s390x: split flic into kvm and non-kvm parts
[qemu.git] / hw / i386 / kvmvapic.c
bloba967b489652335bbf7996afdae28a629a6367e15
1 /*
2 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
4 * Copyright (C) 2007-2008 Qumranet Technologies
5 * Copyright (C) 2012 Jan Kiszka, Siemens AG
7 * This work is licensed under the terms of the GNU GPL version 2, or
8 * (at your option) any later version. See the COPYING file in the
9 * top-level directory.
11 #include "sysemu/sysemu.h"
12 #include "sysemu/cpus.h"
13 #include "sysemu/kvm.h"
14 #include "hw/i386/apic_internal.h"
15 #include "hw/sysbus.h"
17 #define VAPIC_IO_PORT 0x7e
19 #define VAPIC_CPU_SHIFT 7
21 #define ROM_BLOCK_SIZE 512
22 #define ROM_BLOCK_MASK (~(ROM_BLOCK_SIZE - 1))
24 typedef enum VAPICMode {
25 VAPIC_INACTIVE = 0,
26 VAPIC_ACTIVE = 1,
27 VAPIC_STANDBY = 2,
28 } VAPICMode;
30 typedef struct VAPICHandlers {
31 uint32_t set_tpr;
32 uint32_t set_tpr_eax;
33 uint32_t get_tpr[8];
34 uint32_t get_tpr_stack;
35 } QEMU_PACKED VAPICHandlers;
37 typedef struct GuestROMState {
38 char signature[8];
39 uint32_t vaddr;
40 uint32_t fixup_start;
41 uint32_t fixup_end;
42 uint32_t vapic_vaddr;
43 uint32_t vapic_size;
44 uint32_t vcpu_shift;
45 uint32_t real_tpr_addr;
46 VAPICHandlers up;
47 VAPICHandlers mp;
48 } QEMU_PACKED GuestROMState;
50 typedef struct VAPICROMState {
51 SysBusDevice busdev;
52 MemoryRegion io;
53 MemoryRegion rom;
54 uint32_t state;
55 uint32_t rom_state_paddr;
56 uint32_t rom_state_vaddr;
57 uint32_t vapic_paddr;
58 uint32_t real_tpr_addr;
59 GuestROMState rom_state;
60 size_t rom_size;
61 bool rom_mapped_writable;
62 } VAPICROMState;
64 #define TYPE_VAPIC "kvmvapic"
65 #define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
67 #define TPR_INSTR_ABS_MODRM 0x1
68 #define TPR_INSTR_MATCH_MODRM_REG 0x2
70 typedef struct TPRInstruction {
71 uint8_t opcode;
72 uint8_t modrm_reg;
73 unsigned int flags;
74 TPRAccess access;
75 size_t length;
76 off_t addr_offset;
77 } TPRInstruction;
79 /* must be sorted by length, shortest first */
80 static const TPRInstruction tpr_instr[] = {
81 { /* mov abs to eax */
82 .opcode = 0xa1,
83 .access = TPR_ACCESS_READ,
84 .length = 5,
85 .addr_offset = 1,
87 { /* mov eax to abs */
88 .opcode = 0xa3,
89 .access = TPR_ACCESS_WRITE,
90 .length = 5,
91 .addr_offset = 1,
93 { /* mov r32 to r/m32 */
94 .opcode = 0x89,
95 .flags = TPR_INSTR_ABS_MODRM,
96 .access = TPR_ACCESS_WRITE,
97 .length = 6,
98 .addr_offset = 2,
100 { /* mov r/m32 to r32 */
101 .opcode = 0x8b,
102 .flags = TPR_INSTR_ABS_MODRM,
103 .access = TPR_ACCESS_READ,
104 .length = 6,
105 .addr_offset = 2,
107 { /* push r/m32 */
108 .opcode = 0xff,
109 .modrm_reg = 6,
110 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
111 .access = TPR_ACCESS_READ,
112 .length = 6,
113 .addr_offset = 2,
115 { /* mov imm32, r/m32 (c7/0) */
116 .opcode = 0xc7,
117 .modrm_reg = 0,
118 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
119 .access = TPR_ACCESS_WRITE,
120 .length = 10,
121 .addr_offset = 2,
125 static void read_guest_rom_state(VAPICROMState *s)
127 cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
128 sizeof(GuestROMState));
131 static void write_guest_rom_state(VAPICROMState *s)
133 cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
134 sizeof(GuestROMState));
137 static void update_guest_rom_state(VAPICROMState *s)
139 read_guest_rom_state(s);
141 s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
142 s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
144 write_guest_rom_state(s);
147 static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
149 CPUState *cs = CPU(x86_env_get_cpu(env));
150 hwaddr paddr;
151 target_ulong addr;
153 if (s->state == VAPIC_ACTIVE) {
154 return 0;
157 * If there is no prior TPR access instruction we could analyze (which is
158 * the case after resume from hibernation), we need to scan the possible
159 * virtual address space for the APIC mapping.
161 for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
162 paddr = cpu_get_phys_page_debug(cs, addr);
163 if (paddr != APIC_DEFAULT_ADDRESS) {
164 continue;
166 s->real_tpr_addr = addr + 0x80;
167 update_guest_rom_state(s);
168 return 0;
170 return -1;
173 static uint8_t modrm_reg(uint8_t modrm)
175 return (modrm >> 3) & 7;
178 static bool is_abs_modrm(uint8_t modrm)
180 return (modrm & 0xc7) == 0x05;
183 static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
185 return opcode[0] == instr->opcode &&
186 (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
187 (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
188 modrm_reg(opcode[1]) == instr->modrm_reg);
191 static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
192 target_ulong *pip, TPRAccess access)
194 CPUState *cs = CPU(cpu);
195 const TPRInstruction *instr;
196 target_ulong ip = *pip;
197 uint8_t opcode[2];
198 uint32_t real_tpr_addr;
199 int i;
201 if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
202 (ip & 0xf0000000ULL) != 0xe0000000ULL) {
203 return -1;
207 * Early Windows 2003 SMP initialization contains a
209 * mov imm32, r/m32
211 * instruction that is patched by TPR optimization. The problem is that
212 * RSP, used by the patched instruction, is zero, so the guest gets a
213 * double fault and dies.
215 if (cpu->env.regs[R_ESP] == 0) {
216 return -1;
219 if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
221 * KVM without kernel-based TPR access reporting will pass an IP that
222 * points after the accessing instruction. So we need to look backward
223 * to find the reason.
225 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
226 instr = &tpr_instr[i];
227 if (instr->access != access) {
228 continue;
230 if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
231 sizeof(opcode), 0) < 0) {
232 return -1;
234 if (opcode_matches(opcode, instr)) {
235 ip -= instr->length;
236 goto instruction_ok;
239 return -1;
240 } else {
241 if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
242 return -1;
244 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
245 instr = &tpr_instr[i];
246 if (opcode_matches(opcode, instr)) {
247 goto instruction_ok;
250 return -1;
253 instruction_ok:
255 * Grab the virtual TPR address from the instruction
256 * and update the cached values.
258 if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
259 (void *)&real_tpr_addr,
260 sizeof(real_tpr_addr), 0) < 0) {
261 return -1;
263 real_tpr_addr = le32_to_cpu(real_tpr_addr);
264 if ((real_tpr_addr & 0xfff) != 0x80) {
265 return -1;
267 s->real_tpr_addr = real_tpr_addr;
268 update_guest_rom_state(s);
270 *pip = ip;
271 return 0;
274 static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
276 CPUState *cs = CPU(x86_env_get_cpu(env));
277 hwaddr paddr;
278 uint32_t rom_state_vaddr;
279 uint32_t pos, patch, offset;
281 /* nothing to do if already activated */
282 if (s->state == VAPIC_ACTIVE) {
283 return 0;
286 /* bail out if ROM init code was not executed (missing ROM?) */
287 if (s->state == VAPIC_INACTIVE) {
288 return -1;
291 /* find out virtual address of the ROM */
292 rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
293 paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
294 if (paddr == -1) {
295 return -1;
297 paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
298 if (paddr != s->rom_state_paddr) {
299 return -1;
301 read_guest_rom_state(s);
302 if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
303 return -1;
305 s->rom_state_vaddr = rom_state_vaddr;
307 /* fixup addresses in ROM if needed */
308 if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
309 return 0;
311 for (pos = le32_to_cpu(s->rom_state.fixup_start);
312 pos < le32_to_cpu(s->rom_state.fixup_end);
313 pos += 4) {
314 cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
315 &offset, sizeof(offset));
316 offset = le32_to_cpu(offset);
317 cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
318 patch = le32_to_cpu(patch);
319 patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
320 patch = cpu_to_le32(patch);
321 cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
323 read_guest_rom_state(s);
324 s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
325 le32_to_cpu(s->rom_state.vaddr);
327 return 0;
331 * Tries to read the unique processor number from the Kernel Processor Control
332 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
333 * cannot be accessed or is considered invalid. This also ensures that we are
334 * not patching the wrong guest.
336 static int get_kpcr_number(X86CPU *cpu)
338 CPUX86State *env = &cpu->env;
339 struct kpcr {
340 uint8_t fill1[0x1c];
341 uint32_t self;
342 uint8_t fill2[0x31];
343 uint8_t number;
344 } QEMU_PACKED kpcr;
346 if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
347 (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
348 kpcr.self != env->segs[R_FS].base) {
349 return -1;
351 return kpcr.number;
354 static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
356 int cpu_number = get_kpcr_number(cpu);
357 hwaddr vapic_paddr;
358 static const uint8_t enabled = 1;
360 if (cpu_number < 0) {
361 return -1;
363 vapic_paddr = s->vapic_paddr +
364 (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
365 cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
366 &enabled, sizeof(enabled));
367 apic_enable_vapic(cpu->apic_state, vapic_paddr);
369 s->state = VAPIC_ACTIVE;
371 return 0;
374 static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
376 cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
379 static void patch_call(VAPICROMState *s, X86CPU *cpu, target_ulong ip,
380 uint32_t target)
382 uint32_t offset;
384 offset = cpu_to_le32(target - ip - 5);
385 patch_byte(cpu, ip, 0xe8); /* call near */
386 cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
389 static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
391 CPUState *cs = CPU(cpu);
392 CPUX86State *env = &cpu->env;
393 VAPICHandlers *handlers;
394 uint8_t opcode[2];
395 uint32_t imm32;
396 target_ulong current_pc = 0;
397 target_ulong current_cs_base = 0;
398 int current_flags = 0;
400 if (smp_cpus == 1) {
401 handlers = &s->rom_state.up;
402 } else {
403 handlers = &s->rom_state.mp;
406 if (!kvm_enabled()) {
407 cpu_restore_state(cs, cs->mem_io_pc);
408 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
409 &current_flags);
412 pause_all_vcpus();
414 cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
416 switch (opcode[0]) {
417 case 0x89: /* mov r32 to r/m32 */
418 patch_byte(cpu, ip, 0x50 + modrm_reg(opcode[1])); /* push reg */
419 patch_call(s, cpu, ip + 1, handlers->set_tpr);
420 break;
421 case 0x8b: /* mov r/m32 to r32 */
422 patch_byte(cpu, ip, 0x90);
423 patch_call(s, cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
424 break;
425 case 0xa1: /* mov abs to eax */
426 patch_call(s, cpu, ip, handlers->get_tpr[0]);
427 break;
428 case 0xa3: /* mov eax to abs */
429 patch_call(s, cpu, ip, handlers->set_tpr_eax);
430 break;
431 case 0xc7: /* mov imm32, r/m32 (c7/0) */
432 patch_byte(cpu, ip, 0x68); /* push imm32 */
433 cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
434 cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
435 patch_call(s, cpu, ip + 5, handlers->set_tpr);
436 break;
437 case 0xff: /* push r/m32 */
438 patch_byte(cpu, ip, 0x50); /* push eax */
439 patch_call(s, cpu, ip + 1, handlers->get_tpr_stack);
440 break;
441 default:
442 abort();
445 resume_all_vcpus();
447 if (!kvm_enabled()) {
448 cs->current_tb = NULL;
449 tb_gen_code(cs, current_pc, current_cs_base, current_flags, 1);
450 cpu_resume_from_signal(cs, NULL);
454 void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
455 TPRAccess access)
457 VAPICROMState *s = VAPIC(dev);
458 X86CPU *cpu = X86_CPU(cs);
459 CPUX86State *env = &cpu->env;
461 cpu_synchronize_state(cs);
463 if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
464 if (s->state == VAPIC_ACTIVE) {
465 vapic_enable(s, cpu);
467 return;
469 if (update_rom_mapping(s, env, ip) < 0) {
470 return;
472 if (vapic_enable(s, cpu) < 0) {
473 return;
475 patch_instruction(s, cpu, ip);
478 typedef struct VAPICEnableTPRReporting {
479 DeviceState *apic;
480 bool enable;
481 } VAPICEnableTPRReporting;
483 static void vapic_do_enable_tpr_reporting(void *data)
485 VAPICEnableTPRReporting *info = data;
487 apic_enable_tpr_access_reporting(info->apic, info->enable);
490 static void vapic_enable_tpr_reporting(bool enable)
492 VAPICEnableTPRReporting info = {
493 .enable = enable,
495 CPUState *cs;
496 X86CPU *cpu;
498 CPU_FOREACH(cs) {
499 cpu = X86_CPU(cs);
500 info.apic = cpu->apic_state;
501 run_on_cpu(cs, vapic_do_enable_tpr_reporting, &info);
505 static void vapic_reset(DeviceState *dev)
507 VAPICROMState *s = VAPIC(dev);
509 s->state = VAPIC_INACTIVE;
510 s->rom_state_paddr = 0;
511 vapic_enable_tpr_reporting(false);
515 * Set the IRQ polling hypercalls to the supported variant:
516 * - vmcall if using KVM in-kernel irqchip
517 * - 32-bit VAPIC port write otherwise
519 static int patch_hypercalls(VAPICROMState *s)
521 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
522 static const uint8_t vmcall_pattern[] = { /* vmcall */
523 0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
525 static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
526 0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
528 uint8_t alternates[2];
529 const uint8_t *pattern;
530 const uint8_t *patch;
531 int patches = 0;
532 off_t pos;
533 uint8_t *rom;
535 rom = g_malloc(s->rom_size);
536 cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
538 for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
539 if (kvm_irqchip_in_kernel()) {
540 pattern = outl_pattern;
541 alternates[0] = outl_pattern[7];
542 alternates[1] = outl_pattern[7];
543 patch = &vmcall_pattern[5];
544 } else {
545 pattern = vmcall_pattern;
546 alternates[0] = vmcall_pattern[7];
547 alternates[1] = 0xd9; /* AMD's VMMCALL */
548 patch = &outl_pattern[5];
550 if (memcmp(rom + pos, pattern, 7) == 0 &&
551 (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
552 cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
554 * Don't flush the tb here. Under ordinary conditions, the patched
555 * calls are miles away from the current IP. Under malicious
556 * conditions, the guest could trick us to crash.
561 g_free(rom);
563 if (patches != 0 && patches != 2) {
564 return -1;
567 return 0;
571 * For TCG mode or the time KVM honors read-only memory regions, we need to
572 * enable write access to the option ROM so that variables can be updated by
573 * the guest.
575 static int vapic_map_rom_writable(VAPICROMState *s)
577 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
578 MemoryRegionSection section;
579 MemoryRegion *as;
580 size_t rom_size;
581 uint8_t *ram;
583 as = sysbus_address_space(&s->busdev);
585 if (s->rom_mapped_writable) {
586 memory_region_del_subregion(as, &s->rom);
587 memory_region_destroy(&s->rom);
590 /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
591 section = memory_region_find(as, 0, 1);
593 /* read ROM size from RAM region */
594 if (rom_paddr + 2 >= memory_region_size(section.mr)) {
595 return -1;
597 ram = memory_region_get_ram_ptr(section.mr);
598 rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
599 if (rom_size == 0) {
600 return -1;
602 s->rom_size = rom_size;
604 /* We need to round to avoid creating subpages
605 * from which we cannot run code. */
606 rom_size += rom_paddr & ~TARGET_PAGE_MASK;
607 rom_paddr &= TARGET_PAGE_MASK;
608 rom_size = TARGET_PAGE_ALIGN(rom_size);
610 memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
611 rom_paddr, rom_size);
612 memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
613 s->rom_mapped_writable = true;
614 memory_region_unref(section.mr);
616 return 0;
619 static int vapic_prepare(VAPICROMState *s)
621 if (vapic_map_rom_writable(s) < 0) {
622 return -1;
625 if (patch_hypercalls(s) < 0) {
626 return -1;
629 vapic_enable_tpr_reporting(true);
631 return 0;
634 static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
635 unsigned int size)
637 CPUState *cs = current_cpu;
638 X86CPU *cpu = X86_CPU(cs);
639 CPUX86State *env = &cpu->env;
640 hwaddr rom_paddr;
641 VAPICROMState *s = opaque;
643 cpu_synchronize_state(cs);
646 * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
647 * o 16-bit write access:
648 * Reports the option ROM initialization to the hypervisor. Written
649 * value is the offset of the state structure in the ROM.
650 * o 8-bit write access:
651 * Reactivates the VAPIC after a guest hibernation, i.e. after the
652 * option ROM content has been re-initialized by a guest power cycle.
653 * o 32-bit write access:
654 * Poll for pending IRQs, considering the current VAPIC state.
656 switch (size) {
657 case 2:
658 if (s->state == VAPIC_INACTIVE) {
659 rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
660 s->rom_state_paddr = rom_paddr + data;
662 s->state = VAPIC_STANDBY;
664 if (vapic_prepare(s) < 0) {
665 s->state = VAPIC_INACTIVE;
666 s->rom_state_paddr = 0;
667 break;
669 break;
670 case 1:
671 if (kvm_enabled()) {
673 * Disable triggering instruction in ROM by writing a NOP.
675 * We cannot do this in TCG mode as the reported IP is not
676 * accurate.
678 pause_all_vcpus();
679 patch_byte(cpu, env->eip - 2, 0x66);
680 patch_byte(cpu, env->eip - 1, 0x90);
681 resume_all_vcpus();
684 if (s->state == VAPIC_ACTIVE) {
685 break;
687 if (update_rom_mapping(s, env, env->eip) < 0) {
688 break;
690 if (find_real_tpr_addr(s, env) < 0) {
691 break;
693 vapic_enable(s, cpu);
694 break;
695 default:
696 case 4:
697 if (!kvm_irqchip_in_kernel()) {
698 apic_poll_irq(cpu->apic_state);
700 break;
704 static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
706 return 0xffffffff;
709 static const MemoryRegionOps vapic_ops = {
710 .write = vapic_write,
711 .read = vapic_read,
712 .endianness = DEVICE_NATIVE_ENDIAN,
715 static void vapic_realize(DeviceState *dev, Error **errp)
717 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
718 VAPICROMState *s = VAPIC(dev);
720 memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
721 sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
722 sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
724 option_rom[nb_option_roms].name = "kvmvapic.bin";
725 option_rom[nb_option_roms].bootindex = -1;
726 nb_option_roms++;
729 static void do_vapic_enable(void *data)
731 VAPICROMState *s = data;
732 X86CPU *cpu = X86_CPU(first_cpu);
734 vapic_enable(s, cpu);
737 static int vapic_post_load(void *opaque, int version_id)
739 VAPICROMState *s = opaque;
740 uint8_t *zero;
743 * The old implementation of qemu-kvm did not provide the state
744 * VAPIC_STANDBY. Reconstruct it.
746 if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
747 s->state = VAPIC_STANDBY;
750 if (s->state != VAPIC_INACTIVE) {
751 if (vapic_prepare(s) < 0) {
752 return -1;
755 if (s->state == VAPIC_ACTIVE) {
756 if (smp_cpus == 1) {
757 run_on_cpu(first_cpu, do_vapic_enable, s);
758 } else {
759 zero = g_malloc0(s->rom_state.vapic_size);
760 cpu_physical_memory_write(s->vapic_paddr, zero,
761 s->rom_state.vapic_size);
762 g_free(zero);
766 return 0;
769 static const VMStateDescription vmstate_handlers = {
770 .name = "kvmvapic-handlers",
771 .version_id = 1,
772 .minimum_version_id = 1,
773 .minimum_version_id_old = 1,
774 .fields = (VMStateField[]) {
775 VMSTATE_UINT32(set_tpr, VAPICHandlers),
776 VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
777 VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
778 VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
779 VMSTATE_END_OF_LIST()
783 static const VMStateDescription vmstate_guest_rom = {
784 .name = "kvmvapic-guest-rom",
785 .version_id = 1,
786 .minimum_version_id = 1,
787 .minimum_version_id_old = 1,
788 .fields = (VMStateField[]) {
789 VMSTATE_UNUSED(8), /* signature */
790 VMSTATE_UINT32(vaddr, GuestROMState),
791 VMSTATE_UINT32(fixup_start, GuestROMState),
792 VMSTATE_UINT32(fixup_end, GuestROMState),
793 VMSTATE_UINT32(vapic_vaddr, GuestROMState),
794 VMSTATE_UINT32(vapic_size, GuestROMState),
795 VMSTATE_UINT32(vcpu_shift, GuestROMState),
796 VMSTATE_UINT32(real_tpr_addr, GuestROMState),
797 VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
798 VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
799 VMSTATE_END_OF_LIST()
803 static const VMStateDescription vmstate_vapic = {
804 .name = "kvm-tpr-opt", /* compatible with qemu-kvm VAPIC */
805 .version_id = 1,
806 .minimum_version_id = 1,
807 .minimum_version_id_old = 1,
808 .post_load = vapic_post_load,
809 .fields = (VMStateField[]) {
810 VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
811 GuestROMState),
812 VMSTATE_UINT32(state, VAPICROMState),
813 VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
814 VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
815 VMSTATE_UINT32(vapic_paddr, VAPICROMState),
816 VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
817 VMSTATE_END_OF_LIST()
821 static void vapic_class_init(ObjectClass *klass, void *data)
823 DeviceClass *dc = DEVICE_CLASS(klass);
825 dc->reset = vapic_reset;
826 dc->vmsd = &vmstate_vapic;
827 dc->realize = vapic_realize;
830 static const TypeInfo vapic_type = {
831 .name = TYPE_VAPIC,
832 .parent = TYPE_SYS_BUS_DEVICE,
833 .instance_size = sizeof(VAPICROMState),
834 .class_init = vapic_class_init,
837 static void vapic_register(void)
839 type_register_static(&vapic_type);
842 type_init(vapic_register);