2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
25 #if !defined(CONFIG_SOFTMMU)
37 #include <sys/ucontext.h>
41 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
42 // Work around ugly bugs in glibc that mangle global register contents
44 #define env cpu_single_env
47 int tb_invalidated_flag
;
49 //#define CONFIG_DEBUG_EXEC
50 //#define DEBUG_SIGNAL
52 int qemu_cpu_has_work(CPUState
*env
)
54 return cpu_has_work(env
);
57 void cpu_loop_exit(void)
59 /* NOTE: the register at this point must be saved by hand because
60 longjmp restore them */
62 longjmp(env
->jmp_env
, 1);
65 /* exit the current TB from a signal handler. The host registers are
66 restored in a state compatible with the CPU emulator
68 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
70 #if !defined(CONFIG_SOFTMMU)
72 struct ucontext
*uc
= puc
;
73 #elif defined(__OpenBSD__)
74 struct sigcontext
*uc
= puc
;
80 /* XXX: restore cpu registers saved in host registers */
82 #if !defined(CONFIG_SOFTMMU)
84 /* XXX: use siglongjmp ? */
86 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
87 #elif defined(__OpenBSD__)
88 sigprocmask(SIG_SETMASK
, &uc
->sc_mask
, NULL
);
92 env
->exception_index
= -1;
93 longjmp(env
->jmp_env
, 1);
96 /* Execute the code without caching the generated code. An interpreter
97 could be used if available. */
98 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
100 unsigned long next_tb
;
101 TranslationBlock
*tb
;
103 /* Should never happen.
104 We only end up here when an existing TB is too long. */
105 if (max_cycles
> CF_COUNT_MASK
)
106 max_cycles
= CF_COUNT_MASK
;
108 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
110 env
->current_tb
= tb
;
111 /* execute the generated code */
112 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
114 if ((next_tb
& 3) == 2) {
115 /* Restore PC. This may happen if async event occurs before
116 the TB starts executing. */
117 cpu_pc_from_tb(env
, tb
);
119 tb_phys_invalidate(tb
, -1);
123 static TranslationBlock
*tb_find_slow(target_ulong pc
,
124 target_ulong cs_base
,
127 TranslationBlock
*tb
, **ptb1
;
129 target_ulong phys_pc
, phys_page1
, phys_page2
, virt_page2
;
131 tb_invalidated_flag
= 0;
133 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
135 /* find translated block using physical mappings */
136 phys_pc
= get_phys_addr_code(env
, pc
);
137 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
139 h
= tb_phys_hash_func(phys_pc
);
140 ptb1
= &tb_phys_hash
[h
];
146 tb
->page_addr
[0] == phys_page1
&&
147 tb
->cs_base
== cs_base
&&
148 tb
->flags
== flags
) {
149 /* check next page if needed */
150 if (tb
->page_addr
[1] != -1) {
151 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
153 phys_page2
= get_phys_addr_code(env
, virt_page2
);
154 if (tb
->page_addr
[1] == phys_page2
)
160 ptb1
= &tb
->phys_hash_next
;
163 /* if no translated code available, then translate it now */
164 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
167 /* we add the TB in the virtual pc hash table */
168 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
172 static inline TranslationBlock
*tb_find_fast(void)
174 TranslationBlock
*tb
;
175 target_ulong cs_base
, pc
;
178 /* we record a subset of the CPU state. It will
179 always be the same before a given translated block
181 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
182 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
183 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
184 tb
->flags
!= flags
)) {
185 tb
= tb_find_slow(pc
, cs_base
, flags
);
190 static CPUDebugExcpHandler
*debug_excp_handler
;
192 CPUDebugExcpHandler
*cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
194 CPUDebugExcpHandler
*old_handler
= debug_excp_handler
;
196 debug_excp_handler
= handler
;
200 static void cpu_handle_debug_exception(CPUState
*env
)
204 if (!env
->watchpoint_hit
)
205 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
)
206 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
208 if (debug_excp_handler
)
209 debug_excp_handler(env
);
212 /* main execution loop */
214 int cpu_exec(CPUState
*env1
)
216 #define DECLARE_HOST_REGS 1
217 #include "hostregs_helper.h"
218 int ret
, interrupt_request
;
219 TranslationBlock
*tb
;
221 unsigned long next_tb
;
223 if (cpu_halted(env1
) == EXCP_HALTED
)
226 cpu_single_env
= env1
;
228 /* first we save global registers */
229 #define SAVE_HOST_REGS 1
230 #include "hostregs_helper.h"
234 #if defined(TARGET_I386)
235 /* put eflags in CPU temporary format */
236 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
237 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
238 CC_OP
= CC_OP_EFLAGS
;
239 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
240 #elif defined(TARGET_SPARC)
241 #elif defined(TARGET_M68K)
242 env
->cc_op
= CC_OP_FLAGS
;
243 env
->cc_dest
= env
->sr
& 0xf;
244 env
->cc_x
= (env
->sr
>> 4) & 1;
245 #elif defined(TARGET_ALPHA)
246 #elif defined(TARGET_ARM)
247 #elif defined(TARGET_PPC)
248 #elif defined(TARGET_MICROBLAZE)
249 #elif defined(TARGET_MIPS)
250 #elif defined(TARGET_SH4)
251 #elif defined(TARGET_CRIS)
254 #error unsupported target CPU
256 env
->exception_index
= -1;
258 /* prepare setjmp context for exception handling */
260 if (setjmp(env
->jmp_env
) == 0) {
261 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
263 env
= cpu_single_env
;
264 #define env cpu_single_env
266 env
->current_tb
= NULL
;
267 /* if an exception is pending, we execute it here */
268 if (env
->exception_index
>= 0) {
269 if (env
->exception_index
>= EXCP_INTERRUPT
) {
270 /* exit request from the cpu execution loop */
271 ret
= env
->exception_index
;
272 if (ret
== EXCP_DEBUG
)
273 cpu_handle_debug_exception(env
);
276 #if defined(CONFIG_USER_ONLY)
277 /* if user mode only, we simulate a fake exception
278 which will be handled outside the cpu execution
280 #if defined(TARGET_I386)
281 do_interrupt_user(env
->exception_index
,
282 env
->exception_is_int
,
284 env
->exception_next_eip
);
285 /* successfully delivered */
286 env
->old_exception
= -1;
288 ret
= env
->exception_index
;
291 #if defined(TARGET_I386)
292 /* simulate a real cpu exception. On i386, it can
293 trigger new exceptions, but we do not handle
294 double or triple faults yet. */
295 do_interrupt(env
->exception_index
,
296 env
->exception_is_int
,
298 env
->exception_next_eip
, 0);
299 /* successfully delivered */
300 env
->old_exception
= -1;
301 #elif defined(TARGET_PPC)
303 #elif defined(TARGET_MICROBLAZE)
305 #elif defined(TARGET_MIPS)
307 #elif defined(TARGET_SPARC)
309 #elif defined(TARGET_ARM)
311 #elif defined(TARGET_SH4)
313 #elif defined(TARGET_ALPHA)
315 #elif defined(TARGET_CRIS)
317 #elif defined(TARGET_M68K)
322 env
->exception_index
= -1;
327 longjmp(env
->jmp_env
, 1);
330 next_tb
= 0; /* force lookup of first TB */
332 interrupt_request
= env
->interrupt_request
;
333 if (unlikely(interrupt_request
)) {
334 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
335 /* Mask out external interrupts for this step. */
336 interrupt_request
&= ~(CPU_INTERRUPT_HARD
|
341 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
342 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
343 env
->exception_index
= EXCP_DEBUG
;
346 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
347 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
348 defined(TARGET_MICROBLAZE)
349 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
350 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
352 env
->exception_index
= EXCP_HLT
;
356 #if defined(TARGET_I386)
357 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
358 svm_check_intercept(SVM_EXIT_INIT
);
360 env
->exception_index
= EXCP_HALTED
;
362 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
364 } else if (env
->hflags2
& HF2_GIF_MASK
) {
365 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
366 !(env
->hflags
& HF_SMM_MASK
)) {
367 svm_check_intercept(SVM_EXIT_SMI
);
368 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
371 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
372 !(env
->hflags2
& HF2_NMI_MASK
)) {
373 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
374 env
->hflags2
|= HF2_NMI_MASK
;
375 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
377 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
378 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
379 do_interrupt(EXCP12_MCHK
, 0, 0, 0, 0);
381 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
382 (((env
->hflags2
& HF2_VINTR_MASK
) &&
383 (env
->hflags2
& HF2_HIF_MASK
)) ||
384 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
385 (env
->eflags
& IF_MASK
&&
386 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
388 svm_check_intercept(SVM_EXIT_INTR
);
389 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
390 intno
= cpu_get_pic_interrupt(env
);
391 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
392 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
394 env
= cpu_single_env
;
395 #define env cpu_single_env
397 do_interrupt(intno
, 0, 0, 0, 1);
398 /* ensure that no TB jump will be modified as
399 the program flow was changed */
401 #if !defined(CONFIG_USER_ONLY)
402 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
403 (env
->eflags
& IF_MASK
) &&
404 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
406 /* FIXME: this should respect TPR */
407 svm_check_intercept(SVM_EXIT_VINTR
);
408 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
409 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
410 do_interrupt(intno
, 0, 0, 0, 1);
411 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
416 #elif defined(TARGET_PPC)
418 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
422 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
423 ppc_hw_interrupt(env
);
424 if (env
->pending_interrupts
== 0)
425 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
428 #elif defined(TARGET_MICROBLAZE)
429 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
430 && (env
->sregs
[SR_MSR
] & MSR_IE
)
431 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
432 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
433 env
->exception_index
= EXCP_IRQ
;
437 #elif defined(TARGET_MIPS)
438 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
439 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
) &&
440 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
441 !(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
442 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
443 !(env
->hflags
& MIPS_HFLAG_DM
)) {
445 env
->exception_index
= EXCP_EXT_INTERRUPT
;
450 #elif defined(TARGET_SPARC)
451 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
452 cpu_interrupts_enabled(env
)) {
453 int pil
= env
->interrupt_index
& 15;
454 int type
= env
->interrupt_index
& 0xf0;
456 if (((type
== TT_EXTINT
) &&
457 (pil
== 15 || pil
> env
->psrpil
)) ||
459 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
460 env
->exception_index
= env
->interrupt_index
;
462 env
->interrupt_index
= 0;
465 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
466 //do_interrupt(0, 0, 0, 0, 0);
467 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
469 #elif defined(TARGET_ARM)
470 if (interrupt_request
& CPU_INTERRUPT_FIQ
471 && !(env
->uncached_cpsr
& CPSR_F
)) {
472 env
->exception_index
= EXCP_FIQ
;
476 /* ARMv7-M interrupt return works by loading a magic value
477 into the PC. On real hardware the load causes the
478 return to occur. The qemu implementation performs the
479 jump normally, then does the exception return when the
480 CPU tries to execute code at the magic address.
481 This will cause the magic PC value to be pushed to
482 the stack if an interrupt occured at the wrong time.
483 We avoid this by disabling interrupts when
484 pc contains a magic address. */
485 if (interrupt_request
& CPU_INTERRUPT_HARD
486 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
487 || !(env
->uncached_cpsr
& CPSR_I
))) {
488 env
->exception_index
= EXCP_IRQ
;
492 #elif defined(TARGET_SH4)
493 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
497 #elif defined(TARGET_ALPHA)
498 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
502 #elif defined(TARGET_CRIS)
503 if (interrupt_request
& CPU_INTERRUPT_HARD
504 && (env
->pregs
[PR_CCS
] & I_FLAG
)) {
505 env
->exception_index
= EXCP_IRQ
;
509 if (interrupt_request
& CPU_INTERRUPT_NMI
510 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
511 env
->exception_index
= EXCP_NMI
;
515 #elif defined(TARGET_M68K)
516 if (interrupt_request
& CPU_INTERRUPT_HARD
517 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
518 < env
->pending_level
) {
519 /* Real hardware gets the interrupt vector via an
520 IACK cycle at this point. Current emulated
521 hardware doesn't rely on this, so we
522 provide/save the vector when the interrupt is
524 env
->exception_index
= env
->pending_vector
;
529 /* Don't use the cached interupt_request value,
530 do_interrupt may have updated the EXITTB flag. */
531 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
532 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
533 /* ensure that no TB jump will be modified as
534 the program flow was changed */
538 if (unlikely(env
->exit_request
)) {
539 env
->exit_request
= 0;
540 env
->exception_index
= EXCP_INTERRUPT
;
543 #ifdef CONFIG_DEBUG_EXEC
544 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
545 /* restore flags in standard format */
547 #if defined(TARGET_I386)
548 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
549 log_cpu_state(env
, X86_DUMP_CCOP
);
550 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
551 #elif defined(TARGET_ARM)
552 log_cpu_state(env
, 0);
553 #elif defined(TARGET_SPARC)
554 log_cpu_state(env
, 0);
555 #elif defined(TARGET_PPC)
556 log_cpu_state(env
, 0);
557 #elif defined(TARGET_M68K)
558 cpu_m68k_flush_flags(env
, env
->cc_op
);
559 env
->cc_op
= CC_OP_FLAGS
;
560 env
->sr
= (env
->sr
& 0xffe0)
561 | env
->cc_dest
| (env
->cc_x
<< 4);
562 log_cpu_state(env
, 0);
563 #elif defined(TARGET_MICROBLAZE)
564 log_cpu_state(env
, 0);
565 #elif defined(TARGET_MIPS)
566 log_cpu_state(env
, 0);
567 #elif defined(TARGET_SH4)
568 log_cpu_state(env
, 0);
569 #elif defined(TARGET_ALPHA)
570 log_cpu_state(env
, 0);
571 #elif defined(TARGET_CRIS)
572 log_cpu_state(env
, 0);
574 #error unsupported target CPU
580 /* Note: we do it here to avoid a gcc bug on Mac OS X when
581 doing it in tb_find_slow */
582 if (tb_invalidated_flag
) {
583 /* as some TB could have been invalidated because
584 of memory exceptions while generating the code, we
585 must recompute the hash index here */
587 tb_invalidated_flag
= 0;
589 #ifdef CONFIG_DEBUG_EXEC
590 qemu_log_mask(CPU_LOG_EXEC
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
591 (long)tb
->tc_ptr
, tb
->pc
,
592 lookup_symbol(tb
->pc
));
594 /* see if we can patch the calling TB. When the TB
595 spans two pages, we cannot safely do a direct
598 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
599 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
602 spin_unlock(&tb_lock
);
603 env
->current_tb
= tb
;
605 /* cpu_interrupt might be called while translating the
606 TB, but before it is linked into a potentially
607 infinite loop and becomes env->current_tb. Avoid
608 starting execution if there is a pending interrupt. */
609 if (unlikely (env
->exit_request
))
610 env
->current_tb
= NULL
;
612 while (env
->current_tb
) {
614 /* execute the generated code */
615 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
617 env
= cpu_single_env
;
618 #define env cpu_single_env
620 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
621 env
->current_tb
= NULL
;
622 if ((next_tb
& 3) == 2) {
623 /* Instruction counter expired. */
625 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
627 cpu_pc_from_tb(env
, tb
);
628 insns_left
= env
->icount_decr
.u32
;
629 if (env
->icount_extra
&& insns_left
>= 0) {
630 /* Refill decrementer and continue execution. */
631 env
->icount_extra
+= insns_left
;
632 if (env
->icount_extra
> 0xffff) {
635 insns_left
= env
->icount_extra
;
637 env
->icount_extra
-= insns_left
;
638 env
->icount_decr
.u16
.low
= insns_left
;
640 if (insns_left
> 0) {
641 /* Execute remaining instructions. */
642 cpu_exec_nocache(insns_left
, tb
);
644 env
->exception_index
= EXCP_INTERRUPT
;
650 /* reset soft MMU for next block (it can currently
651 only be set by a memory fault) */
659 #if defined(TARGET_I386)
660 /* restore flags in standard format */
661 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
662 #elif defined(TARGET_ARM)
663 /* XXX: Save/restore host fpu exception state?. */
664 #elif defined(TARGET_SPARC)
665 #elif defined(TARGET_PPC)
666 #elif defined(TARGET_M68K)
667 cpu_m68k_flush_flags(env
, env
->cc_op
);
668 env
->cc_op
= CC_OP_FLAGS
;
669 env
->sr
= (env
->sr
& 0xffe0)
670 | env
->cc_dest
| (env
->cc_x
<< 4);
671 #elif defined(TARGET_MICROBLAZE)
672 #elif defined(TARGET_MIPS)
673 #elif defined(TARGET_SH4)
674 #elif defined(TARGET_ALPHA)
675 #elif defined(TARGET_CRIS)
678 #error unsupported target CPU
681 /* restore global registers */
682 #include "hostregs_helper.h"
684 /* fail safe : never use cpu_single_env outside cpu_exec() */
685 cpu_single_env
= NULL
;
689 /* must only be called from the generated code as an exception can be
691 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
693 /* XXX: cannot enable it yet because it yields to MMU exception
694 where NIP != read address on PowerPC */
696 target_ulong phys_addr
;
697 phys_addr
= get_phys_addr_code(env
, start
);
698 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
702 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
704 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
706 CPUX86State
*saved_env
;
710 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
712 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
713 (selector
<< 4), 0xffff, 0);
715 helper_load_seg(seg_reg
, selector
);
720 void cpu_x86_fsave(CPUX86State
*s
, target_ulong ptr
, int data32
)
722 CPUX86State
*saved_env
;
727 helper_fsave(ptr
, data32
);
732 void cpu_x86_frstor(CPUX86State
*s
, target_ulong ptr
, int data32
)
734 CPUX86State
*saved_env
;
739 helper_frstor(ptr
, data32
);
744 #endif /* TARGET_I386 */
746 #if !defined(CONFIG_SOFTMMU)
748 #if defined(TARGET_I386)
749 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
751 #define EXCEPTION_ACTION cpu_loop_exit()
754 /* 'pc' is the host PC at which the exception was raised. 'address' is
755 the effective address of the memory exception. 'is_write' is 1 if a
756 write caused the exception and otherwise 0'. 'old_set' is the
757 signal set which should be restored */
758 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
759 int is_write
, sigset_t
*old_set
,
762 TranslationBlock
*tb
;
766 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
767 #if defined(DEBUG_SIGNAL)
768 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
769 pc
, address
, is_write
, *(unsigned long *)old_set
);
771 /* XXX: locking issue */
772 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
776 /* see if it is an MMU fault */
777 ret
= cpu_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
779 return 0; /* not an MMU fault */
781 return 1; /* the MMU fault was handled without causing real CPU fault */
782 /* now we have a real cpu fault */
785 /* the PC is inside the translated code. It means that we have
786 a virtual CPU fault */
787 cpu_restore_state(tb
, env
, pc
, puc
);
790 /* we restore the process signal mask as the sigreturn should
791 do it (XXX: use sigsetjmp) */
792 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
795 /* never comes here */
799 #if defined(__i386__)
801 #if defined(__APPLE__)
802 # include <sys/ucontext.h>
804 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
805 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
806 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
807 # define MASK_sig(context) ((context)->uc_sigmask)
808 #elif defined(__OpenBSD__)
809 # define EIP_sig(context) ((context)->sc_eip)
810 # define TRAP_sig(context) ((context)->sc_trapno)
811 # define ERROR_sig(context) ((context)->sc_err)
812 # define MASK_sig(context) ((context)->sc_mask)
814 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
815 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
816 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
817 # define MASK_sig(context) ((context)->uc_sigmask)
820 int cpu_signal_handler(int host_signum
, void *pinfo
,
823 siginfo_t
*info
= pinfo
;
824 #if defined(__OpenBSD__)
825 struct sigcontext
*uc
= puc
;
827 struct ucontext
*uc
= puc
;
836 #define REG_TRAPNO TRAPNO
839 trapno
= TRAP_sig(uc
);
840 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
842 (ERROR_sig(uc
) >> 1) & 1 : 0,
846 #elif defined(__x86_64__)
849 #define PC_sig(context) _UC_MACHINE_PC(context)
850 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
851 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
852 #define MASK_sig(context) ((context)->uc_sigmask)
853 #elif defined(__OpenBSD__)
854 #define PC_sig(context) ((context)->sc_rip)
855 #define TRAP_sig(context) ((context)->sc_trapno)
856 #define ERROR_sig(context) ((context)->sc_err)
857 #define MASK_sig(context) ((context)->sc_mask)
859 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
860 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
861 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
862 #define MASK_sig(context) ((context)->uc_sigmask)
865 int cpu_signal_handler(int host_signum
, void *pinfo
,
868 siginfo_t
*info
= pinfo
;
871 ucontext_t
*uc
= puc
;
872 #elif defined(__OpenBSD__)
873 struct sigcontext
*uc
= puc
;
875 struct ucontext
*uc
= puc
;
879 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
880 TRAP_sig(uc
) == 0xe ?
881 (ERROR_sig(uc
) >> 1) & 1 : 0,
885 #elif defined(_ARCH_PPC)
887 /***********************************************************************
888 * signal context platform-specific definitions
892 /* All Registers access - only for local access */
893 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
894 /* Gpr Registers access */
895 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
896 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
897 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
898 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
899 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
900 # define LR_sig(context) REG_sig(link, context) /* Link register */
901 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
902 /* Float Registers access */
903 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
904 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
905 /* Exception Registers access */
906 # define DAR_sig(context) REG_sig(dar, context)
907 # define DSISR_sig(context) REG_sig(dsisr, context)
908 # define TRAP_sig(context) REG_sig(trap, context)
912 # include <sys/ucontext.h>
913 typedef struct ucontext SIGCONTEXT
;
914 /* All Registers access - only for local access */
915 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
916 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
917 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
918 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
919 /* Gpr Registers access */
920 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
921 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
922 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
923 # define CTR_sig(context) REG_sig(ctr, context)
924 # define XER_sig(context) REG_sig(xer, context) /* Link register */
925 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
926 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
927 /* Float Registers access */
928 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
929 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
930 /* Exception Registers access */
931 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
932 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
933 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
934 #endif /* __APPLE__ */
936 int cpu_signal_handler(int host_signum
, void *pinfo
,
939 siginfo_t
*info
= pinfo
;
940 struct ucontext
*uc
= puc
;
948 if (DSISR_sig(uc
) & 0x00800000)
951 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
954 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
955 is_write
, &uc
->uc_sigmask
, puc
);
958 #elif defined(__alpha__)
960 int cpu_signal_handler(int host_signum
, void *pinfo
,
963 siginfo_t
*info
= pinfo
;
964 struct ucontext
*uc
= puc
;
965 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
969 /* XXX: need kernel patch to get write flag faster */
970 switch (insn
>> 26) {
985 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
986 is_write
, &uc
->uc_sigmask
, puc
);
988 #elif defined(__sparc__)
990 int cpu_signal_handler(int host_signum
, void *pinfo
,
993 siginfo_t
*info
= pinfo
;
996 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
997 uint32_t *regs
= (uint32_t *)(info
+ 1);
998 void *sigmask
= (regs
+ 20);
999 /* XXX: is there a standard glibc define ? */
1000 unsigned long pc
= regs
[1];
1003 struct sigcontext
*sc
= puc
;
1004 unsigned long pc
= sc
->sigc_regs
.tpc
;
1005 void *sigmask
= (void *)sc
->sigc_mask
;
1006 #elif defined(__OpenBSD__)
1007 struct sigcontext
*uc
= puc
;
1008 unsigned long pc
= uc
->sc_pc
;
1009 void *sigmask
= (void *)(long)uc
->sc_mask
;
1013 /* XXX: need kernel patch to get write flag faster */
1015 insn
= *(uint32_t *)pc
;
1016 if ((insn
>> 30) == 3) {
1017 switch((insn
>> 19) & 0x3f) {
1041 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1042 is_write
, sigmask
, NULL
);
1045 #elif defined(__arm__)
1047 int cpu_signal_handler(int host_signum
, void *pinfo
,
1050 siginfo_t
*info
= pinfo
;
1051 struct ucontext
*uc
= puc
;
1055 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1056 pc
= uc
->uc_mcontext
.gregs
[R15
];
1058 pc
= uc
->uc_mcontext
.arm_pc
;
1060 /* XXX: compute is_write */
1062 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1064 &uc
->uc_sigmask
, puc
);
1067 #elif defined(__mc68000)
1069 int cpu_signal_handler(int host_signum
, void *pinfo
,
1072 siginfo_t
*info
= pinfo
;
1073 struct ucontext
*uc
= puc
;
1077 pc
= uc
->uc_mcontext
.gregs
[16];
1078 /* XXX: compute is_write */
1080 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1082 &uc
->uc_sigmask
, puc
);
1085 #elif defined(__ia64)
1088 /* This ought to be in <bits/siginfo.h>... */
1089 # define __ISR_VALID 1
1092 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1094 siginfo_t
*info
= pinfo
;
1095 struct ucontext
*uc
= puc
;
1099 ip
= uc
->uc_mcontext
.sc_ip
;
1100 switch (host_signum
) {
1106 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1107 /* ISR.W (write-access) is bit 33: */
1108 is_write
= (info
->si_isr
>> 33) & 1;
1114 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1116 &uc
->uc_sigmask
, puc
);
1119 #elif defined(__s390__)
1121 int cpu_signal_handler(int host_signum
, void *pinfo
,
1124 siginfo_t
*info
= pinfo
;
1125 struct ucontext
*uc
= puc
;
1129 pc
= uc
->uc_mcontext
.psw
.addr
;
1130 /* XXX: compute is_write */
1132 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1133 is_write
, &uc
->uc_sigmask
, puc
);
1136 #elif defined(__mips__)
1138 int cpu_signal_handler(int host_signum
, void *pinfo
,
1141 siginfo_t
*info
= pinfo
;
1142 struct ucontext
*uc
= puc
;
1143 greg_t pc
= uc
->uc_mcontext
.pc
;
1146 /* XXX: compute is_write */
1148 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1149 is_write
, &uc
->uc_sigmask
, puc
);
1152 #elif defined(__hppa__)
1154 int cpu_signal_handler(int host_signum
, void *pinfo
,
1157 struct siginfo
*info
= pinfo
;
1158 struct ucontext
*uc
= puc
;
1162 pc
= uc
->uc_mcontext
.sc_iaoq
[0];
1163 /* FIXME: compute is_write */
1165 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1167 &uc
->uc_sigmask
, puc
);
1172 #error host CPU specific signal handler needed
1176 #endif /* !defined(CONFIG_SOFTMMU) */