Merge remote-tracking branch 'agraf/xen-next' into staging
[qemu.git] / cpu-exec.c
blobe1de56b397784f1b1add3f31e7455743d7dc15ed
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "kvm.h"
24 #include "qemu-barrier.h"
26 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
27 // Work around ugly bugs in glibc that mangle global register contents
28 #undef env
29 #define env cpu_single_env
30 #endif
32 int tb_invalidated_flag;
34 //#define CONFIG_DEBUG_EXEC
36 int qemu_cpu_has_work(CPUState *env)
38 return cpu_has_work(env);
41 void cpu_loop_exit(void)
43 env->current_tb = NULL;
44 longjmp(env->jmp_env, 1);
47 /* exit the current TB from a signal handler. The host registers are
48 restored in a state compatible with the CPU emulator
50 #if defined(CONFIG_SOFTMMU)
51 void cpu_resume_from_signal(CPUState *env1, void *puc)
53 env = env1;
55 /* XXX: restore cpu registers saved in host registers */
57 env->exception_index = -1;
58 longjmp(env->jmp_env, 1);
60 #endif
62 /* Execute the code without caching the generated code. An interpreter
63 could be used if available. */
64 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
66 unsigned long next_tb;
67 TranslationBlock *tb;
69 /* Should never happen.
70 We only end up here when an existing TB is too long. */
71 if (max_cycles > CF_COUNT_MASK)
72 max_cycles = CF_COUNT_MASK;
74 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
75 max_cycles);
76 env->current_tb = tb;
77 /* execute the generated code */
78 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
79 env->current_tb = NULL;
81 if ((next_tb & 3) == 2) {
82 /* Restore PC. This may happen if async event occurs before
83 the TB starts executing. */
84 cpu_pc_from_tb(env, tb);
86 tb_phys_invalidate(tb, -1);
87 tb_free(tb);
90 static TranslationBlock *tb_find_slow(target_ulong pc,
91 target_ulong cs_base,
92 uint64_t flags)
94 TranslationBlock *tb, **ptb1;
95 unsigned int h;
96 tb_page_addr_t phys_pc, phys_page1, phys_page2;
97 target_ulong virt_page2;
99 tb_invalidated_flag = 0;
101 /* find translated block using physical mappings */
102 phys_pc = get_page_addr_code(env, pc);
103 phys_page1 = phys_pc & TARGET_PAGE_MASK;
104 phys_page2 = -1;
105 h = tb_phys_hash_func(phys_pc);
106 ptb1 = &tb_phys_hash[h];
107 for(;;) {
108 tb = *ptb1;
109 if (!tb)
110 goto not_found;
111 if (tb->pc == pc &&
112 tb->page_addr[0] == phys_page1 &&
113 tb->cs_base == cs_base &&
114 tb->flags == flags) {
115 /* check next page if needed */
116 if (tb->page_addr[1] != -1) {
117 virt_page2 = (pc & TARGET_PAGE_MASK) +
118 TARGET_PAGE_SIZE;
119 phys_page2 = get_page_addr_code(env, virt_page2);
120 if (tb->page_addr[1] == phys_page2)
121 goto found;
122 } else {
123 goto found;
126 ptb1 = &tb->phys_hash_next;
128 not_found:
129 /* if no translated code available, then translate it now */
130 tb = tb_gen_code(env, pc, cs_base, flags, 0);
132 found:
133 /* Move the last found TB to the head of the list */
134 if (likely(*ptb1)) {
135 *ptb1 = tb->phys_hash_next;
136 tb->phys_hash_next = tb_phys_hash[h];
137 tb_phys_hash[h] = tb;
139 /* we add the TB in the virtual pc hash table */
140 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
141 return tb;
144 static inline TranslationBlock *tb_find_fast(void)
146 TranslationBlock *tb;
147 target_ulong cs_base, pc;
148 int flags;
150 /* we record a subset of the CPU state. It will
151 always be the same before a given translated block
152 is executed. */
153 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
154 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
155 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
156 tb->flags != flags)) {
157 tb = tb_find_slow(pc, cs_base, flags);
159 return tb;
162 static CPUDebugExcpHandler *debug_excp_handler;
164 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
166 CPUDebugExcpHandler *old_handler = debug_excp_handler;
168 debug_excp_handler = handler;
169 return old_handler;
172 static void cpu_handle_debug_exception(CPUState *env)
174 CPUWatchpoint *wp;
176 if (!env->watchpoint_hit) {
177 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
178 wp->flags &= ~BP_WATCHPOINT_HIT;
181 if (debug_excp_handler) {
182 debug_excp_handler(env);
186 /* main execution loop */
188 volatile sig_atomic_t exit_request;
190 int cpu_exec(CPUState *env1)
192 volatile host_reg_t saved_env_reg;
193 int ret, interrupt_request;
194 TranslationBlock *tb;
195 uint8_t *tc_ptr;
196 unsigned long next_tb;
198 if (env1->halted) {
199 if (!cpu_has_work(env1)) {
200 return EXCP_HALTED;
203 env1->halted = 0;
206 cpu_single_env = env1;
208 /* the access to env below is actually saving the global register's
209 value, so that files not including target-xyz/exec.h are free to
210 use it. */
211 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg) != sizeof (env));
212 saved_env_reg = (host_reg_t) env;
213 barrier();
214 env = env1;
216 if (unlikely(exit_request)) {
217 env->exit_request = 1;
220 #if defined(TARGET_I386)
221 /* put eflags in CPU temporary format */
222 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
223 DF = 1 - (2 * ((env->eflags >> 10) & 1));
224 CC_OP = CC_OP_EFLAGS;
225 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
226 #elif defined(TARGET_SPARC)
227 #elif defined(TARGET_M68K)
228 env->cc_op = CC_OP_FLAGS;
229 env->cc_dest = env->sr & 0xf;
230 env->cc_x = (env->sr >> 4) & 1;
231 #elif defined(TARGET_ALPHA)
232 #elif defined(TARGET_ARM)
233 #elif defined(TARGET_UNICORE32)
234 #elif defined(TARGET_PPC)
235 #elif defined(TARGET_LM32)
236 #elif defined(TARGET_MICROBLAZE)
237 #elif defined(TARGET_MIPS)
238 #elif defined(TARGET_SH4)
239 #elif defined(TARGET_CRIS)
240 #elif defined(TARGET_S390X)
241 /* XXXXX */
242 #else
243 #error unsupported target CPU
244 #endif
245 env->exception_index = -1;
247 /* prepare setjmp context for exception handling */
248 for(;;) {
249 if (setjmp(env->jmp_env) == 0) {
250 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
251 #undef env
252 env = cpu_single_env;
253 #define env cpu_single_env
254 #endif
255 /* if an exception is pending, we execute it here */
256 if (env->exception_index >= 0) {
257 if (env->exception_index >= EXCP_INTERRUPT) {
258 /* exit request from the cpu execution loop */
259 ret = env->exception_index;
260 if (ret == EXCP_DEBUG) {
261 cpu_handle_debug_exception(env);
263 break;
264 } else {
265 #if defined(CONFIG_USER_ONLY)
266 /* if user mode only, we simulate a fake exception
267 which will be handled outside the cpu execution
268 loop */
269 #if defined(TARGET_I386)
270 do_interrupt_user(env->exception_index,
271 env->exception_is_int,
272 env->error_code,
273 env->exception_next_eip);
274 /* successfully delivered */
275 env->old_exception = -1;
276 #endif
277 ret = env->exception_index;
278 break;
279 #else
280 #if defined(TARGET_I386)
281 /* simulate a real cpu exception. On i386, it can
282 trigger new exceptions, but we do not handle
283 double or triple faults yet. */
284 do_interrupt(env->exception_index,
285 env->exception_is_int,
286 env->error_code,
287 env->exception_next_eip, 0);
288 /* successfully delivered */
289 env->old_exception = -1;
290 #elif defined(TARGET_PPC)
291 do_interrupt(env);
292 #elif defined(TARGET_LM32)
293 do_interrupt(env);
294 #elif defined(TARGET_MICROBLAZE)
295 do_interrupt(env);
296 #elif defined(TARGET_MIPS)
297 do_interrupt(env);
298 #elif defined(TARGET_SPARC)
299 do_interrupt(env);
300 #elif defined(TARGET_ARM)
301 do_interrupt(env);
302 #elif defined(TARGET_UNICORE32)
303 do_interrupt(env);
304 #elif defined(TARGET_SH4)
305 do_interrupt(env);
306 #elif defined(TARGET_ALPHA)
307 do_interrupt(env);
308 #elif defined(TARGET_CRIS)
309 do_interrupt(env);
310 #elif defined(TARGET_M68K)
311 do_interrupt(0);
312 #elif defined(TARGET_S390X)
313 do_interrupt(env);
314 #endif
315 env->exception_index = -1;
316 #endif
320 next_tb = 0; /* force lookup of first TB */
321 for(;;) {
322 interrupt_request = env->interrupt_request;
323 if (unlikely(interrupt_request)) {
324 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
325 /* Mask out external interrupts for this step. */
326 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
328 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
329 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
330 env->exception_index = EXCP_DEBUG;
331 cpu_loop_exit();
333 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
334 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
335 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
336 if (interrupt_request & CPU_INTERRUPT_HALT) {
337 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
338 env->halted = 1;
339 env->exception_index = EXCP_HLT;
340 cpu_loop_exit();
342 #endif
343 #if defined(TARGET_I386)
344 if (interrupt_request & CPU_INTERRUPT_INIT) {
345 svm_check_intercept(SVM_EXIT_INIT);
346 do_cpu_init(env);
347 env->exception_index = EXCP_HALTED;
348 cpu_loop_exit();
349 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
350 do_cpu_sipi(env);
351 } else if (env->hflags2 & HF2_GIF_MASK) {
352 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
353 !(env->hflags & HF_SMM_MASK)) {
354 svm_check_intercept(SVM_EXIT_SMI);
355 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
356 do_smm_enter();
357 next_tb = 0;
358 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
359 !(env->hflags2 & HF2_NMI_MASK)) {
360 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
361 env->hflags2 |= HF2_NMI_MASK;
362 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
363 next_tb = 0;
364 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
365 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
366 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
367 next_tb = 0;
368 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
369 (((env->hflags2 & HF2_VINTR_MASK) &&
370 (env->hflags2 & HF2_HIF_MASK)) ||
371 (!(env->hflags2 & HF2_VINTR_MASK) &&
372 (env->eflags & IF_MASK &&
373 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
374 int intno;
375 svm_check_intercept(SVM_EXIT_INTR);
376 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
377 intno = cpu_get_pic_interrupt(env);
378 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
379 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
380 #undef env
381 env = cpu_single_env;
382 #define env cpu_single_env
383 #endif
384 do_interrupt(intno, 0, 0, 0, 1);
385 /* ensure that no TB jump will be modified as
386 the program flow was changed */
387 next_tb = 0;
388 #if !defined(CONFIG_USER_ONLY)
389 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
390 (env->eflags & IF_MASK) &&
391 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
392 int intno;
393 /* FIXME: this should respect TPR */
394 svm_check_intercept(SVM_EXIT_VINTR);
395 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
396 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
397 do_interrupt(intno, 0, 0, 0, 1);
398 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
399 next_tb = 0;
400 #endif
403 #elif defined(TARGET_PPC)
404 #if 0
405 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
406 cpu_reset(env);
408 #endif
409 if (interrupt_request & CPU_INTERRUPT_HARD) {
410 ppc_hw_interrupt(env);
411 if (env->pending_interrupts == 0)
412 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
413 next_tb = 0;
415 #elif defined(TARGET_LM32)
416 if ((interrupt_request & CPU_INTERRUPT_HARD)
417 && (env->ie & IE_IE)) {
418 env->exception_index = EXCP_IRQ;
419 do_interrupt(env);
420 next_tb = 0;
422 #elif defined(TARGET_MICROBLAZE)
423 if ((interrupt_request & CPU_INTERRUPT_HARD)
424 && (env->sregs[SR_MSR] & MSR_IE)
425 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
426 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
427 env->exception_index = EXCP_IRQ;
428 do_interrupt(env);
429 next_tb = 0;
431 #elif defined(TARGET_MIPS)
432 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
433 cpu_mips_hw_interrupts_pending(env)) {
434 /* Raise it */
435 env->exception_index = EXCP_EXT_INTERRUPT;
436 env->error_code = 0;
437 do_interrupt(env);
438 next_tb = 0;
440 #elif defined(TARGET_SPARC)
441 if (interrupt_request & CPU_INTERRUPT_HARD) {
442 if (cpu_interrupts_enabled(env) &&
443 env->interrupt_index > 0) {
444 int pil = env->interrupt_index & 0xf;
445 int type = env->interrupt_index & 0xf0;
447 if (((type == TT_EXTINT) &&
448 cpu_pil_allowed(env, pil)) ||
449 type != TT_EXTINT) {
450 env->exception_index = env->interrupt_index;
451 do_interrupt(env);
452 next_tb = 0;
456 #elif defined(TARGET_ARM)
457 if (interrupt_request & CPU_INTERRUPT_FIQ
458 && !(env->uncached_cpsr & CPSR_F)) {
459 env->exception_index = EXCP_FIQ;
460 do_interrupt(env);
461 next_tb = 0;
463 /* ARMv7-M interrupt return works by loading a magic value
464 into the PC. On real hardware the load causes the
465 return to occur. The qemu implementation performs the
466 jump normally, then does the exception return when the
467 CPU tries to execute code at the magic address.
468 This will cause the magic PC value to be pushed to
469 the stack if an interrupt occurred at the wrong time.
470 We avoid this by disabling interrupts when
471 pc contains a magic address. */
472 if (interrupt_request & CPU_INTERRUPT_HARD
473 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
474 || !(env->uncached_cpsr & CPSR_I))) {
475 env->exception_index = EXCP_IRQ;
476 do_interrupt(env);
477 next_tb = 0;
479 #elif defined(TARGET_UNICORE32)
480 if (interrupt_request & CPU_INTERRUPT_HARD
481 && !(env->uncached_asr & ASR_I)) {
482 do_interrupt(env);
483 next_tb = 0;
485 #elif defined(TARGET_SH4)
486 if (interrupt_request & CPU_INTERRUPT_HARD) {
487 do_interrupt(env);
488 next_tb = 0;
490 #elif defined(TARGET_ALPHA)
492 int idx = -1;
493 /* ??? This hard-codes the OSF/1 interrupt levels. */
494 switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) {
495 case 0 ... 3:
496 if (interrupt_request & CPU_INTERRUPT_HARD) {
497 idx = EXCP_DEV_INTERRUPT;
499 /* FALLTHRU */
500 case 4:
501 if (interrupt_request & CPU_INTERRUPT_TIMER) {
502 idx = EXCP_CLK_INTERRUPT;
504 /* FALLTHRU */
505 case 5:
506 if (interrupt_request & CPU_INTERRUPT_SMP) {
507 idx = EXCP_SMP_INTERRUPT;
509 /* FALLTHRU */
510 case 6:
511 if (interrupt_request & CPU_INTERRUPT_MCHK) {
512 idx = EXCP_MCHK;
515 if (idx >= 0) {
516 env->exception_index = idx;
517 env->error_code = 0;
518 do_interrupt(env);
519 next_tb = 0;
522 #elif defined(TARGET_CRIS)
523 if (interrupt_request & CPU_INTERRUPT_HARD
524 && (env->pregs[PR_CCS] & I_FLAG)
525 && !env->locked_irq) {
526 env->exception_index = EXCP_IRQ;
527 do_interrupt(env);
528 next_tb = 0;
530 if (interrupt_request & CPU_INTERRUPT_NMI
531 && (env->pregs[PR_CCS] & M_FLAG)) {
532 env->exception_index = EXCP_NMI;
533 do_interrupt(env);
534 next_tb = 0;
536 #elif defined(TARGET_M68K)
537 if (interrupt_request & CPU_INTERRUPT_HARD
538 && ((env->sr & SR_I) >> SR_I_SHIFT)
539 < env->pending_level) {
540 /* Real hardware gets the interrupt vector via an
541 IACK cycle at this point. Current emulated
542 hardware doesn't rely on this, so we
543 provide/save the vector when the interrupt is
544 first signalled. */
545 env->exception_index = env->pending_vector;
546 do_interrupt(1);
547 next_tb = 0;
549 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
550 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
551 (env->psw.mask & PSW_MASK_EXT)) {
552 do_interrupt(env);
553 next_tb = 0;
555 #endif
556 /* Don't use the cached interrupt_request value,
557 do_interrupt may have updated the EXITTB flag. */
558 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
559 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
560 /* ensure that no TB jump will be modified as
561 the program flow was changed */
562 next_tb = 0;
565 if (unlikely(env->exit_request)) {
566 env->exit_request = 0;
567 env->exception_index = EXCP_INTERRUPT;
568 cpu_loop_exit();
570 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
571 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
572 /* restore flags in standard format */
573 #if defined(TARGET_I386)
574 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
575 log_cpu_state(env, X86_DUMP_CCOP);
576 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
577 #elif defined(TARGET_M68K)
578 cpu_m68k_flush_flags(env, env->cc_op);
579 env->cc_op = CC_OP_FLAGS;
580 env->sr = (env->sr & 0xffe0)
581 | env->cc_dest | (env->cc_x << 4);
582 log_cpu_state(env, 0);
583 #else
584 log_cpu_state(env, 0);
585 #endif
587 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
588 spin_lock(&tb_lock);
589 tb = tb_find_fast();
590 /* Note: we do it here to avoid a gcc bug on Mac OS X when
591 doing it in tb_find_slow */
592 if (tb_invalidated_flag) {
593 /* as some TB could have been invalidated because
594 of memory exceptions while generating the code, we
595 must recompute the hash index here */
596 next_tb = 0;
597 tb_invalidated_flag = 0;
599 #ifdef CONFIG_DEBUG_EXEC
600 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
601 (long)tb->tc_ptr, tb->pc,
602 lookup_symbol(tb->pc));
603 #endif
604 /* see if we can patch the calling TB. When the TB
605 spans two pages, we cannot safely do a direct
606 jump. */
607 if (next_tb != 0 && tb->page_addr[1] == -1) {
608 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
610 spin_unlock(&tb_lock);
612 /* cpu_interrupt might be called while translating the
613 TB, but before it is linked into a potentially
614 infinite loop and becomes env->current_tb. Avoid
615 starting execution if there is a pending interrupt. */
616 env->current_tb = tb;
617 barrier();
618 if (likely(!env->exit_request)) {
619 tc_ptr = tb->tc_ptr;
620 /* execute the generated code */
621 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
622 #undef env
623 env = cpu_single_env;
624 #define env cpu_single_env
625 #endif
626 next_tb = tcg_qemu_tb_exec(tc_ptr);
627 if ((next_tb & 3) == 2) {
628 /* Instruction counter expired. */
629 int insns_left;
630 tb = (TranslationBlock *)(long)(next_tb & ~3);
631 /* Restore PC. */
632 cpu_pc_from_tb(env, tb);
633 insns_left = env->icount_decr.u32;
634 if (env->icount_extra && insns_left >= 0) {
635 /* Refill decrementer and continue execution. */
636 env->icount_extra += insns_left;
637 if (env->icount_extra > 0xffff) {
638 insns_left = 0xffff;
639 } else {
640 insns_left = env->icount_extra;
642 env->icount_extra -= insns_left;
643 env->icount_decr.u16.low = insns_left;
644 } else {
645 if (insns_left > 0) {
646 /* Execute remaining instructions. */
647 cpu_exec_nocache(insns_left, tb);
649 env->exception_index = EXCP_INTERRUPT;
650 next_tb = 0;
651 cpu_loop_exit();
655 env->current_tb = NULL;
656 /* reset soft MMU for next block (it can currently
657 only be set by a memory fault) */
658 } /* for(;;) */
660 } /* for(;;) */
663 #if defined(TARGET_I386)
664 /* restore flags in standard format */
665 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
666 #elif defined(TARGET_ARM)
667 /* XXX: Save/restore host fpu exception state?. */
668 #elif defined(TARGET_UNICORE32)
669 #elif defined(TARGET_SPARC)
670 #elif defined(TARGET_PPC)
671 #elif defined(TARGET_LM32)
672 #elif defined(TARGET_M68K)
673 cpu_m68k_flush_flags(env, env->cc_op);
674 env->cc_op = CC_OP_FLAGS;
675 env->sr = (env->sr & 0xffe0)
676 | env->cc_dest | (env->cc_x << 4);
677 #elif defined(TARGET_MICROBLAZE)
678 #elif defined(TARGET_MIPS)
679 #elif defined(TARGET_SH4)
680 #elif defined(TARGET_ALPHA)
681 #elif defined(TARGET_CRIS)
682 #elif defined(TARGET_S390X)
683 /* XXXXX */
684 #else
685 #error unsupported target CPU
686 #endif
688 /* restore global registers */
689 barrier();
690 env = (void *) saved_env_reg;
692 /* fail safe : never use cpu_single_env outside cpu_exec() */
693 cpu_single_env = NULL;
694 return ret;