4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
29 #include <sys/mount.h>
31 #include <sys/fsuid.h>
32 #include <sys/personality.h>
33 #include <sys/prctl.h>
34 #include <sys/resource.h>
36 #include <linux/capability.h>
38 #include <sys/timex.h>
39 #include <sys/socket.h>
43 #include <sys/times.h>
46 #include <sys/statfs.h>
48 #include <sys/sysinfo.h>
49 #include <sys/signalfd.h>
50 //#include <sys/user.h>
51 #include <netinet/ip.h>
52 #include <netinet/tcp.h>
53 #include <linux/wireless.h>
54 #include <linux/icmp.h>
55 #include <linux/icmpv6.h>
56 #include <linux/errqueue.h>
57 #include <linux/random.h>
58 #include "qemu-common.h"
60 #include <sys/timerfd.h>
66 #include <sys/eventfd.h>
69 #include <sys/epoll.h>
72 #include "qemu/xattr.h"
74 #ifdef CONFIG_SENDFILE
75 #include <sys/sendfile.h>
78 #define termios host_termios
79 #define winsize host_winsize
80 #define termio host_termio
81 #define sgttyb host_sgttyb /* same as target */
82 #define tchars host_tchars /* same as target */
83 #define ltchars host_ltchars /* same as target */
85 #include <linux/termios.h>
86 #include <linux/unistd.h>
87 #include <linux/cdrom.h>
88 #include <linux/hdreg.h>
89 #include <linux/soundcard.h>
91 #include <linux/mtio.h>
93 #if defined(CONFIG_FIEMAP)
94 #include <linux/fiemap.h>
98 #include <linux/dm-ioctl.h>
99 #include <linux/reboot.h>
100 #include <linux/route.h>
101 #include <linux/filter.h>
102 #include <linux/blkpg.h>
103 #include <netpacket/packet.h>
104 #include <linux/netlink.h>
105 #ifdef CONFIG_RTNETLINK
106 #include <linux/rtnetlink.h>
107 #include <linux/if_bridge.h>
109 #include <linux/audit.h>
110 #include "linux_loop.h"
116 #define CLONE_IO 0x80000000 /* Clone io context */
119 /* We can't directly call the host clone syscall, because this will
120 * badly confuse libc (breaking mutexes, for example). So we must
121 * divide clone flags into:
122 * * flag combinations that look like pthread_create()
123 * * flag combinations that look like fork()
124 * * flags we can implement within QEMU itself
125 * * flags we can't support and will return an error for
127 /* For thread creation, all these flags must be present; for
128 * fork, none must be present.
130 #define CLONE_THREAD_FLAGS \
131 (CLONE_VM | CLONE_FS | CLONE_FILES | \
132 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
134 /* These flags are ignored:
135 * CLONE_DETACHED is now ignored by the kernel;
136 * CLONE_IO is just an optimisation hint to the I/O scheduler
138 #define CLONE_IGNORED_FLAGS \
139 (CLONE_DETACHED | CLONE_IO)
141 /* Flags for fork which we can implement within QEMU itself */
142 #define CLONE_OPTIONAL_FORK_FLAGS \
143 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
144 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
146 /* Flags for thread creation which we can implement within QEMU itself */
147 #define CLONE_OPTIONAL_THREAD_FLAGS \
148 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
149 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
151 #define CLONE_INVALID_FORK_FLAGS \
152 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
154 #define CLONE_INVALID_THREAD_FLAGS \
155 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \
156 CLONE_IGNORED_FLAGS))
158 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
159 * have almost all been allocated. We cannot support any of
160 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
161 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
162 * The checks against the invalid thread masks above will catch these.
163 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
167 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
168 * once. This exercises the codepaths for restart.
170 //#define DEBUG_ERESTARTSYS
172 //#include <linux/msdos_fs.h>
173 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2])
174 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2])
184 #define _syscall0(type,name) \
185 static type name (void) \
187 return syscall(__NR_##name); \
190 #define _syscall1(type,name,type1,arg1) \
191 static type name (type1 arg1) \
193 return syscall(__NR_##name, arg1); \
196 #define _syscall2(type,name,type1,arg1,type2,arg2) \
197 static type name (type1 arg1,type2 arg2) \
199 return syscall(__NR_##name, arg1, arg2); \
202 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
203 static type name (type1 arg1,type2 arg2,type3 arg3) \
205 return syscall(__NR_##name, arg1, arg2, arg3); \
208 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
209 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
211 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
214 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
216 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
218 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
222 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
223 type5,arg5,type6,arg6) \
224 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
227 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
231 #define __NR_sys_uname __NR_uname
232 #define __NR_sys_getcwd1 __NR_getcwd
233 #define __NR_sys_getdents __NR_getdents
234 #define __NR_sys_getdents64 __NR_getdents64
235 #define __NR_sys_getpriority __NR_getpriority
236 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
237 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
238 #define __NR_sys_syslog __NR_syslog
239 #define __NR_sys_futex __NR_futex
240 #define __NR_sys_inotify_init __NR_inotify_init
241 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
242 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
244 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
245 #define __NR__llseek __NR_lseek
248 /* Newer kernel ports have llseek() instead of _llseek() */
249 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
250 #define TARGET_NR__llseek TARGET_NR_llseek
254 _syscall0(int, gettid
)
256 /* This is a replacement for the host gettid() and must return a host
258 static int gettid(void) {
262 #if defined(TARGET_NR_getdents) && defined(__NR_getdents)
263 _syscall3(int, sys_getdents
, uint
, fd
, struct linux_dirent
*, dirp
, uint
, count
);
265 #if !defined(__NR_getdents) || \
266 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
267 _syscall3(int, sys_getdents64
, uint
, fd
, struct linux_dirent64
*, dirp
, uint
, count
);
269 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
270 _syscall5(int, _llseek
, uint
, fd
, ulong
, hi
, ulong
, lo
,
271 loff_t
*, res
, uint
, wh
);
273 _syscall3(int, sys_rt_sigqueueinfo
, pid_t
, pid
, int, sig
, siginfo_t
*, uinfo
)
274 _syscall4(int, sys_rt_tgsigqueueinfo
, pid_t
, pid
, pid_t
, tid
, int, sig
,
276 _syscall3(int,sys_syslog
,int,type
,char*,bufp
,int,len
)
277 #ifdef __NR_exit_group
278 _syscall1(int,exit_group
,int,error_code
)
280 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
281 _syscall1(int,set_tid_address
,int *,tidptr
)
283 #if defined(TARGET_NR_futex) && defined(__NR_futex)
284 _syscall6(int,sys_futex
,int *,uaddr
,int,op
,int,val
,
285 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
287 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
288 _syscall3(int, sys_sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
289 unsigned long *, user_mask_ptr
);
290 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
291 _syscall3(int, sys_sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
292 unsigned long *, user_mask_ptr
);
293 #define __NR_sys_getcpu __NR_getcpu
294 _syscall3(int, sys_getcpu
, unsigned *, cpu
, unsigned *, node
, void *, tcache
);
295 _syscall4(int, reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
297 _syscall2(int, capget
, struct __user_cap_header_struct
*, header
,
298 struct __user_cap_data_struct
*, data
);
299 _syscall2(int, capset
, struct __user_cap_header_struct
*, header
,
300 struct __user_cap_data_struct
*, data
);
301 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
302 _syscall2(int, ioprio_get
, int, which
, int, who
)
304 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
305 _syscall3(int, ioprio_set
, int, which
, int, who
, int, ioprio
)
307 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
308 _syscall3(int, getrandom
, void *, buf
, size_t, buflen
, unsigned int, flags
)
311 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
312 _syscall5(int, kcmp
, pid_t
, pid1
, pid_t
, pid2
, int, type
,
313 unsigned long, idx1
, unsigned long, idx2
)
316 static bitmask_transtbl fcntl_flags_tbl
[] = {
317 { TARGET_O_ACCMODE
, TARGET_O_WRONLY
, O_ACCMODE
, O_WRONLY
, },
318 { TARGET_O_ACCMODE
, TARGET_O_RDWR
, O_ACCMODE
, O_RDWR
, },
319 { TARGET_O_CREAT
, TARGET_O_CREAT
, O_CREAT
, O_CREAT
, },
320 { TARGET_O_EXCL
, TARGET_O_EXCL
, O_EXCL
, O_EXCL
, },
321 { TARGET_O_NOCTTY
, TARGET_O_NOCTTY
, O_NOCTTY
, O_NOCTTY
, },
322 { TARGET_O_TRUNC
, TARGET_O_TRUNC
, O_TRUNC
, O_TRUNC
, },
323 { TARGET_O_APPEND
, TARGET_O_APPEND
, O_APPEND
, O_APPEND
, },
324 { TARGET_O_NONBLOCK
, TARGET_O_NONBLOCK
, O_NONBLOCK
, O_NONBLOCK
, },
325 { TARGET_O_SYNC
, TARGET_O_DSYNC
, O_SYNC
, O_DSYNC
, },
326 { TARGET_O_SYNC
, TARGET_O_SYNC
, O_SYNC
, O_SYNC
, },
327 { TARGET_FASYNC
, TARGET_FASYNC
, FASYNC
, FASYNC
, },
328 { TARGET_O_DIRECTORY
, TARGET_O_DIRECTORY
, O_DIRECTORY
, O_DIRECTORY
, },
329 { TARGET_O_NOFOLLOW
, TARGET_O_NOFOLLOW
, O_NOFOLLOW
, O_NOFOLLOW
, },
330 #if defined(O_DIRECT)
331 { TARGET_O_DIRECT
, TARGET_O_DIRECT
, O_DIRECT
, O_DIRECT
, },
333 #if defined(O_NOATIME)
334 { TARGET_O_NOATIME
, TARGET_O_NOATIME
, O_NOATIME
, O_NOATIME
},
336 #if defined(O_CLOEXEC)
337 { TARGET_O_CLOEXEC
, TARGET_O_CLOEXEC
, O_CLOEXEC
, O_CLOEXEC
},
340 { TARGET_O_PATH
, TARGET_O_PATH
, O_PATH
, O_PATH
},
342 #if defined(O_TMPFILE)
343 { TARGET_O_TMPFILE
, TARGET_O_TMPFILE
, O_TMPFILE
, O_TMPFILE
},
345 /* Don't terminate the list prematurely on 64-bit host+guest. */
346 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
347 { TARGET_O_LARGEFILE
, TARGET_O_LARGEFILE
, O_LARGEFILE
, O_LARGEFILE
, },
354 QEMU_IFLA_BR_FORWARD_DELAY
,
355 QEMU_IFLA_BR_HELLO_TIME
,
356 QEMU_IFLA_BR_MAX_AGE
,
357 QEMU_IFLA_BR_AGEING_TIME
,
358 QEMU_IFLA_BR_STP_STATE
,
359 QEMU_IFLA_BR_PRIORITY
,
360 QEMU_IFLA_BR_VLAN_FILTERING
,
361 QEMU_IFLA_BR_VLAN_PROTOCOL
,
362 QEMU_IFLA_BR_GROUP_FWD_MASK
,
363 QEMU_IFLA_BR_ROOT_ID
,
364 QEMU_IFLA_BR_BRIDGE_ID
,
365 QEMU_IFLA_BR_ROOT_PORT
,
366 QEMU_IFLA_BR_ROOT_PATH_COST
,
367 QEMU_IFLA_BR_TOPOLOGY_CHANGE
,
368 QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED
,
369 QEMU_IFLA_BR_HELLO_TIMER
,
370 QEMU_IFLA_BR_TCN_TIMER
,
371 QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER
,
372 QEMU_IFLA_BR_GC_TIMER
,
373 QEMU_IFLA_BR_GROUP_ADDR
,
374 QEMU_IFLA_BR_FDB_FLUSH
,
375 QEMU_IFLA_BR_MCAST_ROUTER
,
376 QEMU_IFLA_BR_MCAST_SNOOPING
,
377 QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR
,
378 QEMU_IFLA_BR_MCAST_QUERIER
,
379 QEMU_IFLA_BR_MCAST_HASH_ELASTICITY
,
380 QEMU_IFLA_BR_MCAST_HASH_MAX
,
381 QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT
,
382 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT
,
383 QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL
,
384 QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL
,
385 QEMU_IFLA_BR_MCAST_QUERIER_INTVL
,
386 QEMU_IFLA_BR_MCAST_QUERY_INTVL
,
387 QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL
,
388 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL
,
389 QEMU_IFLA_BR_NF_CALL_IPTABLES
,
390 QEMU_IFLA_BR_NF_CALL_IP6TABLES
,
391 QEMU_IFLA_BR_NF_CALL_ARPTABLES
,
392 QEMU_IFLA_BR_VLAN_DEFAULT_PVID
,
394 QEMU_IFLA_BR_VLAN_STATS_ENABLED
,
395 QEMU_IFLA_BR_MCAST_STATS_ENABLED
,
419 QEMU_IFLA_NET_NS_PID
,
422 QEMU_IFLA_VFINFO_LIST
,
430 QEMU_IFLA_PROMISCUITY
,
431 QEMU_IFLA_NUM_TX_QUEUES
,
432 QEMU_IFLA_NUM_RX_QUEUES
,
434 QEMU_IFLA_PHYS_PORT_ID
,
435 QEMU_IFLA_CARRIER_CHANGES
,
436 QEMU_IFLA_PHYS_SWITCH_ID
,
437 QEMU_IFLA_LINK_NETNSID
,
438 QEMU_IFLA_PHYS_PORT_NAME
,
439 QEMU_IFLA_PROTO_DOWN
,
440 QEMU_IFLA_GSO_MAX_SEGS
,
441 QEMU_IFLA_GSO_MAX_SIZE
,
448 QEMU_IFLA_BRPORT_UNSPEC
,
449 QEMU_IFLA_BRPORT_STATE
,
450 QEMU_IFLA_BRPORT_PRIORITY
,
451 QEMU_IFLA_BRPORT_COST
,
452 QEMU_IFLA_BRPORT_MODE
,
453 QEMU_IFLA_BRPORT_GUARD
,
454 QEMU_IFLA_BRPORT_PROTECT
,
455 QEMU_IFLA_BRPORT_FAST_LEAVE
,
456 QEMU_IFLA_BRPORT_LEARNING
,
457 QEMU_IFLA_BRPORT_UNICAST_FLOOD
,
458 QEMU_IFLA_BRPORT_PROXYARP
,
459 QEMU_IFLA_BRPORT_LEARNING_SYNC
,
460 QEMU_IFLA_BRPORT_PROXYARP_WIFI
,
461 QEMU_IFLA_BRPORT_ROOT_ID
,
462 QEMU_IFLA_BRPORT_BRIDGE_ID
,
463 QEMU_IFLA_BRPORT_DESIGNATED_PORT
,
464 QEMU_IFLA_BRPORT_DESIGNATED_COST
,
467 QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK
,
468 QEMU_IFLA_BRPORT_CONFIG_PENDING
,
469 QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER
,
470 QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER
,
471 QEMU_IFLA_BRPORT_HOLD_TIMER
,
472 QEMU_IFLA_BRPORT_FLUSH
,
473 QEMU_IFLA_BRPORT_MULTICAST_ROUTER
,
474 QEMU_IFLA_BRPORT_PAD
,
475 QEMU___IFLA_BRPORT_MAX
479 QEMU_IFLA_INFO_UNSPEC
,
482 QEMU_IFLA_INFO_XSTATS
,
483 QEMU_IFLA_INFO_SLAVE_KIND
,
484 QEMU_IFLA_INFO_SLAVE_DATA
,
485 QEMU___IFLA_INFO_MAX
,
489 QEMU_IFLA_INET_UNSPEC
,
491 QEMU___IFLA_INET_MAX
,
495 QEMU_IFLA_INET6_UNSPEC
,
496 QEMU_IFLA_INET6_FLAGS
,
497 QEMU_IFLA_INET6_CONF
,
498 QEMU_IFLA_INET6_STATS
,
499 QEMU_IFLA_INET6_MCAST
,
500 QEMU_IFLA_INET6_CACHEINFO
,
501 QEMU_IFLA_INET6_ICMP6STATS
,
502 QEMU_IFLA_INET6_TOKEN
,
503 QEMU_IFLA_INET6_ADDR_GEN_MODE
,
504 QEMU___IFLA_INET6_MAX
507 typedef abi_long (*TargetFdDataFunc
)(void *, size_t);
508 typedef abi_long (*TargetFdAddrFunc
)(void *, abi_ulong
, socklen_t
);
509 typedef struct TargetFdTrans
{
510 TargetFdDataFunc host_to_target_data
;
511 TargetFdDataFunc target_to_host_data
;
512 TargetFdAddrFunc target_to_host_addr
;
515 static TargetFdTrans
**target_fd_trans
;
517 static unsigned int target_fd_max
;
519 static TargetFdDataFunc
fd_trans_target_to_host_data(int fd
)
521 if (fd
>= 0 && fd
< target_fd_max
&& target_fd_trans
[fd
]) {
522 return target_fd_trans
[fd
]->target_to_host_data
;
527 static TargetFdDataFunc
fd_trans_host_to_target_data(int fd
)
529 if (fd
>= 0 && fd
< target_fd_max
&& target_fd_trans
[fd
]) {
530 return target_fd_trans
[fd
]->host_to_target_data
;
535 static TargetFdAddrFunc
fd_trans_target_to_host_addr(int fd
)
537 if (fd
>= 0 && fd
< target_fd_max
&& target_fd_trans
[fd
]) {
538 return target_fd_trans
[fd
]->target_to_host_addr
;
543 static void fd_trans_register(int fd
, TargetFdTrans
*trans
)
547 if (fd
>= target_fd_max
) {
548 oldmax
= target_fd_max
;
549 target_fd_max
= ((fd
>> 6) + 1) << 6; /* by slice of 64 entries */
550 target_fd_trans
= g_renew(TargetFdTrans
*,
551 target_fd_trans
, target_fd_max
);
552 memset((void *)(target_fd_trans
+ oldmax
), 0,
553 (target_fd_max
- oldmax
) * sizeof(TargetFdTrans
*));
555 target_fd_trans
[fd
] = trans
;
558 static void fd_trans_unregister(int fd
)
560 if (fd
>= 0 && fd
< target_fd_max
) {
561 target_fd_trans
[fd
] = NULL
;
565 static void fd_trans_dup(int oldfd
, int newfd
)
567 fd_trans_unregister(newfd
);
568 if (oldfd
< target_fd_max
&& target_fd_trans
[oldfd
]) {
569 fd_trans_register(newfd
, target_fd_trans
[oldfd
]);
573 static int sys_getcwd1(char *buf
, size_t size
)
575 if (getcwd(buf
, size
) == NULL
) {
576 /* getcwd() sets errno */
579 return strlen(buf
)+1;
582 #ifdef TARGET_NR_utimensat
583 #if defined(__NR_utimensat)
584 #define __NR_sys_utimensat __NR_utimensat
585 _syscall4(int,sys_utimensat
,int,dirfd
,const char *,pathname
,
586 const struct timespec
*,tsp
,int,flags
)
588 static int sys_utimensat(int dirfd
, const char *pathname
,
589 const struct timespec times
[2], int flags
)
595 #endif /* TARGET_NR_utimensat */
597 #ifdef TARGET_NR_renameat2
598 #if defined(__NR_renameat2)
599 #define __NR_sys_renameat2 __NR_renameat2
600 _syscall5(int, sys_renameat2
, int, oldfd
, const char *, old
, int, newfd
,
601 const char *, new, unsigned int, flags
)
603 static int sys_renameat2(int oldfd
, const char *old
,
604 int newfd
, const char *new, int flags
)
607 return renameat(oldfd
, old
, newfd
, new);
613 #endif /* TARGET_NR_renameat2 */
615 #ifdef CONFIG_INOTIFY
616 #include <sys/inotify.h>
618 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
619 static int sys_inotify_init(void)
621 return (inotify_init());
624 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
625 static int sys_inotify_add_watch(int fd
,const char *pathname
, int32_t mask
)
627 return (inotify_add_watch(fd
, pathname
, mask
));
630 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
631 static int sys_inotify_rm_watch(int fd
, int32_t wd
)
633 return (inotify_rm_watch(fd
, wd
));
636 #ifdef CONFIG_INOTIFY1
637 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
638 static int sys_inotify_init1(int flags
)
640 return (inotify_init1(flags
));
645 /* Userspace can usually survive runtime without inotify */
646 #undef TARGET_NR_inotify_init
647 #undef TARGET_NR_inotify_init1
648 #undef TARGET_NR_inotify_add_watch
649 #undef TARGET_NR_inotify_rm_watch
650 #endif /* CONFIG_INOTIFY */
652 #if defined(TARGET_NR_prlimit64)
653 #ifndef __NR_prlimit64
654 # define __NR_prlimit64 -1
656 #define __NR_sys_prlimit64 __NR_prlimit64
657 /* The glibc rlimit structure may not be that used by the underlying syscall */
658 struct host_rlimit64
{
662 _syscall4(int, sys_prlimit64
, pid_t
, pid
, int, resource
,
663 const struct host_rlimit64
*, new_limit
,
664 struct host_rlimit64
*, old_limit
)
668 #if defined(TARGET_NR_timer_create)
669 /* Maxiumum of 32 active POSIX timers allowed at any one time. */
670 static timer_t g_posix_timers
[32] = { 0, } ;
672 static inline int next_free_host_timer(void)
675 /* FIXME: Does finding the next free slot require a lock? */
676 for (k
= 0; k
< ARRAY_SIZE(g_posix_timers
); k
++) {
677 if (g_posix_timers
[k
] == 0) {
678 g_posix_timers
[k
] = (timer_t
) 1;
686 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
688 static inline int regpairs_aligned(void *cpu_env
, int num
)
690 return ((((CPUARMState
*)cpu_env
)->eabi
) == 1) ;
692 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
693 static inline int regpairs_aligned(void *cpu_env
, int num
) { return 1; }
694 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
695 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
696 * of registers which translates to the same as ARM/MIPS, because we start with
698 static inline int regpairs_aligned(void *cpu_env
, int num
) { return 1; }
699 #elif defined(TARGET_SH4)
700 /* SH4 doesn't align register pairs, except for p{read,write}64 */
701 static inline int regpairs_aligned(void *cpu_env
, int num
)
704 case TARGET_NR_pread64
:
705 case TARGET_NR_pwrite64
:
712 #elif defined(TARGET_XTENSA)
713 static inline int regpairs_aligned(void *cpu_env
, int num
) { return 1; }
715 static inline int regpairs_aligned(void *cpu_env
, int num
) { return 0; }
718 #define ERRNO_TABLE_SIZE 1200
720 /* target_to_host_errno_table[] is initialized from
721 * host_to_target_errno_table[] in syscall_init(). */
722 static uint16_t target_to_host_errno_table
[ERRNO_TABLE_SIZE
] = {
726 * This list is the union of errno values overridden in asm-<arch>/errno.h
727 * minus the errnos that are not actually generic to all archs.
729 static uint16_t host_to_target_errno_table
[ERRNO_TABLE_SIZE
] = {
730 [EAGAIN
] = TARGET_EAGAIN
,
731 [EIDRM
] = TARGET_EIDRM
,
732 [ECHRNG
] = TARGET_ECHRNG
,
733 [EL2NSYNC
] = TARGET_EL2NSYNC
,
734 [EL3HLT
] = TARGET_EL3HLT
,
735 [EL3RST
] = TARGET_EL3RST
,
736 [ELNRNG
] = TARGET_ELNRNG
,
737 [EUNATCH
] = TARGET_EUNATCH
,
738 [ENOCSI
] = TARGET_ENOCSI
,
739 [EL2HLT
] = TARGET_EL2HLT
,
740 [EDEADLK
] = TARGET_EDEADLK
,
741 [ENOLCK
] = TARGET_ENOLCK
,
742 [EBADE
] = TARGET_EBADE
,
743 [EBADR
] = TARGET_EBADR
,
744 [EXFULL
] = TARGET_EXFULL
,
745 [ENOANO
] = TARGET_ENOANO
,
746 [EBADRQC
] = TARGET_EBADRQC
,
747 [EBADSLT
] = TARGET_EBADSLT
,
748 [EBFONT
] = TARGET_EBFONT
,
749 [ENOSTR
] = TARGET_ENOSTR
,
750 [ENODATA
] = TARGET_ENODATA
,
751 [ETIME
] = TARGET_ETIME
,
752 [ENOSR
] = TARGET_ENOSR
,
753 [ENONET
] = TARGET_ENONET
,
754 [ENOPKG
] = TARGET_ENOPKG
,
755 [EREMOTE
] = TARGET_EREMOTE
,
756 [ENOLINK
] = TARGET_ENOLINK
,
757 [EADV
] = TARGET_EADV
,
758 [ESRMNT
] = TARGET_ESRMNT
,
759 [ECOMM
] = TARGET_ECOMM
,
760 [EPROTO
] = TARGET_EPROTO
,
761 [EDOTDOT
] = TARGET_EDOTDOT
,
762 [EMULTIHOP
] = TARGET_EMULTIHOP
,
763 [EBADMSG
] = TARGET_EBADMSG
,
764 [ENAMETOOLONG
] = TARGET_ENAMETOOLONG
,
765 [EOVERFLOW
] = TARGET_EOVERFLOW
,
766 [ENOTUNIQ
] = TARGET_ENOTUNIQ
,
767 [EBADFD
] = TARGET_EBADFD
,
768 [EREMCHG
] = TARGET_EREMCHG
,
769 [ELIBACC
] = TARGET_ELIBACC
,
770 [ELIBBAD
] = TARGET_ELIBBAD
,
771 [ELIBSCN
] = TARGET_ELIBSCN
,
772 [ELIBMAX
] = TARGET_ELIBMAX
,
773 [ELIBEXEC
] = TARGET_ELIBEXEC
,
774 [EILSEQ
] = TARGET_EILSEQ
,
775 [ENOSYS
] = TARGET_ENOSYS
,
776 [ELOOP
] = TARGET_ELOOP
,
777 [ERESTART
] = TARGET_ERESTART
,
778 [ESTRPIPE
] = TARGET_ESTRPIPE
,
779 [ENOTEMPTY
] = TARGET_ENOTEMPTY
,
780 [EUSERS
] = TARGET_EUSERS
,
781 [ENOTSOCK
] = TARGET_ENOTSOCK
,
782 [EDESTADDRREQ
] = TARGET_EDESTADDRREQ
,
783 [EMSGSIZE
] = TARGET_EMSGSIZE
,
784 [EPROTOTYPE
] = TARGET_EPROTOTYPE
,
785 [ENOPROTOOPT
] = TARGET_ENOPROTOOPT
,
786 [EPROTONOSUPPORT
] = TARGET_EPROTONOSUPPORT
,
787 [ESOCKTNOSUPPORT
] = TARGET_ESOCKTNOSUPPORT
,
788 [EOPNOTSUPP
] = TARGET_EOPNOTSUPP
,
789 [EPFNOSUPPORT
] = TARGET_EPFNOSUPPORT
,
790 [EAFNOSUPPORT
] = TARGET_EAFNOSUPPORT
,
791 [EADDRINUSE
] = TARGET_EADDRINUSE
,
792 [EADDRNOTAVAIL
] = TARGET_EADDRNOTAVAIL
,
793 [ENETDOWN
] = TARGET_ENETDOWN
,
794 [ENETUNREACH
] = TARGET_ENETUNREACH
,
795 [ENETRESET
] = TARGET_ENETRESET
,
796 [ECONNABORTED
] = TARGET_ECONNABORTED
,
797 [ECONNRESET
] = TARGET_ECONNRESET
,
798 [ENOBUFS
] = TARGET_ENOBUFS
,
799 [EISCONN
] = TARGET_EISCONN
,
800 [ENOTCONN
] = TARGET_ENOTCONN
,
801 [EUCLEAN
] = TARGET_EUCLEAN
,
802 [ENOTNAM
] = TARGET_ENOTNAM
,
803 [ENAVAIL
] = TARGET_ENAVAIL
,
804 [EISNAM
] = TARGET_EISNAM
,
805 [EREMOTEIO
] = TARGET_EREMOTEIO
,
806 [EDQUOT
] = TARGET_EDQUOT
,
807 [ESHUTDOWN
] = TARGET_ESHUTDOWN
,
808 [ETOOMANYREFS
] = TARGET_ETOOMANYREFS
,
809 [ETIMEDOUT
] = TARGET_ETIMEDOUT
,
810 [ECONNREFUSED
] = TARGET_ECONNREFUSED
,
811 [EHOSTDOWN
] = TARGET_EHOSTDOWN
,
812 [EHOSTUNREACH
] = TARGET_EHOSTUNREACH
,
813 [EALREADY
] = TARGET_EALREADY
,
814 [EINPROGRESS
] = TARGET_EINPROGRESS
,
815 [ESTALE
] = TARGET_ESTALE
,
816 [ECANCELED
] = TARGET_ECANCELED
,
817 [ENOMEDIUM
] = TARGET_ENOMEDIUM
,
818 [EMEDIUMTYPE
] = TARGET_EMEDIUMTYPE
,
820 [ENOKEY
] = TARGET_ENOKEY
,
823 [EKEYEXPIRED
] = TARGET_EKEYEXPIRED
,
826 [EKEYREVOKED
] = TARGET_EKEYREVOKED
,
829 [EKEYREJECTED
] = TARGET_EKEYREJECTED
,
832 [EOWNERDEAD
] = TARGET_EOWNERDEAD
,
834 #ifdef ENOTRECOVERABLE
835 [ENOTRECOVERABLE
] = TARGET_ENOTRECOVERABLE
,
838 [ENOMSG
] = TARGET_ENOMSG
,
841 [ERFKILL
] = TARGET_ERFKILL
,
844 [EHWPOISON
] = TARGET_EHWPOISON
,
848 static inline int host_to_target_errno(int err
)
850 if (err
>= 0 && err
< ERRNO_TABLE_SIZE
&&
851 host_to_target_errno_table
[err
]) {
852 return host_to_target_errno_table
[err
];
857 static inline int target_to_host_errno(int err
)
859 if (err
>= 0 && err
< ERRNO_TABLE_SIZE
&&
860 target_to_host_errno_table
[err
]) {
861 return target_to_host_errno_table
[err
];
866 static inline abi_long
get_errno(abi_long ret
)
869 return -host_to_target_errno(errno
);
874 static inline int is_error(abi_long ret
)
876 return (abi_ulong
)ret
>= (abi_ulong
)(-4096);
879 const char *target_strerror(int err
)
881 if (err
== TARGET_ERESTARTSYS
) {
882 return "To be restarted";
884 if (err
== TARGET_QEMU_ESIGRETURN
) {
885 return "Successful exit from sigreturn";
888 if ((err
>= ERRNO_TABLE_SIZE
) || (err
< 0)) {
891 return strerror(target_to_host_errno(err
));
894 #define safe_syscall0(type, name) \
895 static type safe_##name(void) \
897 return safe_syscall(__NR_##name); \
900 #define safe_syscall1(type, name, type1, arg1) \
901 static type safe_##name(type1 arg1) \
903 return safe_syscall(__NR_##name, arg1); \
906 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
907 static type safe_##name(type1 arg1, type2 arg2) \
909 return safe_syscall(__NR_##name, arg1, arg2); \
912 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
913 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
915 return safe_syscall(__NR_##name, arg1, arg2, arg3); \
918 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
920 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
922 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
925 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
926 type4, arg4, type5, arg5) \
927 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
930 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
933 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
934 type4, arg4, type5, arg5, type6, arg6) \
935 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
936 type5 arg5, type6 arg6) \
938 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
941 safe_syscall3(ssize_t
, read
, int, fd
, void *, buff
, size_t, count
)
942 safe_syscall3(ssize_t
, write
, int, fd
, const void *, buff
, size_t, count
)
943 safe_syscall4(int, openat
, int, dirfd
, const char *, pathname
, \
944 int, flags
, mode_t
, mode
)
945 safe_syscall4(pid_t
, wait4
, pid_t
, pid
, int *, status
, int, options
, \
946 struct rusage
*, rusage
)
947 safe_syscall5(int, waitid
, idtype_t
, idtype
, id_t
, id
, siginfo_t
*, infop
, \
948 int, options
, struct rusage
*, rusage
)
949 safe_syscall3(int, execve
, const char *, filename
, char **, argv
, char **, envp
)
950 safe_syscall6(int, pselect6
, int, nfds
, fd_set
*, readfds
, fd_set
*, writefds
, \
951 fd_set
*, exceptfds
, struct timespec
*, timeout
, void *, sig
)
952 safe_syscall5(int, ppoll
, struct pollfd
*, ufds
, unsigned int, nfds
,
953 struct timespec
*, tsp
, const sigset_t
*, sigmask
,
955 safe_syscall6(int, epoll_pwait
, int, epfd
, struct epoll_event
*, events
,
956 int, maxevents
, int, timeout
, const sigset_t
*, sigmask
,
958 safe_syscall6(int,futex
,int *,uaddr
,int,op
,int,val
, \
959 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
960 safe_syscall2(int, rt_sigsuspend
, sigset_t
*, newset
, size_t, sigsetsize
)
961 safe_syscall2(int, kill
, pid_t
, pid
, int, sig
)
962 safe_syscall2(int, tkill
, int, tid
, int, sig
)
963 safe_syscall3(int, tgkill
, int, tgid
, int, pid
, int, sig
)
964 safe_syscall3(ssize_t
, readv
, int, fd
, const struct iovec
*, iov
, int, iovcnt
)
965 safe_syscall3(ssize_t
, writev
, int, fd
, const struct iovec
*, iov
, int, iovcnt
)
966 safe_syscall5(ssize_t
, preadv
, int, fd
, const struct iovec
*, iov
, int, iovcnt
,
967 unsigned long, pos_l
, unsigned long, pos_h
)
968 safe_syscall5(ssize_t
, pwritev
, int, fd
, const struct iovec
*, iov
, int, iovcnt
,
969 unsigned long, pos_l
, unsigned long, pos_h
)
970 safe_syscall3(int, connect
, int, fd
, const struct sockaddr
*, addr
,
972 safe_syscall6(ssize_t
, sendto
, int, fd
, const void *, buf
, size_t, len
,
973 int, flags
, const struct sockaddr
*, addr
, socklen_t
, addrlen
)
974 safe_syscall6(ssize_t
, recvfrom
, int, fd
, void *, buf
, size_t, len
,
975 int, flags
, struct sockaddr
*, addr
, socklen_t
*, addrlen
)
976 safe_syscall3(ssize_t
, sendmsg
, int, fd
, const struct msghdr
*, msg
, int, flags
)
977 safe_syscall3(ssize_t
, recvmsg
, int, fd
, struct msghdr
*, msg
, int, flags
)
978 safe_syscall2(int, flock
, int, fd
, int, operation
)
979 safe_syscall4(int, rt_sigtimedwait
, const sigset_t
*, these
, siginfo_t
*, uinfo
,
980 const struct timespec
*, uts
, size_t, sigsetsize
)
981 safe_syscall4(int, accept4
, int, fd
, struct sockaddr
*, addr
, socklen_t
*, len
,
983 safe_syscall2(int, nanosleep
, const struct timespec
*, req
,
984 struct timespec
*, rem
)
985 #ifdef TARGET_NR_clock_nanosleep
986 safe_syscall4(int, clock_nanosleep
, const clockid_t
, clock
, int, flags
,
987 const struct timespec
*, req
, struct timespec
*, rem
)
990 safe_syscall4(int, msgsnd
, int, msgid
, const void *, msgp
, size_t, sz
,
992 safe_syscall5(int, msgrcv
, int, msgid
, void *, msgp
, size_t, sz
,
993 long, msgtype
, int, flags
)
994 safe_syscall4(int, semtimedop
, int, semid
, struct sembuf
*, tsops
,
995 unsigned, nsops
, const struct timespec
*, timeout
)
997 /* This host kernel architecture uses a single ipc syscall; fake up
998 * wrappers for the sub-operations to hide this implementation detail.
999 * Annoyingly we can't include linux/ipc.h to get the constant definitions
1000 * for the call parameter because some structs in there conflict with the
1001 * sys/ipc.h ones. So we just define them here, and rely on them being
1002 * the same for all host architectures.
1004 #define Q_SEMTIMEDOP 4
1007 #define Q_IPCCALL(VERSION, OP) ((VERSION) << 16 | (OP))
1009 safe_syscall6(int, ipc
, int, call
, long, first
, long, second
, long, third
,
1010 void *, ptr
, long, fifth
)
1011 static int safe_msgsnd(int msgid
, const void *msgp
, size_t sz
, int flags
)
1013 return safe_ipc(Q_IPCCALL(0, Q_MSGSND
), msgid
, sz
, flags
, (void *)msgp
, 0);
1015 static int safe_msgrcv(int msgid
, void *msgp
, size_t sz
, long type
, int flags
)
1017 return safe_ipc(Q_IPCCALL(1, Q_MSGRCV
), msgid
, sz
, flags
, msgp
, type
);
1019 static int safe_semtimedop(int semid
, struct sembuf
*tsops
, unsigned nsops
,
1020 const struct timespec
*timeout
)
1022 return safe_ipc(Q_IPCCALL(0, Q_SEMTIMEDOP
), semid
, nsops
, 0, tsops
,
1026 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1027 safe_syscall5(int, mq_timedsend
, int, mqdes
, const char *, msg_ptr
,
1028 size_t, len
, unsigned, prio
, const struct timespec
*, timeout
)
1029 safe_syscall5(int, mq_timedreceive
, int, mqdes
, char *, msg_ptr
,
1030 size_t, len
, unsigned *, prio
, const struct timespec
*, timeout
)
1032 /* We do ioctl like this rather than via safe_syscall3 to preserve the
1033 * "third argument might be integer or pointer or not present" behaviour of
1034 * the libc function.
1036 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
1037 /* Similarly for fcntl. Note that callers must always:
1038 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
1039 * use the flock64 struct rather than unsuffixed flock
1040 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
1043 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
1045 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
1048 static inline int host_to_target_sock_type(int host_type
)
1052 switch (host_type
& 0xf /* SOCK_TYPE_MASK */) {
1054 target_type
= TARGET_SOCK_DGRAM
;
1057 target_type
= TARGET_SOCK_STREAM
;
1060 target_type
= host_type
& 0xf /* SOCK_TYPE_MASK */;
1064 #if defined(SOCK_CLOEXEC)
1065 if (host_type
& SOCK_CLOEXEC
) {
1066 target_type
|= TARGET_SOCK_CLOEXEC
;
1070 #if defined(SOCK_NONBLOCK)
1071 if (host_type
& SOCK_NONBLOCK
) {
1072 target_type
|= TARGET_SOCK_NONBLOCK
;
1079 static abi_ulong target_brk
;
1080 static abi_ulong target_original_brk
;
1081 static abi_ulong brk_page
;
1083 void target_set_brk(abi_ulong new_brk
)
1085 target_original_brk
= target_brk
= HOST_PAGE_ALIGN(new_brk
);
1086 brk_page
= HOST_PAGE_ALIGN(target_brk
);
1089 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
1090 #define DEBUGF_BRK(message, args...)
1092 /* do_brk() must return target values and target errnos. */
1093 abi_long
do_brk(abi_ulong new_brk
)
1095 abi_long mapped_addr
;
1096 abi_ulong new_alloc_size
;
1098 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx
") -> ", new_brk
);
1101 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (!new_brk)\n", target_brk
);
1104 if (new_brk
< target_original_brk
) {
1105 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (new_brk < target_original_brk)\n",
1110 /* If the new brk is less than the highest page reserved to the
1111 * target heap allocation, set it and we're almost done... */
1112 if (new_brk
<= brk_page
) {
1113 /* Heap contents are initialized to zero, as for anonymous
1115 if (new_brk
> target_brk
) {
1116 memset(g2h(target_brk
), 0, new_brk
- target_brk
);
1118 target_brk
= new_brk
;
1119 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (new_brk <= brk_page)\n", target_brk
);
1123 /* We need to allocate more memory after the brk... Note that
1124 * we don't use MAP_FIXED because that will map over the top of
1125 * any existing mapping (like the one with the host libc or qemu
1126 * itself); instead we treat "mapped but at wrong address" as
1127 * a failure and unmap again.
1129 new_alloc_size
= HOST_PAGE_ALIGN(new_brk
- brk_page
);
1130 mapped_addr
= get_errno(target_mmap(brk_page
, new_alloc_size
,
1131 PROT_READ
|PROT_WRITE
,
1132 MAP_ANON
|MAP_PRIVATE
, 0, 0));
1134 if (mapped_addr
== brk_page
) {
1135 /* Heap contents are initialized to zero, as for anonymous
1136 * mapped pages. Technically the new pages are already
1137 * initialized to zero since they *are* anonymous mapped
1138 * pages, however we have to take care with the contents that
1139 * come from the remaining part of the previous page: it may
1140 * contains garbage data due to a previous heap usage (grown
1141 * then shrunken). */
1142 memset(g2h(target_brk
), 0, brk_page
- target_brk
);
1144 target_brk
= new_brk
;
1145 brk_page
= HOST_PAGE_ALIGN(target_brk
);
1146 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (mapped_addr == brk_page)\n",
1149 } else if (mapped_addr
!= -1) {
1150 /* Mapped but at wrong address, meaning there wasn't actually
1151 * enough space for this brk.
1153 target_munmap(mapped_addr
, new_alloc_size
);
1155 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (mapped_addr != -1)\n", target_brk
);
1158 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (otherwise)\n", target_brk
);
1161 #if defined(TARGET_ALPHA)
1162 /* We (partially) emulate OSF/1 on Alpha, which requires we
1163 return a proper errno, not an unchanged brk value. */
1164 return -TARGET_ENOMEM
;
1166 /* For everything else, return the previous break. */
1170 static inline abi_long
copy_from_user_fdset(fd_set
*fds
,
1171 abi_ulong target_fds_addr
,
1175 abi_ulong b
, *target_fds
;
1177 nw
= DIV_ROUND_UP(n
, TARGET_ABI_BITS
);
1178 if (!(target_fds
= lock_user(VERIFY_READ
,
1180 sizeof(abi_ulong
) * nw
,
1182 return -TARGET_EFAULT
;
1186 for (i
= 0; i
< nw
; i
++) {
1187 /* grab the abi_ulong */
1188 __get_user(b
, &target_fds
[i
]);
1189 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
1190 /* check the bit inside the abi_ulong */
1197 unlock_user(target_fds
, target_fds_addr
, 0);
1202 static inline abi_ulong
copy_from_user_fdset_ptr(fd_set
*fds
, fd_set
**fds_ptr
,
1203 abi_ulong target_fds_addr
,
1206 if (target_fds_addr
) {
1207 if (copy_from_user_fdset(fds
, target_fds_addr
, n
))
1208 return -TARGET_EFAULT
;
1216 static inline abi_long
copy_to_user_fdset(abi_ulong target_fds_addr
,
1222 abi_ulong
*target_fds
;
1224 nw
= DIV_ROUND_UP(n
, TARGET_ABI_BITS
);
1225 if (!(target_fds
= lock_user(VERIFY_WRITE
,
1227 sizeof(abi_ulong
) * nw
,
1229 return -TARGET_EFAULT
;
1232 for (i
= 0; i
< nw
; i
++) {
1234 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
1235 v
|= ((abi_ulong
)(FD_ISSET(k
, fds
) != 0) << j
);
1238 __put_user(v
, &target_fds
[i
]);
1241 unlock_user(target_fds
, target_fds_addr
, sizeof(abi_ulong
) * nw
);
1246 #if defined(__alpha__)
1247 #define HOST_HZ 1024
1252 static inline abi_long
host_to_target_clock_t(long ticks
)
1254 #if HOST_HZ == TARGET_HZ
1257 return ((int64_t)ticks
* TARGET_HZ
) / HOST_HZ
;
1261 static inline abi_long
host_to_target_rusage(abi_ulong target_addr
,
1262 const struct rusage
*rusage
)
1264 struct target_rusage
*target_rusage
;
1266 if (!lock_user_struct(VERIFY_WRITE
, target_rusage
, target_addr
, 0))
1267 return -TARGET_EFAULT
;
1268 target_rusage
->ru_utime
.tv_sec
= tswapal(rusage
->ru_utime
.tv_sec
);
1269 target_rusage
->ru_utime
.tv_usec
= tswapal(rusage
->ru_utime
.tv_usec
);
1270 target_rusage
->ru_stime
.tv_sec
= tswapal(rusage
->ru_stime
.tv_sec
);
1271 target_rusage
->ru_stime
.tv_usec
= tswapal(rusage
->ru_stime
.tv_usec
);
1272 target_rusage
->ru_maxrss
= tswapal(rusage
->ru_maxrss
);
1273 target_rusage
->ru_ixrss
= tswapal(rusage
->ru_ixrss
);
1274 target_rusage
->ru_idrss
= tswapal(rusage
->ru_idrss
);
1275 target_rusage
->ru_isrss
= tswapal(rusage
->ru_isrss
);
1276 target_rusage
->ru_minflt
= tswapal(rusage
->ru_minflt
);
1277 target_rusage
->ru_majflt
= tswapal(rusage
->ru_majflt
);
1278 target_rusage
->ru_nswap
= tswapal(rusage
->ru_nswap
);
1279 target_rusage
->ru_inblock
= tswapal(rusage
->ru_inblock
);
1280 target_rusage
->ru_oublock
= tswapal(rusage
->ru_oublock
);
1281 target_rusage
->ru_msgsnd
= tswapal(rusage
->ru_msgsnd
);
1282 target_rusage
->ru_msgrcv
= tswapal(rusage
->ru_msgrcv
);
1283 target_rusage
->ru_nsignals
= tswapal(rusage
->ru_nsignals
);
1284 target_rusage
->ru_nvcsw
= tswapal(rusage
->ru_nvcsw
);
1285 target_rusage
->ru_nivcsw
= tswapal(rusage
->ru_nivcsw
);
1286 unlock_user_struct(target_rusage
, target_addr
, 1);
1291 static inline rlim_t
target_to_host_rlim(abi_ulong target_rlim
)
1293 abi_ulong target_rlim_swap
;
1296 target_rlim_swap
= tswapal(target_rlim
);
1297 if (target_rlim_swap
== TARGET_RLIM_INFINITY
)
1298 return RLIM_INFINITY
;
1300 result
= target_rlim_swap
;
1301 if (target_rlim_swap
!= (rlim_t
)result
)
1302 return RLIM_INFINITY
;
1307 static inline abi_ulong
host_to_target_rlim(rlim_t rlim
)
1309 abi_ulong target_rlim_swap
;
1312 if (rlim
== RLIM_INFINITY
|| rlim
!= (abi_long
)rlim
)
1313 target_rlim_swap
= TARGET_RLIM_INFINITY
;
1315 target_rlim_swap
= rlim
;
1316 result
= tswapal(target_rlim_swap
);
1321 static inline int target_to_host_resource(int code
)
1324 case TARGET_RLIMIT_AS
:
1326 case TARGET_RLIMIT_CORE
:
1328 case TARGET_RLIMIT_CPU
:
1330 case TARGET_RLIMIT_DATA
:
1332 case TARGET_RLIMIT_FSIZE
:
1333 return RLIMIT_FSIZE
;
1334 case TARGET_RLIMIT_LOCKS
:
1335 return RLIMIT_LOCKS
;
1336 case TARGET_RLIMIT_MEMLOCK
:
1337 return RLIMIT_MEMLOCK
;
1338 case TARGET_RLIMIT_MSGQUEUE
:
1339 return RLIMIT_MSGQUEUE
;
1340 case TARGET_RLIMIT_NICE
:
1342 case TARGET_RLIMIT_NOFILE
:
1343 return RLIMIT_NOFILE
;
1344 case TARGET_RLIMIT_NPROC
:
1345 return RLIMIT_NPROC
;
1346 case TARGET_RLIMIT_RSS
:
1348 case TARGET_RLIMIT_RTPRIO
:
1349 return RLIMIT_RTPRIO
;
1350 case TARGET_RLIMIT_SIGPENDING
:
1351 return RLIMIT_SIGPENDING
;
1352 case TARGET_RLIMIT_STACK
:
1353 return RLIMIT_STACK
;
1359 static inline abi_long
copy_from_user_timeval(struct timeval
*tv
,
1360 abi_ulong target_tv_addr
)
1362 struct target_timeval
*target_tv
;
1364 if (!lock_user_struct(VERIFY_READ
, target_tv
, target_tv_addr
, 1))
1365 return -TARGET_EFAULT
;
1367 __get_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1368 __get_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1370 unlock_user_struct(target_tv
, target_tv_addr
, 0);
1375 static inline abi_long
copy_to_user_timeval(abi_ulong target_tv_addr
,
1376 const struct timeval
*tv
)
1378 struct target_timeval
*target_tv
;
1380 if (!lock_user_struct(VERIFY_WRITE
, target_tv
, target_tv_addr
, 0))
1381 return -TARGET_EFAULT
;
1383 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1384 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1386 unlock_user_struct(target_tv
, target_tv_addr
, 1);
1391 static inline abi_long
copy_from_user_timezone(struct timezone
*tz
,
1392 abi_ulong target_tz_addr
)
1394 struct target_timezone
*target_tz
;
1396 if (!lock_user_struct(VERIFY_READ
, target_tz
, target_tz_addr
, 1)) {
1397 return -TARGET_EFAULT
;
1400 __get_user(tz
->tz_minuteswest
, &target_tz
->tz_minuteswest
);
1401 __get_user(tz
->tz_dsttime
, &target_tz
->tz_dsttime
);
1403 unlock_user_struct(target_tz
, target_tz_addr
, 0);
1408 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1411 static inline abi_long
copy_from_user_mq_attr(struct mq_attr
*attr
,
1412 abi_ulong target_mq_attr_addr
)
1414 struct target_mq_attr
*target_mq_attr
;
1416 if (!lock_user_struct(VERIFY_READ
, target_mq_attr
,
1417 target_mq_attr_addr
, 1))
1418 return -TARGET_EFAULT
;
1420 __get_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
1421 __get_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
1422 __get_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
1423 __get_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
1425 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 0);
1430 static inline abi_long
copy_to_user_mq_attr(abi_ulong target_mq_attr_addr
,
1431 const struct mq_attr
*attr
)
1433 struct target_mq_attr
*target_mq_attr
;
1435 if (!lock_user_struct(VERIFY_WRITE
, target_mq_attr
,
1436 target_mq_attr_addr
, 0))
1437 return -TARGET_EFAULT
;
1439 __put_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
1440 __put_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
1441 __put_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
1442 __put_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
1444 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 1);
1450 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1451 /* do_select() must return target values and target errnos. */
1452 static abi_long
do_select(int n
,
1453 abi_ulong rfd_addr
, abi_ulong wfd_addr
,
1454 abi_ulong efd_addr
, abi_ulong target_tv_addr
)
1456 fd_set rfds
, wfds
, efds
;
1457 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
1459 struct timespec ts
, *ts_ptr
;
1462 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
1466 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
1470 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
1475 if (target_tv_addr
) {
1476 if (copy_from_user_timeval(&tv
, target_tv_addr
))
1477 return -TARGET_EFAULT
;
1478 ts
.tv_sec
= tv
.tv_sec
;
1479 ts
.tv_nsec
= tv
.tv_usec
* 1000;
1485 ret
= get_errno(safe_pselect6(n
, rfds_ptr
, wfds_ptr
, efds_ptr
,
1488 if (!is_error(ret
)) {
1489 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
))
1490 return -TARGET_EFAULT
;
1491 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
))
1492 return -TARGET_EFAULT
;
1493 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
))
1494 return -TARGET_EFAULT
;
1496 if (target_tv_addr
) {
1497 tv
.tv_sec
= ts
.tv_sec
;
1498 tv
.tv_usec
= ts
.tv_nsec
/ 1000;
1499 if (copy_to_user_timeval(target_tv_addr
, &tv
)) {
1500 return -TARGET_EFAULT
;
1508 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1509 static abi_long
do_old_select(abi_ulong arg1
)
1511 struct target_sel_arg_struct
*sel
;
1512 abi_ulong inp
, outp
, exp
, tvp
;
1515 if (!lock_user_struct(VERIFY_READ
, sel
, arg1
, 1)) {
1516 return -TARGET_EFAULT
;
1519 nsel
= tswapal(sel
->n
);
1520 inp
= tswapal(sel
->inp
);
1521 outp
= tswapal(sel
->outp
);
1522 exp
= tswapal(sel
->exp
);
1523 tvp
= tswapal(sel
->tvp
);
1525 unlock_user_struct(sel
, arg1
, 0);
1527 return do_select(nsel
, inp
, outp
, exp
, tvp
);
1532 static abi_long
do_pipe2(int host_pipe
[], int flags
)
1535 return pipe2(host_pipe
, flags
);
1541 static abi_long
do_pipe(void *cpu_env
, abi_ulong pipedes
,
1542 int flags
, int is_pipe2
)
1546 ret
= flags
? do_pipe2(host_pipe
, flags
) : pipe(host_pipe
);
1549 return get_errno(ret
);
1551 /* Several targets have special calling conventions for the original
1552 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1554 #if defined(TARGET_ALPHA)
1555 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
] = host_pipe
[1];
1556 return host_pipe
[0];
1557 #elif defined(TARGET_MIPS)
1558 ((CPUMIPSState
*)cpu_env
)->active_tc
.gpr
[3] = host_pipe
[1];
1559 return host_pipe
[0];
1560 #elif defined(TARGET_SH4)
1561 ((CPUSH4State
*)cpu_env
)->gregs
[1] = host_pipe
[1];
1562 return host_pipe
[0];
1563 #elif defined(TARGET_SPARC)
1564 ((CPUSPARCState
*)cpu_env
)->regwptr
[1] = host_pipe
[1];
1565 return host_pipe
[0];
1569 if (put_user_s32(host_pipe
[0], pipedes
)
1570 || put_user_s32(host_pipe
[1], pipedes
+ sizeof(host_pipe
[0])))
1571 return -TARGET_EFAULT
;
1572 return get_errno(ret
);
1575 static inline abi_long
target_to_host_ip_mreq(struct ip_mreqn
*mreqn
,
1576 abi_ulong target_addr
,
1579 struct target_ip_mreqn
*target_smreqn
;
1581 target_smreqn
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
1583 return -TARGET_EFAULT
;
1584 mreqn
->imr_multiaddr
.s_addr
= target_smreqn
->imr_multiaddr
.s_addr
;
1585 mreqn
->imr_address
.s_addr
= target_smreqn
->imr_address
.s_addr
;
1586 if (len
== sizeof(struct target_ip_mreqn
))
1587 mreqn
->imr_ifindex
= tswapal(target_smreqn
->imr_ifindex
);
1588 unlock_user(target_smreqn
, target_addr
, 0);
1593 static inline abi_long
target_to_host_sockaddr(int fd
, struct sockaddr
*addr
,
1594 abi_ulong target_addr
,
1597 const socklen_t unix_maxlen
= sizeof (struct sockaddr_un
);
1598 sa_family_t sa_family
;
1599 struct target_sockaddr
*target_saddr
;
1601 if (fd_trans_target_to_host_addr(fd
)) {
1602 return fd_trans_target_to_host_addr(fd
)(addr
, target_addr
, len
);
1605 target_saddr
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
1607 return -TARGET_EFAULT
;
1609 sa_family
= tswap16(target_saddr
->sa_family
);
1611 /* Oops. The caller might send a incomplete sun_path; sun_path
1612 * must be terminated by \0 (see the manual page), but
1613 * unfortunately it is quite common to specify sockaddr_un
1614 * length as "strlen(x->sun_path)" while it should be
1615 * "strlen(...) + 1". We'll fix that here if needed.
1616 * Linux kernel has a similar feature.
1619 if (sa_family
== AF_UNIX
) {
1620 if (len
< unix_maxlen
&& len
> 0) {
1621 char *cp
= (char*)target_saddr
;
1623 if ( cp
[len
-1] && !cp
[len
] )
1626 if (len
> unix_maxlen
)
1630 memcpy(addr
, target_saddr
, len
);
1631 addr
->sa_family
= sa_family
;
1632 if (sa_family
== AF_NETLINK
) {
1633 struct sockaddr_nl
*nladdr
;
1635 nladdr
= (struct sockaddr_nl
*)addr
;
1636 nladdr
->nl_pid
= tswap32(nladdr
->nl_pid
);
1637 nladdr
->nl_groups
= tswap32(nladdr
->nl_groups
);
1638 } else if (sa_family
== AF_PACKET
) {
1639 struct target_sockaddr_ll
*lladdr
;
1641 lladdr
= (struct target_sockaddr_ll
*)addr
;
1642 lladdr
->sll_ifindex
= tswap32(lladdr
->sll_ifindex
);
1643 lladdr
->sll_hatype
= tswap16(lladdr
->sll_hatype
);
1645 unlock_user(target_saddr
, target_addr
, 0);
1650 static inline abi_long
host_to_target_sockaddr(abi_ulong target_addr
,
1651 struct sockaddr
*addr
,
1654 struct target_sockaddr
*target_saddr
;
1661 target_saddr
= lock_user(VERIFY_WRITE
, target_addr
, len
, 0);
1663 return -TARGET_EFAULT
;
1664 memcpy(target_saddr
, addr
, len
);
1665 if (len
>= offsetof(struct target_sockaddr
, sa_family
) +
1666 sizeof(target_saddr
->sa_family
)) {
1667 target_saddr
->sa_family
= tswap16(addr
->sa_family
);
1669 if (addr
->sa_family
== AF_NETLINK
&& len
>= sizeof(struct sockaddr_nl
)) {
1670 struct sockaddr_nl
*target_nl
= (struct sockaddr_nl
*)target_saddr
;
1671 target_nl
->nl_pid
= tswap32(target_nl
->nl_pid
);
1672 target_nl
->nl_groups
= tswap32(target_nl
->nl_groups
);
1673 } else if (addr
->sa_family
== AF_PACKET
) {
1674 struct sockaddr_ll
*target_ll
= (struct sockaddr_ll
*)target_saddr
;
1675 target_ll
->sll_ifindex
= tswap32(target_ll
->sll_ifindex
);
1676 target_ll
->sll_hatype
= tswap16(target_ll
->sll_hatype
);
1677 } else if (addr
->sa_family
== AF_INET6
&&
1678 len
>= sizeof(struct target_sockaddr_in6
)) {
1679 struct target_sockaddr_in6
*target_in6
=
1680 (struct target_sockaddr_in6
*)target_saddr
;
1681 target_in6
->sin6_scope_id
= tswap16(target_in6
->sin6_scope_id
);
1683 unlock_user(target_saddr
, target_addr
, len
);
1688 static inline abi_long
target_to_host_cmsg(struct msghdr
*msgh
,
1689 struct target_msghdr
*target_msgh
)
1691 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1692 abi_long msg_controllen
;
1693 abi_ulong target_cmsg_addr
;
1694 struct target_cmsghdr
*target_cmsg
, *target_cmsg_start
;
1695 socklen_t space
= 0;
1697 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1698 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1700 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1701 target_cmsg
= lock_user(VERIFY_READ
, target_cmsg_addr
, msg_controllen
, 1);
1702 target_cmsg_start
= target_cmsg
;
1704 return -TARGET_EFAULT
;
1706 while (cmsg
&& target_cmsg
) {
1707 void *data
= CMSG_DATA(cmsg
);
1708 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1710 int len
= tswapal(target_cmsg
->cmsg_len
)
1711 - sizeof(struct target_cmsghdr
);
1713 space
+= CMSG_SPACE(len
);
1714 if (space
> msgh
->msg_controllen
) {
1715 space
-= CMSG_SPACE(len
);
1716 /* This is a QEMU bug, since we allocated the payload
1717 * area ourselves (unlike overflow in host-to-target
1718 * conversion, which is just the guest giving us a buffer
1719 * that's too small). It can't happen for the payload types
1720 * we currently support; if it becomes an issue in future
1721 * we would need to improve our allocation strategy to
1722 * something more intelligent than "twice the size of the
1723 * target buffer we're reading from".
1725 gemu_log("Host cmsg overflow\n");
1729 if (tswap32(target_cmsg
->cmsg_level
) == TARGET_SOL_SOCKET
) {
1730 cmsg
->cmsg_level
= SOL_SOCKET
;
1732 cmsg
->cmsg_level
= tswap32(target_cmsg
->cmsg_level
);
1734 cmsg
->cmsg_type
= tswap32(target_cmsg
->cmsg_type
);
1735 cmsg
->cmsg_len
= CMSG_LEN(len
);
1737 if (cmsg
->cmsg_level
== SOL_SOCKET
&& cmsg
->cmsg_type
== SCM_RIGHTS
) {
1738 int *fd
= (int *)data
;
1739 int *target_fd
= (int *)target_data
;
1740 int i
, numfds
= len
/ sizeof(int);
1742 for (i
= 0; i
< numfds
; i
++) {
1743 __get_user(fd
[i
], target_fd
+ i
);
1745 } else if (cmsg
->cmsg_level
== SOL_SOCKET
1746 && cmsg
->cmsg_type
== SCM_CREDENTIALS
) {
1747 struct ucred
*cred
= (struct ucred
*)data
;
1748 struct target_ucred
*target_cred
=
1749 (struct target_ucred
*)target_data
;
1751 __get_user(cred
->pid
, &target_cred
->pid
);
1752 __get_user(cred
->uid
, &target_cred
->uid
);
1753 __get_user(cred
->gid
, &target_cred
->gid
);
1755 gemu_log("Unsupported ancillary data: %d/%d\n",
1756 cmsg
->cmsg_level
, cmsg
->cmsg_type
);
1757 memcpy(data
, target_data
, len
);
1760 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
1761 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
,
1764 unlock_user(target_cmsg
, target_cmsg_addr
, 0);
1766 msgh
->msg_controllen
= space
;
1770 static inline abi_long
host_to_target_cmsg(struct target_msghdr
*target_msgh
,
1771 struct msghdr
*msgh
)
1773 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1774 abi_long msg_controllen
;
1775 abi_ulong target_cmsg_addr
;
1776 struct target_cmsghdr
*target_cmsg
, *target_cmsg_start
;
1777 socklen_t space
= 0;
1779 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1780 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1782 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1783 target_cmsg
= lock_user(VERIFY_WRITE
, target_cmsg_addr
, msg_controllen
, 0);
1784 target_cmsg_start
= target_cmsg
;
1786 return -TARGET_EFAULT
;
1788 while (cmsg
&& target_cmsg
) {
1789 void *data
= CMSG_DATA(cmsg
);
1790 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1792 int len
= cmsg
->cmsg_len
- sizeof(struct cmsghdr
);
1793 int tgt_len
, tgt_space
;
1795 /* We never copy a half-header but may copy half-data;
1796 * this is Linux's behaviour in put_cmsg(). Note that
1797 * truncation here is a guest problem (which we report
1798 * to the guest via the CTRUNC bit), unlike truncation
1799 * in target_to_host_cmsg, which is a QEMU bug.
1801 if (msg_controllen
< sizeof(struct target_cmsghdr
)) {
1802 target_msgh
->msg_flags
|= tswap32(MSG_CTRUNC
);
1806 if (cmsg
->cmsg_level
== SOL_SOCKET
) {
1807 target_cmsg
->cmsg_level
= tswap32(TARGET_SOL_SOCKET
);
1809 target_cmsg
->cmsg_level
= tswap32(cmsg
->cmsg_level
);
1811 target_cmsg
->cmsg_type
= tswap32(cmsg
->cmsg_type
);
1813 /* Payload types which need a different size of payload on
1814 * the target must adjust tgt_len here.
1816 switch (cmsg
->cmsg_level
) {
1818 switch (cmsg
->cmsg_type
) {
1820 tgt_len
= sizeof(struct target_timeval
);
1830 if (msg_controllen
< TARGET_CMSG_LEN(tgt_len
)) {
1831 target_msgh
->msg_flags
|= tswap32(MSG_CTRUNC
);
1832 tgt_len
= msg_controllen
- sizeof(struct target_cmsghdr
);
1835 /* We must now copy-and-convert len bytes of payload
1836 * into tgt_len bytes of destination space. Bear in mind
1837 * that in both source and destination we may be dealing
1838 * with a truncated value!
1840 switch (cmsg
->cmsg_level
) {
1842 switch (cmsg
->cmsg_type
) {
1845 int *fd
= (int *)data
;
1846 int *target_fd
= (int *)target_data
;
1847 int i
, numfds
= tgt_len
/ sizeof(int);
1849 for (i
= 0; i
< numfds
; i
++) {
1850 __put_user(fd
[i
], target_fd
+ i
);
1856 struct timeval
*tv
= (struct timeval
*)data
;
1857 struct target_timeval
*target_tv
=
1858 (struct target_timeval
*)target_data
;
1860 if (len
!= sizeof(struct timeval
) ||
1861 tgt_len
!= sizeof(struct target_timeval
)) {
1865 /* copy struct timeval to target */
1866 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1867 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1870 case SCM_CREDENTIALS
:
1872 struct ucred
*cred
= (struct ucred
*)data
;
1873 struct target_ucred
*target_cred
=
1874 (struct target_ucred
*)target_data
;
1876 __put_user(cred
->pid
, &target_cred
->pid
);
1877 __put_user(cred
->uid
, &target_cred
->uid
);
1878 __put_user(cred
->gid
, &target_cred
->gid
);
1887 switch (cmsg
->cmsg_type
) {
1890 uint32_t *v
= (uint32_t *)data
;
1891 uint32_t *t_int
= (uint32_t *)target_data
;
1893 if (len
!= sizeof(uint32_t) ||
1894 tgt_len
!= sizeof(uint32_t)) {
1897 __put_user(*v
, t_int
);
1903 struct sock_extended_err ee
;
1904 struct sockaddr_in offender
;
1906 struct errhdr_t
*errh
= (struct errhdr_t
*)data
;
1907 struct errhdr_t
*target_errh
=
1908 (struct errhdr_t
*)target_data
;
1910 if (len
!= sizeof(struct errhdr_t
) ||
1911 tgt_len
!= sizeof(struct errhdr_t
)) {
1914 __put_user(errh
->ee
.ee_errno
, &target_errh
->ee
.ee_errno
);
1915 __put_user(errh
->ee
.ee_origin
, &target_errh
->ee
.ee_origin
);
1916 __put_user(errh
->ee
.ee_type
, &target_errh
->ee
.ee_type
);
1917 __put_user(errh
->ee
.ee_code
, &target_errh
->ee
.ee_code
);
1918 __put_user(errh
->ee
.ee_pad
, &target_errh
->ee
.ee_pad
);
1919 __put_user(errh
->ee
.ee_info
, &target_errh
->ee
.ee_info
);
1920 __put_user(errh
->ee
.ee_data
, &target_errh
->ee
.ee_data
);
1921 host_to_target_sockaddr((unsigned long) &target_errh
->offender
,
1922 (void *) &errh
->offender
, sizeof(errh
->offender
));
1931 switch (cmsg
->cmsg_type
) {
1934 uint32_t *v
= (uint32_t *)data
;
1935 uint32_t *t_int
= (uint32_t *)target_data
;
1937 if (len
!= sizeof(uint32_t) ||
1938 tgt_len
!= sizeof(uint32_t)) {
1941 __put_user(*v
, t_int
);
1947 struct sock_extended_err ee
;
1948 struct sockaddr_in6 offender
;
1950 struct errhdr6_t
*errh
= (struct errhdr6_t
*)data
;
1951 struct errhdr6_t
*target_errh
=
1952 (struct errhdr6_t
*)target_data
;
1954 if (len
!= sizeof(struct errhdr6_t
) ||
1955 tgt_len
!= sizeof(struct errhdr6_t
)) {
1958 __put_user(errh
->ee
.ee_errno
, &target_errh
->ee
.ee_errno
);
1959 __put_user(errh
->ee
.ee_origin
, &target_errh
->ee
.ee_origin
);
1960 __put_user(errh
->ee
.ee_type
, &target_errh
->ee
.ee_type
);
1961 __put_user(errh
->ee
.ee_code
, &target_errh
->ee
.ee_code
);
1962 __put_user(errh
->ee
.ee_pad
, &target_errh
->ee
.ee_pad
);
1963 __put_user(errh
->ee
.ee_info
, &target_errh
->ee
.ee_info
);
1964 __put_user(errh
->ee
.ee_data
, &target_errh
->ee
.ee_data
);
1965 host_to_target_sockaddr((unsigned long) &target_errh
->offender
,
1966 (void *) &errh
->offender
, sizeof(errh
->offender
));
1976 gemu_log("Unsupported ancillary data: %d/%d\n",
1977 cmsg
->cmsg_level
, cmsg
->cmsg_type
);
1978 memcpy(target_data
, data
, MIN(len
, tgt_len
));
1979 if (tgt_len
> len
) {
1980 memset(target_data
+ len
, 0, tgt_len
- len
);
1984 target_cmsg
->cmsg_len
= tswapal(TARGET_CMSG_LEN(tgt_len
));
1985 tgt_space
= TARGET_CMSG_SPACE(tgt_len
);
1986 if (msg_controllen
< tgt_space
) {
1987 tgt_space
= msg_controllen
;
1989 msg_controllen
-= tgt_space
;
1991 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
1992 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
,
1995 unlock_user(target_cmsg
, target_cmsg_addr
, space
);
1997 target_msgh
->msg_controllen
= tswapal(space
);
2001 static void tswap_nlmsghdr(struct nlmsghdr
*nlh
)
2003 nlh
->nlmsg_len
= tswap32(nlh
->nlmsg_len
);
2004 nlh
->nlmsg_type
= tswap16(nlh
->nlmsg_type
);
2005 nlh
->nlmsg_flags
= tswap16(nlh
->nlmsg_flags
);
2006 nlh
->nlmsg_seq
= tswap32(nlh
->nlmsg_seq
);
2007 nlh
->nlmsg_pid
= tswap32(nlh
->nlmsg_pid
);
2010 static abi_long
host_to_target_for_each_nlmsg(struct nlmsghdr
*nlh
,
2012 abi_long (*host_to_target_nlmsg
)
2013 (struct nlmsghdr
*))
2018 while (len
> sizeof(struct nlmsghdr
)) {
2020 nlmsg_len
= nlh
->nlmsg_len
;
2021 if (nlmsg_len
< sizeof(struct nlmsghdr
) ||
2026 switch (nlh
->nlmsg_type
) {
2028 tswap_nlmsghdr(nlh
);
2034 struct nlmsgerr
*e
= NLMSG_DATA(nlh
);
2035 e
->error
= tswap32(e
->error
);
2036 tswap_nlmsghdr(&e
->msg
);
2037 tswap_nlmsghdr(nlh
);
2041 ret
= host_to_target_nlmsg(nlh
);
2043 tswap_nlmsghdr(nlh
);
2048 tswap_nlmsghdr(nlh
);
2049 len
-= NLMSG_ALIGN(nlmsg_len
);
2050 nlh
= (struct nlmsghdr
*)(((char*)nlh
) + NLMSG_ALIGN(nlmsg_len
));
2055 static abi_long
target_to_host_for_each_nlmsg(struct nlmsghdr
*nlh
,
2057 abi_long (*target_to_host_nlmsg
)
2058 (struct nlmsghdr
*))
2062 while (len
> sizeof(struct nlmsghdr
)) {
2063 if (tswap32(nlh
->nlmsg_len
) < sizeof(struct nlmsghdr
) ||
2064 tswap32(nlh
->nlmsg_len
) > len
) {
2067 tswap_nlmsghdr(nlh
);
2068 switch (nlh
->nlmsg_type
) {
2075 struct nlmsgerr
*e
= NLMSG_DATA(nlh
);
2076 e
->error
= tswap32(e
->error
);
2077 tswap_nlmsghdr(&e
->msg
);
2081 ret
= target_to_host_nlmsg(nlh
);
2086 len
-= NLMSG_ALIGN(nlh
->nlmsg_len
);
2087 nlh
= (struct nlmsghdr
*)(((char *)nlh
) + NLMSG_ALIGN(nlh
->nlmsg_len
));
2092 #ifdef CONFIG_RTNETLINK
2093 static abi_long
host_to_target_for_each_nlattr(struct nlattr
*nlattr
,
2094 size_t len
, void *context
,
2095 abi_long (*host_to_target_nlattr
)
2099 unsigned short nla_len
;
2102 while (len
> sizeof(struct nlattr
)) {
2103 nla_len
= nlattr
->nla_len
;
2104 if (nla_len
< sizeof(struct nlattr
) ||
2108 ret
= host_to_target_nlattr(nlattr
, context
);
2109 nlattr
->nla_len
= tswap16(nlattr
->nla_len
);
2110 nlattr
->nla_type
= tswap16(nlattr
->nla_type
);
2114 len
-= NLA_ALIGN(nla_len
);
2115 nlattr
= (struct nlattr
*)(((char *)nlattr
) + NLA_ALIGN(nla_len
));
2120 static abi_long
host_to_target_for_each_rtattr(struct rtattr
*rtattr
,
2122 abi_long (*host_to_target_rtattr
)
2125 unsigned short rta_len
;
2128 while (len
> sizeof(struct rtattr
)) {
2129 rta_len
= rtattr
->rta_len
;
2130 if (rta_len
< sizeof(struct rtattr
) ||
2134 ret
= host_to_target_rtattr(rtattr
);
2135 rtattr
->rta_len
= tswap16(rtattr
->rta_len
);
2136 rtattr
->rta_type
= tswap16(rtattr
->rta_type
);
2140 len
-= RTA_ALIGN(rta_len
);
2141 rtattr
= (struct rtattr
*)(((char *)rtattr
) + RTA_ALIGN(rta_len
));
2146 #define NLA_DATA(nla) ((void *)((char *)(nla)) + NLA_HDRLEN)
2148 static abi_long
host_to_target_data_bridge_nlattr(struct nlattr
*nlattr
,
2155 switch (nlattr
->nla_type
) {
2157 case QEMU_IFLA_BR_FDB_FLUSH
:
2160 case QEMU_IFLA_BR_GROUP_ADDR
:
2163 case QEMU_IFLA_BR_VLAN_FILTERING
:
2164 case QEMU_IFLA_BR_TOPOLOGY_CHANGE
:
2165 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED
:
2166 case QEMU_IFLA_BR_MCAST_ROUTER
:
2167 case QEMU_IFLA_BR_MCAST_SNOOPING
:
2168 case QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR
:
2169 case QEMU_IFLA_BR_MCAST_QUERIER
:
2170 case QEMU_IFLA_BR_NF_CALL_IPTABLES
:
2171 case QEMU_IFLA_BR_NF_CALL_IP6TABLES
:
2172 case QEMU_IFLA_BR_NF_CALL_ARPTABLES
:
2175 case QEMU_IFLA_BR_PRIORITY
:
2176 case QEMU_IFLA_BR_VLAN_PROTOCOL
:
2177 case QEMU_IFLA_BR_GROUP_FWD_MASK
:
2178 case QEMU_IFLA_BR_ROOT_PORT
:
2179 case QEMU_IFLA_BR_VLAN_DEFAULT_PVID
:
2180 u16
= NLA_DATA(nlattr
);
2181 *u16
= tswap16(*u16
);
2184 case QEMU_IFLA_BR_FORWARD_DELAY
:
2185 case QEMU_IFLA_BR_HELLO_TIME
:
2186 case QEMU_IFLA_BR_MAX_AGE
:
2187 case QEMU_IFLA_BR_AGEING_TIME
:
2188 case QEMU_IFLA_BR_STP_STATE
:
2189 case QEMU_IFLA_BR_ROOT_PATH_COST
:
2190 case QEMU_IFLA_BR_MCAST_HASH_ELASTICITY
:
2191 case QEMU_IFLA_BR_MCAST_HASH_MAX
:
2192 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT
:
2193 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT
:
2194 u32
= NLA_DATA(nlattr
);
2195 *u32
= tswap32(*u32
);
2198 case QEMU_IFLA_BR_HELLO_TIMER
:
2199 case QEMU_IFLA_BR_TCN_TIMER
:
2200 case QEMU_IFLA_BR_GC_TIMER
:
2201 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER
:
2202 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL
:
2203 case QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL
:
2204 case QEMU_IFLA_BR_MCAST_QUERIER_INTVL
:
2205 case QEMU_IFLA_BR_MCAST_QUERY_INTVL
:
2206 case QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL
:
2207 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL
:
2208 u64
= NLA_DATA(nlattr
);
2209 *u64
= tswap64(*u64
);
2211 /* ifla_bridge_id: uin8_t[] */
2212 case QEMU_IFLA_BR_ROOT_ID
:
2213 case QEMU_IFLA_BR_BRIDGE_ID
:
2216 gemu_log("Unknown QEMU_IFLA_BR type %d\n", nlattr
->nla_type
);
2222 static abi_long
host_to_target_slave_data_bridge_nlattr(struct nlattr
*nlattr
,
2229 switch (nlattr
->nla_type
) {
2231 case QEMU_IFLA_BRPORT_STATE
:
2232 case QEMU_IFLA_BRPORT_MODE
:
2233 case QEMU_IFLA_BRPORT_GUARD
:
2234 case QEMU_IFLA_BRPORT_PROTECT
:
2235 case QEMU_IFLA_BRPORT_FAST_LEAVE
:
2236 case QEMU_IFLA_BRPORT_LEARNING
:
2237 case QEMU_IFLA_BRPORT_UNICAST_FLOOD
:
2238 case QEMU_IFLA_BRPORT_PROXYARP
:
2239 case QEMU_IFLA_BRPORT_LEARNING_SYNC
:
2240 case QEMU_IFLA_BRPORT_PROXYARP_WIFI
:
2241 case QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK
:
2242 case QEMU_IFLA_BRPORT_CONFIG_PENDING
:
2243 case QEMU_IFLA_BRPORT_MULTICAST_ROUTER
:
2246 case QEMU_IFLA_BRPORT_PRIORITY
:
2247 case QEMU_IFLA_BRPORT_DESIGNATED_PORT
:
2248 case QEMU_IFLA_BRPORT_DESIGNATED_COST
:
2249 case QEMU_IFLA_BRPORT_ID
:
2250 case QEMU_IFLA_BRPORT_NO
:
2251 u16
= NLA_DATA(nlattr
);
2252 *u16
= tswap16(*u16
);
2255 case QEMU_IFLA_BRPORT_COST
:
2256 u32
= NLA_DATA(nlattr
);
2257 *u32
= tswap32(*u32
);
2260 case QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER
:
2261 case QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER
:
2262 case QEMU_IFLA_BRPORT_HOLD_TIMER
:
2263 u64
= NLA_DATA(nlattr
);
2264 *u64
= tswap64(*u64
);
2266 /* ifla_bridge_id: uint8_t[] */
2267 case QEMU_IFLA_BRPORT_ROOT_ID
:
2268 case QEMU_IFLA_BRPORT_BRIDGE_ID
:
2271 gemu_log("Unknown QEMU_IFLA_BRPORT type %d\n", nlattr
->nla_type
);
2277 struct linkinfo_context
{
2284 static abi_long
host_to_target_data_linkinfo_nlattr(struct nlattr
*nlattr
,
2287 struct linkinfo_context
*li_context
= context
;
2289 switch (nlattr
->nla_type
) {
2291 case QEMU_IFLA_INFO_KIND
:
2292 li_context
->name
= NLA_DATA(nlattr
);
2293 li_context
->len
= nlattr
->nla_len
- NLA_HDRLEN
;
2295 case QEMU_IFLA_INFO_SLAVE_KIND
:
2296 li_context
->slave_name
= NLA_DATA(nlattr
);
2297 li_context
->slave_len
= nlattr
->nla_len
- NLA_HDRLEN
;
2300 case QEMU_IFLA_INFO_XSTATS
:
2301 /* FIXME: only used by CAN */
2304 case QEMU_IFLA_INFO_DATA
:
2305 if (strncmp(li_context
->name
, "bridge",
2306 li_context
->len
) == 0) {
2307 return host_to_target_for_each_nlattr(NLA_DATA(nlattr
),
2310 host_to_target_data_bridge_nlattr
);
2312 gemu_log("Unknown QEMU_IFLA_INFO_KIND %s\n", li_context
->name
);
2315 case QEMU_IFLA_INFO_SLAVE_DATA
:
2316 if (strncmp(li_context
->slave_name
, "bridge",
2317 li_context
->slave_len
) == 0) {
2318 return host_to_target_for_each_nlattr(NLA_DATA(nlattr
),
2321 host_to_target_slave_data_bridge_nlattr
);
2323 gemu_log("Unknown QEMU_IFLA_INFO_SLAVE_KIND %s\n",
2324 li_context
->slave_name
);
2328 gemu_log("Unknown host QEMU_IFLA_INFO type: %d\n", nlattr
->nla_type
);
2335 static abi_long
host_to_target_data_inet_nlattr(struct nlattr
*nlattr
,
2341 switch (nlattr
->nla_type
) {
2342 case QEMU_IFLA_INET_CONF
:
2343 u32
= NLA_DATA(nlattr
);
2344 for (i
= 0; i
< (nlattr
->nla_len
- NLA_HDRLEN
) / sizeof(*u32
);
2346 u32
[i
] = tswap32(u32
[i
]);
2350 gemu_log("Unknown host AF_INET type: %d\n", nlattr
->nla_type
);
2355 static abi_long
host_to_target_data_inet6_nlattr(struct nlattr
*nlattr
,
2360 struct ifla_cacheinfo
*ci
;
2363 switch (nlattr
->nla_type
) {
2365 case QEMU_IFLA_INET6_TOKEN
:
2368 case QEMU_IFLA_INET6_ADDR_GEN_MODE
:
2371 case QEMU_IFLA_INET6_FLAGS
:
2372 u32
= NLA_DATA(nlattr
);
2373 *u32
= tswap32(*u32
);
2376 case QEMU_IFLA_INET6_CONF
:
2377 u32
= NLA_DATA(nlattr
);
2378 for (i
= 0; i
< (nlattr
->nla_len
- NLA_HDRLEN
) / sizeof(*u32
);
2380 u32
[i
] = tswap32(u32
[i
]);
2383 /* ifla_cacheinfo */
2384 case QEMU_IFLA_INET6_CACHEINFO
:
2385 ci
= NLA_DATA(nlattr
);
2386 ci
->max_reasm_len
= tswap32(ci
->max_reasm_len
);
2387 ci
->tstamp
= tswap32(ci
->tstamp
);
2388 ci
->reachable_time
= tswap32(ci
->reachable_time
);
2389 ci
->retrans_time
= tswap32(ci
->retrans_time
);
2392 case QEMU_IFLA_INET6_STATS
:
2393 case QEMU_IFLA_INET6_ICMP6STATS
:
2394 u64
= NLA_DATA(nlattr
);
2395 for (i
= 0; i
< (nlattr
->nla_len
- NLA_HDRLEN
) / sizeof(*u64
);
2397 u64
[i
] = tswap64(u64
[i
]);
2401 gemu_log("Unknown host AF_INET6 type: %d\n", nlattr
->nla_type
);
2406 static abi_long
host_to_target_data_spec_nlattr(struct nlattr
*nlattr
,
2409 switch (nlattr
->nla_type
) {
2411 return host_to_target_for_each_nlattr(NLA_DATA(nlattr
), nlattr
->nla_len
,
2413 host_to_target_data_inet_nlattr
);
2415 return host_to_target_for_each_nlattr(NLA_DATA(nlattr
), nlattr
->nla_len
,
2417 host_to_target_data_inet6_nlattr
);
2419 gemu_log("Unknown host AF_SPEC type: %d\n", nlattr
->nla_type
);
2425 static abi_long
host_to_target_data_link_rtattr(struct rtattr
*rtattr
)
2428 struct rtnl_link_stats
*st
;
2429 struct rtnl_link_stats64
*st64
;
2430 struct rtnl_link_ifmap
*map
;
2431 struct linkinfo_context li_context
;
2433 switch (rtattr
->rta_type
) {
2435 case QEMU_IFLA_ADDRESS
:
2436 case QEMU_IFLA_BROADCAST
:
2438 case QEMU_IFLA_IFNAME
:
2439 case QEMU_IFLA_QDISC
:
2442 case QEMU_IFLA_OPERSTATE
:
2443 case QEMU_IFLA_LINKMODE
:
2444 case QEMU_IFLA_CARRIER
:
2445 case QEMU_IFLA_PROTO_DOWN
:
2449 case QEMU_IFLA_LINK
:
2450 case QEMU_IFLA_WEIGHT
:
2451 case QEMU_IFLA_TXQLEN
:
2452 case QEMU_IFLA_CARRIER_CHANGES
:
2453 case QEMU_IFLA_NUM_RX_QUEUES
:
2454 case QEMU_IFLA_NUM_TX_QUEUES
:
2455 case QEMU_IFLA_PROMISCUITY
:
2456 case QEMU_IFLA_EXT_MASK
:
2457 case QEMU_IFLA_LINK_NETNSID
:
2458 case QEMU_IFLA_GROUP
:
2459 case QEMU_IFLA_MASTER
:
2460 case QEMU_IFLA_NUM_VF
:
2461 case QEMU_IFLA_GSO_MAX_SEGS
:
2462 case QEMU_IFLA_GSO_MAX_SIZE
:
2463 u32
= RTA_DATA(rtattr
);
2464 *u32
= tswap32(*u32
);
2466 /* struct rtnl_link_stats */
2467 case QEMU_IFLA_STATS
:
2468 st
= RTA_DATA(rtattr
);
2469 st
->rx_packets
= tswap32(st
->rx_packets
);
2470 st
->tx_packets
= tswap32(st
->tx_packets
);
2471 st
->rx_bytes
= tswap32(st
->rx_bytes
);
2472 st
->tx_bytes
= tswap32(st
->tx_bytes
);
2473 st
->rx_errors
= tswap32(st
->rx_errors
);
2474 st
->tx_errors
= tswap32(st
->tx_errors
);
2475 st
->rx_dropped
= tswap32(st
->rx_dropped
);
2476 st
->tx_dropped
= tswap32(st
->tx_dropped
);
2477 st
->multicast
= tswap32(st
->multicast
);
2478 st
->collisions
= tswap32(st
->collisions
);
2480 /* detailed rx_errors: */
2481 st
->rx_length_errors
= tswap32(st
->rx_length_errors
);
2482 st
->rx_over_errors
= tswap32(st
->rx_over_errors
);
2483 st
->rx_crc_errors
= tswap32(st
->rx_crc_errors
);
2484 st
->rx_frame_errors
= tswap32(st
->rx_frame_errors
);
2485 st
->rx_fifo_errors
= tswap32(st
->rx_fifo_errors
);
2486 st
->rx_missed_errors
= tswap32(st
->rx_missed_errors
);
2488 /* detailed tx_errors */
2489 st
->tx_aborted_errors
= tswap32(st
->tx_aborted_errors
);
2490 st
->tx_carrier_errors
= tswap32(st
->tx_carrier_errors
);
2491 st
->tx_fifo_errors
= tswap32(st
->tx_fifo_errors
);
2492 st
->tx_heartbeat_errors
= tswap32(st
->tx_heartbeat_errors
);
2493 st
->tx_window_errors
= tswap32(st
->tx_window_errors
);
2496 st
->rx_compressed
= tswap32(st
->rx_compressed
);
2497 st
->tx_compressed
= tswap32(st
->tx_compressed
);
2499 /* struct rtnl_link_stats64 */
2500 case QEMU_IFLA_STATS64
:
2501 st64
= RTA_DATA(rtattr
);
2502 st64
->rx_packets
= tswap64(st64
->rx_packets
);
2503 st64
->tx_packets
= tswap64(st64
->tx_packets
);
2504 st64
->rx_bytes
= tswap64(st64
->rx_bytes
);
2505 st64
->tx_bytes
= tswap64(st64
->tx_bytes
);
2506 st64
->rx_errors
= tswap64(st64
->rx_errors
);
2507 st64
->tx_errors
= tswap64(st64
->tx_errors
);
2508 st64
->rx_dropped
= tswap64(st64
->rx_dropped
);
2509 st64
->tx_dropped
= tswap64(st64
->tx_dropped
);
2510 st64
->multicast
= tswap64(st64
->multicast
);
2511 st64
->collisions
= tswap64(st64
->collisions
);
2513 /* detailed rx_errors: */
2514 st64
->rx_length_errors
= tswap64(st64
->rx_length_errors
);
2515 st64
->rx_over_errors
= tswap64(st64
->rx_over_errors
);
2516 st64
->rx_crc_errors
= tswap64(st64
->rx_crc_errors
);
2517 st64
->rx_frame_errors
= tswap64(st64
->rx_frame_errors
);
2518 st64
->rx_fifo_errors
= tswap64(st64
->rx_fifo_errors
);
2519 st64
->rx_missed_errors
= tswap64(st64
->rx_missed_errors
);
2521 /* detailed tx_errors */
2522 st64
->tx_aborted_errors
= tswap64(st64
->tx_aborted_errors
);
2523 st64
->tx_carrier_errors
= tswap64(st64
->tx_carrier_errors
);
2524 st64
->tx_fifo_errors
= tswap64(st64
->tx_fifo_errors
);
2525 st64
->tx_heartbeat_errors
= tswap64(st64
->tx_heartbeat_errors
);
2526 st64
->tx_window_errors
= tswap64(st64
->tx_window_errors
);
2529 st64
->rx_compressed
= tswap64(st64
->rx_compressed
);
2530 st64
->tx_compressed
= tswap64(st64
->tx_compressed
);
2532 /* struct rtnl_link_ifmap */
2534 map
= RTA_DATA(rtattr
);
2535 map
->mem_start
= tswap64(map
->mem_start
);
2536 map
->mem_end
= tswap64(map
->mem_end
);
2537 map
->base_addr
= tswap64(map
->base_addr
);
2538 map
->irq
= tswap16(map
->irq
);
2541 case QEMU_IFLA_LINKINFO
:
2542 memset(&li_context
, 0, sizeof(li_context
));
2543 return host_to_target_for_each_nlattr(RTA_DATA(rtattr
), rtattr
->rta_len
,
2545 host_to_target_data_linkinfo_nlattr
);
2546 case QEMU_IFLA_AF_SPEC
:
2547 return host_to_target_for_each_nlattr(RTA_DATA(rtattr
), rtattr
->rta_len
,
2549 host_to_target_data_spec_nlattr
);
2551 gemu_log("Unknown host QEMU_IFLA type: %d\n", rtattr
->rta_type
);
2557 static abi_long
host_to_target_data_addr_rtattr(struct rtattr
*rtattr
)
2560 struct ifa_cacheinfo
*ci
;
2562 switch (rtattr
->rta_type
) {
2563 /* binary: depends on family type */
2573 u32
= RTA_DATA(rtattr
);
2574 *u32
= tswap32(*u32
);
2576 /* struct ifa_cacheinfo */
2578 ci
= RTA_DATA(rtattr
);
2579 ci
->ifa_prefered
= tswap32(ci
->ifa_prefered
);
2580 ci
->ifa_valid
= tswap32(ci
->ifa_valid
);
2581 ci
->cstamp
= tswap32(ci
->cstamp
);
2582 ci
->tstamp
= tswap32(ci
->tstamp
);
2585 gemu_log("Unknown host IFA type: %d\n", rtattr
->rta_type
);
2591 static abi_long
host_to_target_data_route_rtattr(struct rtattr
*rtattr
)
2594 switch (rtattr
->rta_type
) {
2595 /* binary: depends on family type */
2604 u32
= RTA_DATA(rtattr
);
2605 *u32
= tswap32(*u32
);
2608 gemu_log("Unknown host RTA type: %d\n", rtattr
->rta_type
);
2614 static abi_long
host_to_target_link_rtattr(struct rtattr
*rtattr
,
2615 uint32_t rtattr_len
)
2617 return host_to_target_for_each_rtattr(rtattr
, rtattr_len
,
2618 host_to_target_data_link_rtattr
);
2621 static abi_long
host_to_target_addr_rtattr(struct rtattr
*rtattr
,
2622 uint32_t rtattr_len
)
2624 return host_to_target_for_each_rtattr(rtattr
, rtattr_len
,
2625 host_to_target_data_addr_rtattr
);
2628 static abi_long
host_to_target_route_rtattr(struct rtattr
*rtattr
,
2629 uint32_t rtattr_len
)
2631 return host_to_target_for_each_rtattr(rtattr
, rtattr_len
,
2632 host_to_target_data_route_rtattr
);
2635 static abi_long
host_to_target_data_route(struct nlmsghdr
*nlh
)
2638 struct ifinfomsg
*ifi
;
2639 struct ifaddrmsg
*ifa
;
2642 nlmsg_len
= nlh
->nlmsg_len
;
2643 switch (nlh
->nlmsg_type
) {
2647 if (nlh
->nlmsg_len
>= NLMSG_LENGTH(sizeof(*ifi
))) {
2648 ifi
= NLMSG_DATA(nlh
);
2649 ifi
->ifi_type
= tswap16(ifi
->ifi_type
);
2650 ifi
->ifi_index
= tswap32(ifi
->ifi_index
);
2651 ifi
->ifi_flags
= tswap32(ifi
->ifi_flags
);
2652 ifi
->ifi_change
= tswap32(ifi
->ifi_change
);
2653 host_to_target_link_rtattr(IFLA_RTA(ifi
),
2654 nlmsg_len
- NLMSG_LENGTH(sizeof(*ifi
)));
2660 if (nlh
->nlmsg_len
>= NLMSG_LENGTH(sizeof(*ifa
))) {
2661 ifa
= NLMSG_DATA(nlh
);
2662 ifa
->ifa_index
= tswap32(ifa
->ifa_index
);
2663 host_to_target_addr_rtattr(IFA_RTA(ifa
),
2664 nlmsg_len
- NLMSG_LENGTH(sizeof(*ifa
)));
2670 if (nlh
->nlmsg_len
>= NLMSG_LENGTH(sizeof(*rtm
))) {
2671 rtm
= NLMSG_DATA(nlh
);
2672 rtm
->rtm_flags
= tswap32(rtm
->rtm_flags
);
2673 host_to_target_route_rtattr(RTM_RTA(rtm
),
2674 nlmsg_len
- NLMSG_LENGTH(sizeof(*rtm
)));
2678 return -TARGET_EINVAL
;
2683 static inline abi_long
host_to_target_nlmsg_route(struct nlmsghdr
*nlh
,
2686 return host_to_target_for_each_nlmsg(nlh
, len
, host_to_target_data_route
);
2689 static abi_long
target_to_host_for_each_rtattr(struct rtattr
*rtattr
,
2691 abi_long (*target_to_host_rtattr
)
2696 while (len
>= sizeof(struct rtattr
)) {
2697 if (tswap16(rtattr
->rta_len
) < sizeof(struct rtattr
) ||
2698 tswap16(rtattr
->rta_len
) > len
) {
2701 rtattr
->rta_len
= tswap16(rtattr
->rta_len
);
2702 rtattr
->rta_type
= tswap16(rtattr
->rta_type
);
2703 ret
= target_to_host_rtattr(rtattr
);
2707 len
-= RTA_ALIGN(rtattr
->rta_len
);
2708 rtattr
= (struct rtattr
*)(((char *)rtattr
) +
2709 RTA_ALIGN(rtattr
->rta_len
));
2714 static abi_long
target_to_host_data_link_rtattr(struct rtattr
*rtattr
)
2716 switch (rtattr
->rta_type
) {
2718 gemu_log("Unknown target QEMU_IFLA type: %d\n", rtattr
->rta_type
);
2724 static abi_long
target_to_host_data_addr_rtattr(struct rtattr
*rtattr
)
2726 switch (rtattr
->rta_type
) {
2727 /* binary: depends on family type */
2732 gemu_log("Unknown target IFA type: %d\n", rtattr
->rta_type
);
2738 static abi_long
target_to_host_data_route_rtattr(struct rtattr
*rtattr
)
2741 switch (rtattr
->rta_type
) {
2742 /* binary: depends on family type */
2750 u32
= RTA_DATA(rtattr
);
2751 *u32
= tswap32(*u32
);
2754 gemu_log("Unknown target RTA type: %d\n", rtattr
->rta_type
);
2760 static void target_to_host_link_rtattr(struct rtattr
*rtattr
,
2761 uint32_t rtattr_len
)
2763 target_to_host_for_each_rtattr(rtattr
, rtattr_len
,
2764 target_to_host_data_link_rtattr
);
2767 static void target_to_host_addr_rtattr(struct rtattr
*rtattr
,
2768 uint32_t rtattr_len
)
2770 target_to_host_for_each_rtattr(rtattr
, rtattr_len
,
2771 target_to_host_data_addr_rtattr
);
2774 static void target_to_host_route_rtattr(struct rtattr
*rtattr
,
2775 uint32_t rtattr_len
)
2777 target_to_host_for_each_rtattr(rtattr
, rtattr_len
,
2778 target_to_host_data_route_rtattr
);
2781 static abi_long
target_to_host_data_route(struct nlmsghdr
*nlh
)
2783 struct ifinfomsg
*ifi
;
2784 struct ifaddrmsg
*ifa
;
2787 switch (nlh
->nlmsg_type
) {
2792 if (nlh
->nlmsg_len
>= NLMSG_LENGTH(sizeof(*ifi
))) {
2793 ifi
= NLMSG_DATA(nlh
);
2794 ifi
->ifi_type
= tswap16(ifi
->ifi_type
);
2795 ifi
->ifi_index
= tswap32(ifi
->ifi_index
);
2796 ifi
->ifi_flags
= tswap32(ifi
->ifi_flags
);
2797 ifi
->ifi_change
= tswap32(ifi
->ifi_change
);
2798 target_to_host_link_rtattr(IFLA_RTA(ifi
), nlh
->nlmsg_len
-
2799 NLMSG_LENGTH(sizeof(*ifi
)));
2805 if (nlh
->nlmsg_len
>= NLMSG_LENGTH(sizeof(*ifa
))) {
2806 ifa
= NLMSG_DATA(nlh
);
2807 ifa
->ifa_index
= tswap32(ifa
->ifa_index
);
2808 target_to_host_addr_rtattr(IFA_RTA(ifa
), nlh
->nlmsg_len
-
2809 NLMSG_LENGTH(sizeof(*ifa
)));
2816 if (nlh
->nlmsg_len
>= NLMSG_LENGTH(sizeof(*rtm
))) {
2817 rtm
= NLMSG_DATA(nlh
);
2818 rtm
->rtm_flags
= tswap32(rtm
->rtm_flags
);
2819 target_to_host_route_rtattr(RTM_RTA(rtm
), nlh
->nlmsg_len
-
2820 NLMSG_LENGTH(sizeof(*rtm
)));
2824 return -TARGET_EOPNOTSUPP
;
2829 static abi_long
target_to_host_nlmsg_route(struct nlmsghdr
*nlh
, size_t len
)
2831 return target_to_host_for_each_nlmsg(nlh
, len
, target_to_host_data_route
);
2833 #endif /* CONFIG_RTNETLINK */
2835 static abi_long
host_to_target_data_audit(struct nlmsghdr
*nlh
)
2837 switch (nlh
->nlmsg_type
) {
2839 gemu_log("Unknown host audit message type %d\n",
2841 return -TARGET_EINVAL
;
2846 static inline abi_long
host_to_target_nlmsg_audit(struct nlmsghdr
*nlh
,
2849 return host_to_target_for_each_nlmsg(nlh
, len
, host_to_target_data_audit
);
2852 static abi_long
target_to_host_data_audit(struct nlmsghdr
*nlh
)
2854 switch (nlh
->nlmsg_type
) {
2856 case AUDIT_FIRST_USER_MSG
... AUDIT_LAST_USER_MSG
:
2857 case AUDIT_FIRST_USER_MSG2
... AUDIT_LAST_USER_MSG2
:
2860 gemu_log("Unknown target audit message type %d\n",
2862 return -TARGET_EINVAL
;
2868 static abi_long
target_to_host_nlmsg_audit(struct nlmsghdr
*nlh
, size_t len
)
2870 return target_to_host_for_each_nlmsg(nlh
, len
, target_to_host_data_audit
);
2873 /* do_setsockopt() Must return target values and target errnos. */
2874 static abi_long
do_setsockopt(int sockfd
, int level
, int optname
,
2875 abi_ulong optval_addr
, socklen_t optlen
)
2879 struct ip_mreqn
*ip_mreq
;
2880 struct ip_mreq_source
*ip_mreq_source
;
2884 /* TCP options all take an 'int' value. */
2885 if (optlen
< sizeof(uint32_t))
2886 return -TARGET_EINVAL
;
2888 if (get_user_u32(val
, optval_addr
))
2889 return -TARGET_EFAULT
;
2890 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
2897 case IP_ROUTER_ALERT
:
2901 case IP_MTU_DISCOVER
:
2908 case IP_MULTICAST_TTL
:
2909 case IP_MULTICAST_LOOP
:
2911 if (optlen
>= sizeof(uint32_t)) {
2912 if (get_user_u32(val
, optval_addr
))
2913 return -TARGET_EFAULT
;
2914 } else if (optlen
>= 1) {
2915 if (get_user_u8(val
, optval_addr
))
2916 return -TARGET_EFAULT
;
2918 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
2920 case IP_ADD_MEMBERSHIP
:
2921 case IP_DROP_MEMBERSHIP
:
2922 if (optlen
< sizeof (struct target_ip_mreq
) ||
2923 optlen
> sizeof (struct target_ip_mreqn
))
2924 return -TARGET_EINVAL
;
2926 ip_mreq
= (struct ip_mreqn
*) alloca(optlen
);
2927 target_to_host_ip_mreq(ip_mreq
, optval_addr
, optlen
);
2928 ret
= get_errno(setsockopt(sockfd
, level
, optname
, ip_mreq
, optlen
));
2931 case IP_BLOCK_SOURCE
:
2932 case IP_UNBLOCK_SOURCE
:
2933 case IP_ADD_SOURCE_MEMBERSHIP
:
2934 case IP_DROP_SOURCE_MEMBERSHIP
:
2935 if (optlen
!= sizeof (struct target_ip_mreq_source
))
2936 return -TARGET_EINVAL
;
2938 ip_mreq_source
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
2939 ret
= get_errno(setsockopt(sockfd
, level
, optname
, ip_mreq_source
, optlen
));
2940 unlock_user (ip_mreq_source
, optval_addr
, 0);
2949 case IPV6_MTU_DISCOVER
:
2952 case IPV6_RECVPKTINFO
:
2953 case IPV6_UNICAST_HOPS
:
2955 case IPV6_RECVHOPLIMIT
:
2956 case IPV6_2292HOPLIMIT
:
2959 if (optlen
< sizeof(uint32_t)) {
2960 return -TARGET_EINVAL
;
2962 if (get_user_u32(val
, optval_addr
)) {
2963 return -TARGET_EFAULT
;
2965 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2966 &val
, sizeof(val
)));
2970 struct in6_pktinfo pki
;
2972 if (optlen
< sizeof(pki
)) {
2973 return -TARGET_EINVAL
;
2976 if (copy_from_user(&pki
, optval_addr
, sizeof(pki
))) {
2977 return -TARGET_EFAULT
;
2980 pki
.ipi6_ifindex
= tswap32(pki
.ipi6_ifindex
);
2982 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2983 &pki
, sizeof(pki
)));
2994 struct icmp6_filter icmp6f
;
2996 if (optlen
> sizeof(icmp6f
)) {
2997 optlen
= sizeof(icmp6f
);
3000 if (copy_from_user(&icmp6f
, optval_addr
, optlen
)) {
3001 return -TARGET_EFAULT
;
3004 for (val
= 0; val
< 8; val
++) {
3005 icmp6f
.data
[val
] = tswap32(icmp6f
.data
[val
]);
3008 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
3020 /* those take an u32 value */
3021 if (optlen
< sizeof(uint32_t)) {
3022 return -TARGET_EINVAL
;
3025 if (get_user_u32(val
, optval_addr
)) {
3026 return -TARGET_EFAULT
;
3028 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
3029 &val
, sizeof(val
)));
3036 case TARGET_SOL_SOCKET
:
3038 case TARGET_SO_RCVTIMEO
:
3042 optname
= SO_RCVTIMEO
;
3045 if (optlen
!= sizeof(struct target_timeval
)) {
3046 return -TARGET_EINVAL
;
3049 if (copy_from_user_timeval(&tv
, optval_addr
)) {
3050 return -TARGET_EFAULT
;
3053 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
,
3057 case TARGET_SO_SNDTIMEO
:
3058 optname
= SO_SNDTIMEO
;
3060 case TARGET_SO_ATTACH_FILTER
:
3062 struct target_sock_fprog
*tfprog
;
3063 struct target_sock_filter
*tfilter
;
3064 struct sock_fprog fprog
;
3065 struct sock_filter
*filter
;
3068 if (optlen
!= sizeof(*tfprog
)) {
3069 return -TARGET_EINVAL
;
3071 if (!lock_user_struct(VERIFY_READ
, tfprog
, optval_addr
, 0)) {
3072 return -TARGET_EFAULT
;
3074 if (!lock_user_struct(VERIFY_READ
, tfilter
,
3075 tswapal(tfprog
->filter
), 0)) {
3076 unlock_user_struct(tfprog
, optval_addr
, 1);
3077 return -TARGET_EFAULT
;
3080 fprog
.len
= tswap16(tfprog
->len
);
3081 filter
= g_try_new(struct sock_filter
, fprog
.len
);
3082 if (filter
== NULL
) {
3083 unlock_user_struct(tfilter
, tfprog
->filter
, 1);
3084 unlock_user_struct(tfprog
, optval_addr
, 1);
3085 return -TARGET_ENOMEM
;
3087 for (i
= 0; i
< fprog
.len
; i
++) {
3088 filter
[i
].code
= tswap16(tfilter
[i
].code
);
3089 filter
[i
].jt
= tfilter
[i
].jt
;
3090 filter
[i
].jf
= tfilter
[i
].jf
;
3091 filter
[i
].k
= tswap32(tfilter
[i
].k
);
3093 fprog
.filter
= filter
;
3095 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
,
3096 SO_ATTACH_FILTER
, &fprog
, sizeof(fprog
)));
3099 unlock_user_struct(tfilter
, tfprog
->filter
, 1);
3100 unlock_user_struct(tfprog
, optval_addr
, 1);
3103 case TARGET_SO_BINDTODEVICE
:
3105 char *dev_ifname
, *addr_ifname
;
3107 if (optlen
> IFNAMSIZ
- 1) {
3108 optlen
= IFNAMSIZ
- 1;
3110 dev_ifname
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
3112 return -TARGET_EFAULT
;
3114 optname
= SO_BINDTODEVICE
;
3115 addr_ifname
= alloca(IFNAMSIZ
);
3116 memcpy(addr_ifname
, dev_ifname
, optlen
);
3117 addr_ifname
[optlen
] = 0;
3118 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
,
3119 addr_ifname
, optlen
));
3120 unlock_user (dev_ifname
, optval_addr
, 0);
3123 /* Options with 'int' argument. */
3124 case TARGET_SO_DEBUG
:
3127 case TARGET_SO_REUSEADDR
:
3128 optname
= SO_REUSEADDR
;
3130 case TARGET_SO_TYPE
:
3133 case TARGET_SO_ERROR
:
3136 case TARGET_SO_DONTROUTE
:
3137 optname
= SO_DONTROUTE
;
3139 case TARGET_SO_BROADCAST
:
3140 optname
= SO_BROADCAST
;
3142 case TARGET_SO_SNDBUF
:
3143 optname
= SO_SNDBUF
;
3145 case TARGET_SO_SNDBUFFORCE
:
3146 optname
= SO_SNDBUFFORCE
;
3148 case TARGET_SO_RCVBUF
:
3149 optname
= SO_RCVBUF
;
3151 case TARGET_SO_RCVBUFFORCE
:
3152 optname
= SO_RCVBUFFORCE
;
3154 case TARGET_SO_KEEPALIVE
:
3155 optname
= SO_KEEPALIVE
;
3157 case TARGET_SO_OOBINLINE
:
3158 optname
= SO_OOBINLINE
;
3160 case TARGET_SO_NO_CHECK
:
3161 optname
= SO_NO_CHECK
;
3163 case TARGET_SO_PRIORITY
:
3164 optname
= SO_PRIORITY
;
3167 case TARGET_SO_BSDCOMPAT
:
3168 optname
= SO_BSDCOMPAT
;
3171 case TARGET_SO_PASSCRED
:
3172 optname
= SO_PASSCRED
;
3174 case TARGET_SO_PASSSEC
:
3175 optname
= SO_PASSSEC
;
3177 case TARGET_SO_TIMESTAMP
:
3178 optname
= SO_TIMESTAMP
;
3180 case TARGET_SO_RCVLOWAT
:
3181 optname
= SO_RCVLOWAT
;
3186 if (optlen
< sizeof(uint32_t))
3187 return -TARGET_EINVAL
;
3189 if (get_user_u32(val
, optval_addr
))
3190 return -TARGET_EFAULT
;
3191 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
, &val
, sizeof(val
)));
3195 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level
, optname
);
3196 ret
= -TARGET_ENOPROTOOPT
;
3201 /* do_getsockopt() Must return target values and target errnos. */
3202 static abi_long
do_getsockopt(int sockfd
, int level
, int optname
,
3203 abi_ulong optval_addr
, abi_ulong optlen
)
3210 case TARGET_SOL_SOCKET
:
3213 /* These don't just return a single integer */
3214 case TARGET_SO_LINGER
:
3215 case TARGET_SO_RCVTIMEO
:
3216 case TARGET_SO_SNDTIMEO
:
3217 case TARGET_SO_PEERNAME
:
3219 case TARGET_SO_PEERCRED
: {
3222 struct target_ucred
*tcr
;
3224 if (get_user_u32(len
, optlen
)) {
3225 return -TARGET_EFAULT
;
3228 return -TARGET_EINVAL
;
3232 ret
= get_errno(getsockopt(sockfd
, level
, SO_PEERCRED
,
3240 if (!lock_user_struct(VERIFY_WRITE
, tcr
, optval_addr
, 0)) {
3241 return -TARGET_EFAULT
;
3243 __put_user(cr
.pid
, &tcr
->pid
);
3244 __put_user(cr
.uid
, &tcr
->uid
);
3245 __put_user(cr
.gid
, &tcr
->gid
);
3246 unlock_user_struct(tcr
, optval_addr
, 1);
3247 if (put_user_u32(len
, optlen
)) {
3248 return -TARGET_EFAULT
;
3252 /* Options with 'int' argument. */
3253 case TARGET_SO_DEBUG
:
3256 case TARGET_SO_REUSEADDR
:
3257 optname
= SO_REUSEADDR
;
3259 case TARGET_SO_TYPE
:
3262 case TARGET_SO_ERROR
:
3265 case TARGET_SO_DONTROUTE
:
3266 optname
= SO_DONTROUTE
;
3268 case TARGET_SO_BROADCAST
:
3269 optname
= SO_BROADCAST
;
3271 case TARGET_SO_SNDBUF
:
3272 optname
= SO_SNDBUF
;
3274 case TARGET_SO_RCVBUF
:
3275 optname
= SO_RCVBUF
;
3277 case TARGET_SO_KEEPALIVE
:
3278 optname
= SO_KEEPALIVE
;
3280 case TARGET_SO_OOBINLINE
:
3281 optname
= SO_OOBINLINE
;
3283 case TARGET_SO_NO_CHECK
:
3284 optname
= SO_NO_CHECK
;
3286 case TARGET_SO_PRIORITY
:
3287 optname
= SO_PRIORITY
;
3290 case TARGET_SO_BSDCOMPAT
:
3291 optname
= SO_BSDCOMPAT
;
3294 case TARGET_SO_PASSCRED
:
3295 optname
= SO_PASSCRED
;
3297 case TARGET_SO_TIMESTAMP
:
3298 optname
= SO_TIMESTAMP
;
3300 case TARGET_SO_RCVLOWAT
:
3301 optname
= SO_RCVLOWAT
;
3303 case TARGET_SO_ACCEPTCONN
:
3304 optname
= SO_ACCEPTCONN
;
3311 /* TCP options all take an 'int' value. */
3313 if (get_user_u32(len
, optlen
))
3314 return -TARGET_EFAULT
;
3316 return -TARGET_EINVAL
;
3318 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
3321 if (optname
== SO_TYPE
) {
3322 val
= host_to_target_sock_type(val
);
3327 if (put_user_u32(val
, optval_addr
))
3328 return -TARGET_EFAULT
;
3330 if (put_user_u8(val
, optval_addr
))
3331 return -TARGET_EFAULT
;
3333 if (put_user_u32(len
, optlen
))
3334 return -TARGET_EFAULT
;
3341 case IP_ROUTER_ALERT
:
3345 case IP_MTU_DISCOVER
:
3351 case IP_MULTICAST_TTL
:
3352 case IP_MULTICAST_LOOP
:
3353 if (get_user_u32(len
, optlen
))
3354 return -TARGET_EFAULT
;
3356 return -TARGET_EINVAL
;
3358 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
3361 if (len
< sizeof(int) && len
> 0 && val
>= 0 && val
< 255) {
3363 if (put_user_u32(len
, optlen
)
3364 || put_user_u8(val
, optval_addr
))
3365 return -TARGET_EFAULT
;
3367 if (len
> sizeof(int))
3369 if (put_user_u32(len
, optlen
)
3370 || put_user_u32(val
, optval_addr
))
3371 return -TARGET_EFAULT
;
3375 ret
= -TARGET_ENOPROTOOPT
;
3381 gemu_log("getsockopt level=%d optname=%d not yet supported\n",
3383 ret
= -TARGET_EOPNOTSUPP
;
3389 static struct iovec
*lock_iovec(int type
, abi_ulong target_addr
,
3390 abi_ulong count
, int copy
)
3392 struct target_iovec
*target_vec
;
3394 abi_ulong total_len
, max_len
;
3397 bool bad_address
= false;
3403 if (count
> IOV_MAX
) {
3408 vec
= g_try_new0(struct iovec
, count
);
3414 target_vec
= lock_user(VERIFY_READ
, target_addr
,
3415 count
* sizeof(struct target_iovec
), 1);
3416 if (target_vec
== NULL
) {
3421 /* ??? If host page size > target page size, this will result in a
3422 value larger than what we can actually support. */
3423 max_len
= 0x7fffffff & TARGET_PAGE_MASK
;
3426 for (i
= 0; i
< count
; i
++) {
3427 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
3428 abi_long len
= tswapal(target_vec
[i
].iov_len
);
3433 } else if (len
== 0) {
3434 /* Zero length pointer is ignored. */
3435 vec
[i
].iov_base
= 0;
3437 vec
[i
].iov_base
= lock_user(type
, base
, len
, copy
);
3438 /* If the first buffer pointer is bad, this is a fault. But
3439 * subsequent bad buffers will result in a partial write; this
3440 * is realized by filling the vector with null pointers and
3442 if (!vec
[i
].iov_base
) {
3453 if (len
> max_len
- total_len
) {
3454 len
= max_len
- total_len
;
3457 vec
[i
].iov_len
= len
;
3461 unlock_user(target_vec
, target_addr
, 0);
3466 if (tswapal(target_vec
[i
].iov_len
) > 0) {
3467 unlock_user(vec
[i
].iov_base
, tswapal(target_vec
[i
].iov_base
), 0);
3470 unlock_user(target_vec
, target_addr
, 0);
3477 static void unlock_iovec(struct iovec
*vec
, abi_ulong target_addr
,
3478 abi_ulong count
, int copy
)
3480 struct target_iovec
*target_vec
;
3483 target_vec
= lock_user(VERIFY_READ
, target_addr
,
3484 count
* sizeof(struct target_iovec
), 1);
3486 for (i
= 0; i
< count
; i
++) {
3487 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
3488 abi_long len
= tswapal(target_vec
[i
].iov_len
);
3492 unlock_user(vec
[i
].iov_base
, base
, copy
? vec
[i
].iov_len
: 0);
3494 unlock_user(target_vec
, target_addr
, 0);
3500 static inline int target_to_host_sock_type(int *type
)
3503 int target_type
= *type
;
3505 switch (target_type
& TARGET_SOCK_TYPE_MASK
) {
3506 case TARGET_SOCK_DGRAM
:
3507 host_type
= SOCK_DGRAM
;
3509 case TARGET_SOCK_STREAM
:
3510 host_type
= SOCK_STREAM
;
3513 host_type
= target_type
& TARGET_SOCK_TYPE_MASK
;
3516 if (target_type
& TARGET_SOCK_CLOEXEC
) {
3517 #if defined(SOCK_CLOEXEC)
3518 host_type
|= SOCK_CLOEXEC
;
3520 return -TARGET_EINVAL
;
3523 if (target_type
& TARGET_SOCK_NONBLOCK
) {
3524 #if defined(SOCK_NONBLOCK)
3525 host_type
|= SOCK_NONBLOCK
;
3526 #elif !defined(O_NONBLOCK)
3527 return -TARGET_EINVAL
;
3534 /* Try to emulate socket type flags after socket creation. */
3535 static int sock_flags_fixup(int fd
, int target_type
)
3537 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3538 if (target_type
& TARGET_SOCK_NONBLOCK
) {
3539 int flags
= fcntl(fd
, F_GETFL
);
3540 if (fcntl(fd
, F_SETFL
, O_NONBLOCK
| flags
) == -1) {
3542 return -TARGET_EINVAL
;
3549 static abi_long
packet_target_to_host_sockaddr(void *host_addr
,
3550 abi_ulong target_addr
,
3553 struct sockaddr
*addr
= host_addr
;
3554 struct target_sockaddr
*target_saddr
;
3556 target_saddr
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
3557 if (!target_saddr
) {
3558 return -TARGET_EFAULT
;
3561 memcpy(addr
, target_saddr
, len
);
3562 addr
->sa_family
= tswap16(target_saddr
->sa_family
);
3563 /* spkt_protocol is big-endian */
3565 unlock_user(target_saddr
, target_addr
, 0);
3569 static TargetFdTrans target_packet_trans
= {
3570 .target_to_host_addr
= packet_target_to_host_sockaddr
,
3573 #ifdef CONFIG_RTNETLINK
3574 static abi_long
netlink_route_target_to_host(void *buf
, size_t len
)
3578 ret
= target_to_host_nlmsg_route(buf
, len
);
3586 static abi_long
netlink_route_host_to_target(void *buf
, size_t len
)
3590 ret
= host_to_target_nlmsg_route(buf
, len
);
3598 static TargetFdTrans target_netlink_route_trans
= {
3599 .target_to_host_data
= netlink_route_target_to_host
,
3600 .host_to_target_data
= netlink_route_host_to_target
,
3602 #endif /* CONFIG_RTNETLINK */
3604 static abi_long
netlink_audit_target_to_host(void *buf
, size_t len
)
3608 ret
= target_to_host_nlmsg_audit(buf
, len
);
3616 static abi_long
netlink_audit_host_to_target(void *buf
, size_t len
)
3620 ret
= host_to_target_nlmsg_audit(buf
, len
);
3628 static TargetFdTrans target_netlink_audit_trans
= {
3629 .target_to_host_data
= netlink_audit_target_to_host
,
3630 .host_to_target_data
= netlink_audit_host_to_target
,
3633 /* do_socket() Must return target values and target errnos. */
3634 static abi_long
do_socket(int domain
, int type
, int protocol
)
3636 int target_type
= type
;
3639 ret
= target_to_host_sock_type(&type
);
3644 if (domain
== PF_NETLINK
&& !(
3645 #ifdef CONFIG_RTNETLINK
3646 protocol
== NETLINK_ROUTE
||
3648 protocol
== NETLINK_KOBJECT_UEVENT
||
3649 protocol
== NETLINK_AUDIT
)) {
3650 return -EPFNOSUPPORT
;
3653 if (domain
== AF_PACKET
||
3654 (domain
== AF_INET
&& type
== SOCK_PACKET
)) {
3655 protocol
= tswap16(protocol
);
3658 ret
= get_errno(socket(domain
, type
, protocol
));
3660 ret
= sock_flags_fixup(ret
, target_type
);
3661 if (type
== SOCK_PACKET
) {
3662 /* Manage an obsolete case :
3663 * if socket type is SOCK_PACKET, bind by name
3665 fd_trans_register(ret
, &target_packet_trans
);
3666 } else if (domain
== PF_NETLINK
) {
3668 #ifdef CONFIG_RTNETLINK
3670 fd_trans_register(ret
, &target_netlink_route_trans
);
3673 case NETLINK_KOBJECT_UEVENT
:
3674 /* nothing to do: messages are strings */
3677 fd_trans_register(ret
, &target_netlink_audit_trans
);
3680 g_assert_not_reached();
3687 /* do_bind() Must return target values and target errnos. */
3688 static abi_long
do_bind(int sockfd
, abi_ulong target_addr
,
3694 if ((int)addrlen
< 0) {
3695 return -TARGET_EINVAL
;
3698 addr
= alloca(addrlen
+1);
3700 ret
= target_to_host_sockaddr(sockfd
, addr
, target_addr
, addrlen
);
3704 return get_errno(bind(sockfd
, addr
, addrlen
));
3707 /* do_connect() Must return target values and target errnos. */
3708 static abi_long
do_connect(int sockfd
, abi_ulong target_addr
,
3714 if ((int)addrlen
< 0) {
3715 return -TARGET_EINVAL
;
3718 addr
= alloca(addrlen
+1);
3720 ret
= target_to_host_sockaddr(sockfd
, addr
, target_addr
, addrlen
);
3724 return get_errno(safe_connect(sockfd
, addr
, addrlen
));
3727 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3728 static abi_long
do_sendrecvmsg_locked(int fd
, struct target_msghdr
*msgp
,
3729 int flags
, int send
)
3735 abi_ulong target_vec
;
3737 if (msgp
->msg_name
) {
3738 msg
.msg_namelen
= tswap32(msgp
->msg_namelen
);
3739 msg
.msg_name
= alloca(msg
.msg_namelen
+1);
3740 ret
= target_to_host_sockaddr(fd
, msg
.msg_name
,
3741 tswapal(msgp
->msg_name
),
3743 if (ret
== -TARGET_EFAULT
) {
3744 /* For connected sockets msg_name and msg_namelen must
3745 * be ignored, so returning EFAULT immediately is wrong.
3746 * Instead, pass a bad msg_name to the host kernel, and
3747 * let it decide whether to return EFAULT or not.
3749 msg
.msg_name
= (void *)-1;
3754 msg
.msg_name
= NULL
;
3755 msg
.msg_namelen
= 0;
3757 msg
.msg_controllen
= 2 * tswapal(msgp
->msg_controllen
);
3758 msg
.msg_control
= alloca(msg
.msg_controllen
);
3759 msg
.msg_flags
= tswap32(msgp
->msg_flags
);
3761 count
= tswapal(msgp
->msg_iovlen
);
3762 target_vec
= tswapal(msgp
->msg_iov
);
3764 if (count
> IOV_MAX
) {
3765 /* sendrcvmsg returns a different errno for this condition than
3766 * readv/writev, so we must catch it here before lock_iovec() does.
3768 ret
= -TARGET_EMSGSIZE
;
3772 vec
= lock_iovec(send
? VERIFY_READ
: VERIFY_WRITE
,
3773 target_vec
, count
, send
);
3775 ret
= -host_to_target_errno(errno
);
3778 msg
.msg_iovlen
= count
;
3782 if (fd_trans_target_to_host_data(fd
)) {
3785 host_msg
= g_malloc(msg
.msg_iov
->iov_len
);
3786 memcpy(host_msg
, msg
.msg_iov
->iov_base
, msg
.msg_iov
->iov_len
);
3787 ret
= fd_trans_target_to_host_data(fd
)(host_msg
,
3788 msg
.msg_iov
->iov_len
);
3790 msg
.msg_iov
->iov_base
= host_msg
;
3791 ret
= get_errno(safe_sendmsg(fd
, &msg
, flags
));
3795 ret
= target_to_host_cmsg(&msg
, msgp
);
3797 ret
= get_errno(safe_sendmsg(fd
, &msg
, flags
));
3801 ret
= get_errno(safe_recvmsg(fd
, &msg
, flags
));
3802 if (!is_error(ret
)) {
3804 if (fd_trans_host_to_target_data(fd
)) {
3805 ret
= fd_trans_host_to_target_data(fd
)(msg
.msg_iov
->iov_base
,
3808 ret
= host_to_target_cmsg(msgp
, &msg
);
3810 if (!is_error(ret
)) {
3811 msgp
->msg_namelen
= tswap32(msg
.msg_namelen
);
3812 if (msg
.msg_name
!= NULL
&& msg
.msg_name
!= (void *)-1) {
3813 ret
= host_to_target_sockaddr(tswapal(msgp
->msg_name
),
3814 msg
.msg_name
, msg
.msg_namelen
);
3826 unlock_iovec(vec
, target_vec
, count
, !send
);
3831 static abi_long
do_sendrecvmsg(int fd
, abi_ulong target_msg
,
3832 int flags
, int send
)
3835 struct target_msghdr
*msgp
;
3837 if (!lock_user_struct(send
? VERIFY_READ
: VERIFY_WRITE
,
3841 return -TARGET_EFAULT
;
3843 ret
= do_sendrecvmsg_locked(fd
, msgp
, flags
, send
);
3844 unlock_user_struct(msgp
, target_msg
, send
? 0 : 1);
3848 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3849 * so it might not have this *mmsg-specific flag either.
3851 #ifndef MSG_WAITFORONE
3852 #define MSG_WAITFORONE 0x10000
3855 static abi_long
do_sendrecvmmsg(int fd
, abi_ulong target_msgvec
,
3856 unsigned int vlen
, unsigned int flags
,
3859 struct target_mmsghdr
*mmsgp
;
3863 if (vlen
> UIO_MAXIOV
) {
3867 mmsgp
= lock_user(VERIFY_WRITE
, target_msgvec
, sizeof(*mmsgp
) * vlen
, 1);
3869 return -TARGET_EFAULT
;
3872 for (i
= 0; i
< vlen
; i
++) {
3873 ret
= do_sendrecvmsg_locked(fd
, &mmsgp
[i
].msg_hdr
, flags
, send
);
3874 if (is_error(ret
)) {
3877 mmsgp
[i
].msg_len
= tswap32(ret
);
3878 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3879 if (flags
& MSG_WAITFORONE
) {
3880 flags
|= MSG_DONTWAIT
;
3884 unlock_user(mmsgp
, target_msgvec
, sizeof(*mmsgp
) * i
);
3886 /* Return number of datagrams sent if we sent any at all;
3887 * otherwise return the error.
3895 /* do_accept4() Must return target values and target errnos. */
3896 static abi_long
do_accept4(int fd
, abi_ulong target_addr
,
3897 abi_ulong target_addrlen_addr
, int flags
)
3904 host_flags
= target_to_host_bitmask(flags
, fcntl_flags_tbl
);
3906 if (target_addr
== 0) {
3907 return get_errno(safe_accept4(fd
, NULL
, NULL
, host_flags
));
3910 /* linux returns EINVAL if addrlen pointer is invalid */
3911 if (get_user_u32(addrlen
, target_addrlen_addr
))
3912 return -TARGET_EINVAL
;
3914 if ((int)addrlen
< 0) {
3915 return -TARGET_EINVAL
;
3918 if (!access_ok(VERIFY_WRITE
, target_addr
, addrlen
))
3919 return -TARGET_EINVAL
;
3921 addr
= alloca(addrlen
);
3923 ret
= get_errno(safe_accept4(fd
, addr
, &addrlen
, host_flags
));
3924 if (!is_error(ret
)) {
3925 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
3926 if (put_user_u32(addrlen
, target_addrlen_addr
))
3927 ret
= -TARGET_EFAULT
;
3932 /* do_getpeername() Must return target values and target errnos. */
3933 static abi_long
do_getpeername(int fd
, abi_ulong target_addr
,
3934 abi_ulong target_addrlen_addr
)
3940 if (get_user_u32(addrlen
, target_addrlen_addr
))
3941 return -TARGET_EFAULT
;
3943 if ((int)addrlen
< 0) {
3944 return -TARGET_EINVAL
;
3947 if (!access_ok(VERIFY_WRITE
, target_addr
, addrlen
))
3948 return -TARGET_EFAULT
;
3950 addr
= alloca(addrlen
);
3952 ret
= get_errno(getpeername(fd
, addr
, &addrlen
));
3953 if (!is_error(ret
)) {
3954 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
3955 if (put_user_u32(addrlen
, target_addrlen_addr
))
3956 ret
= -TARGET_EFAULT
;
3961 /* do_getsockname() Must return target values and target errnos. */
3962 static abi_long
do_getsockname(int fd
, abi_ulong target_addr
,
3963 abi_ulong target_addrlen_addr
)
3969 if (get_user_u32(addrlen
, target_addrlen_addr
))
3970 return -TARGET_EFAULT
;
3972 if ((int)addrlen
< 0) {
3973 return -TARGET_EINVAL
;
3976 if (!access_ok(VERIFY_WRITE
, target_addr
, addrlen
))
3977 return -TARGET_EFAULT
;
3979 addr
= alloca(addrlen
);
3981 ret
= get_errno(getsockname(fd
, addr
, &addrlen
));
3982 if (!is_error(ret
)) {
3983 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
3984 if (put_user_u32(addrlen
, target_addrlen_addr
))
3985 ret
= -TARGET_EFAULT
;
3990 /* do_socketpair() Must return target values and target errnos. */
3991 static abi_long
do_socketpair(int domain
, int type
, int protocol
,
3992 abi_ulong target_tab_addr
)
3997 target_to_host_sock_type(&type
);
3999 ret
= get_errno(socketpair(domain
, type
, protocol
, tab
));
4000 if (!is_error(ret
)) {
4001 if (put_user_s32(tab
[0], target_tab_addr
)
4002 || put_user_s32(tab
[1], target_tab_addr
+ sizeof(tab
[0])))
4003 ret
= -TARGET_EFAULT
;
4008 /* do_sendto() Must return target values and target errnos. */
4009 static abi_long
do_sendto(int fd
, abi_ulong msg
, size_t len
, int flags
,
4010 abi_ulong target_addr
, socklen_t addrlen
)
4014 void *copy_msg
= NULL
;
4017 if ((int)addrlen
< 0) {
4018 return -TARGET_EINVAL
;
4021 host_msg
= lock_user(VERIFY_READ
, msg
, len
, 1);
4023 return -TARGET_EFAULT
;
4024 if (fd_trans_target_to_host_data(fd
)) {
4025 copy_msg
= host_msg
;
4026 host_msg
= g_malloc(len
);
4027 memcpy(host_msg
, copy_msg
, len
);
4028 ret
= fd_trans_target_to_host_data(fd
)(host_msg
, len
);
4034 addr
= alloca(addrlen
+1);
4035 ret
= target_to_host_sockaddr(fd
, addr
, target_addr
, addrlen
);
4039 ret
= get_errno(safe_sendto(fd
, host_msg
, len
, flags
, addr
, addrlen
));
4041 ret
= get_errno(safe_sendto(fd
, host_msg
, len
, flags
, NULL
, 0));
4046 host_msg
= copy_msg
;
4048 unlock_user(host_msg
, msg
, 0);
4052 /* do_recvfrom() Must return target values and target errnos. */
4053 static abi_long
do_recvfrom(int fd
, abi_ulong msg
, size_t len
, int flags
,
4054 abi_ulong target_addr
,
4055 abi_ulong target_addrlen
)
4062 host_msg
= lock_user(VERIFY_WRITE
, msg
, len
, 0);
4064 return -TARGET_EFAULT
;
4066 if (get_user_u32(addrlen
, target_addrlen
)) {
4067 ret
= -TARGET_EFAULT
;
4070 if ((int)addrlen
< 0) {
4071 ret
= -TARGET_EINVAL
;
4074 addr
= alloca(addrlen
);
4075 ret
= get_errno(safe_recvfrom(fd
, host_msg
, len
, flags
,
4078 addr
= NULL
; /* To keep compiler quiet. */
4079 ret
= get_errno(safe_recvfrom(fd
, host_msg
, len
, flags
, NULL
, 0));
4081 if (!is_error(ret
)) {
4082 if (fd_trans_host_to_target_data(fd
)) {
4083 ret
= fd_trans_host_to_target_data(fd
)(host_msg
, ret
);
4086 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
4087 if (put_user_u32(addrlen
, target_addrlen
)) {
4088 ret
= -TARGET_EFAULT
;
4092 unlock_user(host_msg
, msg
, len
);
4095 unlock_user(host_msg
, msg
, 0);
4100 #ifdef TARGET_NR_socketcall
4101 /* do_socketcall() must return target values and target errnos. */
4102 static abi_long
do_socketcall(int num
, abi_ulong vptr
)
4104 static const unsigned nargs
[] = { /* number of arguments per operation */
4105 [TARGET_SYS_SOCKET
] = 3, /* domain, type, protocol */
4106 [TARGET_SYS_BIND
] = 3, /* fd, addr, addrlen */
4107 [TARGET_SYS_CONNECT
] = 3, /* fd, addr, addrlen */
4108 [TARGET_SYS_LISTEN
] = 2, /* fd, backlog */
4109 [TARGET_SYS_ACCEPT
] = 3, /* fd, addr, addrlen */
4110 [TARGET_SYS_GETSOCKNAME
] = 3, /* fd, addr, addrlen */
4111 [TARGET_SYS_GETPEERNAME
] = 3, /* fd, addr, addrlen */
4112 [TARGET_SYS_SOCKETPAIR
] = 4, /* domain, type, protocol, tab */
4113 [TARGET_SYS_SEND
] = 4, /* fd, msg, len, flags */
4114 [TARGET_SYS_RECV
] = 4, /* fd, msg, len, flags */
4115 [TARGET_SYS_SENDTO
] = 6, /* fd, msg, len, flags, addr, addrlen */
4116 [TARGET_SYS_RECVFROM
] = 6, /* fd, msg, len, flags, addr, addrlen */
4117 [TARGET_SYS_SHUTDOWN
] = 2, /* fd, how */
4118 [TARGET_SYS_SETSOCKOPT
] = 5, /* fd, level, optname, optval, optlen */
4119 [TARGET_SYS_GETSOCKOPT
] = 5, /* fd, level, optname, optval, optlen */
4120 [TARGET_SYS_SENDMSG
] = 3, /* fd, msg, flags */
4121 [TARGET_SYS_RECVMSG
] = 3, /* fd, msg, flags */
4122 [TARGET_SYS_ACCEPT4
] = 4, /* fd, addr, addrlen, flags */
4123 [TARGET_SYS_RECVMMSG
] = 4, /* fd, msgvec, vlen, flags */
4124 [TARGET_SYS_SENDMMSG
] = 4, /* fd, msgvec, vlen, flags */
4126 abi_long a
[6]; /* max 6 args */
4129 /* check the range of the first argument num */
4130 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
4131 if (num
< 1 || num
> TARGET_SYS_SENDMMSG
) {
4132 return -TARGET_EINVAL
;
4134 /* ensure we have space for args */
4135 if (nargs
[num
] > ARRAY_SIZE(a
)) {
4136 return -TARGET_EINVAL
;
4138 /* collect the arguments in a[] according to nargs[] */
4139 for (i
= 0; i
< nargs
[num
]; ++i
) {
4140 if (get_user_ual(a
[i
], vptr
+ i
* sizeof(abi_long
)) != 0) {
4141 return -TARGET_EFAULT
;
4144 /* now when we have the args, invoke the appropriate underlying function */
4146 case TARGET_SYS_SOCKET
: /* domain, type, protocol */
4147 return do_socket(a
[0], a
[1], a
[2]);
4148 case TARGET_SYS_BIND
: /* sockfd, addr, addrlen */
4149 return do_bind(a
[0], a
[1], a
[2]);
4150 case TARGET_SYS_CONNECT
: /* sockfd, addr, addrlen */
4151 return do_connect(a
[0], a
[1], a
[2]);
4152 case TARGET_SYS_LISTEN
: /* sockfd, backlog */
4153 return get_errno(listen(a
[0], a
[1]));
4154 case TARGET_SYS_ACCEPT
: /* sockfd, addr, addrlen */
4155 return do_accept4(a
[0], a
[1], a
[2], 0);
4156 case TARGET_SYS_GETSOCKNAME
: /* sockfd, addr, addrlen */
4157 return do_getsockname(a
[0], a
[1], a
[2]);
4158 case TARGET_SYS_GETPEERNAME
: /* sockfd, addr, addrlen */
4159 return do_getpeername(a
[0], a
[1], a
[2]);
4160 case TARGET_SYS_SOCKETPAIR
: /* domain, type, protocol, tab */
4161 return do_socketpair(a
[0], a
[1], a
[2], a
[3]);
4162 case TARGET_SYS_SEND
: /* sockfd, msg, len, flags */
4163 return do_sendto(a
[0], a
[1], a
[2], a
[3], 0, 0);
4164 case TARGET_SYS_RECV
: /* sockfd, msg, len, flags */
4165 return do_recvfrom(a
[0], a
[1], a
[2], a
[3], 0, 0);
4166 case TARGET_SYS_SENDTO
: /* sockfd, msg, len, flags, addr, addrlen */
4167 return do_sendto(a
[0], a
[1], a
[2], a
[3], a
[4], a
[5]);
4168 case TARGET_SYS_RECVFROM
: /* sockfd, msg, len, flags, addr, addrlen */
4169 return do_recvfrom(a
[0], a
[1], a
[2], a
[3], a
[4], a
[5]);
4170 case TARGET_SYS_SHUTDOWN
: /* sockfd, how */
4171 return get_errno(shutdown(a
[0], a
[1]));
4172 case TARGET_SYS_SETSOCKOPT
: /* sockfd, level, optname, optval, optlen */
4173 return do_setsockopt(a
[0], a
[1], a
[2], a
[3], a
[4]);
4174 case TARGET_SYS_GETSOCKOPT
: /* sockfd, level, optname, optval, optlen */
4175 return do_getsockopt(a
[0], a
[1], a
[2], a
[3], a
[4]);
4176 case TARGET_SYS_SENDMSG
: /* sockfd, msg, flags */
4177 return do_sendrecvmsg(a
[0], a
[1], a
[2], 1);
4178 case TARGET_SYS_RECVMSG
: /* sockfd, msg, flags */
4179 return do_sendrecvmsg(a
[0], a
[1], a
[2], 0);
4180 case TARGET_SYS_ACCEPT4
: /* sockfd, addr, addrlen, flags */
4181 return do_accept4(a
[0], a
[1], a
[2], a
[3]);
4182 case TARGET_SYS_RECVMMSG
: /* sockfd, msgvec, vlen, flags */
4183 return do_sendrecvmmsg(a
[0], a
[1], a
[2], a
[3], 0);
4184 case TARGET_SYS_SENDMMSG
: /* sockfd, msgvec, vlen, flags */
4185 return do_sendrecvmmsg(a
[0], a
[1], a
[2], a
[3], 1);
4187 gemu_log("Unsupported socketcall: %d\n", num
);
4188 return -TARGET_EINVAL
;
4193 #define N_SHM_REGIONS 32
4195 static struct shm_region
{
4199 } shm_regions
[N_SHM_REGIONS
];
4201 #ifndef TARGET_SEMID64_DS
4202 /* asm-generic version of this struct */
4203 struct target_semid64_ds
4205 struct target_ipc_perm sem_perm
;
4206 abi_ulong sem_otime
;
4207 #if TARGET_ABI_BITS == 32
4208 abi_ulong __unused1
;
4210 abi_ulong sem_ctime
;
4211 #if TARGET_ABI_BITS == 32
4212 abi_ulong __unused2
;
4214 abi_ulong sem_nsems
;
4215 abi_ulong __unused3
;
4216 abi_ulong __unused4
;
4220 static inline abi_long
target_to_host_ipc_perm(struct ipc_perm
*host_ip
,
4221 abi_ulong target_addr
)
4223 struct target_ipc_perm
*target_ip
;
4224 struct target_semid64_ds
*target_sd
;
4226 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
4227 return -TARGET_EFAULT
;
4228 target_ip
= &(target_sd
->sem_perm
);
4229 host_ip
->__key
= tswap32(target_ip
->__key
);
4230 host_ip
->uid
= tswap32(target_ip
->uid
);
4231 host_ip
->gid
= tswap32(target_ip
->gid
);
4232 host_ip
->cuid
= tswap32(target_ip
->cuid
);
4233 host_ip
->cgid
= tswap32(target_ip
->cgid
);
4234 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
4235 host_ip
->mode
= tswap32(target_ip
->mode
);
4237 host_ip
->mode
= tswap16(target_ip
->mode
);
4239 #if defined(TARGET_PPC)
4240 host_ip
->__seq
= tswap32(target_ip
->__seq
);
4242 host_ip
->__seq
= tswap16(target_ip
->__seq
);
4244 unlock_user_struct(target_sd
, target_addr
, 0);
4248 static inline abi_long
host_to_target_ipc_perm(abi_ulong target_addr
,
4249 struct ipc_perm
*host_ip
)
4251 struct target_ipc_perm
*target_ip
;
4252 struct target_semid64_ds
*target_sd
;
4254 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
4255 return -TARGET_EFAULT
;
4256 target_ip
= &(target_sd
->sem_perm
);
4257 target_ip
->__key
= tswap32(host_ip
->__key
);
4258 target_ip
->uid
= tswap32(host_ip
->uid
);
4259 target_ip
->gid
= tswap32(host_ip
->gid
);
4260 target_ip
->cuid
= tswap32(host_ip
->cuid
);
4261 target_ip
->cgid
= tswap32(host_ip
->cgid
);
4262 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
4263 target_ip
->mode
= tswap32(host_ip
->mode
);
4265 target_ip
->mode
= tswap16(host_ip
->mode
);
4267 #if defined(TARGET_PPC)
4268 target_ip
->__seq
= tswap32(host_ip
->__seq
);
4270 target_ip
->__seq
= tswap16(host_ip
->__seq
);
4272 unlock_user_struct(target_sd
, target_addr
, 1);
4276 static inline abi_long
target_to_host_semid_ds(struct semid_ds
*host_sd
,
4277 abi_ulong target_addr
)
4279 struct target_semid64_ds
*target_sd
;
4281 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
4282 return -TARGET_EFAULT
;
4283 if (target_to_host_ipc_perm(&(host_sd
->sem_perm
),target_addr
))
4284 return -TARGET_EFAULT
;
4285 host_sd
->sem_nsems
= tswapal(target_sd
->sem_nsems
);
4286 host_sd
->sem_otime
= tswapal(target_sd
->sem_otime
);
4287 host_sd
->sem_ctime
= tswapal(target_sd
->sem_ctime
);
4288 unlock_user_struct(target_sd
, target_addr
, 0);
4292 static inline abi_long
host_to_target_semid_ds(abi_ulong target_addr
,
4293 struct semid_ds
*host_sd
)
4295 struct target_semid64_ds
*target_sd
;
4297 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
4298 return -TARGET_EFAULT
;
4299 if (host_to_target_ipc_perm(target_addr
,&(host_sd
->sem_perm
)))
4300 return -TARGET_EFAULT
;
4301 target_sd
->sem_nsems
= tswapal(host_sd
->sem_nsems
);
4302 target_sd
->sem_otime
= tswapal(host_sd
->sem_otime
);
4303 target_sd
->sem_ctime
= tswapal(host_sd
->sem_ctime
);
4304 unlock_user_struct(target_sd
, target_addr
, 1);
4308 struct target_seminfo
{
4321 static inline abi_long
host_to_target_seminfo(abi_ulong target_addr
,
4322 struct seminfo
*host_seminfo
)
4324 struct target_seminfo
*target_seminfo
;
4325 if (!lock_user_struct(VERIFY_WRITE
, target_seminfo
, target_addr
, 0))
4326 return -TARGET_EFAULT
;
4327 __put_user(host_seminfo
->semmap
, &target_seminfo
->semmap
);
4328 __put_user(host_seminfo
->semmni
, &target_seminfo
->semmni
);
4329 __put_user(host_seminfo
->semmns
, &target_seminfo
->semmns
);
4330 __put_user(host_seminfo
->semmnu
, &target_seminfo
->semmnu
);
4331 __put_user(host_seminfo
->semmsl
, &target_seminfo
->semmsl
);
4332 __put_user(host_seminfo
->semopm
, &target_seminfo
->semopm
);
4333 __put_user(host_seminfo
->semume
, &target_seminfo
->semume
);
4334 __put_user(host_seminfo
->semusz
, &target_seminfo
->semusz
);
4335 __put_user(host_seminfo
->semvmx
, &target_seminfo
->semvmx
);
4336 __put_user(host_seminfo
->semaem
, &target_seminfo
->semaem
);
4337 unlock_user_struct(target_seminfo
, target_addr
, 1);
4343 struct semid_ds
*buf
;
4344 unsigned short *array
;
4345 struct seminfo
*__buf
;
4348 union target_semun
{
4355 static inline abi_long
target_to_host_semarray(int semid
, unsigned short **host_array
,
4356 abi_ulong target_addr
)
4359 unsigned short *array
;
4361 struct semid_ds semid_ds
;
4364 semun
.buf
= &semid_ds
;
4366 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
4368 return get_errno(ret
);
4370 nsems
= semid_ds
.sem_nsems
;
4372 *host_array
= g_try_new(unsigned short, nsems
);
4374 return -TARGET_ENOMEM
;
4376 array
= lock_user(VERIFY_READ
, target_addr
,
4377 nsems
*sizeof(unsigned short), 1);
4379 g_free(*host_array
);
4380 return -TARGET_EFAULT
;
4383 for(i
=0; i
<nsems
; i
++) {
4384 __get_user((*host_array
)[i
], &array
[i
]);
4386 unlock_user(array
, target_addr
, 0);
4391 static inline abi_long
host_to_target_semarray(int semid
, abi_ulong target_addr
,
4392 unsigned short **host_array
)
4395 unsigned short *array
;
4397 struct semid_ds semid_ds
;
4400 semun
.buf
= &semid_ds
;
4402 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
4404 return get_errno(ret
);
4406 nsems
= semid_ds
.sem_nsems
;
4408 array
= lock_user(VERIFY_WRITE
, target_addr
,
4409 nsems
*sizeof(unsigned short), 0);
4411 return -TARGET_EFAULT
;
4413 for(i
=0; i
<nsems
; i
++) {
4414 __put_user((*host_array
)[i
], &array
[i
]);
4416 g_free(*host_array
);
4417 unlock_user(array
, target_addr
, 1);
4422 static inline abi_long
do_semctl(int semid
, int semnum
, int cmd
,
4423 abi_ulong target_arg
)
4425 union target_semun target_su
= { .buf
= target_arg
};
4427 struct semid_ds dsarg
;
4428 unsigned short *array
= NULL
;
4429 struct seminfo seminfo
;
4430 abi_long ret
= -TARGET_EINVAL
;
4437 /* In 64 bit cross-endian situations, we will erroneously pick up
4438 * the wrong half of the union for the "val" element. To rectify
4439 * this, the entire 8-byte structure is byteswapped, followed by
4440 * a swap of the 4 byte val field. In other cases, the data is
4441 * already in proper host byte order. */
4442 if (sizeof(target_su
.val
) != (sizeof(target_su
.buf
))) {
4443 target_su
.buf
= tswapal(target_su
.buf
);
4444 arg
.val
= tswap32(target_su
.val
);
4446 arg
.val
= target_su
.val
;
4448 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
4452 err
= target_to_host_semarray(semid
, &array
, target_su
.array
);
4456 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
4457 err
= host_to_target_semarray(semid
, target_su
.array
, &array
);
4464 err
= target_to_host_semid_ds(&dsarg
, target_su
.buf
);
4468 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
4469 err
= host_to_target_semid_ds(target_su
.buf
, &dsarg
);
4475 arg
.__buf
= &seminfo
;
4476 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
4477 err
= host_to_target_seminfo(target_su
.__buf
, &seminfo
);
4485 ret
= get_errno(semctl(semid
, semnum
, cmd
, NULL
));
4492 struct target_sembuf
{
4493 unsigned short sem_num
;
4498 static inline abi_long
target_to_host_sembuf(struct sembuf
*host_sembuf
,
4499 abi_ulong target_addr
,
4502 struct target_sembuf
*target_sembuf
;
4505 target_sembuf
= lock_user(VERIFY_READ
, target_addr
,
4506 nsops
*sizeof(struct target_sembuf
), 1);
4508 return -TARGET_EFAULT
;
4510 for(i
=0; i
<nsops
; i
++) {
4511 __get_user(host_sembuf
[i
].sem_num
, &target_sembuf
[i
].sem_num
);
4512 __get_user(host_sembuf
[i
].sem_op
, &target_sembuf
[i
].sem_op
);
4513 __get_user(host_sembuf
[i
].sem_flg
, &target_sembuf
[i
].sem_flg
);
4516 unlock_user(target_sembuf
, target_addr
, 0);
4521 static inline abi_long
do_semop(int semid
, abi_long ptr
, unsigned nsops
)
4523 struct sembuf sops
[nsops
];
4525 if (target_to_host_sembuf(sops
, ptr
, nsops
))
4526 return -TARGET_EFAULT
;
4528 return get_errno(safe_semtimedop(semid
, sops
, nsops
, NULL
));
4531 struct target_msqid_ds
4533 struct target_ipc_perm msg_perm
;
4534 abi_ulong msg_stime
;
4535 #if TARGET_ABI_BITS == 32
4536 abi_ulong __unused1
;
4538 abi_ulong msg_rtime
;
4539 #if TARGET_ABI_BITS == 32
4540 abi_ulong __unused2
;
4542 abi_ulong msg_ctime
;
4543 #if TARGET_ABI_BITS == 32
4544 abi_ulong __unused3
;
4546 abi_ulong __msg_cbytes
;
4548 abi_ulong msg_qbytes
;
4549 abi_ulong msg_lspid
;
4550 abi_ulong msg_lrpid
;
4551 abi_ulong __unused4
;
4552 abi_ulong __unused5
;
4555 static inline abi_long
target_to_host_msqid_ds(struct msqid_ds
*host_md
,
4556 abi_ulong target_addr
)
4558 struct target_msqid_ds
*target_md
;
4560 if (!lock_user_struct(VERIFY_READ
, target_md
, target_addr
, 1))
4561 return -TARGET_EFAULT
;
4562 if (target_to_host_ipc_perm(&(host_md
->msg_perm
),target_addr
))
4563 return -TARGET_EFAULT
;
4564 host_md
->msg_stime
= tswapal(target_md
->msg_stime
);
4565 host_md
->msg_rtime
= tswapal(target_md
->msg_rtime
);
4566 host_md
->msg_ctime
= tswapal(target_md
->msg_ctime
);
4567 host_md
->__msg_cbytes
= tswapal(target_md
->__msg_cbytes
);
4568 host_md
->msg_qnum
= tswapal(target_md
->msg_qnum
);
4569 host_md
->msg_qbytes
= tswapal(target_md
->msg_qbytes
);
4570 host_md
->msg_lspid
= tswapal(target_md
->msg_lspid
);
4571 host_md
->msg_lrpid
= tswapal(target_md
->msg_lrpid
);
4572 unlock_user_struct(target_md
, target_addr
, 0);
4576 static inline abi_long
host_to_target_msqid_ds(abi_ulong target_addr
,
4577 struct msqid_ds
*host_md
)
4579 struct target_msqid_ds
*target_md
;
4581 if (!lock_user_struct(VERIFY_WRITE
, target_md
, target_addr
, 0))
4582 return -TARGET_EFAULT
;
4583 if (host_to_target_ipc_perm(target_addr
,&(host_md
->msg_perm
)))
4584 return -TARGET_EFAULT
;
4585 target_md
->msg_stime
= tswapal(host_md
->msg_stime
);
4586 target_md
->msg_rtime
= tswapal(host_md
->msg_rtime
);
4587 target_md
->msg_ctime
= tswapal(host_md
->msg_ctime
);
4588 target_md
->__msg_cbytes
= tswapal(host_md
->__msg_cbytes
);
4589 target_md
->msg_qnum
= tswapal(host_md
->msg_qnum
);
4590 target_md
->msg_qbytes
= tswapal(host_md
->msg_qbytes
);
4591 target_md
->msg_lspid
= tswapal(host_md
->msg_lspid
);
4592 target_md
->msg_lrpid
= tswapal(host_md
->msg_lrpid
);
4593 unlock_user_struct(target_md
, target_addr
, 1);
4597 struct target_msginfo
{
4605 unsigned short int msgseg
;
4608 static inline abi_long
host_to_target_msginfo(abi_ulong target_addr
,
4609 struct msginfo
*host_msginfo
)
4611 struct target_msginfo
*target_msginfo
;
4612 if (!lock_user_struct(VERIFY_WRITE
, target_msginfo
, target_addr
, 0))
4613 return -TARGET_EFAULT
;
4614 __put_user(host_msginfo
->msgpool
, &target_msginfo
->msgpool
);
4615 __put_user(host_msginfo
->msgmap
, &target_msginfo
->msgmap
);
4616 __put_user(host_msginfo
->msgmax
, &target_msginfo
->msgmax
);
4617 __put_user(host_msginfo
->msgmnb
, &target_msginfo
->msgmnb
);
4618 __put_user(host_msginfo
->msgmni
, &target_msginfo
->msgmni
);
4619 __put_user(host_msginfo
->msgssz
, &target_msginfo
->msgssz
);
4620 __put_user(host_msginfo
->msgtql
, &target_msginfo
->msgtql
);
4621 __put_user(host_msginfo
->msgseg
, &target_msginfo
->msgseg
);
4622 unlock_user_struct(target_msginfo
, target_addr
, 1);
4626 static inline abi_long
do_msgctl(int msgid
, int cmd
, abi_long ptr
)
4628 struct msqid_ds dsarg
;
4629 struct msginfo msginfo
;
4630 abi_long ret
= -TARGET_EINVAL
;
4638 if (target_to_host_msqid_ds(&dsarg
,ptr
))
4639 return -TARGET_EFAULT
;
4640 ret
= get_errno(msgctl(msgid
, cmd
, &dsarg
));
4641 if (host_to_target_msqid_ds(ptr
,&dsarg
))
4642 return -TARGET_EFAULT
;
4645 ret
= get_errno(msgctl(msgid
, cmd
, NULL
));
4649 ret
= get_errno(msgctl(msgid
, cmd
, (struct msqid_ds
*)&msginfo
));
4650 if (host_to_target_msginfo(ptr
, &msginfo
))
4651 return -TARGET_EFAULT
;
4658 struct target_msgbuf
{
4663 static inline abi_long
do_msgsnd(int msqid
, abi_long msgp
,
4664 ssize_t msgsz
, int msgflg
)
4666 struct target_msgbuf
*target_mb
;
4667 struct msgbuf
*host_mb
;
4671 return -TARGET_EINVAL
;
4674 if (!lock_user_struct(VERIFY_READ
, target_mb
, msgp
, 0))
4675 return -TARGET_EFAULT
;
4676 host_mb
= g_try_malloc(msgsz
+ sizeof(long));
4678 unlock_user_struct(target_mb
, msgp
, 0);
4679 return -TARGET_ENOMEM
;
4681 host_mb
->mtype
= (abi_long
) tswapal(target_mb
->mtype
);
4682 memcpy(host_mb
->mtext
, target_mb
->mtext
, msgsz
);
4683 ret
= get_errno(safe_msgsnd(msqid
, host_mb
, msgsz
, msgflg
));
4685 unlock_user_struct(target_mb
, msgp
, 0);
4690 static inline abi_long
do_msgrcv(int msqid
, abi_long msgp
,
4691 ssize_t msgsz
, abi_long msgtyp
,
4694 struct target_msgbuf
*target_mb
;
4696 struct msgbuf
*host_mb
;
4700 return -TARGET_EINVAL
;
4703 if (!lock_user_struct(VERIFY_WRITE
, target_mb
, msgp
, 0))
4704 return -TARGET_EFAULT
;
4706 host_mb
= g_try_malloc(msgsz
+ sizeof(long));
4708 ret
= -TARGET_ENOMEM
;
4711 ret
= get_errno(safe_msgrcv(msqid
, host_mb
, msgsz
, msgtyp
, msgflg
));
4714 abi_ulong target_mtext_addr
= msgp
+ sizeof(abi_ulong
);
4715 target_mtext
= lock_user(VERIFY_WRITE
, target_mtext_addr
, ret
, 0);
4716 if (!target_mtext
) {
4717 ret
= -TARGET_EFAULT
;
4720 memcpy(target_mb
->mtext
, host_mb
->mtext
, ret
);
4721 unlock_user(target_mtext
, target_mtext_addr
, ret
);
4724 target_mb
->mtype
= tswapal(host_mb
->mtype
);
4728 unlock_user_struct(target_mb
, msgp
, 1);
4733 static inline abi_long
target_to_host_shmid_ds(struct shmid_ds
*host_sd
,
4734 abi_ulong target_addr
)
4736 struct target_shmid_ds
*target_sd
;
4738 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
4739 return -TARGET_EFAULT
;
4740 if (target_to_host_ipc_perm(&(host_sd
->shm_perm
), target_addr
))
4741 return -TARGET_EFAULT
;
4742 __get_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
4743 __get_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
4744 __get_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
4745 __get_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
4746 __get_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
4747 __get_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
4748 __get_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
4749 unlock_user_struct(target_sd
, target_addr
, 0);
4753 static inline abi_long
host_to_target_shmid_ds(abi_ulong target_addr
,
4754 struct shmid_ds
*host_sd
)
4756 struct target_shmid_ds
*target_sd
;
4758 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
4759 return -TARGET_EFAULT
;
4760 if (host_to_target_ipc_perm(target_addr
, &(host_sd
->shm_perm
)))
4761 return -TARGET_EFAULT
;
4762 __put_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
4763 __put_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
4764 __put_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
4765 __put_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
4766 __put_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
4767 __put_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
4768 __put_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
4769 unlock_user_struct(target_sd
, target_addr
, 1);
4773 struct target_shminfo
{
4781 static inline abi_long
host_to_target_shminfo(abi_ulong target_addr
,
4782 struct shminfo
*host_shminfo
)
4784 struct target_shminfo
*target_shminfo
;
4785 if (!lock_user_struct(VERIFY_WRITE
, target_shminfo
, target_addr
, 0))
4786 return -TARGET_EFAULT
;
4787 __put_user(host_shminfo
->shmmax
, &target_shminfo
->shmmax
);
4788 __put_user(host_shminfo
->shmmin
, &target_shminfo
->shmmin
);
4789 __put_user(host_shminfo
->shmmni
, &target_shminfo
->shmmni
);
4790 __put_user(host_shminfo
->shmseg
, &target_shminfo
->shmseg
);
4791 __put_user(host_shminfo
->shmall
, &target_shminfo
->shmall
);
4792 unlock_user_struct(target_shminfo
, target_addr
, 1);
4796 struct target_shm_info
{
4801 abi_ulong swap_attempts
;
4802 abi_ulong swap_successes
;
4805 static inline abi_long
host_to_target_shm_info(abi_ulong target_addr
,
4806 struct shm_info
*host_shm_info
)
4808 struct target_shm_info
*target_shm_info
;
4809 if (!lock_user_struct(VERIFY_WRITE
, target_shm_info
, target_addr
, 0))
4810 return -TARGET_EFAULT
;
4811 __put_user(host_shm_info
->used_ids
, &target_shm_info
->used_ids
);
4812 __put_user(host_shm_info
->shm_tot
, &target_shm_info
->shm_tot
);
4813 __put_user(host_shm_info
->shm_rss
, &target_shm_info
->shm_rss
);
4814 __put_user(host_shm_info
->shm_swp
, &target_shm_info
->shm_swp
);
4815 __put_user(host_shm_info
->swap_attempts
, &target_shm_info
->swap_attempts
);
4816 __put_user(host_shm_info
->swap_successes
, &target_shm_info
->swap_successes
);
4817 unlock_user_struct(target_shm_info
, target_addr
, 1);
4821 static inline abi_long
do_shmctl(int shmid
, int cmd
, abi_long buf
)
4823 struct shmid_ds dsarg
;
4824 struct shminfo shminfo
;
4825 struct shm_info shm_info
;
4826 abi_long ret
= -TARGET_EINVAL
;
4834 if (target_to_host_shmid_ds(&dsarg
, buf
))
4835 return -TARGET_EFAULT
;
4836 ret
= get_errno(shmctl(shmid
, cmd
, &dsarg
));
4837 if (host_to_target_shmid_ds(buf
, &dsarg
))
4838 return -TARGET_EFAULT
;
4841 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shminfo
));
4842 if (host_to_target_shminfo(buf
, &shminfo
))
4843 return -TARGET_EFAULT
;
4846 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shm_info
));
4847 if (host_to_target_shm_info(buf
, &shm_info
))
4848 return -TARGET_EFAULT
;
4853 ret
= get_errno(shmctl(shmid
, cmd
, NULL
));
4860 #ifndef TARGET_FORCE_SHMLBA
4861 /* For most architectures, SHMLBA is the same as the page size;
4862 * some architectures have larger values, in which case they should
4863 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4864 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4865 * and defining its own value for SHMLBA.
4867 * The kernel also permits SHMLBA to be set by the architecture to a
4868 * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4869 * this means that addresses are rounded to the large size if
4870 * SHM_RND is set but addresses not aligned to that size are not rejected
4871 * as long as they are at least page-aligned. Since the only architecture
4872 * which uses this is ia64 this code doesn't provide for that oddity.
4874 static inline abi_ulong
target_shmlba(CPUArchState
*cpu_env
)
4876 return TARGET_PAGE_SIZE
;
4880 static inline abi_ulong
do_shmat(CPUArchState
*cpu_env
,
4881 int shmid
, abi_ulong shmaddr
, int shmflg
)
4885 struct shmid_ds shm_info
;
4889 /* find out the length of the shared memory segment */
4890 ret
= get_errno(shmctl(shmid
, IPC_STAT
, &shm_info
));
4891 if (is_error(ret
)) {
4892 /* can't get length, bail out */
4896 shmlba
= target_shmlba(cpu_env
);
4898 if (shmaddr
& (shmlba
- 1)) {
4899 if (shmflg
& SHM_RND
) {
4900 shmaddr
&= ~(shmlba
- 1);
4902 return -TARGET_EINVAL
;
4905 if (!guest_range_valid(shmaddr
, shm_info
.shm_segsz
)) {
4906 return -TARGET_EINVAL
;
4912 host_raddr
= shmat(shmid
, (void *)g2h(shmaddr
), shmflg
);
4914 abi_ulong mmap_start
;
4916 mmap_start
= mmap_find_vma(0, shm_info
.shm_segsz
);
4918 if (mmap_start
== -1) {
4920 host_raddr
= (void *)-1;
4922 host_raddr
= shmat(shmid
, g2h(mmap_start
), shmflg
| SHM_REMAP
);
4925 if (host_raddr
== (void *)-1) {
4927 return get_errno((long)host_raddr
);
4929 raddr
=h2g((unsigned long)host_raddr
);
4931 page_set_flags(raddr
, raddr
+ shm_info
.shm_segsz
,
4932 PAGE_VALID
| PAGE_READ
|
4933 ((shmflg
& SHM_RDONLY
)? 0 : PAGE_WRITE
));
4935 for (i
= 0; i
< N_SHM_REGIONS
; i
++) {
4936 if (!shm_regions
[i
].in_use
) {
4937 shm_regions
[i
].in_use
= true;
4938 shm_regions
[i
].start
= raddr
;
4939 shm_regions
[i
].size
= shm_info
.shm_segsz
;
4949 static inline abi_long
do_shmdt(abi_ulong shmaddr
)
4956 for (i
= 0; i
< N_SHM_REGIONS
; ++i
) {
4957 if (shm_regions
[i
].in_use
&& shm_regions
[i
].start
== shmaddr
) {
4958 shm_regions
[i
].in_use
= false;
4959 page_set_flags(shmaddr
, shmaddr
+ shm_regions
[i
].size
, 0);
4963 rv
= get_errno(shmdt(g2h(shmaddr
)));
4970 #ifdef TARGET_NR_ipc
4971 /* ??? This only works with linear mappings. */
4972 /* do_ipc() must return target values and target errnos. */
4973 static abi_long
do_ipc(CPUArchState
*cpu_env
,
4974 unsigned int call
, abi_long first
,
4975 abi_long second
, abi_long third
,
4976 abi_long ptr
, abi_long fifth
)
4981 version
= call
>> 16;
4986 ret
= do_semop(first
, ptr
, second
);
4990 ret
= get_errno(semget(first
, second
, third
));
4993 case IPCOP_semctl
: {
4994 /* The semun argument to semctl is passed by value, so dereference the
4997 get_user_ual(atptr
, ptr
);
4998 ret
= do_semctl(first
, second
, third
, atptr
);
5003 ret
= get_errno(msgget(first
, second
));
5007 ret
= do_msgsnd(first
, ptr
, second
, third
);
5011 ret
= do_msgctl(first
, second
, ptr
);
5018 struct target_ipc_kludge
{
5023 if (!lock_user_struct(VERIFY_READ
, tmp
, ptr
, 1)) {
5024 ret
= -TARGET_EFAULT
;
5028 ret
= do_msgrcv(first
, tswapal(tmp
->msgp
), second
, tswapal(tmp
->msgtyp
), third
);
5030 unlock_user_struct(tmp
, ptr
, 0);
5034 ret
= do_msgrcv(first
, ptr
, second
, fifth
, third
);
5043 raddr
= do_shmat(cpu_env
, first
, ptr
, second
);
5044 if (is_error(raddr
))
5045 return get_errno(raddr
);
5046 if (put_user_ual(raddr
, third
))
5047 return -TARGET_EFAULT
;
5051 ret
= -TARGET_EINVAL
;
5056 ret
= do_shmdt(ptr
);
5060 /* IPC_* flag values are the same on all linux platforms */
5061 ret
= get_errno(shmget(first
, second
, third
));
5064 /* IPC_* and SHM_* command values are the same on all linux platforms */
5066 ret
= do_shmctl(first
, second
, ptr
);
5069 gemu_log("Unsupported ipc call: %d (version %d)\n", call
, version
);
5070 ret
= -TARGET_ENOSYS
;
5077 /* kernel structure types definitions */
5079 #define STRUCT(name, ...) STRUCT_ ## name,
5080 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
5082 #include "syscall_types.h"
5086 #undef STRUCT_SPECIAL
5088 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
5089 #define STRUCT_SPECIAL(name)
5090 #include "syscall_types.h"
5092 #undef STRUCT_SPECIAL
5094 typedef struct IOCTLEntry IOCTLEntry
;
5096 typedef abi_long
do_ioctl_fn(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5097 int fd
, int cmd
, abi_long arg
);
5101 unsigned int host_cmd
;
5104 do_ioctl_fn
*do_ioctl
;
5105 const argtype arg_type
[5];
5108 #define IOC_R 0x0001
5109 #define IOC_W 0x0002
5110 #define IOC_RW (IOC_R | IOC_W)
5112 #define MAX_STRUCT_SIZE 4096
5114 #ifdef CONFIG_FIEMAP
5115 /* So fiemap access checks don't overflow on 32 bit systems.
5116 * This is very slightly smaller than the limit imposed by
5117 * the underlying kernel.
5119 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
5120 / sizeof(struct fiemap_extent))
5122 static abi_long
do_ioctl_fs_ioc_fiemap(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5123 int fd
, int cmd
, abi_long arg
)
5125 /* The parameter for this ioctl is a struct fiemap followed
5126 * by an array of struct fiemap_extent whose size is set
5127 * in fiemap->fm_extent_count. The array is filled in by the
5130 int target_size_in
, target_size_out
;
5132 const argtype
*arg_type
= ie
->arg_type
;
5133 const argtype extent_arg_type
[] = { MK_STRUCT(STRUCT_fiemap_extent
) };
5136 int i
, extent_size
= thunk_type_size(extent_arg_type
, 0);
5140 assert(arg_type
[0] == TYPE_PTR
);
5141 assert(ie
->access
== IOC_RW
);
5143 target_size_in
= thunk_type_size(arg_type
, 0);
5144 argptr
= lock_user(VERIFY_READ
, arg
, target_size_in
, 1);
5146 return -TARGET_EFAULT
;
5148 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5149 unlock_user(argptr
, arg
, 0);
5150 fm
= (struct fiemap
*)buf_temp
;
5151 if (fm
->fm_extent_count
> FIEMAP_MAX_EXTENTS
) {
5152 return -TARGET_EINVAL
;
5155 outbufsz
= sizeof (*fm
) +
5156 (sizeof(struct fiemap_extent
) * fm
->fm_extent_count
);
5158 if (outbufsz
> MAX_STRUCT_SIZE
) {
5159 /* We can't fit all the extents into the fixed size buffer.
5160 * Allocate one that is large enough and use it instead.
5162 fm
= g_try_malloc(outbufsz
);
5164 return -TARGET_ENOMEM
;
5166 memcpy(fm
, buf_temp
, sizeof(struct fiemap
));
5169 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, fm
));
5170 if (!is_error(ret
)) {
5171 target_size_out
= target_size_in
;
5172 /* An extent_count of 0 means we were only counting the extents
5173 * so there are no structs to copy
5175 if (fm
->fm_extent_count
!= 0) {
5176 target_size_out
+= fm
->fm_mapped_extents
* extent_size
;
5178 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size_out
, 0);
5180 ret
= -TARGET_EFAULT
;
5182 /* Convert the struct fiemap */
5183 thunk_convert(argptr
, fm
, arg_type
, THUNK_TARGET
);
5184 if (fm
->fm_extent_count
!= 0) {
5185 p
= argptr
+ target_size_in
;
5186 /* ...and then all the struct fiemap_extents */
5187 for (i
= 0; i
< fm
->fm_mapped_extents
; i
++) {
5188 thunk_convert(p
, &fm
->fm_extents
[i
], extent_arg_type
,
5193 unlock_user(argptr
, arg
, target_size_out
);
5203 static abi_long
do_ioctl_ifconf(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5204 int fd
, int cmd
, abi_long arg
)
5206 const argtype
*arg_type
= ie
->arg_type
;
5210 struct ifconf
*host_ifconf
;
5212 const argtype ifreq_arg_type
[] = { MK_STRUCT(STRUCT_sockaddr_ifreq
) };
5213 int target_ifreq_size
;
5218 abi_long target_ifc_buf
;
5222 assert(arg_type
[0] == TYPE_PTR
);
5223 assert(ie
->access
== IOC_RW
);
5226 target_size
= thunk_type_size(arg_type
, 0);
5228 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5230 return -TARGET_EFAULT
;
5231 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5232 unlock_user(argptr
, arg
, 0);
5234 host_ifconf
= (struct ifconf
*)(unsigned long)buf_temp
;
5235 target_ifc_len
= host_ifconf
->ifc_len
;
5236 target_ifc_buf
= (abi_long
)(unsigned long)host_ifconf
->ifc_buf
;
5238 target_ifreq_size
= thunk_type_size(ifreq_arg_type
, 0);
5239 nb_ifreq
= target_ifc_len
/ target_ifreq_size
;
5240 host_ifc_len
= nb_ifreq
* sizeof(struct ifreq
);
5242 outbufsz
= sizeof(*host_ifconf
) + host_ifc_len
;
5243 if (outbufsz
> MAX_STRUCT_SIZE
) {
5244 /* We can't fit all the extents into the fixed size buffer.
5245 * Allocate one that is large enough and use it instead.
5247 host_ifconf
= malloc(outbufsz
);
5249 return -TARGET_ENOMEM
;
5251 memcpy(host_ifconf
, buf_temp
, sizeof(*host_ifconf
));
5254 host_ifc_buf
= (char*)host_ifconf
+ sizeof(*host_ifconf
);
5256 host_ifconf
->ifc_len
= host_ifc_len
;
5257 host_ifconf
->ifc_buf
= host_ifc_buf
;
5259 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, host_ifconf
));
5260 if (!is_error(ret
)) {
5261 /* convert host ifc_len to target ifc_len */
5263 nb_ifreq
= host_ifconf
->ifc_len
/ sizeof(struct ifreq
);
5264 target_ifc_len
= nb_ifreq
* target_ifreq_size
;
5265 host_ifconf
->ifc_len
= target_ifc_len
;
5267 /* restore target ifc_buf */
5269 host_ifconf
->ifc_buf
= (char *)(unsigned long)target_ifc_buf
;
5271 /* copy struct ifconf to target user */
5273 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5275 return -TARGET_EFAULT
;
5276 thunk_convert(argptr
, host_ifconf
, arg_type
, THUNK_TARGET
);
5277 unlock_user(argptr
, arg
, target_size
);
5279 /* copy ifreq[] to target user */
5281 argptr
= lock_user(VERIFY_WRITE
, target_ifc_buf
, target_ifc_len
, 0);
5282 for (i
= 0; i
< nb_ifreq
; i
++) {
5283 thunk_convert(argptr
+ i
* target_ifreq_size
,
5284 host_ifc_buf
+ i
* sizeof(struct ifreq
),
5285 ifreq_arg_type
, THUNK_TARGET
);
5287 unlock_user(argptr
, target_ifc_buf
, target_ifc_len
);
5297 static abi_long
do_ioctl_dm(const IOCTLEntry
*ie
, uint8_t *buf_temp
, int fd
,
5298 int cmd
, abi_long arg
)
5301 struct dm_ioctl
*host_dm
;
5302 abi_long guest_data
;
5303 uint32_t guest_data_size
;
5305 const argtype
*arg_type
= ie
->arg_type
;
5307 void *big_buf
= NULL
;
5311 target_size
= thunk_type_size(arg_type
, 0);
5312 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5314 ret
= -TARGET_EFAULT
;
5317 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5318 unlock_user(argptr
, arg
, 0);
5320 /* buf_temp is too small, so fetch things into a bigger buffer */
5321 big_buf
= g_malloc0(((struct dm_ioctl
*)buf_temp
)->data_size
* 2);
5322 memcpy(big_buf
, buf_temp
, target_size
);
5326 guest_data
= arg
+ host_dm
->data_start
;
5327 if ((guest_data
- arg
) < 0) {
5328 ret
= -TARGET_EINVAL
;
5331 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
5332 host_data
= (char*)host_dm
+ host_dm
->data_start
;
5334 argptr
= lock_user(VERIFY_READ
, guest_data
, guest_data_size
, 1);
5336 ret
= -TARGET_EFAULT
;
5340 switch (ie
->host_cmd
) {
5342 case DM_LIST_DEVICES
:
5345 case DM_DEV_SUSPEND
:
5348 case DM_TABLE_STATUS
:
5349 case DM_TABLE_CLEAR
:
5351 case DM_LIST_VERSIONS
:
5355 case DM_DEV_SET_GEOMETRY
:
5356 /* data contains only strings */
5357 memcpy(host_data
, argptr
, guest_data_size
);
5360 memcpy(host_data
, argptr
, guest_data_size
);
5361 *(uint64_t*)host_data
= tswap64(*(uint64_t*)argptr
);
5365 void *gspec
= argptr
;
5366 void *cur_data
= host_data
;
5367 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
5368 int spec_size
= thunk_type_size(arg_type
, 0);
5371 for (i
= 0; i
< host_dm
->target_count
; i
++) {
5372 struct dm_target_spec
*spec
= cur_data
;
5376 thunk_convert(spec
, gspec
, arg_type
, THUNK_HOST
);
5377 slen
= strlen((char*)gspec
+ spec_size
) + 1;
5379 spec
->next
= sizeof(*spec
) + slen
;
5380 strcpy((char*)&spec
[1], gspec
+ spec_size
);
5382 cur_data
+= spec
->next
;
5387 ret
= -TARGET_EINVAL
;
5388 unlock_user(argptr
, guest_data
, 0);
5391 unlock_user(argptr
, guest_data
, 0);
5393 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5394 if (!is_error(ret
)) {
5395 guest_data
= arg
+ host_dm
->data_start
;
5396 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
5397 argptr
= lock_user(VERIFY_WRITE
, guest_data
, guest_data_size
, 0);
5398 switch (ie
->host_cmd
) {
5403 case DM_DEV_SUSPEND
:
5406 case DM_TABLE_CLEAR
:
5408 case DM_DEV_SET_GEOMETRY
:
5409 /* no return data */
5411 case DM_LIST_DEVICES
:
5413 struct dm_name_list
*nl
= (void*)host_dm
+ host_dm
->data_start
;
5414 uint32_t remaining_data
= guest_data_size
;
5415 void *cur_data
= argptr
;
5416 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_name_list
) };
5417 int nl_size
= 12; /* can't use thunk_size due to alignment */
5420 uint32_t next
= nl
->next
;
5422 nl
->next
= nl_size
+ (strlen(nl
->name
) + 1);
5424 if (remaining_data
< nl
->next
) {
5425 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
5428 thunk_convert(cur_data
, nl
, arg_type
, THUNK_TARGET
);
5429 strcpy(cur_data
+ nl_size
, nl
->name
);
5430 cur_data
+= nl
->next
;
5431 remaining_data
-= nl
->next
;
5435 nl
= (void*)nl
+ next
;
5440 case DM_TABLE_STATUS
:
5442 struct dm_target_spec
*spec
= (void*)host_dm
+ host_dm
->data_start
;
5443 void *cur_data
= argptr
;
5444 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
5445 int spec_size
= thunk_type_size(arg_type
, 0);
5448 for (i
= 0; i
< host_dm
->target_count
; i
++) {
5449 uint32_t next
= spec
->next
;
5450 int slen
= strlen((char*)&spec
[1]) + 1;
5451 spec
->next
= (cur_data
- argptr
) + spec_size
+ slen
;
5452 if (guest_data_size
< spec
->next
) {
5453 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
5456 thunk_convert(cur_data
, spec
, arg_type
, THUNK_TARGET
);
5457 strcpy(cur_data
+ spec_size
, (char*)&spec
[1]);
5458 cur_data
= argptr
+ spec
->next
;
5459 spec
= (void*)host_dm
+ host_dm
->data_start
+ next
;
5465 void *hdata
= (void*)host_dm
+ host_dm
->data_start
;
5466 int count
= *(uint32_t*)hdata
;
5467 uint64_t *hdev
= hdata
+ 8;
5468 uint64_t *gdev
= argptr
+ 8;
5471 *(uint32_t*)argptr
= tswap32(count
);
5472 for (i
= 0; i
< count
; i
++) {
5473 *gdev
= tswap64(*hdev
);
5479 case DM_LIST_VERSIONS
:
5481 struct dm_target_versions
*vers
= (void*)host_dm
+ host_dm
->data_start
;
5482 uint32_t remaining_data
= guest_data_size
;
5483 void *cur_data
= argptr
;
5484 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_versions
) };
5485 int vers_size
= thunk_type_size(arg_type
, 0);
5488 uint32_t next
= vers
->next
;
5490 vers
->next
= vers_size
+ (strlen(vers
->name
) + 1);
5492 if (remaining_data
< vers
->next
) {
5493 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
5496 thunk_convert(cur_data
, vers
, arg_type
, THUNK_TARGET
);
5497 strcpy(cur_data
+ vers_size
, vers
->name
);
5498 cur_data
+= vers
->next
;
5499 remaining_data
-= vers
->next
;
5503 vers
= (void*)vers
+ next
;
5508 unlock_user(argptr
, guest_data
, 0);
5509 ret
= -TARGET_EINVAL
;
5512 unlock_user(argptr
, guest_data
, guest_data_size
);
5514 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5516 ret
= -TARGET_EFAULT
;
5519 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5520 unlock_user(argptr
, arg
, target_size
);
5527 static abi_long
do_ioctl_blkpg(const IOCTLEntry
*ie
, uint8_t *buf_temp
, int fd
,
5528 int cmd
, abi_long arg
)
5532 const argtype
*arg_type
= ie
->arg_type
;
5533 const argtype part_arg_type
[] = { MK_STRUCT(STRUCT_blkpg_partition
) };
5536 struct blkpg_ioctl_arg
*host_blkpg
= (void*)buf_temp
;
5537 struct blkpg_partition host_part
;
5539 /* Read and convert blkpg */
5541 target_size
= thunk_type_size(arg_type
, 0);
5542 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5544 ret
= -TARGET_EFAULT
;
5547 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5548 unlock_user(argptr
, arg
, 0);
5550 switch (host_blkpg
->op
) {
5551 case BLKPG_ADD_PARTITION
:
5552 case BLKPG_DEL_PARTITION
:
5553 /* payload is struct blkpg_partition */
5556 /* Unknown opcode */
5557 ret
= -TARGET_EINVAL
;
5561 /* Read and convert blkpg->data */
5562 arg
= (abi_long
)(uintptr_t)host_blkpg
->data
;
5563 target_size
= thunk_type_size(part_arg_type
, 0);
5564 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5566 ret
= -TARGET_EFAULT
;
5569 thunk_convert(&host_part
, argptr
, part_arg_type
, THUNK_HOST
);
5570 unlock_user(argptr
, arg
, 0);
5572 /* Swizzle the data pointer to our local copy and call! */
5573 host_blkpg
->data
= &host_part
;
5574 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, host_blkpg
));
5580 static abi_long
do_ioctl_rt(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5581 int fd
, int cmd
, abi_long arg
)
5583 const argtype
*arg_type
= ie
->arg_type
;
5584 const StructEntry
*se
;
5585 const argtype
*field_types
;
5586 const int *dst_offsets
, *src_offsets
;
5589 abi_ulong
*target_rt_dev_ptr
;
5590 unsigned long *host_rt_dev_ptr
;
5594 assert(ie
->access
== IOC_W
);
5595 assert(*arg_type
== TYPE_PTR
);
5597 assert(*arg_type
== TYPE_STRUCT
);
5598 target_size
= thunk_type_size(arg_type
, 0);
5599 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5601 return -TARGET_EFAULT
;
5604 assert(*arg_type
== (int)STRUCT_rtentry
);
5605 se
= struct_entries
+ *arg_type
++;
5606 assert(se
->convert
[0] == NULL
);
5607 /* convert struct here to be able to catch rt_dev string */
5608 field_types
= se
->field_types
;
5609 dst_offsets
= se
->field_offsets
[THUNK_HOST
];
5610 src_offsets
= se
->field_offsets
[THUNK_TARGET
];
5611 for (i
= 0; i
< se
->nb_fields
; i
++) {
5612 if (dst_offsets
[i
] == offsetof(struct rtentry
, rt_dev
)) {
5613 assert(*field_types
== TYPE_PTRVOID
);
5614 target_rt_dev_ptr
= (abi_ulong
*)(argptr
+ src_offsets
[i
]);
5615 host_rt_dev_ptr
= (unsigned long *)(buf_temp
+ dst_offsets
[i
]);
5616 if (*target_rt_dev_ptr
!= 0) {
5617 *host_rt_dev_ptr
= (unsigned long)lock_user_string(
5618 tswapal(*target_rt_dev_ptr
));
5619 if (!*host_rt_dev_ptr
) {
5620 unlock_user(argptr
, arg
, 0);
5621 return -TARGET_EFAULT
;
5624 *host_rt_dev_ptr
= 0;
5629 field_types
= thunk_convert(buf_temp
+ dst_offsets
[i
],
5630 argptr
+ src_offsets
[i
],
5631 field_types
, THUNK_HOST
);
5633 unlock_user(argptr
, arg
, 0);
5635 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5636 if (*host_rt_dev_ptr
!= 0) {
5637 unlock_user((void *)*host_rt_dev_ptr
,
5638 *target_rt_dev_ptr
, 0);
5643 static abi_long
do_ioctl_kdsigaccept(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5644 int fd
, int cmd
, abi_long arg
)
5646 int sig
= target_to_host_signal(arg
);
5647 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, sig
));
5651 static abi_long
do_ioctl_tiocgptpeer(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5652 int fd
, int cmd
, abi_long arg
)
5654 int flags
= target_to_host_bitmask(arg
, fcntl_flags_tbl
);
5655 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, flags
));
5659 static IOCTLEntry ioctl_entries
[] = {
5660 #define IOCTL(cmd, access, ...) \
5661 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
5662 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
5663 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
5664 #define IOCTL_IGNORE(cmd) \
5665 { TARGET_ ## cmd, 0, #cmd },
5670 /* ??? Implement proper locking for ioctls. */
5671 /* do_ioctl() Must return target values and target errnos. */
5672 static abi_long
do_ioctl(int fd
, int cmd
, abi_long arg
)
5674 const IOCTLEntry
*ie
;
5675 const argtype
*arg_type
;
5677 uint8_t buf_temp
[MAX_STRUCT_SIZE
];
5683 if (ie
->target_cmd
== 0) {
5684 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd
);
5685 return -TARGET_ENOSYS
;
5687 if (ie
->target_cmd
== cmd
)
5691 arg_type
= ie
->arg_type
;
5693 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd
, ie
->name
);
5696 return ie
->do_ioctl(ie
, buf_temp
, fd
, cmd
, arg
);
5697 } else if (!ie
->host_cmd
) {
5698 /* Some architectures define BSD ioctls in their headers
5699 that are not implemented in Linux. */
5700 return -TARGET_ENOSYS
;
5703 switch(arg_type
[0]) {
5706 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
));
5710 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, arg
));
5714 target_size
= thunk_type_size(arg_type
, 0);
5715 switch(ie
->access
) {
5717 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5718 if (!is_error(ret
)) {
5719 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5721 return -TARGET_EFAULT
;
5722 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5723 unlock_user(argptr
, arg
, target_size
);
5727 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5729 return -TARGET_EFAULT
;
5730 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5731 unlock_user(argptr
, arg
, 0);
5732 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5736 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5738 return -TARGET_EFAULT
;
5739 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5740 unlock_user(argptr
, arg
, 0);
5741 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5742 if (!is_error(ret
)) {
5743 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5745 return -TARGET_EFAULT
;
5746 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5747 unlock_user(argptr
, arg
, target_size
);
5753 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5754 (long)cmd
, arg_type
[0]);
5755 ret
= -TARGET_ENOSYS
;
5761 static const bitmask_transtbl iflag_tbl
[] = {
5762 { TARGET_IGNBRK
, TARGET_IGNBRK
, IGNBRK
, IGNBRK
},
5763 { TARGET_BRKINT
, TARGET_BRKINT
, BRKINT
, BRKINT
},
5764 { TARGET_IGNPAR
, TARGET_IGNPAR
, IGNPAR
, IGNPAR
},
5765 { TARGET_PARMRK
, TARGET_PARMRK
, PARMRK
, PARMRK
},
5766 { TARGET_INPCK
, TARGET_INPCK
, INPCK
, INPCK
},
5767 { TARGET_ISTRIP
, TARGET_ISTRIP
, ISTRIP
, ISTRIP
},
5768 { TARGET_INLCR
, TARGET_INLCR
, INLCR
, INLCR
},
5769 { TARGET_IGNCR
, TARGET_IGNCR
, IGNCR
, IGNCR
},
5770 { TARGET_ICRNL
, TARGET_ICRNL
, ICRNL
, ICRNL
},
5771 { TARGET_IUCLC
, TARGET_IUCLC
, IUCLC
, IUCLC
},
5772 { TARGET_IXON
, TARGET_IXON
, IXON
, IXON
},
5773 { TARGET_IXANY
, TARGET_IXANY
, IXANY
, IXANY
},
5774 { TARGET_IXOFF
, TARGET_IXOFF
, IXOFF
, IXOFF
},
5775 { TARGET_IMAXBEL
, TARGET_IMAXBEL
, IMAXBEL
, IMAXBEL
},
5779 static const bitmask_transtbl oflag_tbl
[] = {
5780 { TARGET_OPOST
, TARGET_OPOST
, OPOST
, OPOST
},
5781 { TARGET_OLCUC
, TARGET_OLCUC
, OLCUC
, OLCUC
},
5782 { TARGET_ONLCR
, TARGET_ONLCR
, ONLCR
, ONLCR
},
5783 { TARGET_OCRNL
, TARGET_OCRNL
, OCRNL
, OCRNL
},
5784 { TARGET_ONOCR
, TARGET_ONOCR
, ONOCR
, ONOCR
},
5785 { TARGET_ONLRET
, TARGET_ONLRET
, ONLRET
, ONLRET
},
5786 { TARGET_OFILL
, TARGET_OFILL
, OFILL
, OFILL
},
5787 { TARGET_OFDEL
, TARGET_OFDEL
, OFDEL
, OFDEL
},
5788 { TARGET_NLDLY
, TARGET_NL0
, NLDLY
, NL0
},
5789 { TARGET_NLDLY
, TARGET_NL1
, NLDLY
, NL1
},
5790 { TARGET_CRDLY
, TARGET_CR0
, CRDLY
, CR0
},
5791 { TARGET_CRDLY
, TARGET_CR1
, CRDLY
, CR1
},
5792 { TARGET_CRDLY
, TARGET_CR2
, CRDLY
, CR2
},
5793 { TARGET_CRDLY
, TARGET_CR3
, CRDLY
, CR3
},
5794 { TARGET_TABDLY
, TARGET_TAB0
, TABDLY
, TAB0
},
5795 { TARGET_TABDLY
, TARGET_TAB1
, TABDLY
, TAB1
},
5796 { TARGET_TABDLY
, TARGET_TAB2
, TABDLY
, TAB2
},
5797 { TARGET_TABDLY
, TARGET_TAB3
, TABDLY
, TAB3
},
5798 { TARGET_BSDLY
, TARGET_BS0
, BSDLY
, BS0
},
5799 { TARGET_BSDLY
, TARGET_BS1
, BSDLY
, BS1
},
5800 { TARGET_VTDLY
, TARGET_VT0
, VTDLY
, VT0
},
5801 { TARGET_VTDLY
, TARGET_VT1
, VTDLY
, VT1
},
5802 { TARGET_FFDLY
, TARGET_FF0
, FFDLY
, FF0
},
5803 { TARGET_FFDLY
, TARGET_FF1
, FFDLY
, FF1
},
5807 static const bitmask_transtbl cflag_tbl
[] = {
5808 { TARGET_CBAUD
, TARGET_B0
, CBAUD
, B0
},
5809 { TARGET_CBAUD
, TARGET_B50
, CBAUD
, B50
},
5810 { TARGET_CBAUD
, TARGET_B75
, CBAUD
, B75
},
5811 { TARGET_CBAUD
, TARGET_B110
, CBAUD
, B110
},
5812 { TARGET_CBAUD
, TARGET_B134
, CBAUD
, B134
},
5813 { TARGET_CBAUD
, TARGET_B150
, CBAUD
, B150
},
5814 { TARGET_CBAUD
, TARGET_B200
, CBAUD
, B200
},
5815 { TARGET_CBAUD
, TARGET_B300
, CBAUD
, B300
},
5816 { TARGET_CBAUD
, TARGET_B600
, CBAUD
, B600
},
5817 { TARGET_CBAUD
, TARGET_B1200
, CBAUD
, B1200
},
5818 { TARGET_CBAUD
, TARGET_B1800
, CBAUD
, B1800
},
5819 { TARGET_CBAUD
, TARGET_B2400
, CBAUD
, B2400
},
5820 { TARGET_CBAUD
, TARGET_B4800
, CBAUD
, B4800
},
5821 { TARGET_CBAUD
, TARGET_B9600
, CBAUD
, B9600
},
5822 { TARGET_CBAUD
, TARGET_B19200
, CBAUD
, B19200
},
5823 { TARGET_CBAUD
, TARGET_B38400
, CBAUD
, B38400
},
5824 { TARGET_CBAUD
, TARGET_B57600
, CBAUD
, B57600
},
5825 { TARGET_CBAUD
, TARGET_B115200
, CBAUD
, B115200
},
5826 { TARGET_CBAUD
, TARGET_B230400
, CBAUD
, B230400
},
5827 { TARGET_CBAUD
, TARGET_B460800
, CBAUD
, B460800
},
5828 { TARGET_CSIZE
, TARGET_CS5
, CSIZE
, CS5
},
5829 { TARGET_CSIZE
, TARGET_CS6
, CSIZE
, CS6
},
5830 { TARGET_CSIZE
, TARGET_CS7
, CSIZE
, CS7
},
5831 { TARGET_CSIZE
, TARGET_CS8
, CSIZE
, CS8
},
5832 { TARGET_CSTOPB
, TARGET_CSTOPB
, CSTOPB
, CSTOPB
},
5833 { TARGET_CREAD
, TARGET_CREAD
, CREAD
, CREAD
},
5834 { TARGET_PARENB
, TARGET_PARENB
, PARENB
, PARENB
},
5835 { TARGET_PARODD
, TARGET_PARODD
, PARODD
, PARODD
},
5836 { TARGET_HUPCL
, TARGET_HUPCL
, HUPCL
, HUPCL
},
5837 { TARGET_CLOCAL
, TARGET_CLOCAL
, CLOCAL
, CLOCAL
},
5838 { TARGET_CRTSCTS
, TARGET_CRTSCTS
, CRTSCTS
, CRTSCTS
},
5842 static const bitmask_transtbl lflag_tbl
[] = {
5843 { TARGET_ISIG
, TARGET_ISIG
, ISIG
, ISIG
},
5844 { TARGET_ICANON
, TARGET_ICANON
, ICANON
, ICANON
},
5845 { TARGET_XCASE
, TARGET_XCASE
, XCASE
, XCASE
},
5846 { TARGET_ECHO
, TARGET_ECHO
, ECHO
, ECHO
},
5847 { TARGET_ECHOE
, TARGET_ECHOE
, ECHOE
, ECHOE
},
5848 { TARGET_ECHOK
, TARGET_ECHOK
, ECHOK
, ECHOK
},
5849 { TARGET_ECHONL
, TARGET_ECHONL
, ECHONL
, ECHONL
},
5850 { TARGET_NOFLSH
, TARGET_NOFLSH
, NOFLSH
, NOFLSH
},
5851 { TARGET_TOSTOP
, TARGET_TOSTOP
, TOSTOP
, TOSTOP
},
5852 { TARGET_ECHOCTL
, TARGET_ECHOCTL
, ECHOCTL
, ECHOCTL
},
5853 { TARGET_ECHOPRT
, TARGET_ECHOPRT
, ECHOPRT
, ECHOPRT
},
5854 { TARGET_ECHOKE
, TARGET_ECHOKE
, ECHOKE
, ECHOKE
},
5855 { TARGET_FLUSHO
, TARGET_FLUSHO
, FLUSHO
, FLUSHO
},
5856 { TARGET_PENDIN
, TARGET_PENDIN
, PENDIN
, PENDIN
},
5857 { TARGET_IEXTEN
, TARGET_IEXTEN
, IEXTEN
, IEXTEN
},
5861 static void target_to_host_termios (void *dst
, const void *src
)
5863 struct host_termios
*host
= dst
;
5864 const struct target_termios
*target
= src
;
5867 target_to_host_bitmask(tswap32(target
->c_iflag
), iflag_tbl
);
5869 target_to_host_bitmask(tswap32(target
->c_oflag
), oflag_tbl
);
5871 target_to_host_bitmask(tswap32(target
->c_cflag
), cflag_tbl
);
5873 target_to_host_bitmask(tswap32(target
->c_lflag
), lflag_tbl
);
5874 host
->c_line
= target
->c_line
;
5876 memset(host
->c_cc
, 0, sizeof(host
->c_cc
));
5877 host
->c_cc
[VINTR
] = target
->c_cc
[TARGET_VINTR
];
5878 host
->c_cc
[VQUIT
] = target
->c_cc
[TARGET_VQUIT
];
5879 host
->c_cc
[VERASE
] = target
->c_cc
[TARGET_VERASE
];
5880 host
->c_cc
[VKILL
] = target
->c_cc
[TARGET_VKILL
];
5881 host
->c_cc
[VEOF
] = target
->c_cc
[TARGET_VEOF
];
5882 host
->c_cc
[VTIME
] = target
->c_cc
[TARGET_VTIME
];
5883 host
->c_cc
[VMIN
] = target
->c_cc
[TARGET_VMIN
];
5884 host
->c_cc
[VSWTC
] = target
->c_cc
[TARGET_VSWTC
];
5885 host
->c_cc
[VSTART
] = target
->c_cc
[TARGET_VSTART
];
5886 host
->c_cc
[VSTOP
] = target
->c_cc
[TARGET_VSTOP
];
5887 host
->c_cc
[VSUSP
] = target
->c_cc
[TARGET_VSUSP
];
5888 host
->c_cc
[VEOL
] = target
->c_cc
[TARGET_VEOL
];
5889 host
->c_cc
[VREPRINT
] = target
->c_cc
[TARGET_VREPRINT
];
5890 host
->c_cc
[VDISCARD
] = target
->c_cc
[TARGET_VDISCARD
];
5891 host
->c_cc
[VWERASE
] = target
->c_cc
[TARGET_VWERASE
];
5892 host
->c_cc
[VLNEXT
] = target
->c_cc
[TARGET_VLNEXT
];
5893 host
->c_cc
[VEOL2
] = target
->c_cc
[TARGET_VEOL2
];
5896 static void host_to_target_termios (void *dst
, const void *src
)
5898 struct target_termios
*target
= dst
;
5899 const struct host_termios
*host
= src
;
5902 tswap32(host_to_target_bitmask(host
->c_iflag
, iflag_tbl
));
5904 tswap32(host_to_target_bitmask(host
->c_oflag
, oflag_tbl
));
5906 tswap32(host_to_target_bitmask(host
->c_cflag
, cflag_tbl
));
5908 tswap32(host_to_target_bitmask(host
->c_lflag
, lflag_tbl
));
5909 target
->c_line
= host
->c_line
;
5911 memset(target
->c_cc
, 0, sizeof(target
->c_cc
));
5912 target
->c_cc
[TARGET_VINTR
] = host
->c_cc
[VINTR
];
5913 target
->c_cc
[TARGET_VQUIT
] = host
->c_cc
[VQUIT
];
5914 target
->c_cc
[TARGET_VERASE
] = host
->c_cc
[VERASE
];
5915 target
->c_cc
[TARGET_VKILL
] = host
->c_cc
[VKILL
];
5916 target
->c_cc
[TARGET_VEOF
] = host
->c_cc
[VEOF
];
5917 target
->c_cc
[TARGET_VTIME
] = host
->c_cc
[VTIME
];
5918 target
->c_cc
[TARGET_VMIN
] = host
->c_cc
[VMIN
];
5919 target
->c_cc
[TARGET_VSWTC
] = host
->c_cc
[VSWTC
];
5920 target
->c_cc
[TARGET_VSTART
] = host
->c_cc
[VSTART
];
5921 target
->c_cc
[TARGET_VSTOP
] = host
->c_cc
[VSTOP
];
5922 target
->c_cc
[TARGET_VSUSP
] = host
->c_cc
[VSUSP
];
5923 target
->c_cc
[TARGET_VEOL
] = host
->c_cc
[VEOL
];
5924 target
->c_cc
[TARGET_VREPRINT
] = host
->c_cc
[VREPRINT
];
5925 target
->c_cc
[TARGET_VDISCARD
] = host
->c_cc
[VDISCARD
];
5926 target
->c_cc
[TARGET_VWERASE
] = host
->c_cc
[VWERASE
];
5927 target
->c_cc
[TARGET_VLNEXT
] = host
->c_cc
[VLNEXT
];
5928 target
->c_cc
[TARGET_VEOL2
] = host
->c_cc
[VEOL2
];
5931 static const StructEntry struct_termios_def
= {
5932 .convert
= { host_to_target_termios
, target_to_host_termios
},
5933 .size
= { sizeof(struct target_termios
), sizeof(struct host_termios
) },
5934 .align
= { __alignof__(struct target_termios
), __alignof__(struct host_termios
) },
5937 static bitmask_transtbl mmap_flags_tbl
[] = {
5938 { TARGET_MAP_SHARED
, TARGET_MAP_SHARED
, MAP_SHARED
, MAP_SHARED
},
5939 { TARGET_MAP_PRIVATE
, TARGET_MAP_PRIVATE
, MAP_PRIVATE
, MAP_PRIVATE
},
5940 { TARGET_MAP_FIXED
, TARGET_MAP_FIXED
, MAP_FIXED
, MAP_FIXED
},
5941 { TARGET_MAP_ANONYMOUS
, TARGET_MAP_ANONYMOUS
,
5942 MAP_ANONYMOUS
, MAP_ANONYMOUS
},
5943 { TARGET_MAP_GROWSDOWN
, TARGET_MAP_GROWSDOWN
,
5944 MAP_GROWSDOWN
, MAP_GROWSDOWN
},
5945 { TARGET_MAP_DENYWRITE
, TARGET_MAP_DENYWRITE
,
5946 MAP_DENYWRITE
, MAP_DENYWRITE
},
5947 { TARGET_MAP_EXECUTABLE
, TARGET_MAP_EXECUTABLE
,
5948 MAP_EXECUTABLE
, MAP_EXECUTABLE
},
5949 { TARGET_MAP_LOCKED
, TARGET_MAP_LOCKED
, MAP_LOCKED
, MAP_LOCKED
},
5950 { TARGET_MAP_NORESERVE
, TARGET_MAP_NORESERVE
,
5951 MAP_NORESERVE
, MAP_NORESERVE
},
5952 { TARGET_MAP_HUGETLB
, TARGET_MAP_HUGETLB
, MAP_HUGETLB
, MAP_HUGETLB
},
5953 /* MAP_STACK had been ignored by the kernel for quite some time.
5954 Recognize it for the target insofar as we do not want to pass
5955 it through to the host. */
5956 { TARGET_MAP_STACK
, TARGET_MAP_STACK
, 0, 0 },
5960 #if defined(TARGET_I386)
5962 /* NOTE: there is really one LDT for all the threads */
5963 static uint8_t *ldt_table
;
5965 static abi_long
read_ldt(abi_ulong ptr
, unsigned long bytecount
)
5972 size
= TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
;
5973 if (size
> bytecount
)
5975 p
= lock_user(VERIFY_WRITE
, ptr
, size
, 0);
5977 return -TARGET_EFAULT
;
5978 /* ??? Should this by byteswapped? */
5979 memcpy(p
, ldt_table
, size
);
5980 unlock_user(p
, ptr
, size
);
5984 /* XXX: add locking support */
5985 static abi_long
write_ldt(CPUX86State
*env
,
5986 abi_ulong ptr
, unsigned long bytecount
, int oldmode
)
5988 struct target_modify_ldt_ldt_s ldt_info
;
5989 struct target_modify_ldt_ldt_s
*target_ldt_info
;
5990 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
5991 int seg_not_present
, useable
, lm
;
5992 uint32_t *lp
, entry_1
, entry_2
;
5994 if (bytecount
!= sizeof(ldt_info
))
5995 return -TARGET_EINVAL
;
5996 if (!lock_user_struct(VERIFY_READ
, target_ldt_info
, ptr
, 1))
5997 return -TARGET_EFAULT
;
5998 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
5999 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
6000 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
6001 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
6002 unlock_user_struct(target_ldt_info
, ptr
, 0);
6004 if (ldt_info
.entry_number
>= TARGET_LDT_ENTRIES
)
6005 return -TARGET_EINVAL
;
6006 seg_32bit
= ldt_info
.flags
& 1;
6007 contents
= (ldt_info
.flags
>> 1) & 3;
6008 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
6009 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
6010 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
6011 useable
= (ldt_info
.flags
>> 6) & 1;
6015 lm
= (ldt_info
.flags
>> 7) & 1;
6017 if (contents
== 3) {
6019 return -TARGET_EINVAL
;
6020 if (seg_not_present
== 0)
6021 return -TARGET_EINVAL
;
6023 /* allocate the LDT */
6025 env
->ldt
.base
= target_mmap(0,
6026 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
,
6027 PROT_READ
|PROT_WRITE
,
6028 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
6029 if (env
->ldt
.base
== -1)
6030 return -TARGET_ENOMEM
;
6031 memset(g2h(env
->ldt
.base
), 0,
6032 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
);
6033 env
->ldt
.limit
= 0xffff;
6034 ldt_table
= g2h(env
->ldt
.base
);
6037 /* NOTE: same code as Linux kernel */
6038 /* Allow LDTs to be cleared by the user. */
6039 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
6042 read_exec_only
== 1 &&
6044 limit_in_pages
== 0 &&
6045 seg_not_present
== 1 &&
6053 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
6054 (ldt_info
.limit
& 0x0ffff);
6055 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
6056 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
6057 (ldt_info
.limit
& 0xf0000) |
6058 ((read_exec_only
^ 1) << 9) |
6060 ((seg_not_present
^ 1) << 15) |
6062 (limit_in_pages
<< 23) |
6066 entry_2
|= (useable
<< 20);
6068 /* Install the new entry ... */
6070 lp
= (uint32_t *)(ldt_table
+ (ldt_info
.entry_number
<< 3));
6071 lp
[0] = tswap32(entry_1
);
6072 lp
[1] = tswap32(entry_2
);
6076 /* specific and weird i386 syscalls */
6077 static abi_long
do_modify_ldt(CPUX86State
*env
, int func
, abi_ulong ptr
,
6078 unsigned long bytecount
)
6084 ret
= read_ldt(ptr
, bytecount
);
6087 ret
= write_ldt(env
, ptr
, bytecount
, 1);
6090 ret
= write_ldt(env
, ptr
, bytecount
, 0);
6093 ret
= -TARGET_ENOSYS
;
6099 #if defined(TARGET_I386) && defined(TARGET_ABI32)
6100 abi_long
do_set_thread_area(CPUX86State
*env
, abi_ulong ptr
)
6102 uint64_t *gdt_table
= g2h(env
->gdt
.base
);
6103 struct target_modify_ldt_ldt_s ldt_info
;
6104 struct target_modify_ldt_ldt_s
*target_ldt_info
;
6105 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
6106 int seg_not_present
, useable
, lm
;
6107 uint32_t *lp
, entry_1
, entry_2
;
6110 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
6111 if (!target_ldt_info
)
6112 return -TARGET_EFAULT
;
6113 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
6114 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
6115 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
6116 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
6117 if (ldt_info
.entry_number
== -1) {
6118 for (i
=TARGET_GDT_ENTRY_TLS_MIN
; i
<=TARGET_GDT_ENTRY_TLS_MAX
; i
++) {
6119 if (gdt_table
[i
] == 0) {
6120 ldt_info
.entry_number
= i
;
6121 target_ldt_info
->entry_number
= tswap32(i
);
6126 unlock_user_struct(target_ldt_info
, ptr
, 1);
6128 if (ldt_info
.entry_number
< TARGET_GDT_ENTRY_TLS_MIN
||
6129 ldt_info
.entry_number
> TARGET_GDT_ENTRY_TLS_MAX
)
6130 return -TARGET_EINVAL
;
6131 seg_32bit
= ldt_info
.flags
& 1;
6132 contents
= (ldt_info
.flags
>> 1) & 3;
6133 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
6134 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
6135 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
6136 useable
= (ldt_info
.flags
>> 6) & 1;
6140 lm
= (ldt_info
.flags
>> 7) & 1;
6143 if (contents
== 3) {
6144 if (seg_not_present
== 0)
6145 return -TARGET_EINVAL
;
6148 /* NOTE: same code as Linux kernel */
6149 /* Allow LDTs to be cleared by the user. */
6150 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
6151 if ((contents
== 0 &&
6152 read_exec_only
== 1 &&
6154 limit_in_pages
== 0 &&
6155 seg_not_present
== 1 &&
6163 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
6164 (ldt_info
.limit
& 0x0ffff);
6165 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
6166 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
6167 (ldt_info
.limit
& 0xf0000) |
6168 ((read_exec_only
^ 1) << 9) |
6170 ((seg_not_present
^ 1) << 15) |
6172 (limit_in_pages
<< 23) |
6177 /* Install the new entry ... */
6179 lp
= (uint32_t *)(gdt_table
+ ldt_info
.entry_number
);
6180 lp
[0] = tswap32(entry_1
);
6181 lp
[1] = tswap32(entry_2
);
6185 static abi_long
do_get_thread_area(CPUX86State
*env
, abi_ulong ptr
)
6187 struct target_modify_ldt_ldt_s
*target_ldt_info
;
6188 uint64_t *gdt_table
= g2h(env
->gdt
.base
);
6189 uint32_t base_addr
, limit
, flags
;
6190 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
, idx
;
6191 int seg_not_present
, useable
, lm
;
6192 uint32_t *lp
, entry_1
, entry_2
;
6194 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
6195 if (!target_ldt_info
)
6196 return -TARGET_EFAULT
;
6197 idx
= tswap32(target_ldt_info
->entry_number
);
6198 if (idx
< TARGET_GDT_ENTRY_TLS_MIN
||
6199 idx
> TARGET_GDT_ENTRY_TLS_MAX
) {
6200 unlock_user_struct(target_ldt_info
, ptr
, 1);
6201 return -TARGET_EINVAL
;
6203 lp
= (uint32_t *)(gdt_table
+ idx
);
6204 entry_1
= tswap32(lp
[0]);
6205 entry_2
= tswap32(lp
[1]);
6207 read_exec_only
= ((entry_2
>> 9) & 1) ^ 1;
6208 contents
= (entry_2
>> 10) & 3;
6209 seg_not_present
= ((entry_2
>> 15) & 1) ^ 1;
6210 seg_32bit
= (entry_2
>> 22) & 1;
6211 limit_in_pages
= (entry_2
>> 23) & 1;
6212 useable
= (entry_2
>> 20) & 1;
6216 lm
= (entry_2
>> 21) & 1;
6218 flags
= (seg_32bit
<< 0) | (contents
<< 1) |
6219 (read_exec_only
<< 3) | (limit_in_pages
<< 4) |
6220 (seg_not_present
<< 5) | (useable
<< 6) | (lm
<< 7);
6221 limit
= (entry_1
& 0xffff) | (entry_2
& 0xf0000);
6222 base_addr
= (entry_1
>> 16) |
6223 (entry_2
& 0xff000000) |
6224 ((entry_2
& 0xff) << 16);
6225 target_ldt_info
->base_addr
= tswapal(base_addr
);
6226 target_ldt_info
->limit
= tswap32(limit
);
6227 target_ldt_info
->flags
= tswap32(flags
);
6228 unlock_user_struct(target_ldt_info
, ptr
, 1);
6231 #endif /* TARGET_I386 && TARGET_ABI32 */
6233 #ifndef TARGET_ABI32
6234 abi_long
do_arch_prctl(CPUX86State
*env
, int code
, abi_ulong addr
)
6241 case TARGET_ARCH_SET_GS
:
6242 case TARGET_ARCH_SET_FS
:
6243 if (code
== TARGET_ARCH_SET_GS
)
6247 cpu_x86_load_seg(env
, idx
, 0);
6248 env
->segs
[idx
].base
= addr
;
6250 case TARGET_ARCH_GET_GS
:
6251 case TARGET_ARCH_GET_FS
:
6252 if (code
== TARGET_ARCH_GET_GS
)
6256 val
= env
->segs
[idx
].base
;
6257 if (put_user(val
, addr
, abi_ulong
))
6258 ret
= -TARGET_EFAULT
;
6261 ret
= -TARGET_EINVAL
;
6268 #endif /* defined(TARGET_I386) */
6270 #define NEW_STACK_SIZE 0x40000
6273 static pthread_mutex_t clone_lock
= PTHREAD_MUTEX_INITIALIZER
;
6276 pthread_mutex_t mutex
;
6277 pthread_cond_t cond
;
6280 abi_ulong child_tidptr
;
6281 abi_ulong parent_tidptr
;
6285 static void *clone_func(void *arg
)
6287 new_thread_info
*info
= arg
;
6292 rcu_register_thread();
6293 tcg_register_thread();
6295 cpu
= ENV_GET_CPU(env
);
6297 ts
= (TaskState
*)cpu
->opaque
;
6298 info
->tid
= gettid();
6300 if (info
->child_tidptr
)
6301 put_user_u32(info
->tid
, info
->child_tidptr
);
6302 if (info
->parent_tidptr
)
6303 put_user_u32(info
->tid
, info
->parent_tidptr
);
6304 /* Enable signals. */
6305 sigprocmask(SIG_SETMASK
, &info
->sigmask
, NULL
);
6306 /* Signal to the parent that we're ready. */
6307 pthread_mutex_lock(&info
->mutex
);
6308 pthread_cond_broadcast(&info
->cond
);
6309 pthread_mutex_unlock(&info
->mutex
);
6310 /* Wait until the parent has finished initializing the tls state. */
6311 pthread_mutex_lock(&clone_lock
);
6312 pthread_mutex_unlock(&clone_lock
);
6318 /* do_fork() Must return host values and target errnos (unlike most
6319 do_*() functions). */
6320 static int do_fork(CPUArchState
*env
, unsigned int flags
, abi_ulong newsp
,
6321 abi_ulong parent_tidptr
, target_ulong newtls
,
6322 abi_ulong child_tidptr
)
6324 CPUState
*cpu
= ENV_GET_CPU(env
);
6328 CPUArchState
*new_env
;
6331 flags
&= ~CLONE_IGNORED_FLAGS
;
6333 /* Emulate vfork() with fork() */
6334 if (flags
& CLONE_VFORK
)
6335 flags
&= ~(CLONE_VFORK
| CLONE_VM
);
6337 if (flags
& CLONE_VM
) {
6338 TaskState
*parent_ts
= (TaskState
*)cpu
->opaque
;
6339 new_thread_info info
;
6340 pthread_attr_t attr
;
6342 if (((flags
& CLONE_THREAD_FLAGS
) != CLONE_THREAD_FLAGS
) ||
6343 (flags
& CLONE_INVALID_THREAD_FLAGS
)) {
6344 return -TARGET_EINVAL
;
6347 ts
= g_new0(TaskState
, 1);
6348 init_task_state(ts
);
6349 /* we create a new CPU instance. */
6350 new_env
= cpu_copy(env
);
6351 /* Init regs that differ from the parent. */
6352 cpu_clone_regs(new_env
, newsp
);
6353 new_cpu
= ENV_GET_CPU(new_env
);
6354 new_cpu
->opaque
= ts
;
6355 ts
->bprm
= parent_ts
->bprm
;
6356 ts
->info
= parent_ts
->info
;
6357 ts
->signal_mask
= parent_ts
->signal_mask
;
6359 if (flags
& CLONE_CHILD_CLEARTID
) {
6360 ts
->child_tidptr
= child_tidptr
;
6363 if (flags
& CLONE_SETTLS
) {
6364 cpu_set_tls (new_env
, newtls
);
6367 /* Grab a mutex so that thread setup appears atomic. */
6368 pthread_mutex_lock(&clone_lock
);
6370 memset(&info
, 0, sizeof(info
));
6371 pthread_mutex_init(&info
.mutex
, NULL
);
6372 pthread_mutex_lock(&info
.mutex
);
6373 pthread_cond_init(&info
.cond
, NULL
);
6375 if (flags
& CLONE_CHILD_SETTID
) {
6376 info
.child_tidptr
= child_tidptr
;
6378 if (flags
& CLONE_PARENT_SETTID
) {
6379 info
.parent_tidptr
= parent_tidptr
;
6382 ret
= pthread_attr_init(&attr
);
6383 ret
= pthread_attr_setstacksize(&attr
, NEW_STACK_SIZE
);
6384 ret
= pthread_attr_setdetachstate(&attr
, PTHREAD_CREATE_DETACHED
);
6385 /* It is not safe to deliver signals until the child has finished
6386 initializing, so temporarily block all signals. */
6387 sigfillset(&sigmask
);
6388 sigprocmask(SIG_BLOCK
, &sigmask
, &info
.sigmask
);
6390 /* If this is our first additional thread, we need to ensure we
6391 * generate code for parallel execution and flush old translations.
6393 if (!parallel_cpus
) {
6394 parallel_cpus
= true;
6398 ret
= pthread_create(&info
.thread
, &attr
, clone_func
, &info
);
6399 /* TODO: Free new CPU state if thread creation failed. */
6401 sigprocmask(SIG_SETMASK
, &info
.sigmask
, NULL
);
6402 pthread_attr_destroy(&attr
);
6404 /* Wait for the child to initialize. */
6405 pthread_cond_wait(&info
.cond
, &info
.mutex
);
6410 pthread_mutex_unlock(&info
.mutex
);
6411 pthread_cond_destroy(&info
.cond
);
6412 pthread_mutex_destroy(&info
.mutex
);
6413 pthread_mutex_unlock(&clone_lock
);
6415 /* if no CLONE_VM, we consider it is a fork */
6416 if (flags
& CLONE_INVALID_FORK_FLAGS
) {
6417 return -TARGET_EINVAL
;
6420 /* We can't support custom termination signals */
6421 if ((flags
& CSIGNAL
) != TARGET_SIGCHLD
) {
6422 return -TARGET_EINVAL
;
6425 if (block_signals()) {
6426 return -TARGET_ERESTARTSYS
;
6432 /* Child Process. */
6433 cpu_clone_regs(env
, newsp
);
6435 /* There is a race condition here. The parent process could
6436 theoretically read the TID in the child process before the child
6437 tid is set. This would require using either ptrace
6438 (not implemented) or having *_tidptr to point at a shared memory
6439 mapping. We can't repeat the spinlock hack used above because
6440 the child process gets its own copy of the lock. */
6441 if (flags
& CLONE_CHILD_SETTID
)
6442 put_user_u32(gettid(), child_tidptr
);
6443 if (flags
& CLONE_PARENT_SETTID
)
6444 put_user_u32(gettid(), parent_tidptr
);
6445 ts
= (TaskState
*)cpu
->opaque
;
6446 if (flags
& CLONE_SETTLS
)
6447 cpu_set_tls (env
, newtls
);
6448 if (flags
& CLONE_CHILD_CLEARTID
)
6449 ts
->child_tidptr
= child_tidptr
;
6457 /* warning : doesn't handle linux specific flags... */
6458 static int target_to_host_fcntl_cmd(int cmd
)
6461 case TARGET_F_DUPFD
:
6462 case TARGET_F_GETFD
:
6463 case TARGET_F_SETFD
:
6464 case TARGET_F_GETFL
:
6465 case TARGET_F_SETFL
:
6467 case TARGET_F_GETLK
:
6469 case TARGET_F_SETLK
:
6471 case TARGET_F_SETLKW
:
6473 case TARGET_F_GETOWN
:
6475 case TARGET_F_SETOWN
:
6477 case TARGET_F_GETSIG
:
6479 case TARGET_F_SETSIG
:
6481 #if TARGET_ABI_BITS == 32
6482 case TARGET_F_GETLK64
:
6484 case TARGET_F_SETLK64
:
6486 case TARGET_F_SETLKW64
:
6489 case TARGET_F_SETLEASE
:
6491 case TARGET_F_GETLEASE
:
6493 #ifdef F_DUPFD_CLOEXEC
6494 case TARGET_F_DUPFD_CLOEXEC
:
6495 return F_DUPFD_CLOEXEC
;
6497 case TARGET_F_NOTIFY
:
6500 case TARGET_F_GETOWN_EX
:
6504 case TARGET_F_SETOWN_EX
:
6508 case TARGET_F_SETPIPE_SZ
:
6509 return F_SETPIPE_SZ
;
6510 case TARGET_F_GETPIPE_SZ
:
6511 return F_GETPIPE_SZ
;
6514 return -TARGET_EINVAL
;
6516 return -TARGET_EINVAL
;
6519 #define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a }
6520 static const bitmask_transtbl flock_tbl
[] = {
6521 TRANSTBL_CONVERT(F_RDLCK
),
6522 TRANSTBL_CONVERT(F_WRLCK
),
6523 TRANSTBL_CONVERT(F_UNLCK
),
6524 TRANSTBL_CONVERT(F_EXLCK
),
6525 TRANSTBL_CONVERT(F_SHLCK
),
6529 static inline abi_long
copy_from_user_flock(struct flock64
*fl
,
6530 abi_ulong target_flock_addr
)
6532 struct target_flock
*target_fl
;
6535 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
6536 return -TARGET_EFAULT
;
6539 __get_user(l_type
, &target_fl
->l_type
);
6540 fl
->l_type
= target_to_host_bitmask(l_type
, flock_tbl
);
6541 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6542 __get_user(fl
->l_start
, &target_fl
->l_start
);
6543 __get_user(fl
->l_len
, &target_fl
->l_len
);
6544 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6545 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6549 static inline abi_long
copy_to_user_flock(abi_ulong target_flock_addr
,
6550 const struct flock64
*fl
)
6552 struct target_flock
*target_fl
;
6555 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6556 return -TARGET_EFAULT
;
6559 l_type
= host_to_target_bitmask(fl
->l_type
, flock_tbl
);
6560 __put_user(l_type
, &target_fl
->l_type
);
6561 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6562 __put_user(fl
->l_start
, &target_fl
->l_start
);
6563 __put_user(fl
->l_len
, &target_fl
->l_len
);
6564 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6565 unlock_user_struct(target_fl
, target_flock_addr
, 1);
6569 typedef abi_long
from_flock64_fn(struct flock64
*fl
, abi_ulong target_addr
);
6570 typedef abi_long
to_flock64_fn(abi_ulong target_addr
, const struct flock64
*fl
);
6572 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6573 static inline abi_long
copy_from_user_eabi_flock64(struct flock64
*fl
,
6574 abi_ulong target_flock_addr
)
6576 struct target_eabi_flock64
*target_fl
;
6579 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
6580 return -TARGET_EFAULT
;
6583 __get_user(l_type
, &target_fl
->l_type
);
6584 fl
->l_type
= target_to_host_bitmask(l_type
, flock_tbl
);
6585 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6586 __get_user(fl
->l_start
, &target_fl
->l_start
);
6587 __get_user(fl
->l_len
, &target_fl
->l_len
);
6588 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6589 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6593 static inline abi_long
copy_to_user_eabi_flock64(abi_ulong target_flock_addr
,
6594 const struct flock64
*fl
)
6596 struct target_eabi_flock64
*target_fl
;
6599 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6600 return -TARGET_EFAULT
;
6603 l_type
= host_to_target_bitmask(fl
->l_type
, flock_tbl
);
6604 __put_user(l_type
, &target_fl
->l_type
);
6605 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6606 __put_user(fl
->l_start
, &target_fl
->l_start
);
6607 __put_user(fl
->l_len
, &target_fl
->l_len
);
6608 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6609 unlock_user_struct(target_fl
, target_flock_addr
, 1);
6614 static inline abi_long
copy_from_user_flock64(struct flock64
*fl
,
6615 abi_ulong target_flock_addr
)
6617 struct target_flock64
*target_fl
;
6620 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
6621 return -TARGET_EFAULT
;
6624 __get_user(l_type
, &target_fl
->l_type
);
6625 fl
->l_type
= target_to_host_bitmask(l_type
, flock_tbl
);
6626 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6627 __get_user(fl
->l_start
, &target_fl
->l_start
);
6628 __get_user(fl
->l_len
, &target_fl
->l_len
);
6629 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6630 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6634 static inline abi_long
copy_to_user_flock64(abi_ulong target_flock_addr
,
6635 const struct flock64
*fl
)
6637 struct target_flock64
*target_fl
;
6640 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6641 return -TARGET_EFAULT
;
6644 l_type
= host_to_target_bitmask(fl
->l_type
, flock_tbl
);
6645 __put_user(l_type
, &target_fl
->l_type
);
6646 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6647 __put_user(fl
->l_start
, &target_fl
->l_start
);
6648 __put_user(fl
->l_len
, &target_fl
->l_len
);
6649 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6650 unlock_user_struct(target_fl
, target_flock_addr
, 1);
6654 static abi_long
do_fcntl(int fd
, int cmd
, abi_ulong arg
)
6656 struct flock64 fl64
;
6658 struct f_owner_ex fox
;
6659 struct target_f_owner_ex
*target_fox
;
6662 int host_cmd
= target_to_host_fcntl_cmd(cmd
);
6664 if (host_cmd
== -TARGET_EINVAL
)
6668 case TARGET_F_GETLK
:
6669 ret
= copy_from_user_flock(&fl64
, arg
);
6673 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
6675 ret
= copy_to_user_flock(arg
, &fl64
);
6679 case TARGET_F_SETLK
:
6680 case TARGET_F_SETLKW
:
6681 ret
= copy_from_user_flock(&fl64
, arg
);
6685 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
6688 case TARGET_F_GETLK64
:
6689 ret
= copy_from_user_flock64(&fl64
, arg
);
6693 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
6695 ret
= copy_to_user_flock64(arg
, &fl64
);
6698 case TARGET_F_SETLK64
:
6699 case TARGET_F_SETLKW64
:
6700 ret
= copy_from_user_flock64(&fl64
, arg
);
6704 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
6707 case TARGET_F_GETFL
:
6708 ret
= get_errno(safe_fcntl(fd
, host_cmd
, arg
));
6710 ret
= host_to_target_bitmask(ret
, fcntl_flags_tbl
);
6714 case TARGET_F_SETFL
:
6715 ret
= get_errno(safe_fcntl(fd
, host_cmd
,
6716 target_to_host_bitmask(arg
,
6721 case TARGET_F_GETOWN_EX
:
6722 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fox
));
6724 if (!lock_user_struct(VERIFY_WRITE
, target_fox
, arg
, 0))
6725 return -TARGET_EFAULT
;
6726 target_fox
->type
= tswap32(fox
.type
);
6727 target_fox
->pid
= tswap32(fox
.pid
);
6728 unlock_user_struct(target_fox
, arg
, 1);
6734 case TARGET_F_SETOWN_EX
:
6735 if (!lock_user_struct(VERIFY_READ
, target_fox
, arg
, 1))
6736 return -TARGET_EFAULT
;
6737 fox
.type
= tswap32(target_fox
->type
);
6738 fox
.pid
= tswap32(target_fox
->pid
);
6739 unlock_user_struct(target_fox
, arg
, 0);
6740 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fox
));
6744 case TARGET_F_SETOWN
:
6745 case TARGET_F_GETOWN
:
6746 case TARGET_F_SETSIG
:
6747 case TARGET_F_GETSIG
:
6748 case TARGET_F_SETLEASE
:
6749 case TARGET_F_GETLEASE
:
6750 case TARGET_F_SETPIPE_SZ
:
6751 case TARGET_F_GETPIPE_SZ
:
6752 ret
= get_errno(safe_fcntl(fd
, host_cmd
, arg
));
6756 ret
= get_errno(safe_fcntl(fd
, cmd
, arg
));
6764 static inline int high2lowuid(int uid
)
6772 static inline int high2lowgid(int gid
)
6780 static inline int low2highuid(int uid
)
6782 if ((int16_t)uid
== -1)
6788 static inline int low2highgid(int gid
)
6790 if ((int16_t)gid
== -1)
6795 static inline int tswapid(int id
)
6800 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
6802 #else /* !USE_UID16 */
6803 static inline int high2lowuid(int uid
)
6807 static inline int high2lowgid(int gid
)
6811 static inline int low2highuid(int uid
)
6815 static inline int low2highgid(int gid
)
6819 static inline int tswapid(int id
)
6824 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
6826 #endif /* USE_UID16 */
6828 /* We must do direct syscalls for setting UID/GID, because we want to
6829 * implement the Linux system call semantics of "change only for this thread",
6830 * not the libc/POSIX semantics of "change for all threads in process".
6831 * (See http://ewontfix.com/17/ for more details.)
6832 * We use the 32-bit version of the syscalls if present; if it is not
6833 * then either the host architecture supports 32-bit UIDs natively with
6834 * the standard syscall, or the 16-bit UID is the best we can do.
6836 #ifdef __NR_setuid32
6837 #define __NR_sys_setuid __NR_setuid32
6839 #define __NR_sys_setuid __NR_setuid
6841 #ifdef __NR_setgid32
6842 #define __NR_sys_setgid __NR_setgid32
6844 #define __NR_sys_setgid __NR_setgid
6846 #ifdef __NR_setresuid32
6847 #define __NR_sys_setresuid __NR_setresuid32
6849 #define __NR_sys_setresuid __NR_setresuid
6851 #ifdef __NR_setresgid32
6852 #define __NR_sys_setresgid __NR_setresgid32
6854 #define __NR_sys_setresgid __NR_setresgid
6857 _syscall1(int, sys_setuid
, uid_t
, uid
)
6858 _syscall1(int, sys_setgid
, gid_t
, gid
)
6859 _syscall3(int, sys_setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
6860 _syscall3(int, sys_setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
6862 void syscall_init(void)
6865 const argtype
*arg_type
;
6869 thunk_init(STRUCT_MAX
);
6871 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
6872 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
6873 #include "syscall_types.h"
6875 #undef STRUCT_SPECIAL
6877 /* Build target_to_host_errno_table[] table from
6878 * host_to_target_errno_table[]. */
6879 for (i
= 0; i
< ERRNO_TABLE_SIZE
; i
++) {
6880 target_to_host_errno_table
[host_to_target_errno_table
[i
]] = i
;
6883 /* we patch the ioctl size if necessary. We rely on the fact that
6884 no ioctl has all the bits at '1' in the size field */
6886 while (ie
->target_cmd
!= 0) {
6887 if (((ie
->target_cmd
>> TARGET_IOC_SIZESHIFT
) & TARGET_IOC_SIZEMASK
) ==
6888 TARGET_IOC_SIZEMASK
) {
6889 arg_type
= ie
->arg_type
;
6890 if (arg_type
[0] != TYPE_PTR
) {
6891 fprintf(stderr
, "cannot patch size for ioctl 0x%x\n",
6896 size
= thunk_type_size(arg_type
, 0);
6897 ie
->target_cmd
= (ie
->target_cmd
&
6898 ~(TARGET_IOC_SIZEMASK
<< TARGET_IOC_SIZESHIFT
)) |
6899 (size
<< TARGET_IOC_SIZESHIFT
);
6902 /* automatic consistency check if same arch */
6903 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
6904 (defined(__x86_64__) && defined(TARGET_X86_64))
6905 if (unlikely(ie
->target_cmd
!= ie
->host_cmd
)) {
6906 fprintf(stderr
, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
6907 ie
->name
, ie
->target_cmd
, ie
->host_cmd
);
6914 #if TARGET_ABI_BITS == 32
6915 static inline uint64_t target_offset64(uint32_t word0
, uint32_t word1
)
6917 #ifdef TARGET_WORDS_BIGENDIAN
6918 return ((uint64_t)word0
<< 32) | word1
;
6920 return ((uint64_t)word1
<< 32) | word0
;
6923 #else /* TARGET_ABI_BITS == 32 */
6924 static inline uint64_t target_offset64(uint64_t word0
, uint64_t word1
)
6928 #endif /* TARGET_ABI_BITS != 32 */
6930 #ifdef TARGET_NR_truncate64
6931 static inline abi_long
target_truncate64(void *cpu_env
, const char *arg1
,
6936 if (regpairs_aligned(cpu_env
, TARGET_NR_truncate64
)) {
6940 return get_errno(truncate64(arg1
, target_offset64(arg2
, arg3
)));
6944 #ifdef TARGET_NR_ftruncate64
6945 static inline abi_long
target_ftruncate64(void *cpu_env
, abi_long arg1
,
6950 if (regpairs_aligned(cpu_env
, TARGET_NR_ftruncate64
)) {
6954 return get_errno(ftruncate64(arg1
, target_offset64(arg2
, arg3
)));
6958 static inline abi_long
target_to_host_timespec(struct timespec
*host_ts
,
6959 abi_ulong target_addr
)
6961 struct target_timespec
*target_ts
;
6963 if (!lock_user_struct(VERIFY_READ
, target_ts
, target_addr
, 1))
6964 return -TARGET_EFAULT
;
6965 __get_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
6966 __get_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
6967 unlock_user_struct(target_ts
, target_addr
, 0);
6971 static inline abi_long
host_to_target_timespec(abi_ulong target_addr
,
6972 struct timespec
*host_ts
)
6974 struct target_timespec
*target_ts
;
6976 if (!lock_user_struct(VERIFY_WRITE
, target_ts
, target_addr
, 0))
6977 return -TARGET_EFAULT
;
6978 __put_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
6979 __put_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
6980 unlock_user_struct(target_ts
, target_addr
, 1);
6984 static inline abi_long
target_to_host_itimerspec(struct itimerspec
*host_itspec
,
6985 abi_ulong target_addr
)
6987 struct target_itimerspec
*target_itspec
;
6989 if (!lock_user_struct(VERIFY_READ
, target_itspec
, target_addr
, 1)) {
6990 return -TARGET_EFAULT
;
6993 host_itspec
->it_interval
.tv_sec
=
6994 tswapal(target_itspec
->it_interval
.tv_sec
);
6995 host_itspec
->it_interval
.tv_nsec
=
6996 tswapal(target_itspec
->it_interval
.tv_nsec
);
6997 host_itspec
->it_value
.tv_sec
= tswapal(target_itspec
->it_value
.tv_sec
);
6998 host_itspec
->it_value
.tv_nsec
= tswapal(target_itspec
->it_value
.tv_nsec
);
7000 unlock_user_struct(target_itspec
, target_addr
, 1);
7004 static inline abi_long
host_to_target_itimerspec(abi_ulong target_addr
,
7005 struct itimerspec
*host_its
)
7007 struct target_itimerspec
*target_itspec
;
7009 if (!lock_user_struct(VERIFY_WRITE
, target_itspec
, target_addr
, 0)) {
7010 return -TARGET_EFAULT
;
7013 target_itspec
->it_interval
.tv_sec
= tswapal(host_its
->it_interval
.tv_sec
);
7014 target_itspec
->it_interval
.tv_nsec
= tswapal(host_its
->it_interval
.tv_nsec
);
7016 target_itspec
->it_value
.tv_sec
= tswapal(host_its
->it_value
.tv_sec
);
7017 target_itspec
->it_value
.tv_nsec
= tswapal(host_its
->it_value
.tv_nsec
);
7019 unlock_user_struct(target_itspec
, target_addr
, 0);
7023 static inline abi_long
target_to_host_timex(struct timex
*host_tx
,
7024 abi_long target_addr
)
7026 struct target_timex
*target_tx
;
7028 if (!lock_user_struct(VERIFY_READ
, target_tx
, target_addr
, 1)) {
7029 return -TARGET_EFAULT
;
7032 __get_user(host_tx
->modes
, &target_tx
->modes
);
7033 __get_user(host_tx
->offset
, &target_tx
->offset
);
7034 __get_user(host_tx
->freq
, &target_tx
->freq
);
7035 __get_user(host_tx
->maxerror
, &target_tx
->maxerror
);
7036 __get_user(host_tx
->esterror
, &target_tx
->esterror
);
7037 __get_user(host_tx
->status
, &target_tx
->status
);
7038 __get_user(host_tx
->constant
, &target_tx
->constant
);
7039 __get_user(host_tx
->precision
, &target_tx
->precision
);
7040 __get_user(host_tx
->tolerance
, &target_tx
->tolerance
);
7041 __get_user(host_tx
->time
.tv_sec
, &target_tx
->time
.tv_sec
);
7042 __get_user(host_tx
->time
.tv_usec
, &target_tx
->time
.tv_usec
);
7043 __get_user(host_tx
->tick
, &target_tx
->tick
);
7044 __get_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
7045 __get_user(host_tx
->jitter
, &target_tx
->jitter
);
7046 __get_user(host_tx
->shift
, &target_tx
->shift
);
7047 __get_user(host_tx
->stabil
, &target_tx
->stabil
);
7048 __get_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
7049 __get_user(host_tx
->calcnt
, &target_tx
->calcnt
);
7050 __get_user(host_tx
->errcnt
, &target_tx
->errcnt
);
7051 __get_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
7052 __get_user(host_tx
->tai
, &target_tx
->tai
);
7054 unlock_user_struct(target_tx
, target_addr
, 0);
7058 static inline abi_long
host_to_target_timex(abi_long target_addr
,
7059 struct timex
*host_tx
)
7061 struct target_timex
*target_tx
;
7063 if (!lock_user_struct(VERIFY_WRITE
, target_tx
, target_addr
, 0)) {
7064 return -TARGET_EFAULT
;
7067 __put_user(host_tx
->modes
, &target_tx
->modes
);
7068 __put_user(host_tx
->offset
, &target_tx
->offset
);
7069 __put_user(host_tx
->freq
, &target_tx
->freq
);
7070 __put_user(host_tx
->maxerror
, &target_tx
->maxerror
);
7071 __put_user(host_tx
->esterror
, &target_tx
->esterror
);
7072 __put_user(host_tx
->status
, &target_tx
->status
);
7073 __put_user(host_tx
->constant
, &target_tx
->constant
);
7074 __put_user(host_tx
->precision
, &target_tx
->precision
);
7075 __put_user(host_tx
->tolerance
, &target_tx
->tolerance
);
7076 __put_user(host_tx
->time
.tv_sec
, &target_tx
->time
.tv_sec
);
7077 __put_user(host_tx
->time
.tv_usec
, &target_tx
->time
.tv_usec
);
7078 __put_user(host_tx
->tick
, &target_tx
->tick
);
7079 __put_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
7080 __put_user(host_tx
->jitter
, &target_tx
->jitter
);
7081 __put_user(host_tx
->shift
, &target_tx
->shift
);
7082 __put_user(host_tx
->stabil
, &target_tx
->stabil
);
7083 __put_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
7084 __put_user(host_tx
->calcnt
, &target_tx
->calcnt
);
7085 __put_user(host_tx
->errcnt
, &target_tx
->errcnt
);
7086 __put_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
7087 __put_user(host_tx
->tai
, &target_tx
->tai
);
7089 unlock_user_struct(target_tx
, target_addr
, 1);
7094 static inline abi_long
target_to_host_sigevent(struct sigevent
*host_sevp
,
7095 abi_ulong target_addr
)
7097 struct target_sigevent
*target_sevp
;
7099 if (!lock_user_struct(VERIFY_READ
, target_sevp
, target_addr
, 1)) {
7100 return -TARGET_EFAULT
;
7103 /* This union is awkward on 64 bit systems because it has a 32 bit
7104 * integer and a pointer in it; we follow the conversion approach
7105 * used for handling sigval types in signal.c so the guest should get
7106 * the correct value back even if we did a 64 bit byteswap and it's
7107 * using the 32 bit integer.
7109 host_sevp
->sigev_value
.sival_ptr
=
7110 (void *)(uintptr_t)tswapal(target_sevp
->sigev_value
.sival_ptr
);
7111 host_sevp
->sigev_signo
=
7112 target_to_host_signal(tswap32(target_sevp
->sigev_signo
));
7113 host_sevp
->sigev_notify
= tswap32(target_sevp
->sigev_notify
);
7114 host_sevp
->_sigev_un
._tid
= tswap32(target_sevp
->_sigev_un
._tid
);
7116 unlock_user_struct(target_sevp
, target_addr
, 1);
7120 #if defined(TARGET_NR_mlockall)
7121 static inline int target_to_host_mlockall_arg(int arg
)
7125 if (arg
& TARGET_MLOCKALL_MCL_CURRENT
) {
7126 result
|= MCL_CURRENT
;
7128 if (arg
& TARGET_MLOCKALL_MCL_FUTURE
) {
7129 result
|= MCL_FUTURE
;
7135 static inline abi_long
host_to_target_stat64(void *cpu_env
,
7136 abi_ulong target_addr
,
7137 struct stat
*host_st
)
7139 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7140 if (((CPUARMState
*)cpu_env
)->eabi
) {
7141 struct target_eabi_stat64
*target_st
;
7143 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
7144 return -TARGET_EFAULT
;
7145 memset(target_st
, 0, sizeof(struct target_eabi_stat64
));
7146 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
7147 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
7148 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7149 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
7151 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
7152 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
7153 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
7154 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
7155 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
7156 __put_user(host_st
->st_size
, &target_st
->st_size
);
7157 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
7158 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
7159 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
7160 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
7161 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
7162 unlock_user_struct(target_st
, target_addr
, 1);
7166 #if defined(TARGET_HAS_STRUCT_STAT64)
7167 struct target_stat64
*target_st
;
7169 struct target_stat
*target_st
;
7172 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
7173 return -TARGET_EFAULT
;
7174 memset(target_st
, 0, sizeof(*target_st
));
7175 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
7176 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
7177 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7178 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
7180 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
7181 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
7182 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
7183 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
7184 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
7185 /* XXX: better use of kernel struct */
7186 __put_user(host_st
->st_size
, &target_st
->st_size
);
7187 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
7188 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
7189 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
7190 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
7191 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
7192 unlock_user_struct(target_st
, target_addr
, 1);
7198 /* ??? Using host futex calls even when target atomic operations
7199 are not really atomic probably breaks things. However implementing
7200 futexes locally would make futexes shared between multiple processes
7201 tricky. However they're probably useless because guest atomic
7202 operations won't work either. */
7203 static int do_futex(target_ulong uaddr
, int op
, int val
, target_ulong timeout
,
7204 target_ulong uaddr2
, int val3
)
7206 struct timespec ts
, *pts
;
7209 /* ??? We assume FUTEX_* constants are the same on both host
7211 #ifdef FUTEX_CMD_MASK
7212 base_op
= op
& FUTEX_CMD_MASK
;
7218 case FUTEX_WAIT_BITSET
:
7221 target_to_host_timespec(pts
, timeout
);
7225 return get_errno(safe_futex(g2h(uaddr
), op
, tswap32(val
),
7228 return get_errno(safe_futex(g2h(uaddr
), op
, val
, NULL
, NULL
, 0));
7230 return get_errno(safe_futex(g2h(uaddr
), op
, val
, NULL
, NULL
, 0));
7232 case FUTEX_CMP_REQUEUE
:
7234 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7235 TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7236 But the prototype takes a `struct timespec *'; insert casts
7237 to satisfy the compiler. We do not need to tswap TIMEOUT
7238 since it's not compared to guest memory. */
7239 pts
= (struct timespec
*)(uintptr_t) timeout
;
7240 return get_errno(safe_futex(g2h(uaddr
), op
, val
, pts
,
7242 (base_op
== FUTEX_CMP_REQUEUE
7246 return -TARGET_ENOSYS
;
7249 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7250 static abi_long
do_name_to_handle_at(abi_long dirfd
, abi_long pathname
,
7251 abi_long handle
, abi_long mount_id
,
7254 struct file_handle
*target_fh
;
7255 struct file_handle
*fh
;
7259 unsigned int size
, total_size
;
7261 if (get_user_s32(size
, handle
)) {
7262 return -TARGET_EFAULT
;
7265 name
= lock_user_string(pathname
);
7267 return -TARGET_EFAULT
;
7270 total_size
= sizeof(struct file_handle
) + size
;
7271 target_fh
= lock_user(VERIFY_WRITE
, handle
, total_size
, 0);
7273 unlock_user(name
, pathname
, 0);
7274 return -TARGET_EFAULT
;
7277 fh
= g_malloc0(total_size
);
7278 fh
->handle_bytes
= size
;
7280 ret
= get_errno(name_to_handle_at(dirfd
, path(name
), fh
, &mid
, flags
));
7281 unlock_user(name
, pathname
, 0);
7283 /* man name_to_handle_at(2):
7284 * Other than the use of the handle_bytes field, the caller should treat
7285 * the file_handle structure as an opaque data type
7288 memcpy(target_fh
, fh
, total_size
);
7289 target_fh
->handle_bytes
= tswap32(fh
->handle_bytes
);
7290 target_fh
->handle_type
= tswap32(fh
->handle_type
);
7292 unlock_user(target_fh
, handle
, total_size
);
7294 if (put_user_s32(mid
, mount_id
)) {
7295 return -TARGET_EFAULT
;
7303 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7304 static abi_long
do_open_by_handle_at(abi_long mount_fd
, abi_long handle
,
7307 struct file_handle
*target_fh
;
7308 struct file_handle
*fh
;
7309 unsigned int size
, total_size
;
7312 if (get_user_s32(size
, handle
)) {
7313 return -TARGET_EFAULT
;
7316 total_size
= sizeof(struct file_handle
) + size
;
7317 target_fh
= lock_user(VERIFY_READ
, handle
, total_size
, 1);
7319 return -TARGET_EFAULT
;
7322 fh
= g_memdup(target_fh
, total_size
);
7323 fh
->handle_bytes
= size
;
7324 fh
->handle_type
= tswap32(target_fh
->handle_type
);
7326 ret
= get_errno(open_by_handle_at(mount_fd
, fh
,
7327 target_to_host_bitmask(flags
, fcntl_flags_tbl
)));
7331 unlock_user(target_fh
, handle
, total_size
);
7337 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7339 /* signalfd siginfo conversion */
7342 host_to_target_signalfd_siginfo(struct signalfd_siginfo
*tinfo
,
7343 const struct signalfd_siginfo
*info
)
7345 int sig
= host_to_target_signal(info
->ssi_signo
);
7347 /* linux/signalfd.h defines a ssi_addr_lsb
7348 * not defined in sys/signalfd.h but used by some kernels
7351 #ifdef BUS_MCEERR_AO
7352 if (tinfo
->ssi_signo
== SIGBUS
&&
7353 (tinfo
->ssi_code
== BUS_MCEERR_AR
||
7354 tinfo
->ssi_code
== BUS_MCEERR_AO
)) {
7355 uint16_t *ssi_addr_lsb
= (uint16_t *)(&info
->ssi_addr
+ 1);
7356 uint16_t *tssi_addr_lsb
= (uint16_t *)(&tinfo
->ssi_addr
+ 1);
7357 *tssi_addr_lsb
= tswap16(*ssi_addr_lsb
);
7361 tinfo
->ssi_signo
= tswap32(sig
);
7362 tinfo
->ssi_errno
= tswap32(tinfo
->ssi_errno
);
7363 tinfo
->ssi_code
= tswap32(info
->ssi_code
);
7364 tinfo
->ssi_pid
= tswap32(info
->ssi_pid
);
7365 tinfo
->ssi_uid
= tswap32(info
->ssi_uid
);
7366 tinfo
->ssi_fd
= tswap32(info
->ssi_fd
);
7367 tinfo
->ssi_tid
= tswap32(info
->ssi_tid
);
7368 tinfo
->ssi_band
= tswap32(info
->ssi_band
);
7369 tinfo
->ssi_overrun
= tswap32(info
->ssi_overrun
);
7370 tinfo
->ssi_trapno
= tswap32(info
->ssi_trapno
);
7371 tinfo
->ssi_status
= tswap32(info
->ssi_status
);
7372 tinfo
->ssi_int
= tswap32(info
->ssi_int
);
7373 tinfo
->ssi_ptr
= tswap64(info
->ssi_ptr
);
7374 tinfo
->ssi_utime
= tswap64(info
->ssi_utime
);
7375 tinfo
->ssi_stime
= tswap64(info
->ssi_stime
);
7376 tinfo
->ssi_addr
= tswap64(info
->ssi_addr
);
7379 static abi_long
host_to_target_data_signalfd(void *buf
, size_t len
)
7383 for (i
= 0; i
< len
; i
+= sizeof(struct signalfd_siginfo
)) {
7384 host_to_target_signalfd_siginfo(buf
+ i
, buf
+ i
);
7390 static TargetFdTrans target_signalfd_trans
= {
7391 .host_to_target_data
= host_to_target_data_signalfd
,
7394 static abi_long
do_signalfd4(int fd
, abi_long mask
, int flags
)
7397 target_sigset_t
*target_mask
;
7401 if (flags
& ~(TARGET_O_NONBLOCK
| TARGET_O_CLOEXEC
)) {
7402 return -TARGET_EINVAL
;
7404 if (!lock_user_struct(VERIFY_READ
, target_mask
, mask
, 1)) {
7405 return -TARGET_EFAULT
;
7408 target_to_host_sigset(&host_mask
, target_mask
);
7410 host_flags
= target_to_host_bitmask(flags
, fcntl_flags_tbl
);
7412 ret
= get_errno(signalfd(fd
, &host_mask
, host_flags
));
7414 fd_trans_register(ret
, &target_signalfd_trans
);
7417 unlock_user_struct(target_mask
, mask
, 0);
7423 /* Map host to target signal numbers for the wait family of syscalls.
7424 Assume all other status bits are the same. */
7425 int host_to_target_waitstatus(int status
)
7427 if (WIFSIGNALED(status
)) {
7428 return host_to_target_signal(WTERMSIG(status
)) | (status
& ~0x7f);
7430 if (WIFSTOPPED(status
)) {
7431 return (host_to_target_signal(WSTOPSIG(status
)) << 8)
7437 static int open_self_cmdline(void *cpu_env
, int fd
)
7439 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)cpu_env
);
7440 struct linux_binprm
*bprm
= ((TaskState
*)cpu
->opaque
)->bprm
;
7443 for (i
= 0; i
< bprm
->argc
; i
++) {
7444 size_t len
= strlen(bprm
->argv
[i
]) + 1;
7446 if (write(fd
, bprm
->argv
[i
], len
) != len
) {
7454 static int open_self_maps(void *cpu_env
, int fd
)
7456 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)cpu_env
);
7457 TaskState
*ts
= cpu
->opaque
;
7463 fp
= fopen("/proc/self/maps", "r");
7468 while ((read
= getline(&line
, &len
, fp
)) != -1) {
7469 int fields
, dev_maj
, dev_min
, inode
;
7470 uint64_t min
, max
, offset
;
7471 char flag_r
, flag_w
, flag_x
, flag_p
;
7472 char path
[512] = "";
7473 fields
= sscanf(line
, "%"PRIx64
"-%"PRIx64
" %c%c%c%c %"PRIx64
" %x:%x %d"
7474 " %512s", &min
, &max
, &flag_r
, &flag_w
, &flag_x
,
7475 &flag_p
, &offset
, &dev_maj
, &dev_min
, &inode
, path
);
7477 if ((fields
< 10) || (fields
> 11)) {
7480 if (h2g_valid(min
)) {
7481 int flags
= page_get_flags(h2g(min
));
7482 max
= h2g_valid(max
- 1) ? max
: (uintptr_t)g2h(GUEST_ADDR_MAX
) + 1;
7483 if (page_check_range(h2g(min
), max
- min
, flags
) == -1) {
7486 if (h2g(min
) == ts
->info
->stack_limit
) {
7487 pstrcpy(path
, sizeof(path
), " [stack]");
7489 dprintf(fd
, TARGET_ABI_FMT_lx
"-" TARGET_ABI_FMT_lx
7490 " %c%c%c%c %08" PRIx64
" %02x:%02x %d %s%s\n",
7491 h2g(min
), h2g(max
- 1) + 1, flag_r
, flag_w
,
7492 flag_x
, flag_p
, offset
, dev_maj
, dev_min
, inode
,
7493 path
[0] ? " " : "", path
);
7503 static int open_self_stat(void *cpu_env
, int fd
)
7505 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)cpu_env
);
7506 TaskState
*ts
= cpu
->opaque
;
7507 abi_ulong start_stack
= ts
->info
->start_stack
;
7510 for (i
= 0; i
< 44; i
++) {
7518 snprintf(buf
, sizeof(buf
), "%"PRId64
" ", val
);
7519 } else if (i
== 1) {
7521 snprintf(buf
, sizeof(buf
), "(%s) ", ts
->bprm
->argv
[0]);
7522 } else if (i
== 27) {
7525 snprintf(buf
, sizeof(buf
), "%"PRId64
" ", val
);
7527 /* for the rest, there is MasterCard */
7528 snprintf(buf
, sizeof(buf
), "0%c", i
== 43 ? '\n' : ' ');
7532 if (write(fd
, buf
, len
) != len
) {
7540 static int open_self_auxv(void *cpu_env
, int fd
)
7542 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)cpu_env
);
7543 TaskState
*ts
= cpu
->opaque
;
7544 abi_ulong auxv
= ts
->info
->saved_auxv
;
7545 abi_ulong len
= ts
->info
->auxv_len
;
7549 * Auxiliary vector is stored in target process stack.
7550 * read in whole auxv vector and copy it to file
7552 ptr
= lock_user(VERIFY_READ
, auxv
, len
, 0);
7556 r
= write(fd
, ptr
, len
);
7563 lseek(fd
, 0, SEEK_SET
);
7564 unlock_user(ptr
, auxv
, len
);
7570 static int is_proc_myself(const char *filename
, const char *entry
)
7572 if (!strncmp(filename
, "/proc/", strlen("/proc/"))) {
7573 filename
+= strlen("/proc/");
7574 if (!strncmp(filename
, "self/", strlen("self/"))) {
7575 filename
+= strlen("self/");
7576 } else if (*filename
>= '1' && *filename
<= '9') {
7578 snprintf(myself
, sizeof(myself
), "%d/", getpid());
7579 if (!strncmp(filename
, myself
, strlen(myself
))) {
7580 filename
+= strlen(myself
);
7587 if (!strcmp(filename
, entry
)) {
7594 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7595 static int is_proc(const char *filename
, const char *entry
)
7597 return strcmp(filename
, entry
) == 0;
7600 static int open_net_route(void *cpu_env
, int fd
)
7607 fp
= fopen("/proc/net/route", "r");
7614 read
= getline(&line
, &len
, fp
);
7615 dprintf(fd
, "%s", line
);
7619 while ((read
= getline(&line
, &len
, fp
)) != -1) {
7621 uint32_t dest
, gw
, mask
;
7622 unsigned int flags
, refcnt
, use
, metric
, mtu
, window
, irtt
;
7623 sscanf(line
, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7624 iface
, &dest
, &gw
, &flags
, &refcnt
, &use
, &metric
,
7625 &mask
, &mtu
, &window
, &irtt
);
7626 dprintf(fd
, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7627 iface
, tswap32(dest
), tswap32(gw
), flags
, refcnt
, use
,
7628 metric
, tswap32(mask
), mtu
, window
, irtt
);
7638 static int do_openat(void *cpu_env
, int dirfd
, const char *pathname
, int flags
, mode_t mode
)
7641 const char *filename
;
7642 int (*fill
)(void *cpu_env
, int fd
);
7643 int (*cmp
)(const char *s1
, const char *s2
);
7645 const struct fake_open
*fake_open
;
7646 static const struct fake_open fakes
[] = {
7647 { "maps", open_self_maps
, is_proc_myself
},
7648 { "stat", open_self_stat
, is_proc_myself
},
7649 { "auxv", open_self_auxv
, is_proc_myself
},
7650 { "cmdline", open_self_cmdline
, is_proc_myself
},
7651 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7652 { "/proc/net/route", open_net_route
, is_proc
},
7654 { NULL
, NULL
, NULL
}
7657 if (is_proc_myself(pathname
, "exe")) {
7658 int execfd
= qemu_getauxval(AT_EXECFD
);
7659 return execfd
? execfd
: safe_openat(dirfd
, exec_path
, flags
, mode
);
7662 for (fake_open
= fakes
; fake_open
->filename
; fake_open
++) {
7663 if (fake_open
->cmp(pathname
, fake_open
->filename
)) {
7668 if (fake_open
->filename
) {
7670 char filename
[PATH_MAX
];
7673 /* create temporary file to map stat to */
7674 tmpdir
= getenv("TMPDIR");
7677 snprintf(filename
, sizeof(filename
), "%s/qemu-open.XXXXXX", tmpdir
);
7678 fd
= mkstemp(filename
);
7684 if ((r
= fake_open
->fill(cpu_env
, fd
))) {
7690 lseek(fd
, 0, SEEK_SET
);
7695 return safe_openat(dirfd
, path(pathname
), flags
, mode
);
7698 #define TIMER_MAGIC 0x0caf0000
7699 #define TIMER_MAGIC_MASK 0xffff0000
7701 /* Convert QEMU provided timer ID back to internal 16bit index format */
7702 static target_timer_t
get_timer_id(abi_long arg
)
7704 target_timer_t timerid
= arg
;
7706 if ((timerid
& TIMER_MAGIC_MASK
) != TIMER_MAGIC
) {
7707 return -TARGET_EINVAL
;
7712 if (timerid
>= ARRAY_SIZE(g_posix_timers
)) {
7713 return -TARGET_EINVAL
;
7719 static abi_long
swap_data_eventfd(void *buf
, size_t len
)
7721 uint64_t *counter
= buf
;
7724 if (len
< sizeof(uint64_t)) {
7728 for (i
= 0; i
< len
; i
+= sizeof(uint64_t)) {
7729 *counter
= tswap64(*counter
);
7736 static TargetFdTrans target_eventfd_trans
= {
7737 .host_to_target_data
= swap_data_eventfd
,
7738 .target_to_host_data
= swap_data_eventfd
,
7741 #if (defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)) || \
7742 (defined(CONFIG_INOTIFY1) && defined(TARGET_NR_inotify_init1) && \
7743 defined(__NR_inotify_init1))
7744 static abi_long
host_to_target_data_inotify(void *buf
, size_t len
)
7746 struct inotify_event
*ev
;
7750 for (i
= 0; i
< len
; i
+= sizeof(struct inotify_event
) + name_len
) {
7751 ev
= (struct inotify_event
*)((char *)buf
+ i
);
7754 ev
->wd
= tswap32(ev
->wd
);
7755 ev
->mask
= tswap32(ev
->mask
);
7756 ev
->cookie
= tswap32(ev
->cookie
);
7757 ev
->len
= tswap32(name_len
);
7763 static TargetFdTrans target_inotify_trans
= {
7764 .host_to_target_data
= host_to_target_data_inotify
,
7768 static int target_to_host_cpu_mask(unsigned long *host_mask
,
7770 abi_ulong target_addr
,
7773 unsigned target_bits
= sizeof(abi_ulong
) * 8;
7774 unsigned host_bits
= sizeof(*host_mask
) * 8;
7775 abi_ulong
*target_mask
;
7778 assert(host_size
>= target_size
);
7780 target_mask
= lock_user(VERIFY_READ
, target_addr
, target_size
, 1);
7782 return -TARGET_EFAULT
;
7784 memset(host_mask
, 0, host_size
);
7786 for (i
= 0 ; i
< target_size
/ sizeof(abi_ulong
); i
++) {
7787 unsigned bit
= i
* target_bits
;
7790 __get_user(val
, &target_mask
[i
]);
7791 for (j
= 0; j
< target_bits
; j
++, bit
++) {
7792 if (val
& (1UL << j
)) {
7793 host_mask
[bit
/ host_bits
] |= 1UL << (bit
% host_bits
);
7798 unlock_user(target_mask
, target_addr
, 0);
7802 static int host_to_target_cpu_mask(const unsigned long *host_mask
,
7804 abi_ulong target_addr
,
7807 unsigned target_bits
= sizeof(abi_ulong
) * 8;
7808 unsigned host_bits
= sizeof(*host_mask
) * 8;
7809 abi_ulong
*target_mask
;
7812 assert(host_size
>= target_size
);
7814 target_mask
= lock_user(VERIFY_WRITE
, target_addr
, target_size
, 0);
7816 return -TARGET_EFAULT
;
7819 for (i
= 0 ; i
< target_size
/ sizeof(abi_ulong
); i
++) {
7820 unsigned bit
= i
* target_bits
;
7823 for (j
= 0; j
< target_bits
; j
++, bit
++) {
7824 if (host_mask
[bit
/ host_bits
] & (1UL << (bit
% host_bits
))) {
7828 __put_user(val
, &target_mask
[i
]);
7831 unlock_user(target_mask
, target_addr
, target_size
);
7835 /* do_syscall() should always have a single exit point at the end so
7836 that actions, such as logging of syscall results, can be performed.
7837 All errnos that do_syscall() returns must be -TARGET_<errcode>. */
7838 abi_long
do_syscall(void *cpu_env
, int num
, abi_long arg1
,
7839 abi_long arg2
, abi_long arg3
, abi_long arg4
,
7840 abi_long arg5
, abi_long arg6
, abi_long arg7
,
7843 CPUState
*cpu
= ENV_GET_CPU(cpu_env
);
7849 #if defined(DEBUG_ERESTARTSYS)
7850 /* Debug-only code for exercising the syscall-restart code paths
7851 * in the per-architecture cpu main loops: restart every syscall
7852 * the guest makes once before letting it through.
7859 return -TARGET_ERESTARTSYS
;
7865 gemu_log("syscall %d", num
);
7867 trace_guest_user_syscall(cpu
, num
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
, arg7
, arg8
);
7869 print_syscall(num
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
7872 case TARGET_NR_exit
:
7873 /* In old applications this may be used to implement _exit(2).
7874 However in threaded applictions it is used for thread termination,
7875 and _exit_group is used for application termination.
7876 Do thread termination if we have more then one thread. */
7878 if (block_signals()) {
7879 ret
= -TARGET_ERESTARTSYS
;
7885 if (CPU_NEXT(first_cpu
)) {
7888 /* Remove the CPU from the list. */
7889 QTAILQ_REMOVE(&cpus
, cpu
, node
);
7894 if (ts
->child_tidptr
) {
7895 put_user_u32(0, ts
->child_tidptr
);
7896 sys_futex(g2h(ts
->child_tidptr
), FUTEX_WAKE
, INT_MAX
,
7900 object_unref(OBJECT(cpu
));
7902 rcu_unregister_thread();
7910 gdb_exit(cpu_env
, arg1
);
7912 ret
= 0; /* avoid warning */
7914 case TARGET_NR_read
:
7918 if (!(p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0)))
7920 ret
= get_errno(safe_read(arg1
, p
, arg3
));
7922 fd_trans_host_to_target_data(arg1
)) {
7923 ret
= fd_trans_host_to_target_data(arg1
)(p
, ret
);
7925 unlock_user(p
, arg2
, ret
);
7928 case TARGET_NR_write
:
7929 if (!(p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1)))
7931 if (fd_trans_target_to_host_data(arg1
)) {
7932 void *copy
= g_malloc(arg3
);
7933 memcpy(copy
, p
, arg3
);
7934 ret
= fd_trans_target_to_host_data(arg1
)(copy
, arg3
);
7936 ret
= get_errno(safe_write(arg1
, copy
, ret
));
7940 ret
= get_errno(safe_write(arg1
, p
, arg3
));
7942 unlock_user(p
, arg2
, 0);
7944 #ifdef TARGET_NR_open
7945 case TARGET_NR_open
:
7946 if (!(p
= lock_user_string(arg1
)))
7948 ret
= get_errno(do_openat(cpu_env
, AT_FDCWD
, p
,
7949 target_to_host_bitmask(arg2
, fcntl_flags_tbl
),
7951 fd_trans_unregister(ret
);
7952 unlock_user(p
, arg1
, 0);
7955 case TARGET_NR_openat
:
7956 if (!(p
= lock_user_string(arg2
)))
7958 ret
= get_errno(do_openat(cpu_env
, arg1
, p
,
7959 target_to_host_bitmask(arg3
, fcntl_flags_tbl
),
7961 fd_trans_unregister(ret
);
7962 unlock_user(p
, arg2
, 0);
7964 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7965 case TARGET_NR_name_to_handle_at
:
7966 ret
= do_name_to_handle_at(arg1
, arg2
, arg3
, arg4
, arg5
);
7969 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7970 case TARGET_NR_open_by_handle_at
:
7971 ret
= do_open_by_handle_at(arg1
, arg2
, arg3
);
7972 fd_trans_unregister(ret
);
7975 case TARGET_NR_close
:
7976 fd_trans_unregister(arg1
);
7977 ret
= get_errno(close(arg1
));
7982 #ifdef TARGET_NR_fork
7983 case TARGET_NR_fork
:
7984 ret
= get_errno(do_fork(cpu_env
, TARGET_SIGCHLD
, 0, 0, 0, 0));
7987 #ifdef TARGET_NR_waitpid
7988 case TARGET_NR_waitpid
:
7991 ret
= get_errno(safe_wait4(arg1
, &status
, arg3
, 0));
7992 if (!is_error(ret
) && arg2
&& ret
7993 && put_user_s32(host_to_target_waitstatus(status
), arg2
))
7998 #ifdef TARGET_NR_waitid
7999 case TARGET_NR_waitid
:
8003 ret
= get_errno(safe_waitid(arg1
, arg2
, &info
, arg4
, NULL
));
8004 if (!is_error(ret
) && arg3
&& info
.si_pid
!= 0) {
8005 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_siginfo_t
), 0)))
8007 host_to_target_siginfo(p
, &info
);
8008 unlock_user(p
, arg3
, sizeof(target_siginfo_t
));
8013 #ifdef TARGET_NR_creat /* not on alpha */
8014 case TARGET_NR_creat
:
8015 if (!(p
= lock_user_string(arg1
)))
8017 ret
= get_errno(creat(p
, arg2
));
8018 fd_trans_unregister(ret
);
8019 unlock_user(p
, arg1
, 0);
8022 #ifdef TARGET_NR_link
8023 case TARGET_NR_link
:
8026 p
= lock_user_string(arg1
);
8027 p2
= lock_user_string(arg2
);
8029 ret
= -TARGET_EFAULT
;
8031 ret
= get_errno(link(p
, p2
));
8032 unlock_user(p2
, arg2
, 0);
8033 unlock_user(p
, arg1
, 0);
8037 #if defined(TARGET_NR_linkat)
8038 case TARGET_NR_linkat
:
8043 p
= lock_user_string(arg2
);
8044 p2
= lock_user_string(arg4
);
8046 ret
= -TARGET_EFAULT
;
8048 ret
= get_errno(linkat(arg1
, p
, arg3
, p2
, arg5
));
8049 unlock_user(p
, arg2
, 0);
8050 unlock_user(p2
, arg4
, 0);
8054 #ifdef TARGET_NR_unlink
8055 case TARGET_NR_unlink
:
8056 if (!(p
= lock_user_string(arg1
)))
8058 ret
= get_errno(unlink(p
));
8059 unlock_user(p
, arg1
, 0);
8062 #if defined(TARGET_NR_unlinkat)
8063 case TARGET_NR_unlinkat
:
8064 if (!(p
= lock_user_string(arg2
)))
8066 ret
= get_errno(unlinkat(arg1
, p
, arg3
));
8067 unlock_user(p
, arg2
, 0);
8070 case TARGET_NR_execve
:
8072 char **argp
, **envp
;
8075 abi_ulong guest_argp
;
8076 abi_ulong guest_envp
;
8083 for (gp
= guest_argp
; gp
; gp
+= sizeof(abi_ulong
)) {
8084 if (get_user_ual(addr
, gp
))
8092 for (gp
= guest_envp
; gp
; gp
+= sizeof(abi_ulong
)) {
8093 if (get_user_ual(addr
, gp
))
8100 argp
= g_new0(char *, argc
+ 1);
8101 envp
= g_new0(char *, envc
+ 1);
8103 for (gp
= guest_argp
, q
= argp
; gp
;
8104 gp
+= sizeof(abi_ulong
), q
++) {
8105 if (get_user_ual(addr
, gp
))
8109 if (!(*q
= lock_user_string(addr
)))
8111 total_size
+= strlen(*q
) + 1;
8115 for (gp
= guest_envp
, q
= envp
; gp
;
8116 gp
+= sizeof(abi_ulong
), q
++) {
8117 if (get_user_ual(addr
, gp
))
8121 if (!(*q
= lock_user_string(addr
)))
8123 total_size
+= strlen(*q
) + 1;
8127 if (!(p
= lock_user_string(arg1
)))
8129 /* Although execve() is not an interruptible syscall it is
8130 * a special case where we must use the safe_syscall wrapper:
8131 * if we allow a signal to happen before we make the host
8132 * syscall then we will 'lose' it, because at the point of
8133 * execve the process leaves QEMU's control. So we use the
8134 * safe syscall wrapper to ensure that we either take the
8135 * signal as a guest signal, or else it does not happen
8136 * before the execve completes and makes it the other
8137 * program's problem.
8139 ret
= get_errno(safe_execve(p
, argp
, envp
));
8140 unlock_user(p
, arg1
, 0);
8145 ret
= -TARGET_EFAULT
;
8148 for (gp
= guest_argp
, q
= argp
; *q
;
8149 gp
+= sizeof(abi_ulong
), q
++) {
8150 if (get_user_ual(addr
, gp
)
8153 unlock_user(*q
, addr
, 0);
8155 for (gp
= guest_envp
, q
= envp
; *q
;
8156 gp
+= sizeof(abi_ulong
), q
++) {
8157 if (get_user_ual(addr
, gp
)
8160 unlock_user(*q
, addr
, 0);
8167 case TARGET_NR_chdir
:
8168 if (!(p
= lock_user_string(arg1
)))
8170 ret
= get_errno(chdir(p
));
8171 unlock_user(p
, arg1
, 0);
8173 #ifdef TARGET_NR_time
8174 case TARGET_NR_time
:
8177 ret
= get_errno(time(&host_time
));
8180 && put_user_sal(host_time
, arg1
))
8185 #ifdef TARGET_NR_mknod
8186 case TARGET_NR_mknod
:
8187 if (!(p
= lock_user_string(arg1
)))
8189 ret
= get_errno(mknod(p
, arg2
, arg3
));
8190 unlock_user(p
, arg1
, 0);
8193 #if defined(TARGET_NR_mknodat)
8194 case TARGET_NR_mknodat
:
8195 if (!(p
= lock_user_string(arg2
)))
8197 ret
= get_errno(mknodat(arg1
, p
, arg3
, arg4
));
8198 unlock_user(p
, arg2
, 0);
8201 #ifdef TARGET_NR_chmod
8202 case TARGET_NR_chmod
:
8203 if (!(p
= lock_user_string(arg1
)))
8205 ret
= get_errno(chmod(p
, arg2
));
8206 unlock_user(p
, arg1
, 0);
8209 #ifdef TARGET_NR_break
8210 case TARGET_NR_break
:
8213 #ifdef TARGET_NR_oldstat
8214 case TARGET_NR_oldstat
:
8217 case TARGET_NR_lseek
:
8218 ret
= get_errno(lseek(arg1
, arg2
, arg3
));
8220 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
8221 /* Alpha specific */
8222 case TARGET_NR_getxpid
:
8223 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
] = getppid();
8224 ret
= get_errno(getpid());
8227 #ifdef TARGET_NR_getpid
8228 case TARGET_NR_getpid
:
8229 ret
= get_errno(getpid());
8232 case TARGET_NR_mount
:
8234 /* need to look at the data field */
8238 p
= lock_user_string(arg1
);
8246 p2
= lock_user_string(arg2
);
8249 unlock_user(p
, arg1
, 0);
8255 p3
= lock_user_string(arg3
);
8258 unlock_user(p
, arg1
, 0);
8260 unlock_user(p2
, arg2
, 0);
8267 /* FIXME - arg5 should be locked, but it isn't clear how to
8268 * do that since it's not guaranteed to be a NULL-terminated
8272 ret
= mount(p
, p2
, p3
, (unsigned long)arg4
, NULL
);
8274 ret
= mount(p
, p2
, p3
, (unsigned long)arg4
, g2h(arg5
));
8276 ret
= get_errno(ret
);
8279 unlock_user(p
, arg1
, 0);
8281 unlock_user(p2
, arg2
, 0);
8283 unlock_user(p3
, arg3
, 0);
8287 #ifdef TARGET_NR_umount
8288 case TARGET_NR_umount
:
8289 if (!(p
= lock_user_string(arg1
)))
8291 ret
= get_errno(umount(p
));
8292 unlock_user(p
, arg1
, 0);
8295 #ifdef TARGET_NR_stime /* not on alpha */
8296 case TARGET_NR_stime
:
8299 if (get_user_sal(host_time
, arg1
))
8301 ret
= get_errno(stime(&host_time
));
8305 case TARGET_NR_ptrace
:
8307 #ifdef TARGET_NR_alarm /* not on alpha */
8308 case TARGET_NR_alarm
:
8312 #ifdef TARGET_NR_oldfstat
8313 case TARGET_NR_oldfstat
:
8316 #ifdef TARGET_NR_pause /* not on alpha */
8317 case TARGET_NR_pause
:
8318 if (!block_signals()) {
8319 sigsuspend(&((TaskState
*)cpu
->opaque
)->signal_mask
);
8321 ret
= -TARGET_EINTR
;
8324 #ifdef TARGET_NR_utime
8325 case TARGET_NR_utime
:
8327 struct utimbuf tbuf
, *host_tbuf
;
8328 struct target_utimbuf
*target_tbuf
;
8330 if (!lock_user_struct(VERIFY_READ
, target_tbuf
, arg2
, 1))
8332 tbuf
.actime
= tswapal(target_tbuf
->actime
);
8333 tbuf
.modtime
= tswapal(target_tbuf
->modtime
);
8334 unlock_user_struct(target_tbuf
, arg2
, 0);
8339 if (!(p
= lock_user_string(arg1
)))
8341 ret
= get_errno(utime(p
, host_tbuf
));
8342 unlock_user(p
, arg1
, 0);
8346 #ifdef TARGET_NR_utimes
8347 case TARGET_NR_utimes
:
8349 struct timeval
*tvp
, tv
[2];
8351 if (copy_from_user_timeval(&tv
[0], arg2
)
8352 || copy_from_user_timeval(&tv
[1],
8353 arg2
+ sizeof(struct target_timeval
)))
8359 if (!(p
= lock_user_string(arg1
)))
8361 ret
= get_errno(utimes(p
, tvp
));
8362 unlock_user(p
, arg1
, 0);
8366 #if defined(TARGET_NR_futimesat)
8367 case TARGET_NR_futimesat
:
8369 struct timeval
*tvp
, tv
[2];
8371 if (copy_from_user_timeval(&tv
[0], arg3
)
8372 || copy_from_user_timeval(&tv
[1],
8373 arg3
+ sizeof(struct target_timeval
)))
8379 if (!(p
= lock_user_string(arg2
)))
8381 ret
= get_errno(futimesat(arg1
, path(p
), tvp
));
8382 unlock_user(p
, arg2
, 0);
8386 #ifdef TARGET_NR_stty
8387 case TARGET_NR_stty
:
8390 #ifdef TARGET_NR_gtty
8391 case TARGET_NR_gtty
:
8394 #ifdef TARGET_NR_access
8395 case TARGET_NR_access
:
8396 if (!(p
= lock_user_string(arg1
)))
8398 ret
= get_errno(access(path(p
), arg2
));
8399 unlock_user(p
, arg1
, 0);
8402 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
8403 case TARGET_NR_faccessat
:
8404 if (!(p
= lock_user_string(arg2
)))
8406 ret
= get_errno(faccessat(arg1
, p
, arg3
, 0));
8407 unlock_user(p
, arg2
, 0);
8410 #ifdef TARGET_NR_nice /* not on alpha */
8411 case TARGET_NR_nice
:
8412 ret
= get_errno(nice(arg1
));
8415 #ifdef TARGET_NR_ftime
8416 case TARGET_NR_ftime
:
8419 case TARGET_NR_sync
:
8423 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
8424 case TARGET_NR_syncfs
:
8425 ret
= get_errno(syncfs(arg1
));
8428 case TARGET_NR_kill
:
8429 ret
= get_errno(safe_kill(arg1
, target_to_host_signal(arg2
)));
8431 #ifdef TARGET_NR_rename
8432 case TARGET_NR_rename
:
8435 p
= lock_user_string(arg1
);
8436 p2
= lock_user_string(arg2
);
8438 ret
= -TARGET_EFAULT
;
8440 ret
= get_errno(rename(p
, p2
));
8441 unlock_user(p2
, arg2
, 0);
8442 unlock_user(p
, arg1
, 0);
8446 #if defined(TARGET_NR_renameat)
8447 case TARGET_NR_renameat
:
8450 p
= lock_user_string(arg2
);
8451 p2
= lock_user_string(arg4
);
8453 ret
= -TARGET_EFAULT
;
8455 ret
= get_errno(renameat(arg1
, p
, arg3
, p2
));
8456 unlock_user(p2
, arg4
, 0);
8457 unlock_user(p
, arg2
, 0);
8461 #if defined(TARGET_NR_renameat2)
8462 case TARGET_NR_renameat2
:
8465 p
= lock_user_string(arg2
);
8466 p2
= lock_user_string(arg4
);
8468 ret
= -TARGET_EFAULT
;
8470 ret
= get_errno(sys_renameat2(arg1
, p
, arg3
, p2
, arg5
));
8472 unlock_user(p2
, arg4
, 0);
8473 unlock_user(p
, arg2
, 0);
8477 #ifdef TARGET_NR_mkdir
8478 case TARGET_NR_mkdir
:
8479 if (!(p
= lock_user_string(arg1
)))
8481 ret
= get_errno(mkdir(p
, arg2
));
8482 unlock_user(p
, arg1
, 0);
8485 #if defined(TARGET_NR_mkdirat)
8486 case TARGET_NR_mkdirat
:
8487 if (!(p
= lock_user_string(arg2
)))
8489 ret
= get_errno(mkdirat(arg1
, p
, arg3
));
8490 unlock_user(p
, arg2
, 0);
8493 #ifdef TARGET_NR_rmdir
8494 case TARGET_NR_rmdir
:
8495 if (!(p
= lock_user_string(arg1
)))
8497 ret
= get_errno(rmdir(p
));
8498 unlock_user(p
, arg1
, 0);
8502 ret
= get_errno(dup(arg1
));
8504 fd_trans_dup(arg1
, ret
);
8507 #ifdef TARGET_NR_pipe
8508 case TARGET_NR_pipe
:
8509 ret
= do_pipe(cpu_env
, arg1
, 0, 0);
8512 #ifdef TARGET_NR_pipe2
8513 case TARGET_NR_pipe2
:
8514 ret
= do_pipe(cpu_env
, arg1
,
8515 target_to_host_bitmask(arg2
, fcntl_flags_tbl
), 1);
8518 case TARGET_NR_times
:
8520 struct target_tms
*tmsp
;
8522 ret
= get_errno(times(&tms
));
8524 tmsp
= lock_user(VERIFY_WRITE
, arg1
, sizeof(struct target_tms
), 0);
8527 tmsp
->tms_utime
= tswapal(host_to_target_clock_t(tms
.tms_utime
));
8528 tmsp
->tms_stime
= tswapal(host_to_target_clock_t(tms
.tms_stime
));
8529 tmsp
->tms_cutime
= tswapal(host_to_target_clock_t(tms
.tms_cutime
));
8530 tmsp
->tms_cstime
= tswapal(host_to_target_clock_t(tms
.tms_cstime
));
8533 ret
= host_to_target_clock_t(ret
);
8536 #ifdef TARGET_NR_prof
8537 case TARGET_NR_prof
:
8540 #ifdef TARGET_NR_signal
8541 case TARGET_NR_signal
:
8544 case TARGET_NR_acct
:
8546 ret
= get_errno(acct(NULL
));
8548 if (!(p
= lock_user_string(arg1
)))
8550 ret
= get_errno(acct(path(p
)));
8551 unlock_user(p
, arg1
, 0);
8554 #ifdef TARGET_NR_umount2
8555 case TARGET_NR_umount2
:
8556 if (!(p
= lock_user_string(arg1
)))
8558 ret
= get_errno(umount2(p
, arg2
));
8559 unlock_user(p
, arg1
, 0);
8562 #ifdef TARGET_NR_lock
8563 case TARGET_NR_lock
:
8566 case TARGET_NR_ioctl
:
8567 ret
= do_ioctl(arg1
, arg2
, arg3
);
8569 #ifdef TARGET_NR_fcntl
8570 case TARGET_NR_fcntl
:
8571 ret
= do_fcntl(arg1
, arg2
, arg3
);
8574 #ifdef TARGET_NR_mpx
8578 case TARGET_NR_setpgid
:
8579 ret
= get_errno(setpgid(arg1
, arg2
));
8581 #ifdef TARGET_NR_ulimit
8582 case TARGET_NR_ulimit
:
8585 #ifdef TARGET_NR_oldolduname
8586 case TARGET_NR_oldolduname
:
8589 case TARGET_NR_umask
:
8590 ret
= get_errno(umask(arg1
));
8592 case TARGET_NR_chroot
:
8593 if (!(p
= lock_user_string(arg1
)))
8595 ret
= get_errno(chroot(p
));
8596 unlock_user(p
, arg1
, 0);
8598 #ifdef TARGET_NR_ustat
8599 case TARGET_NR_ustat
:
8602 #ifdef TARGET_NR_dup2
8603 case TARGET_NR_dup2
:
8604 ret
= get_errno(dup2(arg1
, arg2
));
8606 fd_trans_dup(arg1
, arg2
);
8610 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
8611 case TARGET_NR_dup3
:
8615 if ((arg3
& ~TARGET_O_CLOEXEC
) != 0) {
8618 host_flags
= target_to_host_bitmask(arg3
, fcntl_flags_tbl
);
8619 ret
= get_errno(dup3(arg1
, arg2
, host_flags
));
8621 fd_trans_dup(arg1
, arg2
);
8626 #ifdef TARGET_NR_getppid /* not on alpha */
8627 case TARGET_NR_getppid
:
8628 ret
= get_errno(getppid());
8631 #ifdef TARGET_NR_getpgrp
8632 case TARGET_NR_getpgrp
:
8633 ret
= get_errno(getpgrp());
8636 case TARGET_NR_setsid
:
8637 ret
= get_errno(setsid());
8639 #ifdef TARGET_NR_sigaction
8640 case TARGET_NR_sigaction
:
8642 #if defined(TARGET_ALPHA)
8643 struct target_sigaction act
, oact
, *pact
= 0;
8644 struct target_old_sigaction
*old_act
;
8646 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
8648 act
._sa_handler
= old_act
->_sa_handler
;
8649 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
);
8650 act
.sa_flags
= old_act
->sa_flags
;
8651 act
.sa_restorer
= 0;
8652 unlock_user_struct(old_act
, arg2
, 0);
8655 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
8656 if (!is_error(ret
) && arg3
) {
8657 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
8659 old_act
->_sa_handler
= oact
._sa_handler
;
8660 old_act
->sa_mask
= oact
.sa_mask
.sig
[0];
8661 old_act
->sa_flags
= oact
.sa_flags
;
8662 unlock_user_struct(old_act
, arg3
, 1);
8664 #elif defined(TARGET_MIPS)
8665 struct target_sigaction act
, oact
, *pact
, *old_act
;
8668 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
8670 act
._sa_handler
= old_act
->_sa_handler
;
8671 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
.sig
[0]);
8672 act
.sa_flags
= old_act
->sa_flags
;
8673 unlock_user_struct(old_act
, arg2
, 0);
8679 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
8681 if (!is_error(ret
) && arg3
) {
8682 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
8684 old_act
->_sa_handler
= oact
._sa_handler
;
8685 old_act
->sa_flags
= oact
.sa_flags
;
8686 old_act
->sa_mask
.sig
[0] = oact
.sa_mask
.sig
[0];
8687 old_act
->sa_mask
.sig
[1] = 0;
8688 old_act
->sa_mask
.sig
[2] = 0;
8689 old_act
->sa_mask
.sig
[3] = 0;
8690 unlock_user_struct(old_act
, arg3
, 1);
8693 struct target_old_sigaction
*old_act
;
8694 struct target_sigaction act
, oact
, *pact
;
8696 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
8698 act
._sa_handler
= old_act
->_sa_handler
;
8699 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
);
8700 act
.sa_flags
= old_act
->sa_flags
;
8701 act
.sa_restorer
= old_act
->sa_restorer
;
8702 unlock_user_struct(old_act
, arg2
, 0);
8707 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
8708 if (!is_error(ret
) && arg3
) {
8709 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
8711 old_act
->_sa_handler
= oact
._sa_handler
;
8712 old_act
->sa_mask
= oact
.sa_mask
.sig
[0];
8713 old_act
->sa_flags
= oact
.sa_flags
;
8714 old_act
->sa_restorer
= oact
.sa_restorer
;
8715 unlock_user_struct(old_act
, arg3
, 1);
8721 case TARGET_NR_rt_sigaction
:
8723 #if defined(TARGET_ALPHA)
8724 /* For Alpha and SPARC this is a 5 argument syscall, with
8725 * a 'restorer' parameter which must be copied into the
8726 * sa_restorer field of the sigaction struct.
8727 * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
8728 * and arg5 is the sigsetsize.
8729 * Alpha also has a separate rt_sigaction struct that it uses
8730 * here; SPARC uses the usual sigaction struct.
8732 struct target_rt_sigaction
*rt_act
;
8733 struct target_sigaction act
, oact
, *pact
= 0;
8735 if (arg4
!= sizeof(target_sigset_t
)) {
8736 ret
= -TARGET_EINVAL
;
8740 if (!lock_user_struct(VERIFY_READ
, rt_act
, arg2
, 1))
8742 act
._sa_handler
= rt_act
->_sa_handler
;
8743 act
.sa_mask
= rt_act
->sa_mask
;
8744 act
.sa_flags
= rt_act
->sa_flags
;
8745 act
.sa_restorer
= arg5
;
8746 unlock_user_struct(rt_act
, arg2
, 0);
8749 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
8750 if (!is_error(ret
) && arg3
) {
8751 if (!lock_user_struct(VERIFY_WRITE
, rt_act
, arg3
, 0))
8753 rt_act
->_sa_handler
= oact
._sa_handler
;
8754 rt_act
->sa_mask
= oact
.sa_mask
;
8755 rt_act
->sa_flags
= oact
.sa_flags
;
8756 unlock_user_struct(rt_act
, arg3
, 1);
8760 target_ulong restorer
= arg4
;
8761 target_ulong sigsetsize
= arg5
;
8763 target_ulong sigsetsize
= arg4
;
8765 struct target_sigaction
*act
;
8766 struct target_sigaction
*oact
;
8768 if (sigsetsize
!= sizeof(target_sigset_t
)) {
8769 ret
= -TARGET_EINVAL
;
8773 if (!lock_user_struct(VERIFY_READ
, act
, arg2
, 1)) {
8777 act
->sa_restorer
= restorer
;
8783 if (!lock_user_struct(VERIFY_WRITE
, oact
, arg3
, 0)) {
8784 ret
= -TARGET_EFAULT
;
8785 goto rt_sigaction_fail
;
8789 ret
= get_errno(do_sigaction(arg1
, act
, oact
));
8792 unlock_user_struct(act
, arg2
, 0);
8794 unlock_user_struct(oact
, arg3
, 1);
8798 #ifdef TARGET_NR_sgetmask /* not on alpha */
8799 case TARGET_NR_sgetmask
:
8802 abi_ulong target_set
;
8803 ret
= do_sigprocmask(0, NULL
, &cur_set
);
8805 host_to_target_old_sigset(&target_set
, &cur_set
);
8811 #ifdef TARGET_NR_ssetmask /* not on alpha */
8812 case TARGET_NR_ssetmask
:
8815 abi_ulong target_set
= arg1
;
8816 target_to_host_old_sigset(&set
, &target_set
);
8817 ret
= do_sigprocmask(SIG_SETMASK
, &set
, &oset
);
8819 host_to_target_old_sigset(&target_set
, &oset
);
8825 #ifdef TARGET_NR_sigprocmask
8826 case TARGET_NR_sigprocmask
:
8828 #if defined(TARGET_ALPHA)
8829 sigset_t set
, oldset
;
8834 case TARGET_SIG_BLOCK
:
8837 case TARGET_SIG_UNBLOCK
:
8840 case TARGET_SIG_SETMASK
:
8844 ret
= -TARGET_EINVAL
;
8848 target_to_host_old_sigset(&set
, &mask
);
8850 ret
= do_sigprocmask(how
, &set
, &oldset
);
8851 if (!is_error(ret
)) {
8852 host_to_target_old_sigset(&mask
, &oldset
);
8854 ((CPUAlphaState
*)cpu_env
)->ir
[IR_V0
] = 0; /* force no error */
8857 sigset_t set
, oldset
, *set_ptr
;
8862 case TARGET_SIG_BLOCK
:
8865 case TARGET_SIG_UNBLOCK
:
8868 case TARGET_SIG_SETMASK
:
8872 ret
= -TARGET_EINVAL
;
8875 if (!(p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1)))
8877 target_to_host_old_sigset(&set
, p
);
8878 unlock_user(p
, arg2
, 0);
8884 ret
= do_sigprocmask(how
, set_ptr
, &oldset
);
8885 if (!is_error(ret
) && arg3
) {
8886 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
8888 host_to_target_old_sigset(p
, &oldset
);
8889 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
8895 case TARGET_NR_rt_sigprocmask
:
8898 sigset_t set
, oldset
, *set_ptr
;
8900 if (arg4
!= sizeof(target_sigset_t
)) {
8901 ret
= -TARGET_EINVAL
;
8907 case TARGET_SIG_BLOCK
:
8910 case TARGET_SIG_UNBLOCK
:
8913 case TARGET_SIG_SETMASK
:
8917 ret
= -TARGET_EINVAL
;
8920 if (!(p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1)))
8922 target_to_host_sigset(&set
, p
);
8923 unlock_user(p
, arg2
, 0);
8929 ret
= do_sigprocmask(how
, set_ptr
, &oldset
);
8930 if (!is_error(ret
) && arg3
) {
8931 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
8933 host_to_target_sigset(p
, &oldset
);
8934 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
8938 #ifdef TARGET_NR_sigpending
8939 case TARGET_NR_sigpending
:
8942 ret
= get_errno(sigpending(&set
));
8943 if (!is_error(ret
)) {
8944 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
8946 host_to_target_old_sigset(p
, &set
);
8947 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
8952 case TARGET_NR_rt_sigpending
:
8956 /* Yes, this check is >, not != like most. We follow the kernel's
8957 * logic and it does it like this because it implements
8958 * NR_sigpending through the same code path, and in that case
8959 * the old_sigset_t is smaller in size.
8961 if (arg2
> sizeof(target_sigset_t
)) {
8962 ret
= -TARGET_EINVAL
;
8966 ret
= get_errno(sigpending(&set
));
8967 if (!is_error(ret
)) {
8968 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
8970 host_to_target_sigset(p
, &set
);
8971 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
8975 #ifdef TARGET_NR_sigsuspend
8976 case TARGET_NR_sigsuspend
:
8978 TaskState
*ts
= cpu
->opaque
;
8979 #if defined(TARGET_ALPHA)
8980 abi_ulong mask
= arg1
;
8981 target_to_host_old_sigset(&ts
->sigsuspend_mask
, &mask
);
8983 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
8985 target_to_host_old_sigset(&ts
->sigsuspend_mask
, p
);
8986 unlock_user(p
, arg1
, 0);
8988 ret
= get_errno(safe_rt_sigsuspend(&ts
->sigsuspend_mask
,
8990 if (ret
!= -TARGET_ERESTARTSYS
) {
8991 ts
->in_sigsuspend
= 1;
8996 case TARGET_NR_rt_sigsuspend
:
8998 TaskState
*ts
= cpu
->opaque
;
9000 if (arg2
!= sizeof(target_sigset_t
)) {
9001 ret
= -TARGET_EINVAL
;
9004 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
9006 target_to_host_sigset(&ts
->sigsuspend_mask
, p
);
9007 unlock_user(p
, arg1
, 0);
9008 ret
= get_errno(safe_rt_sigsuspend(&ts
->sigsuspend_mask
,
9010 if (ret
!= -TARGET_ERESTARTSYS
) {
9011 ts
->in_sigsuspend
= 1;
9015 case TARGET_NR_rt_sigtimedwait
:
9018 struct timespec uts
, *puts
;
9021 if (arg4
!= sizeof(target_sigset_t
)) {
9022 ret
= -TARGET_EINVAL
;
9026 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
9028 target_to_host_sigset(&set
, p
);
9029 unlock_user(p
, arg1
, 0);
9032 target_to_host_timespec(puts
, arg3
);
9036 ret
= get_errno(safe_rt_sigtimedwait(&set
, &uinfo
, puts
,
9038 if (!is_error(ret
)) {
9040 p
= lock_user(VERIFY_WRITE
, arg2
, sizeof(target_siginfo_t
),
9045 host_to_target_siginfo(p
, &uinfo
);
9046 unlock_user(p
, arg2
, sizeof(target_siginfo_t
));
9048 ret
= host_to_target_signal(ret
);
9052 case TARGET_NR_rt_sigqueueinfo
:
9056 p
= lock_user(VERIFY_READ
, arg3
, sizeof(target_siginfo_t
), 1);
9060 target_to_host_siginfo(&uinfo
, p
);
9061 unlock_user(p
, arg3
, 0);
9062 ret
= get_errno(sys_rt_sigqueueinfo(arg1
, arg2
, &uinfo
));
9065 case TARGET_NR_rt_tgsigqueueinfo
:
9069 p
= lock_user(VERIFY_READ
, arg4
, sizeof(target_siginfo_t
), 1);
9073 target_to_host_siginfo(&uinfo
, p
);
9074 unlock_user(p
, arg4
, 0);
9075 ret
= get_errno(sys_rt_tgsigqueueinfo(arg1
, arg2
, arg3
, &uinfo
));
9078 #ifdef TARGET_NR_sigreturn
9079 case TARGET_NR_sigreturn
:
9080 if (block_signals()) {
9081 ret
= -TARGET_ERESTARTSYS
;
9083 ret
= do_sigreturn(cpu_env
);
9087 case TARGET_NR_rt_sigreturn
:
9088 if (block_signals()) {
9089 ret
= -TARGET_ERESTARTSYS
;
9091 ret
= do_rt_sigreturn(cpu_env
);
9094 case TARGET_NR_sethostname
:
9095 if (!(p
= lock_user_string(arg1
)))
9097 ret
= get_errno(sethostname(p
, arg2
));
9098 unlock_user(p
, arg1
, 0);
9100 case TARGET_NR_setrlimit
:
9102 int resource
= target_to_host_resource(arg1
);
9103 struct target_rlimit
*target_rlim
;
9105 if (!lock_user_struct(VERIFY_READ
, target_rlim
, arg2
, 1))
9107 rlim
.rlim_cur
= target_to_host_rlim(target_rlim
->rlim_cur
);
9108 rlim
.rlim_max
= target_to_host_rlim(target_rlim
->rlim_max
);
9109 unlock_user_struct(target_rlim
, arg2
, 0);
9110 ret
= get_errno(setrlimit(resource
, &rlim
));
9113 case TARGET_NR_getrlimit
:
9115 int resource
= target_to_host_resource(arg1
);
9116 struct target_rlimit
*target_rlim
;
9119 ret
= get_errno(getrlimit(resource
, &rlim
));
9120 if (!is_error(ret
)) {
9121 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
9123 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
9124 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
9125 unlock_user_struct(target_rlim
, arg2
, 1);
9129 case TARGET_NR_getrusage
:
9131 struct rusage rusage
;
9132 ret
= get_errno(getrusage(arg1
, &rusage
));
9133 if (!is_error(ret
)) {
9134 ret
= host_to_target_rusage(arg2
, &rusage
);
9138 case TARGET_NR_gettimeofday
:
9141 ret
= get_errno(gettimeofday(&tv
, NULL
));
9142 if (!is_error(ret
)) {
9143 if (copy_to_user_timeval(arg1
, &tv
))
9148 case TARGET_NR_settimeofday
:
9150 struct timeval tv
, *ptv
= NULL
;
9151 struct timezone tz
, *ptz
= NULL
;
9154 if (copy_from_user_timeval(&tv
, arg1
)) {
9161 if (copy_from_user_timezone(&tz
, arg2
)) {
9167 ret
= get_errno(settimeofday(ptv
, ptz
));
9170 #if defined(TARGET_NR_select)
9171 case TARGET_NR_select
:
9172 #if defined(TARGET_WANT_NI_OLD_SELECT)
9173 /* some architectures used to have old_select here
9174 * but now ENOSYS it.
9176 ret
= -TARGET_ENOSYS
;
9177 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
9178 ret
= do_old_select(arg1
);
9180 ret
= do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
9184 #ifdef TARGET_NR_pselect6
9185 case TARGET_NR_pselect6
:
9187 abi_long rfd_addr
, wfd_addr
, efd_addr
, n
, ts_addr
;
9188 fd_set rfds
, wfds
, efds
;
9189 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
9190 struct timespec ts
, *ts_ptr
;
9193 * The 6th arg is actually two args smashed together,
9194 * so we cannot use the C library.
9202 abi_ulong arg_sigset
, arg_sigsize
, *arg7
;
9203 target_sigset_t
*target_sigset
;
9211 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
9215 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
9219 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
9225 * This takes a timespec, and not a timeval, so we cannot
9226 * use the do_select() helper ...
9229 if (target_to_host_timespec(&ts
, ts_addr
)) {
9237 /* Extract the two packed args for the sigset */
9240 sig
.size
= SIGSET_T_SIZE
;
9242 arg7
= lock_user(VERIFY_READ
, arg6
, sizeof(*arg7
) * 2, 1);
9246 arg_sigset
= tswapal(arg7
[0]);
9247 arg_sigsize
= tswapal(arg7
[1]);
9248 unlock_user(arg7
, arg6
, 0);
9252 if (arg_sigsize
!= sizeof(*target_sigset
)) {
9253 /* Like the kernel, we enforce correct size sigsets */
9254 ret
= -TARGET_EINVAL
;
9257 target_sigset
= lock_user(VERIFY_READ
, arg_sigset
,
9258 sizeof(*target_sigset
), 1);
9259 if (!target_sigset
) {
9262 target_to_host_sigset(&set
, target_sigset
);
9263 unlock_user(target_sigset
, arg_sigset
, 0);
9271 ret
= get_errno(safe_pselect6(n
, rfds_ptr
, wfds_ptr
, efds_ptr
,
9274 if (!is_error(ret
)) {
9275 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
))
9277 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
))
9279 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
))
9282 if (ts_addr
&& host_to_target_timespec(ts_addr
, &ts
))
9288 #ifdef TARGET_NR_symlink
9289 case TARGET_NR_symlink
:
9292 p
= lock_user_string(arg1
);
9293 p2
= lock_user_string(arg2
);
9295 ret
= -TARGET_EFAULT
;
9297 ret
= get_errno(symlink(p
, p2
));
9298 unlock_user(p2
, arg2
, 0);
9299 unlock_user(p
, arg1
, 0);
9303 #if defined(TARGET_NR_symlinkat)
9304 case TARGET_NR_symlinkat
:
9307 p
= lock_user_string(arg1
);
9308 p2
= lock_user_string(arg3
);
9310 ret
= -TARGET_EFAULT
;
9312 ret
= get_errno(symlinkat(p
, arg2
, p2
));
9313 unlock_user(p2
, arg3
, 0);
9314 unlock_user(p
, arg1
, 0);
9318 #ifdef TARGET_NR_oldlstat
9319 case TARGET_NR_oldlstat
:
9322 #ifdef TARGET_NR_readlink
9323 case TARGET_NR_readlink
:
9326 p
= lock_user_string(arg1
);
9327 p2
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
9329 ret
= -TARGET_EFAULT
;
9331 /* Short circuit this for the magic exe check. */
9332 ret
= -TARGET_EINVAL
;
9333 } else if (is_proc_myself((const char *)p
, "exe")) {
9334 char real
[PATH_MAX
], *temp
;
9335 temp
= realpath(exec_path
, real
);
9336 /* Return value is # of bytes that we wrote to the buffer. */
9338 ret
= get_errno(-1);
9340 /* Don't worry about sign mismatch as earlier mapping
9341 * logic would have thrown a bad address error. */
9342 ret
= MIN(strlen(real
), arg3
);
9343 /* We cannot NUL terminate the string. */
9344 memcpy(p2
, real
, ret
);
9347 ret
= get_errno(readlink(path(p
), p2
, arg3
));
9349 unlock_user(p2
, arg2
, ret
);
9350 unlock_user(p
, arg1
, 0);
9354 #if defined(TARGET_NR_readlinkat)
9355 case TARGET_NR_readlinkat
:
9358 p
= lock_user_string(arg2
);
9359 p2
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
9361 ret
= -TARGET_EFAULT
;
9362 } else if (is_proc_myself((const char *)p
, "exe")) {
9363 char real
[PATH_MAX
], *temp
;
9364 temp
= realpath(exec_path
, real
);
9365 ret
= temp
== NULL
? get_errno(-1) : strlen(real
) ;
9366 snprintf((char *)p2
, arg4
, "%s", real
);
9368 ret
= get_errno(readlinkat(arg1
, path(p
), p2
, arg4
));
9370 unlock_user(p2
, arg3
, ret
);
9371 unlock_user(p
, arg2
, 0);
9375 #ifdef TARGET_NR_uselib
9376 case TARGET_NR_uselib
:
9379 #ifdef TARGET_NR_swapon
9380 case TARGET_NR_swapon
:
9381 if (!(p
= lock_user_string(arg1
)))
9383 ret
= get_errno(swapon(p
, arg2
));
9384 unlock_user(p
, arg1
, 0);
9387 case TARGET_NR_reboot
:
9388 if (arg3
== LINUX_REBOOT_CMD_RESTART2
) {
9389 /* arg4 must be ignored in all other cases */
9390 p
= lock_user_string(arg4
);
9394 ret
= get_errno(reboot(arg1
, arg2
, arg3
, p
));
9395 unlock_user(p
, arg4
, 0);
9397 ret
= get_errno(reboot(arg1
, arg2
, arg3
, NULL
));
9400 #ifdef TARGET_NR_readdir
9401 case TARGET_NR_readdir
:
9404 #ifdef TARGET_NR_mmap
9405 case TARGET_NR_mmap
:
9406 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
9407 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
9408 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
9409 || defined(TARGET_S390X)
9412 abi_ulong v1
, v2
, v3
, v4
, v5
, v6
;
9413 if (!(v
= lock_user(VERIFY_READ
, arg1
, 6 * sizeof(abi_ulong
), 1)))
9421 unlock_user(v
, arg1
, 0);
9422 ret
= get_errno(target_mmap(v1
, v2
, v3
,
9423 target_to_host_bitmask(v4
, mmap_flags_tbl
),
9427 ret
= get_errno(target_mmap(arg1
, arg2
, arg3
,
9428 target_to_host_bitmask(arg4
, mmap_flags_tbl
),
9434 #ifdef TARGET_NR_mmap2
9435 case TARGET_NR_mmap2
:
9437 #define MMAP_SHIFT 12
9439 ret
= get_errno(target_mmap(arg1
, arg2
, arg3
,
9440 target_to_host_bitmask(arg4
, mmap_flags_tbl
),
9442 arg6
<< MMAP_SHIFT
));
9445 case TARGET_NR_munmap
:
9446 ret
= get_errno(target_munmap(arg1
, arg2
));
9448 case TARGET_NR_mprotect
:
9450 TaskState
*ts
= cpu
->opaque
;
9451 /* Special hack to detect libc making the stack executable. */
9452 if ((arg3
& PROT_GROWSDOWN
)
9453 && arg1
>= ts
->info
->stack_limit
9454 && arg1
<= ts
->info
->start_stack
) {
9455 arg3
&= ~PROT_GROWSDOWN
;
9456 arg2
= arg2
+ arg1
- ts
->info
->stack_limit
;
9457 arg1
= ts
->info
->stack_limit
;
9460 ret
= get_errno(target_mprotect(arg1
, arg2
, arg3
));
9462 #ifdef TARGET_NR_mremap
9463 case TARGET_NR_mremap
:
9464 ret
= get_errno(target_mremap(arg1
, arg2
, arg3
, arg4
, arg5
));
9467 /* ??? msync/mlock/munlock are broken for softmmu. */
9468 #ifdef TARGET_NR_msync
9469 case TARGET_NR_msync
:
9470 ret
= get_errno(msync(g2h(arg1
), arg2
, arg3
));
9473 #ifdef TARGET_NR_mlock
9474 case TARGET_NR_mlock
:
9475 ret
= get_errno(mlock(g2h(arg1
), arg2
));
9478 #ifdef TARGET_NR_munlock
9479 case TARGET_NR_munlock
:
9480 ret
= get_errno(munlock(g2h(arg1
), arg2
));
9483 #ifdef TARGET_NR_mlockall
9484 case TARGET_NR_mlockall
:
9485 ret
= get_errno(mlockall(target_to_host_mlockall_arg(arg1
)));
9488 #ifdef TARGET_NR_munlockall
9489 case TARGET_NR_munlockall
:
9490 ret
= get_errno(munlockall());
9493 case TARGET_NR_truncate
:
9494 if (!(p
= lock_user_string(arg1
)))
9496 ret
= get_errno(truncate(p
, arg2
));
9497 unlock_user(p
, arg1
, 0);
9499 case TARGET_NR_ftruncate
:
9500 ret
= get_errno(ftruncate(arg1
, arg2
));
9502 case TARGET_NR_fchmod
:
9503 ret
= get_errno(fchmod(arg1
, arg2
));
9505 #if defined(TARGET_NR_fchmodat)
9506 case TARGET_NR_fchmodat
:
9507 if (!(p
= lock_user_string(arg2
)))
9509 ret
= get_errno(fchmodat(arg1
, p
, arg3
, 0));
9510 unlock_user(p
, arg2
, 0);
9513 case TARGET_NR_getpriority
:
9514 /* Note that negative values are valid for getpriority, so we must
9515 differentiate based on errno settings. */
9517 ret
= getpriority(arg1
, arg2
);
9518 if (ret
== -1 && errno
!= 0) {
9519 ret
= -host_to_target_errno(errno
);
9523 /* Return value is the unbiased priority. Signal no error. */
9524 ((CPUAlphaState
*)cpu_env
)->ir
[IR_V0
] = 0;
9526 /* Return value is a biased priority to avoid negative numbers. */
9530 case TARGET_NR_setpriority
:
9531 ret
= get_errno(setpriority(arg1
, arg2
, arg3
));
9533 #ifdef TARGET_NR_profil
9534 case TARGET_NR_profil
:
9537 case TARGET_NR_statfs
:
9538 if (!(p
= lock_user_string(arg1
)))
9540 ret
= get_errno(statfs(path(p
), &stfs
));
9541 unlock_user(p
, arg1
, 0);
9543 if (!is_error(ret
)) {
9544 struct target_statfs
*target_stfs
;
9546 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg2
, 0))
9548 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
9549 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
9550 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
9551 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
9552 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
9553 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
9554 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
9555 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
9556 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
9557 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
9558 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
9559 #ifdef _STATFS_F_FLAGS
9560 __put_user(stfs
.f_flags
, &target_stfs
->f_flags
);
9562 __put_user(0, &target_stfs
->f_flags
);
9564 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
9565 unlock_user_struct(target_stfs
, arg2
, 1);
9568 case TARGET_NR_fstatfs
:
9569 ret
= get_errno(fstatfs(arg1
, &stfs
));
9570 goto convert_statfs
;
9571 #ifdef TARGET_NR_statfs64
9572 case TARGET_NR_statfs64
:
9573 if (!(p
= lock_user_string(arg1
)))
9575 ret
= get_errno(statfs(path(p
), &stfs
));
9576 unlock_user(p
, arg1
, 0);
9578 if (!is_error(ret
)) {
9579 struct target_statfs64
*target_stfs
;
9581 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg3
, 0))
9583 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
9584 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
9585 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
9586 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
9587 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
9588 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
9589 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
9590 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
9591 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
9592 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
9593 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
9594 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
9595 unlock_user_struct(target_stfs
, arg3
, 1);
9598 case TARGET_NR_fstatfs64
:
9599 ret
= get_errno(fstatfs(arg1
, &stfs
));
9600 goto convert_statfs64
;
9602 #ifdef TARGET_NR_ioperm
9603 case TARGET_NR_ioperm
:
9606 #ifdef TARGET_NR_socketcall
9607 case TARGET_NR_socketcall
:
9608 ret
= do_socketcall(arg1
, arg2
);
9611 #ifdef TARGET_NR_accept
9612 case TARGET_NR_accept
:
9613 ret
= do_accept4(arg1
, arg2
, arg3
, 0);
9616 #ifdef TARGET_NR_accept4
9617 case TARGET_NR_accept4
:
9618 ret
= do_accept4(arg1
, arg2
, arg3
, arg4
);
9621 #ifdef TARGET_NR_bind
9622 case TARGET_NR_bind
:
9623 ret
= do_bind(arg1
, arg2
, arg3
);
9626 #ifdef TARGET_NR_connect
9627 case TARGET_NR_connect
:
9628 ret
= do_connect(arg1
, arg2
, arg3
);
9631 #ifdef TARGET_NR_getpeername
9632 case TARGET_NR_getpeername
:
9633 ret
= do_getpeername(arg1
, arg2
, arg3
);
9636 #ifdef TARGET_NR_getsockname
9637 case TARGET_NR_getsockname
:
9638 ret
= do_getsockname(arg1
, arg2
, arg3
);
9641 #ifdef TARGET_NR_getsockopt
9642 case TARGET_NR_getsockopt
:
9643 ret
= do_getsockopt(arg1
, arg2
, arg3
, arg4
, arg5
);
9646 #ifdef TARGET_NR_listen
9647 case TARGET_NR_listen
:
9648 ret
= get_errno(listen(arg1
, arg2
));
9651 #ifdef TARGET_NR_recv
9652 case TARGET_NR_recv
:
9653 ret
= do_recvfrom(arg1
, arg2
, arg3
, arg4
, 0, 0);
9656 #ifdef TARGET_NR_recvfrom
9657 case TARGET_NR_recvfrom
:
9658 ret
= do_recvfrom(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
9661 #ifdef TARGET_NR_recvmsg
9662 case TARGET_NR_recvmsg
:
9663 ret
= do_sendrecvmsg(arg1
, arg2
, arg3
, 0);
9666 #ifdef TARGET_NR_send
9667 case TARGET_NR_send
:
9668 ret
= do_sendto(arg1
, arg2
, arg3
, arg4
, 0, 0);
9671 #ifdef TARGET_NR_sendmsg
9672 case TARGET_NR_sendmsg
:
9673 ret
= do_sendrecvmsg(arg1
, arg2
, arg3
, 1);
9676 #ifdef TARGET_NR_sendmmsg
9677 case TARGET_NR_sendmmsg
:
9678 ret
= do_sendrecvmmsg(arg1
, arg2
, arg3
, arg4
, 1);
9680 case TARGET_NR_recvmmsg
:
9681 ret
= do_sendrecvmmsg(arg1
, arg2
, arg3
, arg4
, 0);
9684 #ifdef TARGET_NR_sendto
9685 case TARGET_NR_sendto
:
9686 ret
= do_sendto(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
9689 #ifdef TARGET_NR_shutdown
9690 case TARGET_NR_shutdown
:
9691 ret
= get_errno(shutdown(arg1
, arg2
));
9694 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
9695 case TARGET_NR_getrandom
:
9696 p
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0);
9700 ret
= get_errno(getrandom(p
, arg2
, arg3
));
9701 unlock_user(p
, arg1
, ret
);
9704 #ifdef TARGET_NR_socket
9705 case TARGET_NR_socket
:
9706 ret
= do_socket(arg1
, arg2
, arg3
);
9709 #ifdef TARGET_NR_socketpair
9710 case TARGET_NR_socketpair
:
9711 ret
= do_socketpair(arg1
, arg2
, arg3
, arg4
);
9714 #ifdef TARGET_NR_setsockopt
9715 case TARGET_NR_setsockopt
:
9716 ret
= do_setsockopt(arg1
, arg2
, arg3
, arg4
, (socklen_t
) arg5
);
9719 #if defined(TARGET_NR_syslog)
9720 case TARGET_NR_syslog
:
9725 case TARGET_SYSLOG_ACTION_CLOSE
: /* Close log */
9726 case TARGET_SYSLOG_ACTION_OPEN
: /* Open log */
9727 case TARGET_SYSLOG_ACTION_CLEAR
: /* Clear ring buffer */
9728 case TARGET_SYSLOG_ACTION_CONSOLE_OFF
: /* Disable logging */
9729 case TARGET_SYSLOG_ACTION_CONSOLE_ON
: /* Enable logging */
9730 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL
: /* Set messages level */
9731 case TARGET_SYSLOG_ACTION_SIZE_UNREAD
: /* Number of chars */
9732 case TARGET_SYSLOG_ACTION_SIZE_BUFFER
: /* Size of the buffer */
9734 ret
= get_errno(sys_syslog((int)arg1
, NULL
, (int)arg3
));
9737 case TARGET_SYSLOG_ACTION_READ
: /* Read from log */
9738 case TARGET_SYSLOG_ACTION_READ_CLEAR
: /* Read/clear msgs */
9739 case TARGET_SYSLOG_ACTION_READ_ALL
: /* Read last messages */
9741 ret
= -TARGET_EINVAL
;
9749 p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
9751 ret
= -TARGET_EFAULT
;
9754 ret
= get_errno(sys_syslog((int)arg1
, p
, (int)arg3
));
9755 unlock_user(p
, arg2
, arg3
);
9765 case TARGET_NR_setitimer
:
9767 struct itimerval value
, ovalue
, *pvalue
;
9771 if (copy_from_user_timeval(&pvalue
->it_interval
, arg2
)
9772 || copy_from_user_timeval(&pvalue
->it_value
,
9773 arg2
+ sizeof(struct target_timeval
)))
9778 ret
= get_errno(setitimer(arg1
, pvalue
, &ovalue
));
9779 if (!is_error(ret
) && arg3
) {
9780 if (copy_to_user_timeval(arg3
,
9781 &ovalue
.it_interval
)
9782 || copy_to_user_timeval(arg3
+ sizeof(struct target_timeval
),
9788 case TARGET_NR_getitimer
:
9790 struct itimerval value
;
9792 ret
= get_errno(getitimer(arg1
, &value
));
9793 if (!is_error(ret
) && arg2
) {
9794 if (copy_to_user_timeval(arg2
,
9796 || copy_to_user_timeval(arg2
+ sizeof(struct target_timeval
),
9802 #ifdef TARGET_NR_stat
9803 case TARGET_NR_stat
:
9804 if (!(p
= lock_user_string(arg1
)))
9806 ret
= get_errno(stat(path(p
), &st
));
9807 unlock_user(p
, arg1
, 0);
9810 #ifdef TARGET_NR_lstat
9811 case TARGET_NR_lstat
:
9812 if (!(p
= lock_user_string(arg1
)))
9814 ret
= get_errno(lstat(path(p
), &st
));
9815 unlock_user(p
, arg1
, 0);
9818 case TARGET_NR_fstat
:
9820 ret
= get_errno(fstat(arg1
, &st
));
9821 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
9824 if (!is_error(ret
)) {
9825 struct target_stat
*target_st
;
9827 if (!lock_user_struct(VERIFY_WRITE
, target_st
, arg2
, 0))
9829 memset(target_st
, 0, sizeof(*target_st
));
9830 __put_user(st
.st_dev
, &target_st
->st_dev
);
9831 __put_user(st
.st_ino
, &target_st
->st_ino
);
9832 __put_user(st
.st_mode
, &target_st
->st_mode
);
9833 __put_user(st
.st_uid
, &target_st
->st_uid
);
9834 __put_user(st
.st_gid
, &target_st
->st_gid
);
9835 __put_user(st
.st_nlink
, &target_st
->st_nlink
);
9836 __put_user(st
.st_rdev
, &target_st
->st_rdev
);
9837 __put_user(st
.st_size
, &target_st
->st_size
);
9838 __put_user(st
.st_blksize
, &target_st
->st_blksize
);
9839 __put_user(st
.st_blocks
, &target_st
->st_blocks
);
9840 __put_user(st
.st_atime
, &target_st
->target_st_atime
);
9841 __put_user(st
.st_mtime
, &target_st
->target_st_mtime
);
9842 __put_user(st
.st_ctime
, &target_st
->target_st_ctime
);
9843 unlock_user_struct(target_st
, arg2
, 1);
9847 #ifdef TARGET_NR_olduname
9848 case TARGET_NR_olduname
:
9851 #ifdef TARGET_NR_iopl
9852 case TARGET_NR_iopl
:
9855 case TARGET_NR_vhangup
:
9856 ret
= get_errno(vhangup());
9858 #ifdef TARGET_NR_idle
9859 case TARGET_NR_idle
:
9862 #ifdef TARGET_NR_syscall
9863 case TARGET_NR_syscall
:
9864 ret
= do_syscall(cpu_env
, arg1
& 0xffff, arg2
, arg3
, arg4
, arg5
,
9865 arg6
, arg7
, arg8
, 0);
9868 case TARGET_NR_wait4
:
9871 abi_long status_ptr
= arg2
;
9872 struct rusage rusage
, *rusage_ptr
;
9873 abi_ulong target_rusage
= arg4
;
9874 abi_long rusage_err
;
9876 rusage_ptr
= &rusage
;
9879 ret
= get_errno(safe_wait4(arg1
, &status
, arg3
, rusage_ptr
));
9880 if (!is_error(ret
)) {
9881 if (status_ptr
&& ret
) {
9882 status
= host_to_target_waitstatus(status
);
9883 if (put_user_s32(status
, status_ptr
))
9886 if (target_rusage
) {
9887 rusage_err
= host_to_target_rusage(target_rusage
, &rusage
);
9895 #ifdef TARGET_NR_swapoff
9896 case TARGET_NR_swapoff
:
9897 if (!(p
= lock_user_string(arg1
)))
9899 ret
= get_errno(swapoff(p
));
9900 unlock_user(p
, arg1
, 0);
9903 case TARGET_NR_sysinfo
:
9905 struct target_sysinfo
*target_value
;
9906 struct sysinfo value
;
9907 ret
= get_errno(sysinfo(&value
));
9908 if (!is_error(ret
) && arg1
)
9910 if (!lock_user_struct(VERIFY_WRITE
, target_value
, arg1
, 0))
9912 __put_user(value
.uptime
, &target_value
->uptime
);
9913 __put_user(value
.loads
[0], &target_value
->loads
[0]);
9914 __put_user(value
.loads
[1], &target_value
->loads
[1]);
9915 __put_user(value
.loads
[2], &target_value
->loads
[2]);
9916 __put_user(value
.totalram
, &target_value
->totalram
);
9917 __put_user(value
.freeram
, &target_value
->freeram
);
9918 __put_user(value
.sharedram
, &target_value
->sharedram
);
9919 __put_user(value
.bufferram
, &target_value
->bufferram
);
9920 __put_user(value
.totalswap
, &target_value
->totalswap
);
9921 __put_user(value
.freeswap
, &target_value
->freeswap
);
9922 __put_user(value
.procs
, &target_value
->procs
);
9923 __put_user(value
.totalhigh
, &target_value
->totalhigh
);
9924 __put_user(value
.freehigh
, &target_value
->freehigh
);
9925 __put_user(value
.mem_unit
, &target_value
->mem_unit
);
9926 unlock_user_struct(target_value
, arg1
, 1);
9930 #ifdef TARGET_NR_ipc
9932 ret
= do_ipc(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
9935 #ifdef TARGET_NR_semget
9936 case TARGET_NR_semget
:
9937 ret
= get_errno(semget(arg1
, arg2
, arg3
));
9940 #ifdef TARGET_NR_semop
9941 case TARGET_NR_semop
:
9942 ret
= do_semop(arg1
, arg2
, arg3
);
9945 #ifdef TARGET_NR_semctl
9946 case TARGET_NR_semctl
:
9947 ret
= do_semctl(arg1
, arg2
, arg3
, arg4
);
9950 #ifdef TARGET_NR_msgctl
9951 case TARGET_NR_msgctl
:
9952 ret
= do_msgctl(arg1
, arg2
, arg3
);
9955 #ifdef TARGET_NR_msgget
9956 case TARGET_NR_msgget
:
9957 ret
= get_errno(msgget(arg1
, arg2
));
9960 #ifdef TARGET_NR_msgrcv
9961 case TARGET_NR_msgrcv
:
9962 ret
= do_msgrcv(arg1
, arg2
, arg3
, arg4
, arg5
);
9965 #ifdef TARGET_NR_msgsnd
9966 case TARGET_NR_msgsnd
:
9967 ret
= do_msgsnd(arg1
, arg2
, arg3
, arg4
);
9970 #ifdef TARGET_NR_shmget
9971 case TARGET_NR_shmget
:
9972 ret
= get_errno(shmget(arg1
, arg2
, arg3
));
9975 #ifdef TARGET_NR_shmctl
9976 case TARGET_NR_shmctl
:
9977 ret
= do_shmctl(arg1
, arg2
, arg3
);
9980 #ifdef TARGET_NR_shmat
9981 case TARGET_NR_shmat
:
9982 ret
= do_shmat(cpu_env
, arg1
, arg2
, arg3
);
9985 #ifdef TARGET_NR_shmdt
9986 case TARGET_NR_shmdt
:
9987 ret
= do_shmdt(arg1
);
9990 case TARGET_NR_fsync
:
9991 ret
= get_errno(fsync(arg1
));
9993 case TARGET_NR_clone
:
9994 /* Linux manages to have three different orderings for its
9995 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
9996 * match the kernel's CONFIG_CLONE_* settings.
9997 * Microblaze is further special in that it uses a sixth
9998 * implicit argument to clone for the TLS pointer.
10000 #if defined(TARGET_MICROBLAZE)
10001 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg4
, arg6
, arg5
));
10002 #elif defined(TARGET_CLONE_BACKWARDS)
10003 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
));
10004 #elif defined(TARGET_CLONE_BACKWARDS2)
10005 ret
= get_errno(do_fork(cpu_env
, arg2
, arg1
, arg3
, arg5
, arg4
));
10007 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg5
, arg4
));
10010 #ifdef __NR_exit_group
10011 /* new thread calls */
10012 case TARGET_NR_exit_group
:
10013 #ifdef TARGET_GPROF
10016 gdb_exit(cpu_env
, arg1
);
10017 ret
= get_errno(exit_group(arg1
));
10020 case TARGET_NR_setdomainname
:
10021 if (!(p
= lock_user_string(arg1
)))
10023 ret
= get_errno(setdomainname(p
, arg2
));
10024 unlock_user(p
, arg1
, 0);
10026 case TARGET_NR_uname
:
10027 /* no need to transcode because we use the linux syscall */
10029 struct new_utsname
* buf
;
10031 if (!lock_user_struct(VERIFY_WRITE
, buf
, arg1
, 0))
10033 ret
= get_errno(sys_uname(buf
));
10034 if (!is_error(ret
)) {
10035 /* Overwrite the native machine name with whatever is being
10037 strcpy (buf
->machine
, cpu_to_uname_machine(cpu_env
));
10038 /* Allow the user to override the reported release. */
10039 if (qemu_uname_release
&& *qemu_uname_release
) {
10040 g_strlcpy(buf
->release
, qemu_uname_release
,
10041 sizeof(buf
->release
));
10044 unlock_user_struct(buf
, arg1
, 1);
10048 case TARGET_NR_modify_ldt
:
10049 ret
= do_modify_ldt(cpu_env
, arg1
, arg2
, arg3
);
10051 #if !defined(TARGET_X86_64)
10052 case TARGET_NR_vm86old
:
10053 goto unimplemented
;
10054 case TARGET_NR_vm86
:
10055 ret
= do_vm86(cpu_env
, arg1
, arg2
);
10059 case TARGET_NR_adjtimex
:
10061 struct timex host_buf
;
10063 if (target_to_host_timex(&host_buf
, arg1
) != 0) {
10066 ret
= get_errno(adjtimex(&host_buf
));
10067 if (!is_error(ret
)) {
10068 if (host_to_target_timex(arg1
, &host_buf
) != 0) {
10074 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
10075 case TARGET_NR_clock_adjtime
:
10077 struct timex htx
, *phtx
= &htx
;
10079 if (target_to_host_timex(phtx
, arg2
) != 0) {
10082 ret
= get_errno(clock_adjtime(arg1
, phtx
));
10083 if (!is_error(ret
) && phtx
) {
10084 if (host_to_target_timex(arg2
, phtx
) != 0) {
10091 #ifdef TARGET_NR_create_module
10092 case TARGET_NR_create_module
:
10094 case TARGET_NR_init_module
:
10095 case TARGET_NR_delete_module
:
10096 #ifdef TARGET_NR_get_kernel_syms
10097 case TARGET_NR_get_kernel_syms
:
10099 goto unimplemented
;
10100 case TARGET_NR_quotactl
:
10101 goto unimplemented
;
10102 case TARGET_NR_getpgid
:
10103 ret
= get_errno(getpgid(arg1
));
10105 case TARGET_NR_fchdir
:
10106 ret
= get_errno(fchdir(arg1
));
10108 #ifdef TARGET_NR_bdflush /* not on x86_64 */
10109 case TARGET_NR_bdflush
:
10110 goto unimplemented
;
10112 #ifdef TARGET_NR_sysfs
10113 case TARGET_NR_sysfs
:
10114 goto unimplemented
;
10116 case TARGET_NR_personality
:
10117 ret
= get_errno(personality(arg1
));
10119 #ifdef TARGET_NR_afs_syscall
10120 case TARGET_NR_afs_syscall
:
10121 goto unimplemented
;
10123 #ifdef TARGET_NR__llseek /* Not on alpha */
10124 case TARGET_NR__llseek
:
10127 #if !defined(__NR_llseek)
10128 res
= lseek(arg1
, ((uint64_t)arg2
<< 32) | (abi_ulong
)arg3
, arg5
);
10130 ret
= get_errno(res
);
10135 ret
= get_errno(_llseek(arg1
, arg2
, arg3
, &res
, arg5
));
10137 if ((ret
== 0) && put_user_s64(res
, arg4
)) {
10143 #ifdef TARGET_NR_getdents
10144 case TARGET_NR_getdents
:
10145 #ifdef __NR_getdents
10146 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
10148 struct target_dirent
*target_dirp
;
10149 struct linux_dirent
*dirp
;
10150 abi_long count
= arg3
;
10152 dirp
= g_try_malloc(count
);
10154 ret
= -TARGET_ENOMEM
;
10158 ret
= get_errno(sys_getdents(arg1
, dirp
, count
));
10159 if (!is_error(ret
)) {
10160 struct linux_dirent
*de
;
10161 struct target_dirent
*tde
;
10163 int reclen
, treclen
;
10164 int count1
, tnamelen
;
10168 if (!(target_dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0)))
10172 reclen
= de
->d_reclen
;
10173 tnamelen
= reclen
- offsetof(struct linux_dirent
, d_name
);
10174 assert(tnamelen
>= 0);
10175 treclen
= tnamelen
+ offsetof(struct target_dirent
, d_name
);
10176 assert(count1
+ treclen
<= count
);
10177 tde
->d_reclen
= tswap16(treclen
);
10178 tde
->d_ino
= tswapal(de
->d_ino
);
10179 tde
->d_off
= tswapal(de
->d_off
);
10180 memcpy(tde
->d_name
, de
->d_name
, tnamelen
);
10181 de
= (struct linux_dirent
*)((char *)de
+ reclen
);
10183 tde
= (struct target_dirent
*)((char *)tde
+ treclen
);
10187 unlock_user(target_dirp
, arg2
, ret
);
10193 struct linux_dirent
*dirp
;
10194 abi_long count
= arg3
;
10196 if (!(dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0)))
10198 ret
= get_errno(sys_getdents(arg1
, dirp
, count
));
10199 if (!is_error(ret
)) {
10200 struct linux_dirent
*de
;
10205 reclen
= de
->d_reclen
;
10208 de
->d_reclen
= tswap16(reclen
);
10209 tswapls(&de
->d_ino
);
10210 tswapls(&de
->d_off
);
10211 de
= (struct linux_dirent
*)((char *)de
+ reclen
);
10215 unlock_user(dirp
, arg2
, ret
);
10219 /* Implement getdents in terms of getdents64 */
10221 struct linux_dirent64
*dirp
;
10222 abi_long count
= arg3
;
10224 dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0);
10228 ret
= get_errno(sys_getdents64(arg1
, dirp
, count
));
10229 if (!is_error(ret
)) {
10230 /* Convert the dirent64 structs to target dirent. We do this
10231 * in-place, since we can guarantee that a target_dirent is no
10232 * larger than a dirent64; however this means we have to be
10233 * careful to read everything before writing in the new format.
10235 struct linux_dirent64
*de
;
10236 struct target_dirent
*tde
;
10241 tde
= (struct target_dirent
*)dirp
;
10243 int namelen
, treclen
;
10244 int reclen
= de
->d_reclen
;
10245 uint64_t ino
= de
->d_ino
;
10246 int64_t off
= de
->d_off
;
10247 uint8_t type
= de
->d_type
;
10249 namelen
= strlen(de
->d_name
);
10250 treclen
= offsetof(struct target_dirent
, d_name
)
10252 treclen
= QEMU_ALIGN_UP(treclen
, sizeof(abi_long
));
10254 memmove(tde
->d_name
, de
->d_name
, namelen
+ 1);
10255 tde
->d_ino
= tswapal(ino
);
10256 tde
->d_off
= tswapal(off
);
10257 tde
->d_reclen
= tswap16(treclen
);
10258 /* The target_dirent type is in what was formerly a padding
10259 * byte at the end of the structure:
10261 *(((char *)tde
) + treclen
- 1) = type
;
10263 de
= (struct linux_dirent64
*)((char *)de
+ reclen
);
10264 tde
= (struct target_dirent
*)((char *)tde
+ treclen
);
10270 unlock_user(dirp
, arg2
, ret
);
10274 #endif /* TARGET_NR_getdents */
10275 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
10276 case TARGET_NR_getdents64
:
10278 struct linux_dirent64
*dirp
;
10279 abi_long count
= arg3
;
10280 if (!(dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0)))
10282 ret
= get_errno(sys_getdents64(arg1
, dirp
, count
));
10283 if (!is_error(ret
)) {
10284 struct linux_dirent64
*de
;
10289 reclen
= de
->d_reclen
;
10292 de
->d_reclen
= tswap16(reclen
);
10293 tswap64s((uint64_t *)&de
->d_ino
);
10294 tswap64s((uint64_t *)&de
->d_off
);
10295 de
= (struct linux_dirent64
*)((char *)de
+ reclen
);
10299 unlock_user(dirp
, arg2
, ret
);
10302 #endif /* TARGET_NR_getdents64 */
10303 #if defined(TARGET_NR__newselect)
10304 case TARGET_NR__newselect
:
10305 ret
= do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
10308 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
10309 # ifdef TARGET_NR_poll
10310 case TARGET_NR_poll
:
10312 # ifdef TARGET_NR_ppoll
10313 case TARGET_NR_ppoll
:
10316 struct target_pollfd
*target_pfd
;
10317 unsigned int nfds
= arg2
;
10318 struct pollfd
*pfd
;
10324 if (nfds
> (INT_MAX
/ sizeof(struct target_pollfd
))) {
10325 ret
= -TARGET_EINVAL
;
10329 target_pfd
= lock_user(VERIFY_WRITE
, arg1
,
10330 sizeof(struct target_pollfd
) * nfds
, 1);
10335 pfd
= alloca(sizeof(struct pollfd
) * nfds
);
10336 for (i
= 0; i
< nfds
; i
++) {
10337 pfd
[i
].fd
= tswap32(target_pfd
[i
].fd
);
10338 pfd
[i
].events
= tswap16(target_pfd
[i
].events
);
10343 # ifdef TARGET_NR_ppoll
10344 case TARGET_NR_ppoll
:
10346 struct timespec _timeout_ts
, *timeout_ts
= &_timeout_ts
;
10347 target_sigset_t
*target_set
;
10348 sigset_t _set
, *set
= &_set
;
10351 if (target_to_host_timespec(timeout_ts
, arg3
)) {
10352 unlock_user(target_pfd
, arg1
, 0);
10360 if (arg5
!= sizeof(target_sigset_t
)) {
10361 unlock_user(target_pfd
, arg1
, 0);
10362 ret
= -TARGET_EINVAL
;
10366 target_set
= lock_user(VERIFY_READ
, arg4
, sizeof(target_sigset_t
), 1);
10368 unlock_user(target_pfd
, arg1
, 0);
10371 target_to_host_sigset(set
, target_set
);
10376 ret
= get_errno(safe_ppoll(pfd
, nfds
, timeout_ts
,
10377 set
, SIGSET_T_SIZE
));
10379 if (!is_error(ret
) && arg3
) {
10380 host_to_target_timespec(arg3
, timeout_ts
);
10383 unlock_user(target_set
, arg4
, 0);
10388 # ifdef TARGET_NR_poll
10389 case TARGET_NR_poll
:
10391 struct timespec ts
, *pts
;
10394 /* Convert ms to secs, ns */
10395 ts
.tv_sec
= arg3
/ 1000;
10396 ts
.tv_nsec
= (arg3
% 1000) * 1000000LL;
10399 /* -ve poll() timeout means "infinite" */
10402 ret
= get_errno(safe_ppoll(pfd
, nfds
, pts
, NULL
, 0));
10407 g_assert_not_reached();
10410 if (!is_error(ret
)) {
10411 for(i
= 0; i
< nfds
; i
++) {
10412 target_pfd
[i
].revents
= tswap16(pfd
[i
].revents
);
10415 unlock_user(target_pfd
, arg1
, sizeof(struct target_pollfd
) * nfds
);
10419 case TARGET_NR_flock
:
10420 /* NOTE: the flock constant seems to be the same for every
10422 ret
= get_errno(safe_flock(arg1
, arg2
));
10424 case TARGET_NR_readv
:
10426 struct iovec
*vec
= lock_iovec(VERIFY_WRITE
, arg2
, arg3
, 0);
10428 ret
= get_errno(safe_readv(arg1
, vec
, arg3
));
10429 unlock_iovec(vec
, arg2
, arg3
, 1);
10431 ret
= -host_to_target_errno(errno
);
10435 case TARGET_NR_writev
:
10437 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
10439 ret
= get_errno(safe_writev(arg1
, vec
, arg3
));
10440 unlock_iovec(vec
, arg2
, arg3
, 0);
10442 ret
= -host_to_target_errno(errno
);
10446 #if defined(TARGET_NR_preadv)
10447 case TARGET_NR_preadv
:
10449 struct iovec
*vec
= lock_iovec(VERIFY_WRITE
, arg2
, arg3
, 0);
10451 ret
= get_errno(safe_preadv(arg1
, vec
, arg3
, arg4
, arg5
));
10452 unlock_iovec(vec
, arg2
, arg3
, 1);
10454 ret
= -host_to_target_errno(errno
);
10459 #if defined(TARGET_NR_pwritev)
10460 case TARGET_NR_pwritev
:
10462 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
10464 ret
= get_errno(safe_pwritev(arg1
, vec
, arg3
, arg4
, arg5
));
10465 unlock_iovec(vec
, arg2
, arg3
, 0);
10467 ret
= -host_to_target_errno(errno
);
10472 case TARGET_NR_getsid
:
10473 ret
= get_errno(getsid(arg1
));
10475 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
10476 case TARGET_NR_fdatasync
:
10477 ret
= get_errno(fdatasync(arg1
));
10480 #ifdef TARGET_NR__sysctl
10481 case TARGET_NR__sysctl
:
10482 /* We don't implement this, but ENOTDIR is always a safe
10484 ret
= -TARGET_ENOTDIR
;
10487 case TARGET_NR_sched_getaffinity
:
10489 unsigned int mask_size
;
10490 unsigned long *mask
;
10493 * sched_getaffinity needs multiples of ulong, so need to take
10494 * care of mismatches between target ulong and host ulong sizes.
10496 if (arg2
& (sizeof(abi_ulong
) - 1)) {
10497 ret
= -TARGET_EINVAL
;
10500 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
10502 mask
= alloca(mask_size
);
10503 memset(mask
, 0, mask_size
);
10504 ret
= get_errno(sys_sched_getaffinity(arg1
, mask_size
, mask
));
10506 if (!is_error(ret
)) {
10508 /* More data returned than the caller's buffer will fit.
10509 * This only happens if sizeof(abi_long) < sizeof(long)
10510 * and the caller passed us a buffer holding an odd number
10511 * of abi_longs. If the host kernel is actually using the
10512 * extra 4 bytes then fail EINVAL; otherwise we can just
10513 * ignore them and only copy the interesting part.
10515 int numcpus
= sysconf(_SC_NPROCESSORS_CONF
);
10516 if (numcpus
> arg2
* 8) {
10517 ret
= -TARGET_EINVAL
;
10523 if (host_to_target_cpu_mask(mask
, mask_size
, arg3
, ret
)) {
10529 case TARGET_NR_sched_setaffinity
:
10531 unsigned int mask_size
;
10532 unsigned long *mask
;
10535 * sched_setaffinity needs multiples of ulong, so need to take
10536 * care of mismatches between target ulong and host ulong sizes.
10538 if (arg2
& (sizeof(abi_ulong
) - 1)) {
10539 ret
= -TARGET_EINVAL
;
10542 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
10543 mask
= alloca(mask_size
);
10545 ret
= target_to_host_cpu_mask(mask
, mask_size
, arg3
, arg2
);
10550 ret
= get_errno(sys_sched_setaffinity(arg1
, mask_size
, mask
));
10553 case TARGET_NR_getcpu
:
10555 unsigned cpu
, node
;
10556 ret
= get_errno(sys_getcpu(arg1
? &cpu
: NULL
,
10557 arg2
? &node
: NULL
,
10559 if (is_error(ret
)) {
10562 if (arg1
&& put_user_u32(cpu
, arg1
)) {
10565 if (arg2
&& put_user_u32(node
, arg2
)) {
10570 case TARGET_NR_sched_setparam
:
10572 struct sched_param
*target_schp
;
10573 struct sched_param schp
;
10576 return -TARGET_EINVAL
;
10578 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg2
, 1))
10580 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
10581 unlock_user_struct(target_schp
, arg2
, 0);
10582 ret
= get_errno(sched_setparam(arg1
, &schp
));
10585 case TARGET_NR_sched_getparam
:
10587 struct sched_param
*target_schp
;
10588 struct sched_param schp
;
10591 return -TARGET_EINVAL
;
10593 ret
= get_errno(sched_getparam(arg1
, &schp
));
10594 if (!is_error(ret
)) {
10595 if (!lock_user_struct(VERIFY_WRITE
, target_schp
, arg2
, 0))
10597 target_schp
->sched_priority
= tswap32(schp
.sched_priority
);
10598 unlock_user_struct(target_schp
, arg2
, 1);
10602 case TARGET_NR_sched_setscheduler
:
10604 struct sched_param
*target_schp
;
10605 struct sched_param schp
;
10607 return -TARGET_EINVAL
;
10609 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg3
, 1))
10611 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
10612 unlock_user_struct(target_schp
, arg3
, 0);
10613 ret
= get_errno(sched_setscheduler(arg1
, arg2
, &schp
));
10616 case TARGET_NR_sched_getscheduler
:
10617 ret
= get_errno(sched_getscheduler(arg1
));
10619 case TARGET_NR_sched_yield
:
10620 ret
= get_errno(sched_yield());
10622 case TARGET_NR_sched_get_priority_max
:
10623 ret
= get_errno(sched_get_priority_max(arg1
));
10625 case TARGET_NR_sched_get_priority_min
:
10626 ret
= get_errno(sched_get_priority_min(arg1
));
10628 case TARGET_NR_sched_rr_get_interval
:
10630 struct timespec ts
;
10631 ret
= get_errno(sched_rr_get_interval(arg1
, &ts
));
10632 if (!is_error(ret
)) {
10633 ret
= host_to_target_timespec(arg2
, &ts
);
10637 case TARGET_NR_nanosleep
:
10639 struct timespec req
, rem
;
10640 target_to_host_timespec(&req
, arg1
);
10641 ret
= get_errno(safe_nanosleep(&req
, &rem
));
10642 if (is_error(ret
) && arg2
) {
10643 host_to_target_timespec(arg2
, &rem
);
10647 #ifdef TARGET_NR_query_module
10648 case TARGET_NR_query_module
:
10649 goto unimplemented
;
10651 #ifdef TARGET_NR_nfsservctl
10652 case TARGET_NR_nfsservctl
:
10653 goto unimplemented
;
10655 case TARGET_NR_prctl
:
10657 case PR_GET_PDEATHSIG
:
10660 ret
= get_errno(prctl(arg1
, &deathsig
, arg3
, arg4
, arg5
));
10661 if (!is_error(ret
) && arg2
10662 && put_user_ual(deathsig
, arg2
)) {
10670 void *name
= lock_user(VERIFY_WRITE
, arg2
, 16, 1);
10674 ret
= get_errno(prctl(arg1
, (unsigned long)name
,
10675 arg3
, arg4
, arg5
));
10676 unlock_user(name
, arg2
, 16);
10681 void *name
= lock_user(VERIFY_READ
, arg2
, 16, 1);
10685 ret
= get_errno(prctl(arg1
, (unsigned long)name
,
10686 arg3
, arg4
, arg5
));
10687 unlock_user(name
, arg2
, 0);
10691 #ifdef TARGET_AARCH64
10692 case TARGET_PR_SVE_SET_VL
:
10693 /* We cannot support either PR_SVE_SET_VL_ONEXEC
10694 or PR_SVE_VL_INHERIT. Therefore, anything above
10695 ARM_MAX_VQ results in EINVAL. */
10696 ret
= -TARGET_EINVAL
;
10697 if (arm_feature(cpu_env
, ARM_FEATURE_SVE
)
10698 && arg2
>= 0 && arg2
<= ARM_MAX_VQ
* 16 && !(arg2
& 15)) {
10699 CPUARMState
*env
= cpu_env
;
10700 int old_vq
= (env
->vfp
.zcr_el
[1] & 0xf) + 1;
10701 int vq
= MAX(arg2
/ 16, 1);
10704 aarch64_sve_narrow_vq(env
, vq
);
10706 env
->vfp
.zcr_el
[1] = vq
- 1;
10710 case TARGET_PR_SVE_GET_VL
:
10711 ret
= -TARGET_EINVAL
;
10712 if (arm_feature(cpu_env
, ARM_FEATURE_SVE
)) {
10713 CPUARMState
*env
= cpu_env
;
10714 ret
= ((env
->vfp
.zcr_el
[1] & 0xf) + 1) * 16;
10717 #endif /* AARCH64 */
10718 case PR_GET_SECCOMP
:
10719 case PR_SET_SECCOMP
:
10720 /* Disable seccomp to prevent the target disabling syscalls we
10722 ret
= -TARGET_EINVAL
;
10725 /* Most prctl options have no pointer arguments */
10726 ret
= get_errno(prctl(arg1
, arg2
, arg3
, arg4
, arg5
));
10730 #ifdef TARGET_NR_arch_prctl
10731 case TARGET_NR_arch_prctl
:
10732 #if defined(TARGET_I386) && !defined(TARGET_ABI32)
10733 ret
= do_arch_prctl(cpu_env
, arg1
, arg2
);
10736 goto unimplemented
;
10739 #ifdef TARGET_NR_pread64
10740 case TARGET_NR_pread64
:
10741 if (regpairs_aligned(cpu_env
, num
)) {
10745 if (!(p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0)))
10747 ret
= get_errno(pread64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
10748 unlock_user(p
, arg2
, ret
);
10750 case TARGET_NR_pwrite64
:
10751 if (regpairs_aligned(cpu_env
, num
)) {
10755 if (!(p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1)))
10757 ret
= get_errno(pwrite64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
10758 unlock_user(p
, arg2
, 0);
10761 case TARGET_NR_getcwd
:
10762 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0)))
10764 ret
= get_errno(sys_getcwd1(p
, arg2
));
10765 unlock_user(p
, arg1
, ret
);
10767 case TARGET_NR_capget
:
10768 case TARGET_NR_capset
:
10770 struct target_user_cap_header
*target_header
;
10771 struct target_user_cap_data
*target_data
= NULL
;
10772 struct __user_cap_header_struct header
;
10773 struct __user_cap_data_struct data
[2];
10774 struct __user_cap_data_struct
*dataptr
= NULL
;
10775 int i
, target_datalen
;
10776 int data_items
= 1;
10778 if (!lock_user_struct(VERIFY_WRITE
, target_header
, arg1
, 1)) {
10781 header
.version
= tswap32(target_header
->version
);
10782 header
.pid
= tswap32(target_header
->pid
);
10784 if (header
.version
!= _LINUX_CAPABILITY_VERSION
) {
10785 /* Version 2 and up takes pointer to two user_data structs */
10789 target_datalen
= sizeof(*target_data
) * data_items
;
10792 if (num
== TARGET_NR_capget
) {
10793 target_data
= lock_user(VERIFY_WRITE
, arg2
, target_datalen
, 0);
10795 target_data
= lock_user(VERIFY_READ
, arg2
, target_datalen
, 1);
10797 if (!target_data
) {
10798 unlock_user_struct(target_header
, arg1
, 0);
10802 if (num
== TARGET_NR_capset
) {
10803 for (i
= 0; i
< data_items
; i
++) {
10804 data
[i
].effective
= tswap32(target_data
[i
].effective
);
10805 data
[i
].permitted
= tswap32(target_data
[i
].permitted
);
10806 data
[i
].inheritable
= tswap32(target_data
[i
].inheritable
);
10813 if (num
== TARGET_NR_capget
) {
10814 ret
= get_errno(capget(&header
, dataptr
));
10816 ret
= get_errno(capset(&header
, dataptr
));
10819 /* The kernel always updates version for both capget and capset */
10820 target_header
->version
= tswap32(header
.version
);
10821 unlock_user_struct(target_header
, arg1
, 1);
10824 if (num
== TARGET_NR_capget
) {
10825 for (i
= 0; i
< data_items
; i
++) {
10826 target_data
[i
].effective
= tswap32(data
[i
].effective
);
10827 target_data
[i
].permitted
= tswap32(data
[i
].permitted
);
10828 target_data
[i
].inheritable
= tswap32(data
[i
].inheritable
);
10830 unlock_user(target_data
, arg2
, target_datalen
);
10832 unlock_user(target_data
, arg2
, 0);
10837 case TARGET_NR_sigaltstack
:
10838 ret
= do_sigaltstack(arg1
, arg2
, get_sp_from_cpustate((CPUArchState
*)cpu_env
));
10841 #ifdef CONFIG_SENDFILE
10842 case TARGET_NR_sendfile
:
10844 off_t
*offp
= NULL
;
10847 ret
= get_user_sal(off
, arg3
);
10848 if (is_error(ret
)) {
10853 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
10854 if (!is_error(ret
) && arg3
) {
10855 abi_long ret2
= put_user_sal(off
, arg3
);
10856 if (is_error(ret2
)) {
10862 #ifdef TARGET_NR_sendfile64
10863 case TARGET_NR_sendfile64
:
10865 off_t
*offp
= NULL
;
10868 ret
= get_user_s64(off
, arg3
);
10869 if (is_error(ret
)) {
10874 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
10875 if (!is_error(ret
) && arg3
) {
10876 abi_long ret2
= put_user_s64(off
, arg3
);
10877 if (is_error(ret2
)) {
10885 case TARGET_NR_sendfile
:
10886 #ifdef TARGET_NR_sendfile64
10887 case TARGET_NR_sendfile64
:
10889 goto unimplemented
;
10892 #ifdef TARGET_NR_getpmsg
10893 case TARGET_NR_getpmsg
:
10894 goto unimplemented
;
10896 #ifdef TARGET_NR_putpmsg
10897 case TARGET_NR_putpmsg
:
10898 goto unimplemented
;
10900 #ifdef TARGET_NR_vfork
10901 case TARGET_NR_vfork
:
10902 ret
= get_errno(do_fork(cpu_env
,
10903 CLONE_VFORK
| CLONE_VM
| TARGET_SIGCHLD
,
10907 #ifdef TARGET_NR_ugetrlimit
10908 case TARGET_NR_ugetrlimit
:
10910 struct rlimit rlim
;
10911 int resource
= target_to_host_resource(arg1
);
10912 ret
= get_errno(getrlimit(resource
, &rlim
));
10913 if (!is_error(ret
)) {
10914 struct target_rlimit
*target_rlim
;
10915 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
10917 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
10918 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
10919 unlock_user_struct(target_rlim
, arg2
, 1);
10924 #ifdef TARGET_NR_truncate64
10925 case TARGET_NR_truncate64
:
10926 if (!(p
= lock_user_string(arg1
)))
10928 ret
= target_truncate64(cpu_env
, p
, arg2
, arg3
, arg4
);
10929 unlock_user(p
, arg1
, 0);
10932 #ifdef TARGET_NR_ftruncate64
10933 case TARGET_NR_ftruncate64
:
10934 ret
= target_ftruncate64(cpu_env
, arg1
, arg2
, arg3
, arg4
);
10937 #ifdef TARGET_NR_stat64
10938 case TARGET_NR_stat64
:
10939 if (!(p
= lock_user_string(arg1
)))
10941 ret
= get_errno(stat(path(p
), &st
));
10942 unlock_user(p
, arg1
, 0);
10943 if (!is_error(ret
))
10944 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
10947 #ifdef TARGET_NR_lstat64
10948 case TARGET_NR_lstat64
:
10949 if (!(p
= lock_user_string(arg1
)))
10951 ret
= get_errno(lstat(path(p
), &st
));
10952 unlock_user(p
, arg1
, 0);
10953 if (!is_error(ret
))
10954 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
10957 #ifdef TARGET_NR_fstat64
10958 case TARGET_NR_fstat64
:
10959 ret
= get_errno(fstat(arg1
, &st
));
10960 if (!is_error(ret
))
10961 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
10964 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
10965 #ifdef TARGET_NR_fstatat64
10966 case TARGET_NR_fstatat64
:
10968 #ifdef TARGET_NR_newfstatat
10969 case TARGET_NR_newfstatat
:
10971 if (!(p
= lock_user_string(arg2
)))
10973 ret
= get_errno(fstatat(arg1
, path(p
), &st
, arg4
));
10974 if (!is_error(ret
))
10975 ret
= host_to_target_stat64(cpu_env
, arg3
, &st
);
10978 #ifdef TARGET_NR_lchown
10979 case TARGET_NR_lchown
:
10980 if (!(p
= lock_user_string(arg1
)))
10982 ret
= get_errno(lchown(p
, low2highuid(arg2
), low2highgid(arg3
)));
10983 unlock_user(p
, arg1
, 0);
10986 #ifdef TARGET_NR_getuid
10987 case TARGET_NR_getuid
:
10988 ret
= get_errno(high2lowuid(getuid()));
10991 #ifdef TARGET_NR_getgid
10992 case TARGET_NR_getgid
:
10993 ret
= get_errno(high2lowgid(getgid()));
10996 #ifdef TARGET_NR_geteuid
10997 case TARGET_NR_geteuid
:
10998 ret
= get_errno(high2lowuid(geteuid()));
11001 #ifdef TARGET_NR_getegid
11002 case TARGET_NR_getegid
:
11003 ret
= get_errno(high2lowgid(getegid()));
11006 case TARGET_NR_setreuid
:
11007 ret
= get_errno(setreuid(low2highuid(arg1
), low2highuid(arg2
)));
11009 case TARGET_NR_setregid
:
11010 ret
= get_errno(setregid(low2highgid(arg1
), low2highgid(arg2
)));
11012 case TARGET_NR_getgroups
:
11014 int gidsetsize
= arg1
;
11015 target_id
*target_grouplist
;
11019 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
11020 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
11021 if (gidsetsize
== 0)
11023 if (!is_error(ret
)) {
11024 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
, gidsetsize
* sizeof(target_id
), 0);
11025 if (!target_grouplist
)
11027 for(i
= 0;i
< ret
; i
++)
11028 target_grouplist
[i
] = tswapid(high2lowgid(grouplist
[i
]));
11029 unlock_user(target_grouplist
, arg2
, gidsetsize
* sizeof(target_id
));
11033 case TARGET_NR_setgroups
:
11035 int gidsetsize
= arg1
;
11036 target_id
*target_grouplist
;
11037 gid_t
*grouplist
= NULL
;
11040 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
11041 target_grouplist
= lock_user(VERIFY_READ
, arg2
, gidsetsize
* sizeof(target_id
), 1);
11042 if (!target_grouplist
) {
11043 ret
= -TARGET_EFAULT
;
11046 for (i
= 0; i
< gidsetsize
; i
++) {
11047 grouplist
[i
] = low2highgid(tswapid(target_grouplist
[i
]));
11049 unlock_user(target_grouplist
, arg2
, 0);
11051 ret
= get_errno(setgroups(gidsetsize
, grouplist
));
11054 case TARGET_NR_fchown
:
11055 ret
= get_errno(fchown(arg1
, low2highuid(arg2
), low2highgid(arg3
)));
11057 #if defined(TARGET_NR_fchownat)
11058 case TARGET_NR_fchownat
:
11059 if (!(p
= lock_user_string(arg2
)))
11061 ret
= get_errno(fchownat(arg1
, p
, low2highuid(arg3
),
11062 low2highgid(arg4
), arg5
));
11063 unlock_user(p
, arg2
, 0);
11066 #ifdef TARGET_NR_setresuid
11067 case TARGET_NR_setresuid
:
11068 ret
= get_errno(sys_setresuid(low2highuid(arg1
),
11070 low2highuid(arg3
)));
11073 #ifdef TARGET_NR_getresuid
11074 case TARGET_NR_getresuid
:
11076 uid_t ruid
, euid
, suid
;
11077 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
11078 if (!is_error(ret
)) {
11079 if (put_user_id(high2lowuid(ruid
), arg1
)
11080 || put_user_id(high2lowuid(euid
), arg2
)
11081 || put_user_id(high2lowuid(suid
), arg3
))
11087 #ifdef TARGET_NR_getresgid
11088 case TARGET_NR_setresgid
:
11089 ret
= get_errno(sys_setresgid(low2highgid(arg1
),
11091 low2highgid(arg3
)));
11094 #ifdef TARGET_NR_getresgid
11095 case TARGET_NR_getresgid
:
11097 gid_t rgid
, egid
, sgid
;
11098 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
11099 if (!is_error(ret
)) {
11100 if (put_user_id(high2lowgid(rgid
), arg1
)
11101 || put_user_id(high2lowgid(egid
), arg2
)
11102 || put_user_id(high2lowgid(sgid
), arg3
))
11108 #ifdef TARGET_NR_chown
11109 case TARGET_NR_chown
:
11110 if (!(p
= lock_user_string(arg1
)))
11112 ret
= get_errno(chown(p
, low2highuid(arg2
), low2highgid(arg3
)));
11113 unlock_user(p
, arg1
, 0);
11116 case TARGET_NR_setuid
:
11117 ret
= get_errno(sys_setuid(low2highuid(arg1
)));
11119 case TARGET_NR_setgid
:
11120 ret
= get_errno(sys_setgid(low2highgid(arg1
)));
11122 case TARGET_NR_setfsuid
:
11123 ret
= get_errno(setfsuid(arg1
));
11125 case TARGET_NR_setfsgid
:
11126 ret
= get_errno(setfsgid(arg1
));
11129 #ifdef TARGET_NR_lchown32
11130 case TARGET_NR_lchown32
:
11131 if (!(p
= lock_user_string(arg1
)))
11133 ret
= get_errno(lchown(p
, arg2
, arg3
));
11134 unlock_user(p
, arg1
, 0);
11137 #ifdef TARGET_NR_getuid32
11138 case TARGET_NR_getuid32
:
11139 ret
= get_errno(getuid());
11143 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11144 /* Alpha specific */
11145 case TARGET_NR_getxuid
:
11149 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
]=euid
;
11151 ret
= get_errno(getuid());
11154 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11155 /* Alpha specific */
11156 case TARGET_NR_getxgid
:
11160 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
]=egid
;
11162 ret
= get_errno(getgid());
11165 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11166 /* Alpha specific */
11167 case TARGET_NR_osf_getsysinfo
:
11168 ret
= -TARGET_EOPNOTSUPP
;
11170 case TARGET_GSI_IEEE_FP_CONTROL
:
11172 uint64_t swcr
, fpcr
= cpu_alpha_load_fpcr (cpu_env
);
11174 /* Copied from linux ieee_fpcr_to_swcr. */
11175 swcr
= (fpcr
>> 35) & SWCR_STATUS_MASK
;
11176 swcr
|= (fpcr
>> 36) & SWCR_MAP_DMZ
;
11177 swcr
|= (~fpcr
>> 48) & (SWCR_TRAP_ENABLE_INV
11178 | SWCR_TRAP_ENABLE_DZE
11179 | SWCR_TRAP_ENABLE_OVF
);
11180 swcr
|= (~fpcr
>> 57) & (SWCR_TRAP_ENABLE_UNF
11181 | SWCR_TRAP_ENABLE_INE
);
11182 swcr
|= (fpcr
>> 47) & SWCR_MAP_UMZ
;
11183 swcr
|= (~fpcr
>> 41) & SWCR_TRAP_ENABLE_DNO
;
11185 if (put_user_u64 (swcr
, arg2
))
11191 /* case GSI_IEEE_STATE_AT_SIGNAL:
11192 -- Not implemented in linux kernel.
11194 -- Retrieves current unaligned access state; not much used.
11195 case GSI_PROC_TYPE:
11196 -- Retrieves implver information; surely not used.
11197 case GSI_GET_HWRPB:
11198 -- Grabs a copy of the HWRPB; surely not used.
11203 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
11204 /* Alpha specific */
11205 case TARGET_NR_osf_setsysinfo
:
11206 ret
= -TARGET_EOPNOTSUPP
;
11208 case TARGET_SSI_IEEE_FP_CONTROL
:
11210 uint64_t swcr
, fpcr
, orig_fpcr
;
11212 if (get_user_u64 (swcr
, arg2
)) {
11215 orig_fpcr
= cpu_alpha_load_fpcr(cpu_env
);
11216 fpcr
= orig_fpcr
& FPCR_DYN_MASK
;
11218 /* Copied from linux ieee_swcr_to_fpcr. */
11219 fpcr
|= (swcr
& SWCR_STATUS_MASK
) << 35;
11220 fpcr
|= (swcr
& SWCR_MAP_DMZ
) << 36;
11221 fpcr
|= (~swcr
& (SWCR_TRAP_ENABLE_INV
11222 | SWCR_TRAP_ENABLE_DZE
11223 | SWCR_TRAP_ENABLE_OVF
)) << 48;
11224 fpcr
|= (~swcr
& (SWCR_TRAP_ENABLE_UNF
11225 | SWCR_TRAP_ENABLE_INE
)) << 57;
11226 fpcr
|= (swcr
& SWCR_MAP_UMZ
? FPCR_UNDZ
| FPCR_UNFD
: 0);
11227 fpcr
|= (~swcr
& SWCR_TRAP_ENABLE_DNO
) << 41;
11229 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
11234 case TARGET_SSI_IEEE_RAISE_EXCEPTION
:
11236 uint64_t exc
, fpcr
, orig_fpcr
;
11239 if (get_user_u64(exc
, arg2
)) {
11243 orig_fpcr
= cpu_alpha_load_fpcr(cpu_env
);
11245 /* We only add to the exception status here. */
11246 fpcr
= orig_fpcr
| ((exc
& SWCR_STATUS_MASK
) << 35);
11248 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
11251 /* Old exceptions are not signaled. */
11252 fpcr
&= ~(orig_fpcr
& FPCR_STATUS_MASK
);
11254 /* If any exceptions set by this call,
11255 and are unmasked, send a signal. */
11257 if ((fpcr
& (FPCR_INE
| FPCR_INED
)) == FPCR_INE
) {
11258 si_code
= TARGET_FPE_FLTRES
;
11260 if ((fpcr
& (FPCR_UNF
| FPCR_UNFD
)) == FPCR_UNF
) {
11261 si_code
= TARGET_FPE_FLTUND
;
11263 if ((fpcr
& (FPCR_OVF
| FPCR_OVFD
)) == FPCR_OVF
) {
11264 si_code
= TARGET_FPE_FLTOVF
;
11266 if ((fpcr
& (FPCR_DZE
| FPCR_DZED
)) == FPCR_DZE
) {
11267 si_code
= TARGET_FPE_FLTDIV
;
11269 if ((fpcr
& (FPCR_INV
| FPCR_INVD
)) == FPCR_INV
) {
11270 si_code
= TARGET_FPE_FLTINV
;
11272 if (si_code
!= 0) {
11273 target_siginfo_t info
;
11274 info
.si_signo
= SIGFPE
;
11276 info
.si_code
= si_code
;
11277 info
._sifields
._sigfault
._addr
11278 = ((CPUArchState
*)cpu_env
)->pc
;
11279 queue_signal((CPUArchState
*)cpu_env
, info
.si_signo
,
11280 QEMU_SI_FAULT
, &info
);
11285 /* case SSI_NVPAIRS:
11286 -- Used with SSIN_UACPROC to enable unaligned accesses.
11287 case SSI_IEEE_STATE_AT_SIGNAL:
11288 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11289 -- Not implemented in linux kernel
11294 #ifdef TARGET_NR_osf_sigprocmask
11295 /* Alpha specific. */
11296 case TARGET_NR_osf_sigprocmask
:
11300 sigset_t set
, oldset
;
11303 case TARGET_SIG_BLOCK
:
11306 case TARGET_SIG_UNBLOCK
:
11309 case TARGET_SIG_SETMASK
:
11313 ret
= -TARGET_EINVAL
;
11317 target_to_host_old_sigset(&set
, &mask
);
11318 ret
= do_sigprocmask(how
, &set
, &oldset
);
11320 host_to_target_old_sigset(&mask
, &oldset
);
11327 #ifdef TARGET_NR_getgid32
11328 case TARGET_NR_getgid32
:
11329 ret
= get_errno(getgid());
11332 #ifdef TARGET_NR_geteuid32
11333 case TARGET_NR_geteuid32
:
11334 ret
= get_errno(geteuid());
11337 #ifdef TARGET_NR_getegid32
11338 case TARGET_NR_getegid32
:
11339 ret
= get_errno(getegid());
11342 #ifdef TARGET_NR_setreuid32
11343 case TARGET_NR_setreuid32
:
11344 ret
= get_errno(setreuid(arg1
, arg2
));
11347 #ifdef TARGET_NR_setregid32
11348 case TARGET_NR_setregid32
:
11349 ret
= get_errno(setregid(arg1
, arg2
));
11352 #ifdef TARGET_NR_getgroups32
11353 case TARGET_NR_getgroups32
:
11355 int gidsetsize
= arg1
;
11356 uint32_t *target_grouplist
;
11360 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
11361 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
11362 if (gidsetsize
== 0)
11364 if (!is_error(ret
)) {
11365 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
, gidsetsize
* 4, 0);
11366 if (!target_grouplist
) {
11367 ret
= -TARGET_EFAULT
;
11370 for(i
= 0;i
< ret
; i
++)
11371 target_grouplist
[i
] = tswap32(grouplist
[i
]);
11372 unlock_user(target_grouplist
, arg2
, gidsetsize
* 4);
11377 #ifdef TARGET_NR_setgroups32
11378 case TARGET_NR_setgroups32
:
11380 int gidsetsize
= arg1
;
11381 uint32_t *target_grouplist
;
11385 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
11386 target_grouplist
= lock_user(VERIFY_READ
, arg2
, gidsetsize
* 4, 1);
11387 if (!target_grouplist
) {
11388 ret
= -TARGET_EFAULT
;
11391 for(i
= 0;i
< gidsetsize
; i
++)
11392 grouplist
[i
] = tswap32(target_grouplist
[i
]);
11393 unlock_user(target_grouplist
, arg2
, 0);
11394 ret
= get_errno(setgroups(gidsetsize
, grouplist
));
11398 #ifdef TARGET_NR_fchown32
11399 case TARGET_NR_fchown32
:
11400 ret
= get_errno(fchown(arg1
, arg2
, arg3
));
11403 #ifdef TARGET_NR_setresuid32
11404 case TARGET_NR_setresuid32
:
11405 ret
= get_errno(sys_setresuid(arg1
, arg2
, arg3
));
11408 #ifdef TARGET_NR_getresuid32
11409 case TARGET_NR_getresuid32
:
11411 uid_t ruid
, euid
, suid
;
11412 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
11413 if (!is_error(ret
)) {
11414 if (put_user_u32(ruid
, arg1
)
11415 || put_user_u32(euid
, arg2
)
11416 || put_user_u32(suid
, arg3
))
11422 #ifdef TARGET_NR_setresgid32
11423 case TARGET_NR_setresgid32
:
11424 ret
= get_errno(sys_setresgid(arg1
, arg2
, arg3
));
11427 #ifdef TARGET_NR_getresgid32
11428 case TARGET_NR_getresgid32
:
11430 gid_t rgid
, egid
, sgid
;
11431 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
11432 if (!is_error(ret
)) {
11433 if (put_user_u32(rgid
, arg1
)
11434 || put_user_u32(egid
, arg2
)
11435 || put_user_u32(sgid
, arg3
))
11441 #ifdef TARGET_NR_chown32
11442 case TARGET_NR_chown32
:
11443 if (!(p
= lock_user_string(arg1
)))
11445 ret
= get_errno(chown(p
, arg2
, arg3
));
11446 unlock_user(p
, arg1
, 0);
11449 #ifdef TARGET_NR_setuid32
11450 case TARGET_NR_setuid32
:
11451 ret
= get_errno(sys_setuid(arg1
));
11454 #ifdef TARGET_NR_setgid32
11455 case TARGET_NR_setgid32
:
11456 ret
= get_errno(sys_setgid(arg1
));
11459 #ifdef TARGET_NR_setfsuid32
11460 case TARGET_NR_setfsuid32
:
11461 ret
= get_errno(setfsuid(arg1
));
11464 #ifdef TARGET_NR_setfsgid32
11465 case TARGET_NR_setfsgid32
:
11466 ret
= get_errno(setfsgid(arg1
));
11470 case TARGET_NR_pivot_root
:
11471 goto unimplemented
;
11472 #ifdef TARGET_NR_mincore
11473 case TARGET_NR_mincore
:
11476 ret
= -TARGET_ENOMEM
;
11477 a
= lock_user(VERIFY_READ
, arg1
, arg2
, 0);
11481 ret
= -TARGET_EFAULT
;
11482 p
= lock_user_string(arg3
);
11486 ret
= get_errno(mincore(a
, arg2
, p
));
11487 unlock_user(p
, arg3
, ret
);
11489 unlock_user(a
, arg1
, 0);
11493 #ifdef TARGET_NR_arm_fadvise64_64
11494 case TARGET_NR_arm_fadvise64_64
:
11495 /* arm_fadvise64_64 looks like fadvise64_64 but
11496 * with different argument order: fd, advice, offset, len
11497 * rather than the usual fd, offset, len, advice.
11498 * Note that offset and len are both 64-bit so appear as
11499 * pairs of 32-bit registers.
11501 ret
= posix_fadvise(arg1
, target_offset64(arg3
, arg4
),
11502 target_offset64(arg5
, arg6
), arg2
);
11503 ret
= -host_to_target_errno(ret
);
11507 #if TARGET_ABI_BITS == 32
11509 #ifdef TARGET_NR_fadvise64_64
11510 case TARGET_NR_fadvise64_64
:
11511 #if defined(TARGET_PPC)
11512 /* 6 args: fd, advice, offset (high, low), len (high, low) */
11520 /* 6 args: fd, offset (high, low), len (high, low), advice */
11521 if (regpairs_aligned(cpu_env
, num
)) {
11522 /* offset is in (3,4), len in (5,6) and advice in 7 */
11530 ret
= -host_to_target_errno(posix_fadvise(arg1
,
11531 target_offset64(arg2
, arg3
),
11532 target_offset64(arg4
, arg5
),
11537 #ifdef TARGET_NR_fadvise64
11538 case TARGET_NR_fadvise64
:
11539 /* 5 args: fd, offset (high, low), len, advice */
11540 if (regpairs_aligned(cpu_env
, num
)) {
11541 /* offset is in (3,4), len in 5 and advice in 6 */
11547 ret
= -host_to_target_errno(posix_fadvise(arg1
,
11548 target_offset64(arg2
, arg3
),
11553 #else /* not a 32-bit ABI */
11554 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
11555 #ifdef TARGET_NR_fadvise64_64
11556 case TARGET_NR_fadvise64_64
:
11558 #ifdef TARGET_NR_fadvise64
11559 case TARGET_NR_fadvise64
:
11561 #ifdef TARGET_S390X
11563 case 4: arg4
= POSIX_FADV_NOREUSE
+ 1; break; /* make sure it's an invalid value */
11564 case 5: arg4
= POSIX_FADV_NOREUSE
+ 2; break; /* ditto */
11565 case 6: arg4
= POSIX_FADV_DONTNEED
; break;
11566 case 7: arg4
= POSIX_FADV_NOREUSE
; break;
11570 ret
= -host_to_target_errno(posix_fadvise(arg1
, arg2
, arg3
, arg4
));
11573 #endif /* end of 64-bit ABI fadvise handling */
11575 #ifdef TARGET_NR_madvise
11576 case TARGET_NR_madvise
:
11577 /* A straight passthrough may not be safe because qemu sometimes
11578 turns private file-backed mappings into anonymous mappings.
11579 This will break MADV_DONTNEED.
11580 This is a hint, so ignoring and returning success is ok. */
11581 ret
= get_errno(0);
11584 #if TARGET_ABI_BITS == 32
11585 case TARGET_NR_fcntl64
:
11589 from_flock64_fn
*copyfrom
= copy_from_user_flock64
;
11590 to_flock64_fn
*copyto
= copy_to_user_flock64
;
11593 if (((CPUARMState
*)cpu_env
)->eabi
) {
11594 copyfrom
= copy_from_user_eabi_flock64
;
11595 copyto
= copy_to_user_eabi_flock64
;
11599 cmd
= target_to_host_fcntl_cmd(arg2
);
11600 if (cmd
== -TARGET_EINVAL
) {
11606 case TARGET_F_GETLK64
:
11607 ret
= copyfrom(&fl
, arg3
);
11611 ret
= get_errno(fcntl(arg1
, cmd
, &fl
));
11613 ret
= copyto(arg3
, &fl
);
11617 case TARGET_F_SETLK64
:
11618 case TARGET_F_SETLKW64
:
11619 ret
= copyfrom(&fl
, arg3
);
11623 ret
= get_errno(safe_fcntl(arg1
, cmd
, &fl
));
11626 ret
= do_fcntl(arg1
, arg2
, arg3
);
11632 #ifdef TARGET_NR_cacheflush
11633 case TARGET_NR_cacheflush
:
11634 /* self-modifying code is handled automatically, so nothing needed */
11638 #ifdef TARGET_NR_security
11639 case TARGET_NR_security
:
11640 goto unimplemented
;
11642 #ifdef TARGET_NR_getpagesize
11643 case TARGET_NR_getpagesize
:
11644 ret
= TARGET_PAGE_SIZE
;
11647 case TARGET_NR_gettid
:
11648 ret
= get_errno(gettid());
11650 #ifdef TARGET_NR_readahead
11651 case TARGET_NR_readahead
:
11652 #if TARGET_ABI_BITS == 32
11653 if (regpairs_aligned(cpu_env
, num
)) {
11658 ret
= get_errno(readahead(arg1
, target_offset64(arg2
, arg3
) , arg4
));
11660 ret
= get_errno(readahead(arg1
, arg2
, arg3
));
11665 #ifdef TARGET_NR_setxattr
11666 case TARGET_NR_listxattr
:
11667 case TARGET_NR_llistxattr
:
11671 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
11673 ret
= -TARGET_EFAULT
;
11677 p
= lock_user_string(arg1
);
11679 if (num
== TARGET_NR_listxattr
) {
11680 ret
= get_errno(listxattr(p
, b
, arg3
));
11682 ret
= get_errno(llistxattr(p
, b
, arg3
));
11685 ret
= -TARGET_EFAULT
;
11687 unlock_user(p
, arg1
, 0);
11688 unlock_user(b
, arg2
, arg3
);
11691 case TARGET_NR_flistxattr
:
11695 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
11697 ret
= -TARGET_EFAULT
;
11701 ret
= get_errno(flistxattr(arg1
, b
, arg3
));
11702 unlock_user(b
, arg2
, arg3
);
11705 case TARGET_NR_setxattr
:
11706 case TARGET_NR_lsetxattr
:
11708 void *p
, *n
, *v
= 0;
11710 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
11712 ret
= -TARGET_EFAULT
;
11716 p
= lock_user_string(arg1
);
11717 n
= lock_user_string(arg2
);
11719 if (num
== TARGET_NR_setxattr
) {
11720 ret
= get_errno(setxattr(p
, n
, v
, arg4
, arg5
));
11722 ret
= get_errno(lsetxattr(p
, n
, v
, arg4
, arg5
));
11725 ret
= -TARGET_EFAULT
;
11727 unlock_user(p
, arg1
, 0);
11728 unlock_user(n
, arg2
, 0);
11729 unlock_user(v
, arg3
, 0);
11732 case TARGET_NR_fsetxattr
:
11736 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
11738 ret
= -TARGET_EFAULT
;
11742 n
= lock_user_string(arg2
);
11744 ret
= get_errno(fsetxattr(arg1
, n
, v
, arg4
, arg5
));
11746 ret
= -TARGET_EFAULT
;
11748 unlock_user(n
, arg2
, 0);
11749 unlock_user(v
, arg3
, 0);
11752 case TARGET_NR_getxattr
:
11753 case TARGET_NR_lgetxattr
:
11755 void *p
, *n
, *v
= 0;
11757 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
11759 ret
= -TARGET_EFAULT
;
11763 p
= lock_user_string(arg1
);
11764 n
= lock_user_string(arg2
);
11766 if (num
== TARGET_NR_getxattr
) {
11767 ret
= get_errno(getxattr(p
, n
, v
, arg4
));
11769 ret
= get_errno(lgetxattr(p
, n
, v
, arg4
));
11772 ret
= -TARGET_EFAULT
;
11774 unlock_user(p
, arg1
, 0);
11775 unlock_user(n
, arg2
, 0);
11776 unlock_user(v
, arg3
, arg4
);
11779 case TARGET_NR_fgetxattr
:
11783 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
11785 ret
= -TARGET_EFAULT
;
11789 n
= lock_user_string(arg2
);
11791 ret
= get_errno(fgetxattr(arg1
, n
, v
, arg4
));
11793 ret
= -TARGET_EFAULT
;
11795 unlock_user(n
, arg2
, 0);
11796 unlock_user(v
, arg3
, arg4
);
11799 case TARGET_NR_removexattr
:
11800 case TARGET_NR_lremovexattr
:
11803 p
= lock_user_string(arg1
);
11804 n
= lock_user_string(arg2
);
11806 if (num
== TARGET_NR_removexattr
) {
11807 ret
= get_errno(removexattr(p
, n
));
11809 ret
= get_errno(lremovexattr(p
, n
));
11812 ret
= -TARGET_EFAULT
;
11814 unlock_user(p
, arg1
, 0);
11815 unlock_user(n
, arg2
, 0);
11818 case TARGET_NR_fremovexattr
:
11821 n
= lock_user_string(arg2
);
11823 ret
= get_errno(fremovexattr(arg1
, n
));
11825 ret
= -TARGET_EFAULT
;
11827 unlock_user(n
, arg2
, 0);
11831 #endif /* CONFIG_ATTR */
11832 #ifdef TARGET_NR_set_thread_area
11833 case TARGET_NR_set_thread_area
:
11834 #if defined(TARGET_MIPS)
11835 ((CPUMIPSState
*) cpu_env
)->active_tc
.CP0_UserLocal
= arg1
;
11838 #elif defined(TARGET_CRIS)
11840 ret
= -TARGET_EINVAL
;
11842 ((CPUCRISState
*) cpu_env
)->pregs
[PR_PID
] = arg1
;
11846 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
11847 ret
= do_set_thread_area(cpu_env
, arg1
);
11849 #elif defined(TARGET_M68K)
11851 TaskState
*ts
= cpu
->opaque
;
11852 ts
->tp_value
= arg1
;
11857 goto unimplemented_nowarn
;
11860 #ifdef TARGET_NR_get_thread_area
11861 case TARGET_NR_get_thread_area
:
11862 #if defined(TARGET_I386) && defined(TARGET_ABI32)
11863 ret
= do_get_thread_area(cpu_env
, arg1
);
11865 #elif defined(TARGET_M68K)
11867 TaskState
*ts
= cpu
->opaque
;
11868 ret
= ts
->tp_value
;
11872 goto unimplemented_nowarn
;
11875 #ifdef TARGET_NR_getdomainname
11876 case TARGET_NR_getdomainname
:
11877 goto unimplemented_nowarn
;
11880 #ifdef TARGET_NR_clock_gettime
11881 case TARGET_NR_clock_gettime
:
11883 struct timespec ts
;
11884 ret
= get_errno(clock_gettime(arg1
, &ts
));
11885 if (!is_error(ret
)) {
11886 host_to_target_timespec(arg2
, &ts
);
11891 #ifdef TARGET_NR_clock_getres
11892 case TARGET_NR_clock_getres
:
11894 struct timespec ts
;
11895 ret
= get_errno(clock_getres(arg1
, &ts
));
11896 if (!is_error(ret
)) {
11897 host_to_target_timespec(arg2
, &ts
);
11902 #ifdef TARGET_NR_clock_nanosleep
11903 case TARGET_NR_clock_nanosleep
:
11905 struct timespec ts
;
11906 target_to_host_timespec(&ts
, arg3
);
11907 ret
= get_errno(safe_clock_nanosleep(arg1
, arg2
,
11908 &ts
, arg4
? &ts
: NULL
));
11910 host_to_target_timespec(arg4
, &ts
);
11912 #if defined(TARGET_PPC)
11913 /* clock_nanosleep is odd in that it returns positive errno values.
11914 * On PPC, CR0 bit 3 should be set in such a situation. */
11915 if (ret
&& ret
!= -TARGET_ERESTARTSYS
) {
11916 ((CPUPPCState
*)cpu_env
)->crf
[0] |= 1;
11923 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
11924 case TARGET_NR_set_tid_address
:
11925 ret
= get_errno(set_tid_address((int *)g2h(arg1
)));
11929 case TARGET_NR_tkill
:
11930 ret
= get_errno(safe_tkill((int)arg1
, target_to_host_signal(arg2
)));
11933 case TARGET_NR_tgkill
:
11934 ret
= get_errno(safe_tgkill((int)arg1
, (int)arg2
,
11935 target_to_host_signal(arg3
)));
11938 #ifdef TARGET_NR_set_robust_list
11939 case TARGET_NR_set_robust_list
:
11940 case TARGET_NR_get_robust_list
:
11941 /* The ABI for supporting robust futexes has userspace pass
11942 * the kernel a pointer to a linked list which is updated by
11943 * userspace after the syscall; the list is walked by the kernel
11944 * when the thread exits. Since the linked list in QEMU guest
11945 * memory isn't a valid linked list for the host and we have
11946 * no way to reliably intercept the thread-death event, we can't
11947 * support these. Silently return ENOSYS so that guest userspace
11948 * falls back to a non-robust futex implementation (which should
11949 * be OK except in the corner case of the guest crashing while
11950 * holding a mutex that is shared with another process via
11953 goto unimplemented_nowarn
;
11956 #if defined(TARGET_NR_utimensat)
11957 case TARGET_NR_utimensat
:
11959 struct timespec
*tsp
, ts
[2];
11963 target_to_host_timespec(ts
, arg3
);
11964 target_to_host_timespec(ts
+1, arg3
+sizeof(struct target_timespec
));
11968 ret
= get_errno(sys_utimensat(arg1
, NULL
, tsp
, arg4
));
11970 if (!(p
= lock_user_string(arg2
))) {
11971 ret
= -TARGET_EFAULT
;
11974 ret
= get_errno(sys_utimensat(arg1
, path(p
), tsp
, arg4
));
11975 unlock_user(p
, arg2
, 0);
11980 case TARGET_NR_futex
:
11981 ret
= do_futex(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
11983 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
11984 case TARGET_NR_inotify_init
:
11985 ret
= get_errno(sys_inotify_init());
11987 fd_trans_register(ret
, &target_inotify_trans
);
11991 #ifdef CONFIG_INOTIFY1
11992 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
11993 case TARGET_NR_inotify_init1
:
11994 ret
= get_errno(sys_inotify_init1(target_to_host_bitmask(arg1
,
11995 fcntl_flags_tbl
)));
11997 fd_trans_register(ret
, &target_inotify_trans
);
12002 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
12003 case TARGET_NR_inotify_add_watch
:
12004 p
= lock_user_string(arg2
);
12005 ret
= get_errno(sys_inotify_add_watch(arg1
, path(p
), arg3
));
12006 unlock_user(p
, arg2
, 0);
12009 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
12010 case TARGET_NR_inotify_rm_watch
:
12011 ret
= get_errno(sys_inotify_rm_watch(arg1
, arg2
));
12015 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12016 case TARGET_NR_mq_open
:
12018 struct mq_attr posix_mq_attr
;
12019 struct mq_attr
*pposix_mq_attr
;
12022 host_flags
= target_to_host_bitmask(arg2
, fcntl_flags_tbl
);
12023 pposix_mq_attr
= NULL
;
12025 if (copy_from_user_mq_attr(&posix_mq_attr
, arg4
) != 0) {
12028 pposix_mq_attr
= &posix_mq_attr
;
12030 p
= lock_user_string(arg1
- 1);
12034 ret
= get_errno(mq_open(p
, host_flags
, arg3
, pposix_mq_attr
));
12035 unlock_user (p
, arg1
, 0);
12039 case TARGET_NR_mq_unlink
:
12040 p
= lock_user_string(arg1
- 1);
12042 ret
= -TARGET_EFAULT
;
12045 ret
= get_errno(mq_unlink(p
));
12046 unlock_user (p
, arg1
, 0);
12049 case TARGET_NR_mq_timedsend
:
12051 struct timespec ts
;
12053 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
12055 target_to_host_timespec(&ts
, arg5
);
12056 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, &ts
));
12057 host_to_target_timespec(arg5
, &ts
);
12059 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, NULL
));
12061 unlock_user (p
, arg2
, arg3
);
12065 case TARGET_NR_mq_timedreceive
:
12067 struct timespec ts
;
12070 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
12072 target_to_host_timespec(&ts
, arg5
);
12073 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
12075 host_to_target_timespec(arg5
, &ts
);
12077 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
12080 unlock_user (p
, arg2
, arg3
);
12082 put_user_u32(prio
, arg4
);
12086 /* Not implemented for now... */
12087 /* case TARGET_NR_mq_notify: */
12090 case TARGET_NR_mq_getsetattr
:
12092 struct mq_attr posix_mq_attr_in
, posix_mq_attr_out
;
12095 ret
= mq_getattr(arg1
, &posix_mq_attr_out
);
12096 copy_to_user_mq_attr(arg3
, &posix_mq_attr_out
);
12099 copy_from_user_mq_attr(&posix_mq_attr_in
, arg2
);
12100 ret
|= mq_setattr(arg1
, &posix_mq_attr_in
, &posix_mq_attr_out
);
12107 #ifdef CONFIG_SPLICE
12108 #ifdef TARGET_NR_tee
12109 case TARGET_NR_tee
:
12111 ret
= get_errno(tee(arg1
,arg2
,arg3
,arg4
));
12115 #ifdef TARGET_NR_splice
12116 case TARGET_NR_splice
:
12118 loff_t loff_in
, loff_out
;
12119 loff_t
*ploff_in
= NULL
, *ploff_out
= NULL
;
12121 if (get_user_u64(loff_in
, arg2
)) {
12124 ploff_in
= &loff_in
;
12127 if (get_user_u64(loff_out
, arg4
)) {
12130 ploff_out
= &loff_out
;
12132 ret
= get_errno(splice(arg1
, ploff_in
, arg3
, ploff_out
, arg5
, arg6
));
12134 if (put_user_u64(loff_in
, arg2
)) {
12139 if (put_user_u64(loff_out
, arg4
)) {
12146 #ifdef TARGET_NR_vmsplice
12147 case TARGET_NR_vmsplice
:
12149 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
12151 ret
= get_errno(vmsplice(arg1
, vec
, arg3
, arg4
));
12152 unlock_iovec(vec
, arg2
, arg3
, 0);
12154 ret
= -host_to_target_errno(errno
);
12159 #endif /* CONFIG_SPLICE */
12160 #ifdef CONFIG_EVENTFD
12161 #if defined(TARGET_NR_eventfd)
12162 case TARGET_NR_eventfd
:
12163 ret
= get_errno(eventfd(arg1
, 0));
12165 fd_trans_register(ret
, &target_eventfd_trans
);
12169 #if defined(TARGET_NR_eventfd2)
12170 case TARGET_NR_eventfd2
:
12172 int host_flags
= arg2
& (~(TARGET_O_NONBLOCK
| TARGET_O_CLOEXEC
));
12173 if (arg2
& TARGET_O_NONBLOCK
) {
12174 host_flags
|= O_NONBLOCK
;
12176 if (arg2
& TARGET_O_CLOEXEC
) {
12177 host_flags
|= O_CLOEXEC
;
12179 ret
= get_errno(eventfd(arg1
, host_flags
));
12181 fd_trans_register(ret
, &target_eventfd_trans
);
12186 #endif /* CONFIG_EVENTFD */
12187 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
12188 case TARGET_NR_fallocate
:
12189 #if TARGET_ABI_BITS == 32
12190 ret
= get_errno(fallocate(arg1
, arg2
, target_offset64(arg3
, arg4
),
12191 target_offset64(arg5
, arg6
)));
12193 ret
= get_errno(fallocate(arg1
, arg2
, arg3
, arg4
));
12197 #if defined(CONFIG_SYNC_FILE_RANGE)
12198 #if defined(TARGET_NR_sync_file_range)
12199 case TARGET_NR_sync_file_range
:
12200 #if TARGET_ABI_BITS == 32
12201 #if defined(TARGET_MIPS)
12202 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
12203 target_offset64(arg5
, arg6
), arg7
));
12205 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg2
, arg3
),
12206 target_offset64(arg4
, arg5
), arg6
));
12207 #endif /* !TARGET_MIPS */
12209 ret
= get_errno(sync_file_range(arg1
, arg2
, arg3
, arg4
));
12213 #if defined(TARGET_NR_sync_file_range2)
12214 case TARGET_NR_sync_file_range2
:
12215 /* This is like sync_file_range but the arguments are reordered */
12216 #if TARGET_ABI_BITS == 32
12217 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
12218 target_offset64(arg5
, arg6
), arg2
));
12220 ret
= get_errno(sync_file_range(arg1
, arg3
, arg4
, arg2
));
12225 #if defined(TARGET_NR_signalfd4)
12226 case TARGET_NR_signalfd4
:
12227 ret
= do_signalfd4(arg1
, arg2
, arg4
);
12230 #if defined(TARGET_NR_signalfd)
12231 case TARGET_NR_signalfd
:
12232 ret
= do_signalfd4(arg1
, arg2
, 0);
12235 #if defined(CONFIG_EPOLL)
12236 #if defined(TARGET_NR_epoll_create)
12237 case TARGET_NR_epoll_create
:
12238 ret
= get_errno(epoll_create(arg1
));
12241 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
12242 case TARGET_NR_epoll_create1
:
12243 ret
= get_errno(epoll_create1(arg1
));
12246 #if defined(TARGET_NR_epoll_ctl)
12247 case TARGET_NR_epoll_ctl
:
12249 struct epoll_event ep
;
12250 struct epoll_event
*epp
= 0;
12252 struct target_epoll_event
*target_ep
;
12253 if (!lock_user_struct(VERIFY_READ
, target_ep
, arg4
, 1)) {
12256 ep
.events
= tswap32(target_ep
->events
);
12257 /* The epoll_data_t union is just opaque data to the kernel,
12258 * so we transfer all 64 bits across and need not worry what
12259 * actual data type it is.
12261 ep
.data
.u64
= tswap64(target_ep
->data
.u64
);
12262 unlock_user_struct(target_ep
, arg4
, 0);
12265 ret
= get_errno(epoll_ctl(arg1
, arg2
, arg3
, epp
));
12270 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
12271 #if defined(TARGET_NR_epoll_wait)
12272 case TARGET_NR_epoll_wait
:
12274 #if defined(TARGET_NR_epoll_pwait)
12275 case TARGET_NR_epoll_pwait
:
12278 struct target_epoll_event
*target_ep
;
12279 struct epoll_event
*ep
;
12281 int maxevents
= arg3
;
12282 int timeout
= arg4
;
12284 if (maxevents
<= 0 || maxevents
> TARGET_EP_MAX_EVENTS
) {
12285 ret
= -TARGET_EINVAL
;
12289 target_ep
= lock_user(VERIFY_WRITE
, arg2
,
12290 maxevents
* sizeof(struct target_epoll_event
), 1);
12295 ep
= g_try_new(struct epoll_event
, maxevents
);
12297 unlock_user(target_ep
, arg2
, 0);
12298 ret
= -TARGET_ENOMEM
;
12303 #if defined(TARGET_NR_epoll_pwait)
12304 case TARGET_NR_epoll_pwait
:
12306 target_sigset_t
*target_set
;
12307 sigset_t _set
, *set
= &_set
;
12310 if (arg6
!= sizeof(target_sigset_t
)) {
12311 ret
= -TARGET_EINVAL
;
12315 target_set
= lock_user(VERIFY_READ
, arg5
,
12316 sizeof(target_sigset_t
), 1);
12318 ret
= -TARGET_EFAULT
;
12321 target_to_host_sigset(set
, target_set
);
12322 unlock_user(target_set
, arg5
, 0);
12327 ret
= get_errno(safe_epoll_pwait(epfd
, ep
, maxevents
, timeout
,
12328 set
, SIGSET_T_SIZE
));
12332 #if defined(TARGET_NR_epoll_wait)
12333 case TARGET_NR_epoll_wait
:
12334 ret
= get_errno(safe_epoll_pwait(epfd
, ep
, maxevents
, timeout
,
12339 ret
= -TARGET_ENOSYS
;
12341 if (!is_error(ret
)) {
12343 for (i
= 0; i
< ret
; i
++) {
12344 target_ep
[i
].events
= tswap32(ep
[i
].events
);
12345 target_ep
[i
].data
.u64
= tswap64(ep
[i
].data
.u64
);
12347 unlock_user(target_ep
, arg2
,
12348 ret
* sizeof(struct target_epoll_event
));
12350 unlock_user(target_ep
, arg2
, 0);
12357 #ifdef TARGET_NR_prlimit64
12358 case TARGET_NR_prlimit64
:
12360 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
12361 struct target_rlimit64
*target_rnew
, *target_rold
;
12362 struct host_rlimit64 rnew
, rold
, *rnewp
= 0;
12363 int resource
= target_to_host_resource(arg2
);
12365 if (!lock_user_struct(VERIFY_READ
, target_rnew
, arg3
, 1)) {
12368 rnew
.rlim_cur
= tswap64(target_rnew
->rlim_cur
);
12369 rnew
.rlim_max
= tswap64(target_rnew
->rlim_max
);
12370 unlock_user_struct(target_rnew
, arg3
, 0);
12374 ret
= get_errno(sys_prlimit64(arg1
, resource
, rnewp
, arg4
? &rold
: 0));
12375 if (!is_error(ret
) && arg4
) {
12376 if (!lock_user_struct(VERIFY_WRITE
, target_rold
, arg4
, 1)) {
12379 target_rold
->rlim_cur
= tswap64(rold
.rlim_cur
);
12380 target_rold
->rlim_max
= tswap64(rold
.rlim_max
);
12381 unlock_user_struct(target_rold
, arg4
, 1);
12386 #ifdef TARGET_NR_gethostname
12387 case TARGET_NR_gethostname
:
12389 char *name
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0);
12391 ret
= get_errno(gethostname(name
, arg2
));
12392 unlock_user(name
, arg1
, arg2
);
12394 ret
= -TARGET_EFAULT
;
12399 #ifdef TARGET_NR_atomic_cmpxchg_32
12400 case TARGET_NR_atomic_cmpxchg_32
:
12402 /* should use start_exclusive from main.c */
12403 abi_ulong mem_value
;
12404 if (get_user_u32(mem_value
, arg6
)) {
12405 target_siginfo_t info
;
12406 info
.si_signo
= SIGSEGV
;
12408 info
.si_code
= TARGET_SEGV_MAPERR
;
12409 info
._sifields
._sigfault
._addr
= arg6
;
12410 queue_signal((CPUArchState
*)cpu_env
, info
.si_signo
,
12411 QEMU_SI_FAULT
, &info
);
12415 if (mem_value
== arg2
)
12416 put_user_u32(arg1
, arg6
);
12421 #ifdef TARGET_NR_atomic_barrier
12422 case TARGET_NR_atomic_barrier
:
12424 /* Like the kernel implementation and the qemu arm barrier, no-op this? */
12430 #ifdef TARGET_NR_timer_create
12431 case TARGET_NR_timer_create
:
12433 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
12435 struct sigevent host_sevp
= { {0}, }, *phost_sevp
= NULL
;
12438 int timer_index
= next_free_host_timer();
12440 if (timer_index
< 0) {
12441 ret
= -TARGET_EAGAIN
;
12443 timer_t
*phtimer
= g_posix_timers
+ timer_index
;
12446 phost_sevp
= &host_sevp
;
12447 ret
= target_to_host_sigevent(phost_sevp
, arg2
);
12453 ret
= get_errno(timer_create(clkid
, phost_sevp
, phtimer
));
12457 if (put_user(TIMER_MAGIC
| timer_index
, arg3
, target_timer_t
)) {
12466 #ifdef TARGET_NR_timer_settime
12467 case TARGET_NR_timer_settime
:
12469 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
12470 * struct itimerspec * old_value */
12471 target_timer_t timerid
= get_timer_id(arg1
);
12475 } else if (arg3
== 0) {
12476 ret
= -TARGET_EINVAL
;
12478 timer_t htimer
= g_posix_timers
[timerid
];
12479 struct itimerspec hspec_new
= {{0},}, hspec_old
= {{0},};
12481 if (target_to_host_itimerspec(&hspec_new
, arg3
)) {
12485 timer_settime(htimer
, arg2
, &hspec_new
, &hspec_old
));
12486 if (arg4
&& host_to_target_itimerspec(arg4
, &hspec_old
)) {
12494 #ifdef TARGET_NR_timer_gettime
12495 case TARGET_NR_timer_gettime
:
12497 /* args: timer_t timerid, struct itimerspec *curr_value */
12498 target_timer_t timerid
= get_timer_id(arg1
);
12502 } else if (!arg2
) {
12503 ret
= -TARGET_EFAULT
;
12505 timer_t htimer
= g_posix_timers
[timerid
];
12506 struct itimerspec hspec
;
12507 ret
= get_errno(timer_gettime(htimer
, &hspec
));
12509 if (host_to_target_itimerspec(arg2
, &hspec
)) {
12510 ret
= -TARGET_EFAULT
;
12517 #ifdef TARGET_NR_timer_getoverrun
12518 case TARGET_NR_timer_getoverrun
:
12520 /* args: timer_t timerid */
12521 target_timer_t timerid
= get_timer_id(arg1
);
12526 timer_t htimer
= g_posix_timers
[timerid
];
12527 ret
= get_errno(timer_getoverrun(htimer
));
12529 fd_trans_unregister(ret
);
12534 #ifdef TARGET_NR_timer_delete
12535 case TARGET_NR_timer_delete
:
12537 /* args: timer_t timerid */
12538 target_timer_t timerid
= get_timer_id(arg1
);
12543 timer_t htimer
= g_posix_timers
[timerid
];
12544 ret
= get_errno(timer_delete(htimer
));
12545 g_posix_timers
[timerid
] = 0;
12551 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
12552 case TARGET_NR_timerfd_create
:
12553 ret
= get_errno(timerfd_create(arg1
,
12554 target_to_host_bitmask(arg2
, fcntl_flags_tbl
)));
12558 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
12559 case TARGET_NR_timerfd_gettime
:
12561 struct itimerspec its_curr
;
12563 ret
= get_errno(timerfd_gettime(arg1
, &its_curr
));
12565 if (arg2
&& host_to_target_itimerspec(arg2
, &its_curr
)) {
12572 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
12573 case TARGET_NR_timerfd_settime
:
12575 struct itimerspec its_new
, its_old
, *p_new
;
12578 if (target_to_host_itimerspec(&its_new
, arg3
)) {
12586 ret
= get_errno(timerfd_settime(arg1
, arg2
, p_new
, &its_old
));
12588 if (arg4
&& host_to_target_itimerspec(arg4
, &its_old
)) {
12595 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
12596 case TARGET_NR_ioprio_get
:
12597 ret
= get_errno(ioprio_get(arg1
, arg2
));
12601 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
12602 case TARGET_NR_ioprio_set
:
12603 ret
= get_errno(ioprio_set(arg1
, arg2
, arg3
));
12607 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
12608 case TARGET_NR_setns
:
12609 ret
= get_errno(setns(arg1
, arg2
));
12612 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
12613 case TARGET_NR_unshare
:
12614 ret
= get_errno(unshare(arg1
));
12617 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
12618 case TARGET_NR_kcmp
:
12619 ret
= get_errno(kcmp(arg1
, arg2
, arg3
, arg4
, arg5
));
12625 gemu_log("qemu: Unsupported syscall: %d\n", num
);
12626 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list)
12627 unimplemented_nowarn
:
12629 ret
= -TARGET_ENOSYS
;
12634 gemu_log(" = " TARGET_ABI_FMT_ld
"\n", ret
);
12637 print_syscall_ret(num
, ret
);
12638 trace_guest_user_syscall_ret(cpu
, num
, ret
);
12641 ret
= -TARGET_EFAULT
;