffset for
8598 * banked registers has to be done first.
8600 if (!(r2->type & ARM_CP_NO_RAW)) {
8601 assert(!raw_accessors_invalid(r2));
8604 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
8608 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8609 const ARMCPRegInfo *r, void *opaque)
8611 /* Define implementations of coprocessor registers.
8612 * We store these in a hashtable because typically
8613 * there are less than 150 registers in a space which
8614 * is 16*16*16*8*8 = 262144 in size.
8615 * Wildcarding is supported for the crm, opc1 and opc2 fields.
8616 * If a register is defined twice then the second definition is
8617 * used, so this can be used to define some generic registers and
8618 * then override them with implementation specific variations.
8619 * At least one of the original and the second definition should
8620 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8621 * against accidental use.
8623 * The state field defines whether the register is to be
8624 * visible in the AArch32 or AArch64 execution state. If the
8625 * state is set to ARM_CP_STATE_BOTH then we synthesise a
8626 * reginfo structure for the AArch32 view, which sees the lower
8627 * 32 bits of the 64 bit register.
8629 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8630 * be wildcarded. AArch64 registers are always considered to be 64
8631 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8632 * the register, if any.
8634 int crm, opc1, opc2;
8635 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8636 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8637 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8638 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8639 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8640 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8641 CPState state;
8643 /* 64 bit registers have only CRm and Opc1 fields */
8644 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8645 /* op0 only exists in the AArch64 encodings */
8646 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8647 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8648 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8650 * This API is only for Arm's system coprocessors (14 and 15) or
8651 * (M-profile or v7A-and-earlier only) for implementation defined
8652 * coprocessors in the range 0..7. Our decode assumes this, since
8653 * 8..13 can be used for other insns including VFP and Neon. See
8654 * valid_cp() in translate.c. Assert here that we haven't tried
8655 * to use an invalid coprocessor number.
8657 switch (r->state) {
8658 case ARM_CP_STATE_BOTH:
8659 /* 0 has a special meaning, but otherwise the same rules as AA32. */
8660 if (r->cp == 0) {
8661 break;
8663 /* fall through */
8664 case ARM_CP_STATE_AA32:
8665 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8666 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8667 assert(r->cp >= 14 && r->cp <= 15);
8668 } else {
8669 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8671 break;
8672 case ARM_CP_STATE_AA64:
8673 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8674 break;
8675 default:
8676 g_assert_not_reached();
8678 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8679 * encodes a minimum access level for the register. We roll this
8680 * runtime check into our general permission check code, so check
8681 * here that the reginfo's specified permissions are strict enough
8682 * to encompass the generic architectural permission check.
8684 if (r->state != ARM_CP_STATE_AA32) {
8685 CPAccessRights mask;
8686 switch (r->opc1) {
8687 case 0:
8688 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8689 mask = PL0U_R | PL1_RW;
8690 break;
8691 case 1: case 2:
8692 /* min_EL EL1 */
8693 mask = PL1_RW;
8694 break;
8695 case 3:
8696 /* min_EL EL0 */
8697 mask = PL0_RW;
8698 break;
8699 case 4:
8700 case 5:
8701 /* min_EL EL2 */
8702 mask = PL2_RW;
8703 break;
8704 case 6:
8705 /* min_EL EL3 */
8706 mask = PL3_RW;
8707 break;
8708 case 7:
8709 /* min_EL EL1, secure mode only (we don't check the latter) */
8710 mask = PL1_RW;
8711 break;
8712 default:
8713 /* broken reginfo with out-of-range opc1 */
8714 g_assert_not_reached();
8716 /* assert our permissions are not too lax (stricter is fine) */
8717 assert((r->access & ~mask) == 0);
8720 /* Check that the register definition has enough info to handle
8721 * reads and writes if they are permitted.
8723 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
8724 if (r->access & PL3_R) {
8725 assert((r->fieldoffset ||
8726 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8727 r->readfn);
8729 if (r->access & PL3_W) {
8730 assert((r->fieldoffset ||
8731 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8732 r->writefn);
8736 for (crm = crmmin; crm <= crmmax; crm++) {
8737 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8738 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8739 for (state = ARM_CP_STATE_AA32;
8740 state <= ARM_CP_STATE_AA64; state++) {
8741 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8742 continue;
8744 if (state == ARM_CP_STATE_AA32) {
8745 /* Under AArch32 CP registers can be common
8746 * (same for secure and non-secure world) or banked.
8748 char *name;
8750 switch (r->secure) {
8751 case ARM_CP_SECSTATE_S:
8752 case ARM_CP_SECSTATE_NS:
8753 add_cpreg_to_hashtable(cpu, r, opaque, state,
8754 r->secure, crm, opc1, opc2,
8755 r->name);
8756 break;
8757 case ARM_CP_SECSTATE_BOTH:
8758 name = g_strdup_printf("%s_S", r->name);
8759 add_cpreg_to_hashtable(cpu, r, opaque, state,
8760 ARM_CP_SECSTATE_S,
8761 crm, opc1, opc2, name);
8762 g_free(name);
8763 add_cpreg_to_hashtable(cpu, r, opaque, state,
8764 ARM_CP_SECSTATE_NS,
8765 crm, opc1, opc2, r->name);
8766 break;
8767 default:
8768 g_assert_not_reached();
8770 } else {
8771 /* AArch64 registers get mapped to non-secure instance
8772 * of AArch32 */
8773 add_cpreg_to_hashtable(cpu, r, opaque, state,
8774 ARM_CP_SECSTATE_NS,
8775 crm, opc1, opc2, r->name);
8783 /* Define a whole list of registers */
8784 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
8785 void *opaque, size_t len)
8787 size_t i;
8788 for (i = 0; i < len; ++i) {
8789 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
8794 * Modify ARMCPRegInfo for access from userspace.
8796 * This is a data driven modification directed by
8797 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8798 * user-space cannot alter any values and dynamic values pertaining to
8799 * execution state are hidden from user space view anyway.
8801 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
8802 const ARMCPRegUserSpaceInfo *mods,
8803 size_t mods_len)
8805 for (size_t mi = 0; mi < mods_len; ++mi) {
8806 const ARMCPRegUserSpaceInfo *m = mods + mi;
8807 GPatternSpec *pat = NULL;
8809 if (m->is_glob) {
8810 pat = g_pattern_spec_new(m->name);
8812 for (size_t ri = 0; ri < regs_len; ++ri) {
8813 ARMCPRegInfo *r = regs + ri;
8815 if (pat && g_pattern_match_string(pat, r->name)) {
8816 r->type = ARM_CP_CONST;
8817 r->access = PL0U_R;
8818 r->resetvalue = 0;
8819 /* continue */
8820 } else if (strcmp(r->name, m->name) == 0) {
8821 r->type = ARM_CP_CONST;
8822 r->access = PL0U_R;
8823 r->resetvalue &= m->exported_bits;
8824 r->resetvalue |= m->fixed_bits;
8825 break;
8828 if (pat) {
8829 g_pattern_spec_free(pat);
8834 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8836 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
8839 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8840 uint64_t value)
8842 /* Helper coprocessor write function for write-ignore registers */
8845 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8847 /* Helper coprocessor write function for read-as-zero registers */
8848 return 0;
8851 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8853 /* Helper coprocessor reset function for do-nothing-on-reset registers */
8856 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8858 /* Return true if it is not valid for us to switch to
8859 * this CPU mode (ie all the UNPREDICTABLE cases in
8860 * the ARM ARM CPSRWriteByInstr pseudocode).
8863 /* Changes to or from Hyp via MSR and CPS are illegal. */
8864 if (write_type == CPSRWriteByInstr &&
8865 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8866 mode == ARM_CPU_MODE_HYP)) {
8867 return 1;
8870 switch (mode) {
8871 case ARM_CPU_MODE_USR:
8872 return 0;
8873 case ARM_CPU_MODE_SYS:
8874 case ARM_CPU_MODE_SVC:
8875 case ARM_CPU_MODE_ABT:
8876 case ARM_CPU_MODE_UND:
8877 case ARM_CPU_MODE_IRQ:
8878 case ARM_CPU_MODE_FIQ:
8879 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8880 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8882 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8883 * and CPS are treated as illegal mode changes.
8885 if (write_type == CPSRWriteByInstr &&
8886 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8887 (arm_hcr_el2_eff(env) & HCR_TGE)) {
8888 return 1;
8890 return 0;
8891 case ARM_CPU_MODE_HYP:
8892 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
8893 case ARM_CPU_MODE_MON:
8894 return arm_current_el(env) < 3;
8895 default:
8896 return 1;
8900 uint32_t cpsr_read(CPUARMState *env)
8902 int ZF;
8903 ZF = (env->ZF == 0);
8904 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8905 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8906 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8907 | ((env->condexec_bits & 0xfc) << 8)
8908 | (env->GE << 16) | (env->daif & CPSR_AIF);
8911 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8912 CPSRWriteType write_type)
8914 uint32_t changed_daif;
8915 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
8916 (mask & (CPSR_M | CPSR_E | CPSR_IL));
8918 if (mask & CPSR_NZCV) {
8919 env->ZF = (~val) & CPSR_Z;
8920 env->NF = val;
8921 env->CF = (val >> 29) & 1;
8922 env->VF = (val << 3) & 0x80000000;
8924 if (mask & CPSR_Q)
8925 env->QF = ((val & CPSR_Q) != 0);
8926 if (mask & CPSR_T)
8927 env->thumb = ((val & CPSR_T) != 0);
8928 if (mask & CPSR_IT_0_1) {
8929 env->condexec_bits &= ~3;
8930 env->condexec_bits |= (val >> 25) & 3;
8932 if (mask & CPSR_IT_2_7) {
8933 env->condexec_bits &= 3;
8934 env->condexec_bits |= (val >> 8) & 0xfc;
8936 if (mask & CPSR_GE) {
8937 env->GE = (val >> 16) & 0xf;
8940 /* In a V7 implementation that includes the security extensions but does
8941 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8942 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8943 * bits respectively.
8945 * In a V8 implementation, it is permitted for privileged software to
8946 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8948 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8949 arm_feature(env, ARM_FEATURE_EL3) &&
8950 !arm_feature(env, ARM_FEATURE_EL2) &&
8951 !arm_is_secure(env)) {
8953 changed_daif = (env->daif ^ val) & mask;
8955 if (changed_daif & CPSR_A) {
8956 /* Check to see if we are allowed to change the masking of async
8957 * abort exceptions from a non-secure state.
8959 if (!(env->cp15.scr_el3 & SCR_AW)) {
8960 qemu_log_mask(LOG_GUEST_ERROR,
8961 "Ignoring attempt to switch CPSR_A flag from "
8962 "non-secure world with SCR.AW bit clear\n");
8963 mask &= ~CPSR_A;
8967 if (changed_daif & CPSR_F) {
8968 /* Check to see if we are allowed to change the masking of FIQ
8969 * exceptions from a non-secure state.
8971 if (!(env->cp15.scr_el3 & SCR_FW)) {
8972 qemu_log_mask(LOG_GUEST_ERROR,
8973 "Ignoring attempt to switch CPSR_F flag from "
8974 "non-secure world with SCR.FW bit clear\n");
8975 mask &= ~CPSR_F;
8978 /* Check whether non-maskable FIQ (NMFI) support is enabled.
8979 * If this bit is set software is not allowed to mask
8980 * FIQs, but is allowed to set CPSR_F to 0.
8982 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8983 (val & CPSR_F)) {
8984 qemu_log_mask(LOG_GUEST_ERROR,
8985 "Ignoring attempt to enable CPSR_F flag "
8986 "(non-maskable FIQ [NMFI] support enabled)\n");
8987 mask &= ~CPSR_F;
8992 env->daif &= ~(CPSR_AIF & mask);
8993 env->daif |= val & CPSR_AIF & mask;
8995 if (write_type != CPSRWriteRaw &&
8996 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8997 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8998 /* Note that we can only get here in USR mode if this is a
8999 * gdb stub write; for this case we follow the architectural
9000 * behaviour for guest writes in USR mode of ignoring an attempt
9001 * to switch mode. (Those are caught by translate.c for writes
9002 * triggered by guest instructions.)
9004 mask &= ~CPSR_M;
9005 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9006 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9007 * v7, and has defined behaviour in v8:
9008 * + leave CPSR.M untouched
9009 * + allow changes to the other CPSR fields
9010 * + set PSTATE.IL
9011 * For user changes via the GDB stub, we don't set PSTATE.IL,
9012 * as this would be unnecessarily harsh for a user error.
9014 mask &= ~CPSR_M;
9015 if (write_type != CPSRWriteByGDBStub &&
9016 arm_feature(env, ARM_FEATURE_V8)) {
9017 mask |= CPSR_IL;
9018 val |= CPSR_IL;
9020 qemu_log_mask(LOG_GUEST_ERROR,
9021 "Illegal AArch32 mode switch attempt from %s to %s\n",
9022 aarch32_mode_name(env->uncached_cpsr),
9023 aarch32_mode_name(val));
9024 } else {
9025 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9026 write_type == CPSRWriteExceptionReturn ?
9027 "Exception return from AArch32" :
9028 "AArch32 mode switch from",
9029 aarch32_mode_name(env->uncached_cpsr),
9030 aarch32_mode_name(val), env->regs[15]);
9031 switch_mode(env, val & CPSR_M);
9034 mask &= ~CACHED_CPSR_BITS;
9035 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9036 if (rebuild_hflags) {
9037 arm_rebuild_hflags(env);
9041 /* Sign/zero extend */
9042 uint32_t HELPER(sxtb16)(uint32_t x)
9044 uint32_t res;
9045 res = (uint16_t)(int8_t)x;
9046 res |= (uint32_t)(int8_t)(x >> 16) << 16;
9047 return res;
9050 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9053 * Take a division-by-zero exception if necessary; otherwise return
9054 * to get the usual non-trapping division behaviour (result of 0)
9056 if (arm_feature(env, ARM_FEATURE_M)
9057 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9058 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9062 uint32_t HELPER(uxtb16)(uint32_t x)
9064 uint32_t res;
9065 res = (uint16_t)(uint8_t)x;
9066 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9067 return res;
9070 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9072 if (den == 0) {
9073 handle_possible_div0_trap(env, GETPC());
9074 return 0;
9076 if (num == INT_MIN && den == -1) {
9077 return INT_MIN;
9079 return num / den;
9082 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9084 if (den == 0) {
9085 handle_possible_div0_trap(env, GETPC());
9086 return 0;
9088 return num / den;
9091 uint32_t HELPER(rbit)(uint32_t x)
9093 return revbit32(x);
9096 #ifdef CONFIG_USER_ONLY
9098 static void switch_mode(CPUARMState *env, int mode)
9100 ARMCPU *cpu = env_archcpu(env);
9102 if (mode != ARM_CPU_MODE_USR) {
9103 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9107 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9108 uint32_t cur_el, bool secure)
9110 return 1;
9113 void aarch64_sync_64_to_32(CPUARMState *env)
9115 g_assert_not_reached();
9118 #else
9120 static void switch_mode(CPUARMState *env, int mode)
9122 int old_mode;
9123 int i;
9125 old_mode = env->uncached_cpsr & CPSR_M;
9126 if (mode == old_mode)
9127 return;
9129 if (old_mode == ARM_CPU_MODE_FIQ) {
9130 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9131 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9132 } else if (mode == ARM_CPU_MODE_FIQ) {
9133 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9134 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9137 i = bank_number(old_mode);
9138 env->banked_r13[i] = env->regs[13];
9139 env->banked_spsr[i] = env->spsr;
9141 i = bank_number(mode);
9142 env->regs[13] = env->banked_r13[i];
9143 env->spsr = env->banked_spsr[i];
9145 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9146 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9149 /* Physical Interrupt Target EL Lookup Table
9151 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9153 * The below multi-dimensional table is used for looking up the target
9154 * exception level given numerous condition criteria. Specifically, the
9155 * target EL is based on SCR and HCR routing controls as well as the
9156 * currently executing EL and secure state.
9158 * Dimensions:
9159 * target_el_table[2][2][2][2][2][4]
9160 * | | | | | +--- Current EL
9161 * | | | | +------ Non-secure(0)/Secure(1)
9162 * | | | +--------- HCR mask override
9163 * | | +------------ SCR exec state control
9164 * | +--------------- SCR mask override
9165 * +------------------ 32-bit(0)/64-bit(1) EL3
9167 * The table values are as such:
9168 * 0-3 = EL0-EL3
9169 * -1 = Cannot occur
9171 * The ARM ARM target EL table includes entries indicating that an "exception
9172 * is not taken". The two cases where this is applicable are:
9173 * 1) An exception is taken from EL3 but the SCR does not have the exception
9174 * routed to EL3.
9175 * 2) An exception is taken from EL2 but the HCR does not have the exception
9176 * routed to EL2.
9177 * In these two cases, the below table contain a target of EL1. This value is
9178 * returned as it is expected that the consumer of the table data will check
9179 * for "target EL >= current EL" to ensure the exception is not taken.
9181 * SCR HCR
9182 * 64 EA AMO From
9183 * BIT IRQ IMO Non-secure Secure
9184 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
9186 static const int8_t target_el_table[2][2][2][2][2][4] = {
9187 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9188 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
9189 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9190 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
9191 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9192 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
9193 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9194 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
9195 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
9196 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
9197 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
9198 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
9199 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
9200 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
9201 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
9202 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
9206 * Determine the target EL for physical exceptions
9208 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9209 uint32_t cur_el, bool secure)
9211 CPUARMState *env = cs->env_ptr;
9212 bool rw;
9213 bool scr;
9214 bool hcr;
9215 int target_el;
9216 /* Is the highest EL AArch64? */
9217 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9218 uint64_t hcr_el2;
9220 if (arm_feature(env, ARM_FEATURE_EL3)) {
9221 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9222 } else {
9223 /* Either EL2 is the highest EL (and so the EL2 register width
9224 * is given by is64); or there is no EL2 or EL3, in which case
9225 * the value of 'rw' does not affect the table lookup anyway.
9227 rw = is64;
9230 hcr_el2 = arm_hcr_el2_eff(env);
9231 switch (excp_idx) {
9232 case EXCP_IRQ:
9233 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9234 hcr = hcr_el2 & HCR_IMO;
9235 break;
9236 case EXCP_FIQ:
9237 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9238 hcr = hcr_el2 & HCR_FMO;
9239 break;
9240 default:
9241 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9242 hcr = hcr_el2 & HCR_AMO;
9243 break;
9247 * For these purposes, TGE and AMO/IMO/FMO both force the
9248 * interrupt to EL2. Fold TGE into the bit extracted above.
9250 hcr |= (hcr_el2 & HCR_TGE) != 0;
9252 /* Perform a table-lookup for the target EL given the current state */
9253 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9255 assert(target_el > 0);
9257 return target_el;
9260 void arm_log_exception(CPUState *cs)
9262 int idx = cs->exception_index;
9264 if (qemu_loglevel_mask(CPU_LOG_INT)) {
9265 const char *exc = NULL;
9266 static const char * const excnames[] = {
9267 [EXCP_UDEF] = "Undefined Instruction",
9268 [EXCP_SWI] = "SVC",
9269 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9270 [EXCP_DATA_ABORT] = "Data Abort",
9271 [EXCP_IRQ] = "IRQ",
9272 [EXCP_FIQ] = "FIQ",
9273 [EXCP_BKPT] = "Breakpoint",
9274 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9275 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9276 [EXCP_HVC] = "Hypervisor Call",
9277 [EXCP_HYP_TRAP] = "Hypervisor Trap",
9278 [EXCP_SMC] = "Secure Monitor Call",
9279 [EXCP_VIRQ] = "Virtual IRQ",
9280 [EXCP_VFIQ] = "Virtual FIQ",
9281 [EXCP_SEMIHOST] = "Semihosting call",
9282 [EXCP_NOCP] = "v7M NOCP UsageFault",
9283 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9284 [EXCP_STKOF] = "v8M STKOF UsageFault",
9285 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9286 [EXCP_LSERR] = "v8M LSERR UsageFault",
9287 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9288 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9289 [EXCP_VSERR] = "Virtual SERR",
9292 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9293 exc = excnames[idx];
9295 if (!exc) {
9296 exc = "unknown";
9298 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
9299 idx, exc, cs->cpu_index);
9304 * Function used to synchronize QEMU's AArch64 register set with AArch32
9305 * register set. This is necessary when switching between AArch32 and AArch64
9306 * execution state.
9308 void aarch64_sync_32_to_64(CPUARMState *env)
9310 int i;
9311 uint32_t mode = env->uncached_cpsr & CPSR_M;
9313 /* We can blanket copy R[0:7] to X[0:7] */
9314 for (i = 0; i < 8; i++) {
9315 env->xregs[i] = env->regs[i];
9319 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9320 * Otherwise, they come from the banked user regs.
9322 if (mode == ARM_CPU_MODE_FIQ) {
9323 for (i = 8; i < 13; i++) {
9324 env->xregs[i] = env->usr_regs[i - 8];
9326 } else {
9327 for (i = 8; i < 13; i++) {
9328 env->xregs[i] = env->regs[i];
9333 * Registers x13-x23 are the various mode SP and FP registers. Registers
9334 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9335 * from the mode banked register.
9337 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9338 env->xregs[13] = env->regs[13];
9339 env->xregs[14] = env->regs[14];
9340 } else {
9341 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9342 /* HYP is an exception in that it is copied from r14 */
9343 if (mode == ARM_CPU_MODE_HYP) {
9344 env->xregs[14] = env->regs[14];
9345 } else {
9346 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9350 if (mode == ARM_CPU_MODE_HYP) {
9351 env->xregs[15] = env->regs[13];
9352 } else {
9353 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9356 if (mode == ARM_CPU_MODE_IRQ) {
9357 env->xregs[16] = env->regs[14];
9358 env->xregs[17] = env->regs[13];
9359 } else {
9360 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9361 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9364 if (mode == ARM_CPU_MODE_SVC) {
9365 env->xregs[18] = env->regs[14];
9366 env->xregs[19] = env->regs[13];
9367 } else {
9368 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9369 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9372 if (mode == ARM_CPU_MODE_ABT) {
9373 env->xregs[20] = env->regs[14];
9374 env->xregs[21] = env->regs[13];
9375 } else {
9376 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9377 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9380 if (mode == ARM_CPU_MODE_UND) {
9381 env->xregs[22] = env->regs[14];
9382 env->xregs[23] = env->regs[13];
9383 } else {
9384 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9385 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9389 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9390 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9391 * FIQ bank for r8-r14.
9393 if (mode == ARM_CPU_MODE_FIQ) {
9394 for (i = 24; i < 31; i++) {
9395 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9397 } else {
9398 for (i = 24; i < 29; i++) {
9399 env->xregs[i] = env->fiq_regs[i - 24];
9401 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9402 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9405 env->pc = env->regs[15];
9409 * Function used to synchronize QEMU's AArch32 register set with AArch64
9410 * register set. This is necessary when switching between AArch32 and AArch64
9411 * execution state.
9413 void aarch64_sync_64_to_32(CPUARMState *env)
9415 int i;
9416 uint32_t mode = env->uncached_cpsr & CPSR_M;
9418 /* We can blanket copy X[0:7] to R[0:7] */
9419 for (i = 0; i < 8; i++) {
9420 env->regs[i] = env->xregs[i];
9424 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9425 * Otherwise, we copy x8-x12 into the banked user regs.
9427 if (mode == ARM_CPU_MODE_FIQ) {
9428 for (i = 8; i < 13; i++) {
9429 env->usr_regs[i - 8] = env->xregs[i];
9431 } else {
9432 for (i = 8; i < 13; i++) {
9433 env->regs[i] = env->xregs[i];
9438 * Registers r13 & r14 depend on the current mode.
9439 * If we are in a given mode, we copy the corresponding x registers to r13
9440 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9441 * for the mode.
9443 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9444 env->regs[13] = env->xregs[13];
9445 env->regs[14] = env->xregs[14];
9446 } else {
9447 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9450 * HYP is an exception in that it does not have its own banked r14 but
9451 * shares the USR r14
9453 if (mode == ARM_CPU_MODE_HYP) {
9454 env->regs[14] = env->xregs[14];
9455 } else {
9456 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9460 if (mode == ARM_CPU_MODE_HYP) {
9461 env->regs[13] = env->xregs[15];
9462 } else {
9463 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9466 if (mode == ARM_CPU_MODE_IRQ) {
9467 env->regs[14] = env->xregs[16];
9468 env->regs[13] = env->xregs[17];
9469 } else {
9470 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9471 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9474 if (mode == ARM_CPU_MODE_SVC) {
9475 env->regs[14] = env->xregs[18];
9476 env->regs[13] = env->xregs[19];
9477 } else {
9478 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9479 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9482 if (mode == ARM_CPU_MODE_ABT) {
9483 env->regs[14] = env->xregs[20];
9484 env->regs[13] = env->xregs[21];
9485 } else {
9486 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9487 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9490 if (mode == ARM_CPU_MODE_UND) {
9491 env->regs[14] = env->xregs[22];
9492 env->regs[13] = env->xregs[23];
9493 } else {
9494 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9495 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9498 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9499 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9500 * FIQ bank for r8-r14.
9502 if (mode == ARM_CPU_MODE_FIQ) {
9503 for (i = 24; i < 31; i++) {
9504 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9506 } else {
9507 for (i = 24; i < 29; i++) {
9508 env->fiq_regs[i - 24] = env->xregs[i];
9510 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9511 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9514 env->regs[15] = env->pc;
9517 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9518 uint32_t mask, uint32_t offset,
9519 uint32_t newpc)
9521 int new_el;
9523 /* Change the CPU state so as to actually take the exception. */
9524 switch_mode(env, new_mode);
9527 * For exceptions taken to AArch32 we must clear the SS bit in both
9528 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9530 env->pstate &= ~PSTATE_SS;
9531 env->spsr = cpsr_read(env);
9532 /* Clear IT bits. */
9533 env->condexec_bits = 0;
9534 /* Switch to the new mode, and to the correct instruction set. */
9535 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9537 /* This must be after mode switching. */
9538 new_el = arm_current_el(env);
9540 /* Set new mode endianness */
9541 env->uncached_cpsr &= ~CPSR_E;
9542 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9543 env->uncached_cpsr |= CPSR_E;
9545 /* J and IL must always be cleared for exception entry */
9546 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9547 env->daif |= mask;
9549 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9550 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9551 env->uncached_cpsr |= CPSR_SSBS;
9552 } else {
9553 env->uncached_cpsr &= ~CPSR_SSBS;
9557 if (new_mode == ARM_CPU_MODE_HYP) {
9558 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9559 env->elr_el[2] = env->regs[15];
9560 } else {
9561 /* CPSR.PAN is normally preserved preserved unless... */
9562 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9563 switch (new_el) {
9564 case 3:
9565 if (!arm_is_secure_below_el3(env)) {
9566 /* ... the target is EL3, from non-secure state. */
9567 env->uncached_cpsr &= ~CPSR_PAN;
9568 break;
9570 /* ... the target is EL3, from secure state ... */
9571 /* fall through */
9572 case 1:
9573 /* ... the target is EL1 and SCTLR.SPAN is 0. */
9574 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9575 env->uncached_cpsr |= CPSR_PAN;
9577 break;
9581 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9582 * and we should just guard the thumb mode on V4
9584 if (arm_feature(env, ARM_FEATURE_V4T)) {
9585 env->thumb =
9586 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9588 env->regs[14] = env->regs[15] + offset;
9590 env->regs[15] = newpc;
9591 arm_rebuild_hflags(env);
9594 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9597 * Handle exception entry to Hyp mode; this is sufficiently
9598 * different to entry to other AArch32 modes that we handle it
9599 * separately here.
9601 * The vector table entry used is always the 0x14 Hyp mode entry point,
9602 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
9603 * The offset applied to the preferred return address is always zero
9604 * (see DDI0487C.a section G1.12.3).
9605 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9607 uint32_t addr, mask;
9608 ARMCPU *cpu = ARM_CPU(cs);
9609 CPUARMState *env = &cpu->env;
9611 switch (cs->exception_index) {
9612 case EXCP_UDEF:
9613 addr = 0x04;
9614 break;
9615 case EXCP_SWI:
9616 addr = 0x08;
9617 break;
9618 case EXCP_BKPT:
9619 /* Fall through to prefetch abort. */
9620 case EXCP_PREFETCH_ABORT:
9621 env->cp15.ifar_s = env->exception.vaddress;
9622 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9623 (uint32_t)env->exception.vaddress);
9624 addr = 0x0c;
9625 break;
9626 case EXCP_DATA_ABORT:
9627 env->cp15.dfar_s = env->exception.vaddress;
9628 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9629 (uint32_t)env->exception.vaddress);
9630 addr = 0x10;
9631 break;
9632 case EXCP_IRQ:
9633 addr = 0x18;
9634 break;
9635 case EXCP_FIQ:
9636 addr = 0x1c;
9637 break;
9638 case EXCP_HVC:
9639 addr = 0x08;
9640 break;
9641 case EXCP_HYP_TRAP:
9642 addr = 0x14;
9643 break;
9644 default:
9645 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9648 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9649 if (!arm_feature(env, ARM_FEATURE_V8)) {
9651 * QEMU syndrome values are v8-style. v7 has the IL bit
9652 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9653 * If this is a v7 CPU, squash the IL bit in those cases.
9655 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9656 (cs->exception_index == EXCP_DATA_ABORT &&
9657 !(env->exception.syndrome & ARM_EL_ISV)) ||
9658 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9659 env->exception.syndrome &= ~ARM_EL_IL;
9662 env->cp15.esr_el[2] = env->exception.syndrome;
9665 if (arm_current_el(env) != 2 && addr < 0x14) {
9666 addr = 0x14;
9669 mask = 0;
9670 if (!(env->cp15.scr_el3 & SCR_EA)) {
9671 mask |= CPSR_A;
9673 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9674 mask |= CPSR_I;
9676 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9677 mask |= CPSR_F;
9680 addr += env->cp15.hvbar;
9682 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9685 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9687 ARMCPU *cpu = ARM_CPU(cs);
9688 CPUARMState *env = &cpu->env;
9689 uint32_t addr;
9690 uint32_t mask;
9691 int new_mode;
9692 uint32_t offset;
9693 uint32_t moe;
9695 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9696 switch (syn_get_ec(env->exception.syndrome)) {
9697 case EC_BREAKPOINT:
9698 case EC_BREAKPOINT_SAME_EL:
9699 moe = 1;
9700 break;
9701 case EC_WATCHPOINT:
9702 case EC_WATCHPOINT_SAME_EL:
9703 moe = 10;
9704 break;
9705 case EC_AA32_BKPT:
9706 moe = 3;
9707 break;
9708 case EC_VECTORCATCH:
9709 moe = 5;
9710 break;
9711 default:
9712 moe = 0;
9713 break;
9716 if (moe) {
9717 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9720 if (env->exception.target_el == 2) {
9721 arm_cpu_do_interrupt_aarch32_hyp(cs);
9722 return;
9725 switch (cs->exception_index) {
9726 case EXCP_UDEF:
9727 new_mode = ARM_CPU_MODE_UND;
9728 addr = 0x04;
9729 mask = CPSR_I;
9730 if (env->thumb)
9731 offset = 2;
9732 else
9733 offset = 4;
9734 break;
9735 case EXCP_SWI:
9736 new_mode = ARM_CPU_MODE_SVC;
9737 addr = 0x08;
9738 mask = CPSR_I;
9739 /* The PC already points to the next instruction. */
9740 offset = 0;
9741 break;
9742 case EXCP_BKPT:
9743 /* Fall through to prefetch abort. */
9744 case EXCP_PREFETCH_ABORT:
9745 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9746 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9747 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9748 env->exception.fsr, (uint32_t)env->exception.vaddress);
9749 new_mode = ARM_CPU_MODE_ABT;
9750 addr = 0x0c;
9751 mask = CPSR_A | CPSR_I;
9752 offset = 4;
9753 break;
9754 case EXCP_DATA_ABORT:
9755 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9756 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9757 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9758 env->exception.fsr,
9759 (uint32_t)env->exception.vaddress);
9760 new_mode = ARM_CPU_MODE_ABT;
9761 addr = 0x10;
9762 mask = CPSR_A | CPSR_I;
9763 offset = 8;
9764 break;
9765 case EXCP_IRQ:
9766 new_mode = ARM_CPU_MODE_IRQ;
9767 addr = 0x18;
9768 /* Disable IRQ and imprecise data aborts. */
9769 mask = CPSR_A | CPSR_I;
9770 offset = 4;
9771 if (env->cp15.scr_el3 & SCR_IRQ) {
9772 /* IRQ routed to monitor mode */
9773 new_mode = ARM_CPU_MODE_MON;
9774 mask |= CPSR_F;
9776 break;
9777 case EXCP_FIQ:
9778 new_mode = ARM_CPU_MODE_FIQ;
9779 addr = 0x1c;
9780 /* Disable FIQ, IRQ and imprecise data aborts. */
9781 mask = CPSR_A | CPSR_I | CPSR_F;
9782 if (env->cp15.scr_el3 & SCR_FIQ) {
9783 /* FIQ routed to monitor mode */
9784 new_mode = ARM_CPU_MODE_MON;
9786 offset = 4;
9787 break;
9788 case EXCP_VIRQ:
9789 new_mode = ARM_CPU_MODE_IRQ;
9790 addr = 0x18;
9791 /* Disable IRQ and imprecise data aborts. */
9792 mask = CPSR_A | CPSR_I;
9793 offset = 4;
9794 break;
9795 case EXCP_VFIQ:
9796 new_mode = ARM_CPU_MODE_FIQ;
9797 addr = 0x1c;
9798 /* Disable FIQ, IRQ and imprecise data aborts. */
9799 mask = CPSR_A | CPSR_I | CPSR_F;
9800 offset = 4;
9801 break;
9802 case EXCP_VSERR:
9805 * Note that this is reported as a data abort, but the DFAR
9806 * has an UNKNOWN value. Construct the SError syndrome from
9807 * AET and ExT fields.
9809 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
9811 if (extended_addresses_enabled(env)) {
9812 env->exception.fsr = arm_fi_to_lfsc(&fi);
9813 } else {
9814 env->exception.fsr = arm_fi_to_sfsc(&fi);
9816 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
9817 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9818 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
9819 env->exception.fsr);
9821 new_mode = ARM_CPU_MODE_ABT;
9822 addr = 0x10;
9823 mask = CPSR_A | CPSR_I;
9824 offset = 8;
9826 break;
9827 case EXCP_SMC:
9828 new_mode = ARM_CPU_MODE_MON;
9829 addr = 0x08;
9830 mask = CPSR_A | CPSR_I | CPSR_F;
9831 offset = 0;
9832 break;
9833 default:
9834 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9835 return; /* Never happens. Keep compiler happy. */
9838 if (new_mode == ARM_CPU_MODE_MON) {
9839 addr += env->cp15.mvbar;
9840 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9841 /* High vectors. When enabled, base address cannot be remapped. */
9842 addr += 0xffff0000;
9843 } else {
9844 /* ARM v7 architectures provide a vector base address register to remap
9845 * the interrupt vector table.
9846 * This register is only followed in non-monitor mode, and is banked.
9847 * Note: only bits 31:5 are valid.
9849 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9852 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9853 env->cp15.scr_el3 &= ~SCR_NS;
9856 take_aarch32_exception(env, new_mode, mask, offset, addr);
9859 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9862 * Return the register number of the AArch64 view of the AArch32
9863 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9864 * be that of the AArch32 mode the exception came from.
9866 int mode = env->uncached_cpsr & CPSR_M;
9868 switch (aarch32_reg) {
9869 case 0 ... 7:
9870 return aarch32_reg;
9871 case 8 ... 12:
9872 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9873 case 13:
9874 switch (mode) {
9875 case ARM_CPU_MODE_USR:
9876 case ARM_CPU_MODE_SYS:
9877 return 13;
9878 case ARM_CPU_MODE_HYP:
9879 return 15;
9880 case ARM_CPU_MODE_IRQ:
9881 return 17;
9882 case ARM_CPU_MODE_SVC:
9883 return 19;
9884 case ARM_CPU_MODE_ABT:
9885 return 21;
9886 case ARM_CPU_MODE_UND:
9887 return 23;
9888 case ARM_CPU_MODE_FIQ:
9889 return 29;
9890 default:
9891 g_assert_not_reached();
9893 case 14:
9894 switch (mode) {
9895 case ARM_CPU_MODE_USR:
9896 case ARM_CPU_MODE_SYS:
9897 case ARM_CPU_MODE_HYP:
9898 return 14;
9899 case ARM_CPU_MODE_IRQ:
9900 return 16;
9901 case ARM_CPU_MODE_SVC:
9902 return 18;
9903 case ARM_CPU_MODE_ABT:
9904 return 20;
9905 case ARM_CPU_MODE_UND:
9906 return 22;
9907 case ARM_CPU_MODE_FIQ:
9908 return 30;
9909 default:
9910 g_assert_not_reached();
9912 case 15:
9913 return 31;
9914 default:
9915 g_assert_not_reached();
9919 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
9921 uint32_t ret = cpsr_read(env);
9923 /* Move DIT to the correct location for SPSR_ELx */
9924 if (ret & CPSR_DIT) {
9925 ret &= ~CPSR_DIT;
9926 ret |= PSTATE_DIT;
9928 /* Merge PSTATE.SS into SPSR_ELx */
9929 ret |= env->pstate & PSTATE_SS;
9931 return ret;
9934 static bool syndrome_is_sync_extabt(uint32_t syndrome)
9936 /* Return true if this syndrome value is a synchronous external abort */
9937 switch (syn_get_ec(syndrome)) {
9938 case EC_INSNABORT:
9939 case EC_INSNABORT_SAME_EL:
9940 case EC_DATAABORT:
9941 case EC_DATAABORT_SAME_EL:
9942 /* Look at fault status code for all the synchronous ext abort cases */
9943 switch (syndrome & 0x3f) {
9944 case 0x10:
9945 case 0x13:
9946 case 0x14:
9947 case 0x15:
9948 case 0x16:
9949 case 0x17:
9950 return true;
9951 default:
9952 return false;
9954 default:
9955 return false;
9959 /* Handle exception entry to a target EL which is using AArch64 */
9960 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9962 ARMCPU *cpu = ARM_CPU(cs);
9963 CPUARMState *env = &cpu->env;
9964 unsigned int new_el = env->exception.target_el;
9965 target_ulong addr = env->cp15.vbar_el[new_el];
9966 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9967 unsigned int old_mode;
9968 unsigned int cur_el = arm_current_el(env);
9969 int rt;
9972 * Note that new_el can never be 0. If cur_el is 0, then
9973 * el0_a64 is is_a64(), else el0_a64 is ignored.
9975 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9977 if (cur_el < new_el) {
9978 /* Entry vector offset depends on whether the implemented EL
9979 * immediately lower than the target level is using AArch32 or AArch64
9981 bool is_aa64;
9982 uint64_t hcr;
9984 switch (new_el) {
9985 case 3:
9986 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9987 break;
9988 case 2:
9989 hcr = arm_hcr_el2_eff(env);
9990 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9991 is_aa64 = (hcr & HCR_RW) != 0;
9992 break;
9994 /* fall through */
9995 case 1:
9996 is_aa64 = is_a64(env);
9997 break;
9998 default:
9999 g_assert_not_reached();
10002 if (is_aa64) {
10003 addr += 0x400;
10004 } else {
10005 addr += 0x600;
10007 } else if (pstate_read(env) & PSTATE_SP) {
10008 addr += 0x200;
10011 switch (cs->exception_index) {
10012 case EXCP_PREFETCH_ABORT:
10013 case EXCP_DATA_ABORT:
10015 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
10016 * to be taken to the SError vector entrypoint.
10018 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
10019 syndrome_is_sync_extabt(env->exception.syndrome)) {
10020 addr += 0x180;
10022 env->cp15.far_el[new_el] = env->exception.vaddress;
10023 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10024 env->cp15.far_el[new_el]);
10025 /* fall through */
10026 case EXCP_BKPT:
10027 case EXCP_UDEF:
10028 case EXCP_SWI:
10029 case EXCP_HVC:
10030 case EXCP_HYP_TRAP:
10031 case EXCP_SMC:
10032 switch (syn_get_ec(env->exception.syndrome)) {
10033 case EC_ADVSIMDFPACCESSTRAP:
10035 * QEMU internal FP/SIMD syndromes from AArch32 include the
10036 * TA and coproc fields which are only exposed if the exception
10037 * is taken to AArch32 Hyp mode. Mask them out to get a valid
10038 * AArch64 format syndrome.
10040 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10041 break;
10042 case EC_CP14RTTRAP:
10043 case EC_CP15RTTRAP:
10044 case EC_CP14DTTRAP:
10046 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10047 * the raw register field from the insn; when taking this to
10048 * AArch64 we must convert it to the AArch64 view of the register
10049 * number. Notice that we read a 4-bit AArch32 register number and
10050 * write back a 5-bit AArch64 one.
10052 rt = extract32(env->exception.syndrome, 5, 4);
10053 rt = aarch64_regnum(env, rt);
10054 env->exception.syndrome = deposit32(env->exception.syndrome,
10055 5, 5, rt);
10056 break;
10057 case EC_CP15RRTTRAP:
10058 case EC_CP14RRTTRAP:
10059 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10060 rt = extract32(env->exception.syndrome, 5, 4);
10061 rt = aarch64_regnum(env, rt);
10062 env->exception.syndrome = deposit32(env->exception.syndrome,
10063 5, 5, rt);
10064 rt = extract32(env->exception.syndrome, 10, 4);
10065 rt = aarch64_regnum(env, rt);
10066 env->exception.syndrome = deposit32(env->exception.syndrome,
10067 10, 5, rt);
10068 break;
10070 env->cp15.esr_el[new_el] = env->exception.syndrome;
10071 break;
10072 case EXCP_IRQ:
10073 case EXCP_VIRQ:
10074 addr += 0x80;
10075 break;
10076 case EXCP_FIQ:
10077 case EXCP_VFIQ:
10078 addr += 0x100;
10079 break;
10080 case EXCP_VSERR:
10081 addr += 0x180;
10082 /* Construct the SError syndrome from IDS and ISS fields. */
10083 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
10084 env->cp15.esr_el[new_el] = env->exception.syndrome;
10085 break;
10086 default:
10087 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10090 if (is_a64(env)) {
10091 old_mode = pstate_read(env);
10092 aarch64_save_sp(env, arm_current_el(env));
10093 env->elr_el[new_el] = env->pc;
10094 } else {
10095 old_mode = cpsr_read_for_spsr_elx(env);
10096 env->elr_el[new_el] = env->regs[15];
10098 aarch64_sync_32_to_64(env);
10100 env->condexec_bits = 0;
10102 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10104 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10105 env->elr_el[new_el]);
10107 if (cpu_isar_feature(aa64_pan, cpu)) {
10108 /* The value of PSTATE.PAN is normally preserved, except when ... */
10109 new_mode |= old_mode & PSTATE_PAN;
10110 switch (new_el) {
10111 case 2:
10112 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
10113 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10114 != (HCR_E2H | HCR_TGE)) {
10115 break;
10117 /* fall through */
10118 case 1:
10119 /* ... the target is EL1 ... */
10120 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
10121 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10122 new_mode |= PSTATE_PAN;
10124 break;
10127 if (cpu_isar_feature(aa64_mte, cpu)) {
10128 new_mode |= PSTATE_TCO;
10131 if (cpu_isar_feature(aa64_ssbs, cpu)) {
10132 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10133 new_mode |= PSTATE_SSBS;
10134 } else {
10135 new_mode &= ~PSTATE_SSBS;
10139 pstate_write(env, PSTATE_DAIF | new_mode);
10140 env->aarch64 = true;
10141 aarch64_restore_sp(env, new_el);
10142 helper_rebuild_hflags_a64(env, new_el);
10144 env->pc = addr;
10146 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10147 new_el, env->pc, pstate_read(env));
10151 * Do semihosting call and set the appropriate return value. All the
10152 * permission and validity checks have been done at translate time.
10154 * We only see semihosting exceptions in TCG only as they are not
10155 * trapped to the hypervisor in KVM.
10157 #ifdef CONFIG_TCG
10158 static void handle_semihosting(CPUState *cs)
10160 ARMCPU *cpu = ARM_CPU(cs);
10161 CPUARMState *env = &cpu->env;
10163 if (is_a64(env)) {
10164 qemu_log_mask(CPU_LOG_INT,
10165 "...handling as semihosting call 0x%" PRIx64 "\n",
10166 env->xregs[0]);
10167 do_common_semihosting(cs);
10168 env->pc += 4;
10169 } else {
10170 qemu_log_mask(CPU_LOG_INT,
10171 "...handling as semihosting call 0x%x\n",
10172 env->regs[0]);
10173 do_common_semihosting(cs);
10174 env->regs[15] += env->thumb ? 2 : 4;
10177 #endif
10179 /* Handle a CPU exception for A and R profile CPUs.
10180 * Do any appropriate logging, handle PSCI calls, and then hand off
10181 * to the AArch64-entry or AArch32-entry function depending on the
10182 * target exception level's register width.
10184 * Note: this is used for both TCG (as the do_interrupt tcg op),
10185 * and KVM to re-inject guest debug exceptions, and to
10186 * inject a Synchronous-External-Abort.
10188 void arm_cpu_do_interrupt(CPUState *cs)
10190 ARMCPU *cpu = ARM_CPU(cs);
10191 CPUARMState *env = &cpu->env;
10192 unsigned int new_el = env->exception.target_el;
10194 assert(!arm_feature(env, ARM_FEATURE_M));
10196 arm_log_exception(cs);
10197 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10198 new_el);
10199 if (qemu_loglevel_mask(CPU_LOG_INT)
10200 && !excp_is_internal(cs->exception_index)) {
10201 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10202 syn_get_ec(env->exception.syndrome),
10203 env->exception.syndrome);
10206 if (arm_is_psci_call(cpu, cs->exception_index)) {
10207 arm_handle_psci_call(cpu);
10208 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10209 return;
10213 * Semihosting semantics depend on the register width of the code
10214 * that caused the exception, not the target exception level, so
10215 * must be handled here.
10217 #ifdef CONFIG_TCG
10218 if (cs->exception_index == EXCP_SEMIHOST) {
10219 handle_semihosting(cs);
10220 return;
10222 #endif
10224 /* Hooks may change global state so BQL should be held, also the
10225 * BQL needs to be held for any modification of
10226 * cs->interrupt_request.
10228 g_assert(qemu_mutex_iothread_locked());
10230 arm_call_pre_el_change_hook(cpu);
10232 assert(!excp_is_internal(cs->exception_index));
10233 if (arm_el_is_aa64(env, new_el)) {
10234 arm_cpu_do_interrupt_aarch64(cs);
10235 } else {
10236 arm_cpu_do_interrupt_aarch32(cs);
10239 arm_call_el_change_hook(cpu);
10241 if (!kvm_enabled()) {
10242 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10245 #endif /* !CONFIG_USER_ONLY */
10247 uint64_t arm_sctlr(CPUARMState *env, int el)
10249 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10250 if (el == 0) {
10251 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10252 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10253 ? 2 : 1;
10255 return env->cp15.sctlr_el[el];
10258 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10260 if (regime_has_2_ranges(mmu_idx)) {
10261 return extract64(tcr, 37, 2);
10262 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10263 return 0; /* VTCR_EL2 */
10264 } else {
10265 /* Replicate the single TBI bit so we always have 2 bits. */
10266 return extract32(tcr, 20, 1) * 3;
10270 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10272 if (regime_has_2_ranges(mmu_idx)) {
10273 return extract64(tcr, 51, 2);
10274 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10275 return 0; /* VTCR_EL2 */
10276 } else {
10277 /* Replicate the single TBID bit so we always have 2 bits. */
10278 return extract32(tcr, 29, 1) * 3;
10282 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
10284 if (regime_has_2_ranges(mmu_idx)) {
10285 return extract64(tcr, 57, 2);
10286 } else {
10287 /* Replicate the single TCMA bit so we always have 2 bits. */
10288 return extract32(tcr, 30, 1) * 3;
10292 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10293 ARMMMUIdx mmu_idx, bool data)
10295 uint64_t tcr = regime_tcr(env, mmu_idx);
10296 bool epd, hpd, using16k, using64k, tsz_oob, ds;
10297 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
10298 ARMCPU *cpu = env_archcpu(env);
10300 if (!regime_has_2_ranges(mmu_idx)) {
10301 select = 0;
10302 tsz = extract32(tcr, 0, 6);
10303 using64k = extract32(tcr, 14, 1);
10304 using16k = extract32(tcr, 15, 1);
10305 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10306 /* VTCR_EL2 */
10307 hpd = false;
10308 } else {
10309 hpd = extract32(tcr, 24, 1);
10311 epd = false;
10312 sh = extract32(tcr, 12, 2);
10313 ps = extract32(tcr, 16, 3);
10314 ds = extract64(tcr, 32, 1);
10315 } else {
10317 * Bit 55 is always between the two regions, and is canonical for
10318 * determining if address tagging is enabled.
10320 select = extract64(va, 55, 1);
10321 if (!select) {
10322 tsz = extract32(tcr, 0, 6);
10323 epd = extract32(tcr, 7, 1);
10324 sh = extract32(tcr, 12, 2);
10325 using64k = extract32(tcr, 14, 1);
10326 using16k = extract32(tcr, 15, 1);
10327 hpd = extract64(tcr, 41, 1);
10328 } else {
10329 int tg = extract32(tcr, 30, 2);
10330 using16k = tg == 1;
10331 using64k = tg == 3;
10332 tsz = extract32(tcr, 16, 6);
10333 epd = extract32(tcr, 23, 1);
10334 sh = extract32(tcr, 28, 2);
10335 hpd = extract64(tcr, 42, 1);
10337 ps = extract64(tcr, 32, 3);
10338 ds = extract64(tcr, 59, 1);
10341 if (cpu_isar_feature(aa64_st, cpu)) {
10342 max_tsz = 48 - using64k;
10343 } else {
10344 max_tsz = 39;
10348 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
10349 * adjust the effective value of DS, as documented.
10351 min_tsz = 16;
10352 if (using64k) {
10353 if (cpu_isar_feature(aa64_lva, cpu)) {
10354 min_tsz = 12;
10356 ds = false;
10357 } else if (ds) {
10358 switch (mmu_idx) {
10359 case ARMMMUIdx_Stage2:
10360 case ARMMMUIdx_Stage2_S:
10361 if (using16k) {
10362 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
10363 } else {
10364 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
10366 break;
10367 default:
10368 if (using16k) {
10369 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
10370 } else {
10371 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
10373 break;
10375 if (ds) {
10376 min_tsz = 12;
10380 if (tsz > max_tsz) {
10381 tsz = max_tsz;
10382 tsz_oob = true;
10383 } else if (tsz < min_tsz) {
10384 tsz = min_tsz;
10385 tsz_oob = true;
10386 } else {
10387 tsz_oob = false;
10390 /* Present TBI as a composite with TBID. */
10391 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
10392 if (!data) {
10393 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
10395 tbi = (tbi >> select) & 1;
10397 return (ARMVAParameters) {
10398 .tsz = tsz,
10399 .ps = ps,
10400 .sh = sh,
10401 .select = select,
10402 .tbi = tbi,
10403 .epd = epd,
10404 .hpd = hpd,
10405 .using16k = using16k,
10406 .using64k = using64k,
10407 .tsz_oob = tsz_oob,
10408 .ds = ds,
10412 /* Note that signed overflow is undefined in C. The following routines are
10413 careful to use unsigned types where modulo arithmetic is required.
10414 Failure to do so _will_ break on newer gcc. */
10416 /* Signed saturating arithmetic. */
10418 /* Perform 16-bit signed saturating addition. */
10419 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10421 uint16_t res;
10423 res = a + b;
10424 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10425 if (a & 0x8000)
10426 res = 0x8000;
10427 else
10428 res = 0x7fff;
10430 return res;
10433 /* Perform 8-bit signed saturating addition. */
10434 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10436 uint8_t res;
10438 res = a + b;
10439 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10440 if (a & 0x80)
10441 res = 0x80;
10442 else
10443 res = 0x7f;
10445 return res;
10448 /* Perform 16-bit signed saturating subtraction. */
10449 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10451 uint16_t res;
10453 res = a - b;
10454 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10455 if (a & 0x8000)
10456 res = 0x8000;
10457 else
10458 res = 0x7fff;
10460 return res;
10463 /* Perform 8-bit signed saturating subtraction. */
10464 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10466 uint8_t res;
10468 res = a - b;
10469 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10470 if (a & 0x80)
10471 res = 0x80;
10472 else
10473 res = 0x7f;
10475 return res;
10478 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10479 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10480 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
10481 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
10482 #define PFX q
10484 #include "op_addsub.h"
10486 /* Unsigned saturating arithmetic. */
10487 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10489 uint16_t res;
10490 res = a + b;
10491 if (res < a)
10492 res = 0xffff;
10493 return res;
10496 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10498 if (a > b)
10499 return a - b;
10500 else
10501 return 0;
10504 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10506 uint8_t res;
10507 res = a + b;
10508 if (res < a)
10509 res = 0xff;
10510 return res;
10513 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10515 if (a > b)
10516 return a - b;
10517 else
10518 return 0;
10521 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10522 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10523 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
10524 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
10525 #define PFX uq
10527 #include "op_addsub.h"
10529 /* Signed modulo arithmetic. */
10530 #define SARITH16(a, b, n, op) do { \
10531 int32_t sum; \
10532 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10533 RESULT(sum, n, 16); \
10534 if (sum >= 0) \
10535 ge |= 3 << (n * 2); \
10536 } while(0)
10538 #define SARITH8(a, b, n, op) do { \
10539 int32_t sum; \
10540 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10541 RESULT(sum, n, 8); \
10542 if (sum >= 0) \
10543 ge |= 1 << n; \
10544 } while(0)
10547 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10548 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10549 #define ADD8(a, b, n) SARITH8(a, b, n, +)
10550 #define SUB8(a, b, n) SARITH8(a, b, n, -)
10551 #define PFX s
10552 #define ARITH_GE
10554 #include "op_addsub.h"
10556 /* Unsigned modulo arithmetic. */
10557 #define ADD16(a, b, n) do { \
10558 uint32_t sum; \
10559 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10560 RESULT(sum, n, 16); \
10561 if ((sum >> 16) == 1) \
10562 ge |= 3 << (n * 2); \
10563 } while(0)
10565 #define ADD8(a, b, n) do { \
10566 uint32_t sum; \
10567 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10568 RESULT(sum, n, 8); \
10569 if ((sum >> 8) == 1) \
10570 ge |= 1 << n; \
10571 } while(0)
10573 #define SUB16(a, b, n) do { \
10574 uint32_t sum; \
10575 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10576 RESULT(sum, n, 16); \
10577 if ((sum >> 16) == 0) \
10578 ge |= 3 << (n * 2); \
10579 } while(0)
10581 #define SUB8(a, b, n) do { \
10582 uint32_t sum; \
10583 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10584 RESULT(sum, n, 8); \
10585 if ((sum >> 8) == 0) \
10586 ge |= 1 << n; \
10587 } while(0)
10589 #define PFX u
10590 #define ARITH_GE
10592 #include "op_addsub.h"
10594 /* Halved signed arithmetic. */
10595 #define ADD16(a, b, n) \
10596 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10597 #define SUB16(a, b, n) \
10598 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10599 #define ADD8(a, b, n) \
10600 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10601 #define SUB8(a, b, n) \
10602 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10603 #define PFX sh
10605 #include "op_addsub.h"
10607 /* Halved unsigned arithmetic. */
10608 #define ADD16(a, b, n) \
10609 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10610 #define SUB16(a, b, n) \
10611 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10612 #define ADD8(a, b, n) \
10613 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10614 #define SUB8(a, b, n) \
10615 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10616 #define PFX uh
10618 #include "op_addsub.h"
10620 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10622 if (a > b)
10623 return a - b;
10624 else
10625 return b - a;
10628 /* Unsigned sum of absolute byte differences. */
10629 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10631 uint32_t sum;
10632 sum = do_usad(a, b);
10633 sum += do_usad(a >> 8, b >> 8);
10634 sum += do_usad(a >> 16, b >> 16);
10635 sum += do_usad(a >> 24, b >> 24);
10636 return sum;
10639 /* For ARMv6 SEL instruction. */
10640 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10642 uint32_t mask;
10644 mask = 0;
10645 if (flags & 1)
10646 mask |= 0xff;
10647 if (flags & 2)
10648 mask |= 0xff00;
10649 if (flags & 4)
10650 mask |= 0xff0000;
10651 if (flags & 8)
10652 mask |= 0xff000000;
10653 return (a & mask) | (b & ~mask);
10656 /* CRC helpers.
10657 * The upper bytes of val (above the number specified by 'bytes') must have
10658 * been zeroed out by the caller.
10660 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10662 uint8_t buf[4];
10664 stl_le_p(buf, val);
10666 /* zlib crc32 converts the accumulator and output to one's complement. */
10667 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10670 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10672 uint8_t buf[4];
10674 stl_le_p(buf, val);
10676 /* Linux crc32c converts the output to one's complement. */
10677 return crc32c(acc, buf, bytes) ^ 0xffffffff;
10680 /* Return the exception level to which FP-disabled exceptions should
10681 * be taken, or 0 if FP is enabled.
10683 int fp_exception_el(CPUARMState *env, int cur_el)
10685 #ifndef CONFIG_USER_ONLY
10686 uint64_t hcr_el2;
10688 /* CPACR and the CPTR registers don't exist before v6, so FP is
10689 * always accessible
10691 if (!arm_feature(env, ARM_FEATURE_V6)) {
10692 return 0;
10695 if (arm_feature(env, ARM_FEATURE_M)) {
10696 /* CPACR can cause a NOCP UsageFault taken to current security state */
10697 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
10698 return 1;
10701 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
10702 if (!extract32(env->v7m.nsacr, 10, 1)) {
10703 /* FP insns cause a NOCP UsageFault taken to Secure */
10704 return 3;
10708 return 0;
10711 hcr_el2 = arm_hcr_el2_eff(env);
10713 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
10714 * 0, 2 : trap EL0 and EL1/PL1 accesses
10715 * 1 : trap only EL0 accesses
10716 * 3 : trap no accesses
10717 * This register is ignored if E2H+TGE are both set.
10719 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10720 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
10722 switch (fpen) {
10723 case 1:
10724 if (cur_el != 0) {
10725 break;
10727 /* fall through */
10728 case 0:
10729 case 2:
10730 /* Trap from Secure PL0 or PL1 to Secure PL1. */
10731 if (!arm_el_is_aa64(env, 3)
10732 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
10733 return 3;
10735 if (cur_el <= 1) {
10736 return 1;
10738 break;
10743 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
10744 * to control non-secure access to the FPU. It doesn't have any
10745 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
10747 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
10748 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
10749 if (!extract32(env->cp15.nsacr, 10, 1)) {
10750 /* FP insns act as UNDEF */
10751 return cur_el == 2 ? 2 : 1;
10756 * CPTR_EL2 is present in v7VE or v8, and changes format
10757 * with HCR_EL2.E2H (regardless of TGE).
10759 if (cur_el <= 2) {
10760 if (hcr_el2 & HCR_E2H) {
10761 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
10762 case 1:
10763 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
10764 break;
10766 /* fall through */
10767 case 0:
10768 case 2:
10769 return 2;
10771 } else if (arm_is_el2_enabled(env)) {
10772 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
10773 return 2;
10778 /* CPTR_EL3 : present in v8 */
10779 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
10780 /* Trap all FP ops to EL3 */
10781 return 3;
10783 #endif
10784 return 0;
10787 /* Return the exception level we're running at if this is our mmu_idx */
10788 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
10790 if (mmu_idx & ARM_MMU_IDX_M) {
10791 return mmu_idx & ARM_MMU_IDX_M_PRIV;
10794 switch (mmu_idx) {
10795 case ARMMMUIdx_E10_0:
10796 case ARMMMUIdx_E20_0:
10797 case ARMMMUIdx_SE10_0:
10798 case ARMMMUIdx_SE20_0:
10799 return 0;
10800 case ARMMMUIdx_E10_1:
10801 case ARMMMUIdx_E10_1_PAN:
10802 case ARMMMUIdx_SE10_1:
10803 case ARMMMUIdx_SE10_1_PAN:
10804 return 1;
10805 case ARMMMUIdx_E2:
10806 case ARMMMUIdx_E20_2:
10807 case ARMMMUIdx_E20_2_PAN:
10808 case ARMMMUIdx_SE2:
10809 case ARMMMUIdx_SE20_2:
10810 case ARMMMUIdx_SE20_2_PAN:
10811 return 2;
10812 case ARMMMUIdx_SE3:
10813 return 3;
10814 default:
10815 g_assert_not_reached();
10819 #ifndef CONFIG_TCG
10820 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
10822 g_assert_not_reached();
10824 #endif
10826 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
10828 ARMMMUIdx idx;
10829 uint64_t hcr;
10831 if (arm_feature(env, ARM_FEATURE_M)) {
10832 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
10835 /* See ARM pseudo-function ELIsInHost. */
10836 switch (el) {
10837 case 0:
10838 hcr = arm_hcr_el2_eff(env);
10839 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
10840 idx = ARMMMUIdx_E20_0;
10841 } else {
10842 idx = ARMMMUIdx_E10_0;
10844 break;
10845 case 1:
10846 if (env->pstate & PSTATE_PAN) {
10847 idx = ARMMMUIdx_E10_1_PAN;
10848 } else {
10849 idx = ARMMMUIdx_E10_1;
10851 break;
10852 case 2:
10853 /* Note that TGE does not apply at EL2. */
10854 if (arm_hcr_el2_eff(env) & HCR_E2H) {
10855 if (env->pstate & PSTATE_PAN) {
10856 idx = ARMMMUIdx_E20_2_PAN;
10857 } else {
10858 idx = ARMMMUIdx_E20_2;
10860 } else {
10861 idx = ARMMMUIdx_E2;
10863 break;
10864 case 3:
10865 return ARMMMUIdx_SE3;
10866 default:
10867 g_assert_not_reached();
10870 if (arm_is_secure_below_el3(env)) {
10871 idx &= ~ARM_MMU_IDX_A_NS;
10874 return idx;
10877 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
10879 return arm_mmu_idx_el(env, arm_current_el(env));
10882 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
10883 ARMMMUIdx mmu_idx,
10884 CPUARMTBFlags flags)
10886 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
10887 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
10889 if (arm_singlestep_active(env)) {
10890 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
10892 return flags;
10895 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
10896 ARMMMUIdx mmu_idx,
10897 CPUARMTBFlags flags)
10899 bool sctlr_b = arm_sctlr_b(env);
10901 if (sctlr_b) {
10902 DP_TBFLAG_A32(flags, SCTLR__B, 1);
10904 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
10905 DP_TBFLAG_ANY(flags, BE_DATA, 1);
10907 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
10909 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
10912 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
10913 ARMMMUIdx mmu_idx)
10915 CPUARMTBFlags flags = {};
10916 uint32_t ccr = env->v7m.ccr[env->v7m.secure];
10918 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
10919 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
10920 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
10923 if (arm_v7m_is_handler_mode(env)) {
10924 DP_TBFLAG_M32(flags, HANDLER, 1);
10928 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
10929 * is suppressing them because the requested execution priority
10930 * is less than 0.
10932 if (arm_feature(env, ARM_FEATURE_V8) &&
10933 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
10934 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
10935 DP_TBFLAG_M32(flags, STACKCHECK, 1);
10938 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
10941 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
10942 ARMMMUIdx mmu_idx)
10944 CPUARMTBFlags flags = {};
10945 int el = arm_current_el(env);
10947 if (arm_sctlr(env, el) & SCTLR_A) {
10948 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
10951 if (arm_el_is_aa64(env, 1)) {
10952 DP_TBFLAG_A32(flags, VFPEN, 1);
10955 if (el < 2 && env->cp15.hstr_el2 &&
10956 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10957 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
10960 if (env->uncached_cpsr & CPSR_IL) {
10961 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
10965 * The SME exception we are testing for is raised via
10966 * AArch64.CheckFPAdvSIMDEnabled(), as called from
10967 * AArch32.CheckAdvSIMDOrFPEnabled().
10969 if (el == 0
10970 && FIELD_EX64(env->svcr, SVCR, SM)
10971 && (!arm_is_el2_enabled(env)
10972 || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE)))
10973 && arm_el_is_aa64(env, 1)
10974 && !sme_fa64(env, el)) {
10975 DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1);
10978 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
10981 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
10982 ARMMMUIdx mmu_idx)
10984 CPUARMTBFlags flags = {};
10985 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
10986 uint64_t tcr = regime_tcr(env, mmu_idx);
10987 uint64_t sctlr;
10988 int tbii, tbid;
10990 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
10992 /* Get control bits for tagged addresses. */
10993 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
10994 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
10996 DP_TBFLAG_A64(flags, TBII, tbii);
10997 DP_TBFLAG_A64(flags, TBID, tbid);
10999 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
11000 int sve_el = sve_exception_el(env, el);
11003 * If either FP or SVE are disabled, translator does not need len.
11004 * If SVE EL > FP EL, FP exception has precedence, and translator
11005 * does not need SVE EL. Save potential re-translations by forcing
11006 * the unneeded data to zero.
11008 if (fp_el != 0) {
11009 if (sve_el > fp_el) {
11010 sve_el = 0;
11012 } else if (sve_el == 0) {
11013 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el));
11015 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
11017 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
11018 int sme_el = sme_exception_el(env, el);
11019 bool sm = FIELD_EX64(env->svcr, SVCR, SM);
11021 DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el);
11022 if (sme_el == 0) {
11023 /* Similarly, do not compute SVL if SME is disabled. */
11024 int svl = sve_vqm1_for_el_sm(env, el, true);
11025 DP_TBFLAG_A64(flags, SVL, svl);
11026 if (sm) {
11027 /* If SVE is disabled, we will not have set VL above. */
11028 DP_TBFLAG_A64(flags, VL, svl);
11031 if (sm) {
11032 DP_TBFLAG_A64(flags, PSTATE_SM, 1);
11033 DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el));
11035 DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA));
11038 sctlr = regime_sctlr(env, stage1);
11040 if (sctlr & SCTLR_A) {
11041 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
11044 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
11045 DP_TBFLAG_ANY(flags, BE_DATA, 1);
11048 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
11050 * In order to save space in flags, we record only whether
11051 * pauth is "inactive", meaning all insns are implemented as
11052 * a nop, or "active" when some action must be performed.
11053 * The decision of which action to take is left to a helper.
11055 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
11056 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
11060 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11061 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
11062 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
11063 DP_TBFLAG_A64(flags, BT, 1);
11067 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
11068 if (!(env->pstate & PSTATE_UAO)) {
11069 switch (mmu_idx) {
11070 case ARMMMUIdx_E10_1:
11071 case ARMMMUIdx_E10_1_PAN:
11072 case ARMMMUIdx_SE10_1:
11073 case ARMMMUIdx_SE10_1_PAN:
11074 /* TODO: ARMv8.3-NV */
11075 DP_TBFLAG_A64(flags, UNPRIV, 1);
11076 break;
11077 case ARMMMUIdx_E20_2:
11078 case ARMMMUIdx_E20_2_PAN:
11079 case ARMMMUIdx_SE20_2:
11080 case ARMMMUIdx_SE20_2_PAN:
11082 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
11083 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
11085 if (env->cp15.hcr_el2 & HCR_TGE) {
11086 DP_TBFLAG_A64(flags, UNPRIV, 1);
11088 break;
11089 default:
11090 break;
11094 if (env->pstate & PSTATE_IL) {
11095 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
11098 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
11100 * Set MTE_ACTIVE if any access may be Checked, and leave clear
11101 * if all accesses must be Unchecked:
11102 * 1) If no TBI, then there are no tags in the address to check,
11103 * 2) If Tag Check Override, then all accesses are Unchecked,
11104 * 3) If Tag Check Fail == 0, then Checked access have no effect,
11105 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
11107 if (allocation_tag_access_enabled(env, el, sctlr)) {
11108 DP_TBFLAG_A64(flags, ATA, 1);
11109 if (tbid
11110 && !(env->pstate & PSTATE_TCO)
11111 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
11112 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
11115 /* And again for unprivileged accesses, if required. */
11116 if (EX_TBFLAG_A64(flags, UNPRIV)
11117 && tbid
11118 && !(env->pstate & PSTATE_TCO)
11119 && (sctlr & SCTLR_TCF0)
11120 && allocation_tag_access_enabled(env, 0, sctlr)) {
11121 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
11123 /* Cache TCMA as well as TBI. */
11124 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
11127 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11130 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
11132 int el = arm_current_el(env);
11133 int fp_el = fp_exception_el(env, el);
11134 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11136 if (is_a64(env)) {
11137 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11138 } else if (arm_feature(env, ARM_FEATURE_M)) {
11139 return rebuild_hflags_m32(env, fp_el, mmu_idx);
11140 } else {
11141 return rebuild_hflags_a32(env, fp_el, mmu_idx);
11145 void arm_rebuild_hflags(CPUARMState *env)
11147 env->hflags = rebuild_hflags_internal(env);
11151 * If we have triggered a EL state change we can't rely on the
11152 * translator having passed it to us, we need to recompute.
11154 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
11156 int el = arm_current_el(env);
11157 int fp_el = fp_exception_el(env, el);
11158 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11160 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
11163 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
11165 int fp_el = fp_exception_el(env, el);
11166 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11168 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
11172 * If we have triggered a EL state change we can't rely on the
11173 * translator having passed it to us, we need to recompute.
11175 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
11177 int el = arm_current_el(env);
11178 int fp_el = fp_exception_el(env, el);
11179 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11180 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11183 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
11185 int fp_el = fp_exception_el(env, el);
11186 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11188 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11191 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
11193 int fp_el = fp_exception_el(env, el);
11194 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11196 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11199 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
11201 #ifdef CONFIG_DEBUG_TCG
11202 CPUARMTBFlags c = env->hflags;
11203 CPUARMTBFlags r = rebuild_hflags_internal(env);
11205 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
11206 fprintf(stderr, "TCG hflags mismatch "
11207 "(current:(0x%08x,0x" TARGET_FMT_lx ")"
11208 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
11209 c.flags, c.flags2, r.flags, r.flags2);
11210 abort();
11212 #endif
11215 static bool mve_no_pred(CPUARMState *env)
11218 * Return true if there is definitely no predication of MVE
11219 * instructions by VPR or LTPSIZE. (Returning false even if there
11220 * isn't any predication is OK; generated code will just be
11221 * a little worse.)
11222 * If the CPU does not implement MVE then this TB flag is always 0.
11224 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
11225 * logic in gen_update_fp_context() needs to be updated to match.
11227 * We do not include the effect of the ECI bits here -- they are
11228 * tracked in other TB flags. This simplifies the logic for
11229 * "when did we emit code that changes the MVE_NO_PRED TB flag
11230 * and thus need to end the TB?".
11232 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
11233 return false;
11235 if (env->v7m.vpr) {
11236 return false;
11238 if (env->v7m.ltpsize < 4) {
11239 return false;
11241 return true;
11244 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
11245 target_ulong *cs_base, uint32_t *pflags)
11247 CPUARMTBFlags flags;
11249 assert_hflags_rebuild_correctly(env);
11250 flags = env->hflags;
11252 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
11253 *pc = env->pc;
11254 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11255 DP_TBFLAG_A64(flags, BTYPE, env->btype);
11257 } else {
11258 *pc = env->regs[15];
11260 if (arm_feature(env, ARM_FEATURE_M)) {
11261 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11262 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
11263 != env->v7m.secure) {
11264 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
11267 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11268 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11269 (env->v7m.secure &&
11270 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11272 * ASPEN is set, but FPCA/SFPA indicate that there is no
11273 * active FP context; we must create a new FP context before
11274 * executing any FP insn.
11276 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
11279 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11280 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11281 DP_TBFLAG_M32(flags, LSPACT, 1);
11284 if (mve_no_pred(env)) {
11285 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
11287 } else {
11289 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
11290 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
11292 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
11293 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
11294 } else {
11295 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
11296 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
11298 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
11299 DP_TBFLAG_A32(flags, VFPEN, 1);
11303 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
11304 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
11308 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
11309 * states defined in the ARM ARM for software singlestep:
11310 * SS_ACTIVE PSTATE.SS State
11311 * 0 x Inactive (the TB flag for SS is always 0)
11312 * 1 0 Active-pending
11313 * 1 1 Active-not-pending
11314 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
11316 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
11317 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
11320 *pflags = flags.flags;
11321 *cs_base = flags.flags2;
11324 #ifdef TARGET_AARCH64
11326 * The manual says that when SVE is enabled and VQ is widened the
11327 * implementation is allowed to zero the previously inaccessible
11328 * portion of the registers. The corollary to that is that when
11329 * SVE is enabled and VQ is narrowed we are also allowed to zero
11330 * the now inaccessible portion of the registers.
11332 * The intent of this is that no predicate bit beyond VQ is ever set.
11333 * Which means that some operations on predicate registers themselves
11334 * may operate on full uint64_t or even unrolled across the maximum
11335 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
11336 * may well be cheaper than conditionals to restrict the operation
11337 * to the relevant portion of a uint16_t[16].
11339 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
11341 int i, j;
11342 uint64_t pmask;
11344 assert(vq >= 1 && vq <= ARM_MAX_VQ);
11345 assert(vq <= env_archcpu(env)->sve_max_vq);
11347 /* Zap the high bits of the zregs. */
11348 for (i = 0; i < 32; i++) {
11349 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
11352 /* Zap the high bits of the pregs and ffr. */
11353 pmask = 0;
11354 if (vq & 3) {
11355 pmask = ~(-1ULL << (16 * (vq & 3)));
11357 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
11358 for (i = 0; i < 17; ++i) {
11359 env->vfp.pregs[i].p[j] &= pmask;
11361 pmask = 0;
11365 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
11367 int exc_el;
11369 if (sm) {
11370 exc_el = sme_exception_el(env, el);
11371 } else {
11372 exc_el = sve_exception_el(env, el);
11374 if (exc_el) {
11375 return 0; /* disabled */
11377 return sve_vqm1_for_el_sm(env, el, sm);
11381 * Notice a change in SVE vector size when changing EL.
11383 void aarch64_sve_change_el(CPUARMState *env, int old_el,
11384 int new_el, bool el0_a64)
11386 ARMCPU *cpu = env_archcpu(env);
11387 int old_len, new_len;
11388 bool old_a64, new_a64, sm;
11390 /* Nothing to do if no SVE. */
11391 if (!cpu_isar_feature(aa64_sve, cpu)) {
11392 return;
11395 /* Nothing to do if FP is disabled in either EL. */
11396 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
11397 return;
11400 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
11401 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
11404 * Both AArch64.TakeException and AArch64.ExceptionReturn
11405 * invoke ResetSVEState when taking an exception from, or
11406 * returning to, AArch32 state when PSTATE.SM is enabled.
11408 sm = FIELD_EX64(env->svcr, SVCR, SM);
11409 if (old_a64 != new_a64 && sm) {
11410 arm_reset_sve_state(env);
11411 return;
11415 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
11416 * at ELx, or not available because the EL is in AArch32 state, then
11417 * for all purposes other than a direct read, the ZCR_ELx.LEN field
11418 * has an effective value of 0".
11420 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
11421 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
11422 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
11423 * we already have the correct register contents when encountering the
11424 * vq0->vq0 transition between EL0->EL1.
11426 old_len = new_len = 0;
11427 if (old_a64) {
11428 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
11430 if (new_a64) {
11431 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
11434 /* When changing vector length, clear inaccessible state. */
11435 if (new_len < old_len) {
11436 aarch64_sve_narrow_vq(env, new_len + 1);
11439 #endif