2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "qemu/range.h"
31 #include "qemu/bswap.h"
32 #include "qemu/cutils.h"
34 static int64_t alloc_clusters_noref(BlockDriverState
*bs
, uint64_t size
);
35 static int QEMU_WARN_UNUSED_RESULT
update_refcount(BlockDriverState
*bs
,
36 int64_t offset
, int64_t length
, uint64_t addend
,
37 bool decrease
, enum qcow2_discard_type type
);
39 static uint64_t get_refcount_ro0(const void *refcount_array
, uint64_t index
);
40 static uint64_t get_refcount_ro1(const void *refcount_array
, uint64_t index
);
41 static uint64_t get_refcount_ro2(const void *refcount_array
, uint64_t index
);
42 static uint64_t get_refcount_ro3(const void *refcount_array
, uint64_t index
);
43 static uint64_t get_refcount_ro4(const void *refcount_array
, uint64_t index
);
44 static uint64_t get_refcount_ro5(const void *refcount_array
, uint64_t index
);
45 static uint64_t get_refcount_ro6(const void *refcount_array
, uint64_t index
);
47 static void set_refcount_ro0(void *refcount_array
, uint64_t index
,
49 static void set_refcount_ro1(void *refcount_array
, uint64_t index
,
51 static void set_refcount_ro2(void *refcount_array
, uint64_t index
,
53 static void set_refcount_ro3(void *refcount_array
, uint64_t index
,
55 static void set_refcount_ro4(void *refcount_array
, uint64_t index
,
57 static void set_refcount_ro5(void *refcount_array
, uint64_t index
,
59 static void set_refcount_ro6(void *refcount_array
, uint64_t index
,
63 static Qcow2GetRefcountFunc
*const get_refcount_funcs
[] = {
73 static Qcow2SetRefcountFunc
*const set_refcount_funcs
[] = {
84 /*********************************************************/
85 /* refcount handling */
87 static void update_max_refcount_table_index(BDRVQcow2State
*s
)
89 unsigned i
= s
->refcount_table_size
- 1;
90 while (i
> 0 && (s
->refcount_table
[i
] & REFT_OFFSET_MASK
) == 0) {
93 /* Set s->max_refcount_table_index to the index of the last used entry */
94 s
->max_refcount_table_index
= i
;
97 int qcow2_refcount_init(BlockDriverState
*bs
)
99 BDRVQcow2State
*s
= bs
->opaque
;
100 unsigned int refcount_table_size2
, i
;
103 assert(s
->refcount_order
>= 0 && s
->refcount_order
<= 6);
105 s
->get_refcount
= get_refcount_funcs
[s
->refcount_order
];
106 s
->set_refcount
= set_refcount_funcs
[s
->refcount_order
];
108 assert(s
->refcount_table_size
<= INT_MAX
/ sizeof(uint64_t));
109 refcount_table_size2
= s
->refcount_table_size
* sizeof(uint64_t);
110 s
->refcount_table
= g_try_malloc(refcount_table_size2
);
112 if (s
->refcount_table_size
> 0) {
113 if (s
->refcount_table
== NULL
) {
117 BLKDBG_EVENT(bs
->file
, BLKDBG_REFTABLE_LOAD
);
118 ret
= bdrv_pread(bs
->file
, s
->refcount_table_offset
,
119 s
->refcount_table
, refcount_table_size2
);
123 for(i
= 0; i
< s
->refcount_table_size
; i
++)
124 be64_to_cpus(&s
->refcount_table
[i
]);
125 update_max_refcount_table_index(s
);
132 void qcow2_refcount_close(BlockDriverState
*bs
)
134 BDRVQcow2State
*s
= bs
->opaque
;
135 g_free(s
->refcount_table
);
139 static uint64_t get_refcount_ro0(const void *refcount_array
, uint64_t index
)
141 return (((const uint8_t *)refcount_array
)[index
/ 8] >> (index
% 8)) & 0x1;
144 static void set_refcount_ro0(void *refcount_array
, uint64_t index
,
147 assert(!(value
>> 1));
148 ((uint8_t *)refcount_array
)[index
/ 8] &= ~(0x1 << (index
% 8));
149 ((uint8_t *)refcount_array
)[index
/ 8] |= value
<< (index
% 8);
152 static uint64_t get_refcount_ro1(const void *refcount_array
, uint64_t index
)
154 return (((const uint8_t *)refcount_array
)[index
/ 4] >> (2 * (index
% 4)))
158 static void set_refcount_ro1(void *refcount_array
, uint64_t index
,
161 assert(!(value
>> 2));
162 ((uint8_t *)refcount_array
)[index
/ 4] &= ~(0x3 << (2 * (index
% 4)));
163 ((uint8_t *)refcount_array
)[index
/ 4] |= value
<< (2 * (index
% 4));
166 static uint64_t get_refcount_ro2(const void *refcount_array
, uint64_t index
)
168 return (((const uint8_t *)refcount_array
)[index
/ 2] >> (4 * (index
% 2)))
172 static void set_refcount_ro2(void *refcount_array
, uint64_t index
,
175 assert(!(value
>> 4));
176 ((uint8_t *)refcount_array
)[index
/ 2] &= ~(0xf << (4 * (index
% 2)));
177 ((uint8_t *)refcount_array
)[index
/ 2] |= value
<< (4 * (index
% 2));
180 static uint64_t get_refcount_ro3(const void *refcount_array
, uint64_t index
)
182 return ((const uint8_t *)refcount_array
)[index
];
185 static void set_refcount_ro3(void *refcount_array
, uint64_t index
,
188 assert(!(value
>> 8));
189 ((uint8_t *)refcount_array
)[index
] = value
;
192 static uint64_t get_refcount_ro4(const void *refcount_array
, uint64_t index
)
194 return be16_to_cpu(((const uint16_t *)refcount_array
)[index
]);
197 static void set_refcount_ro4(void *refcount_array
, uint64_t index
,
200 assert(!(value
>> 16));
201 ((uint16_t *)refcount_array
)[index
] = cpu_to_be16(value
);
204 static uint64_t get_refcount_ro5(const void *refcount_array
, uint64_t index
)
206 return be32_to_cpu(((const uint32_t *)refcount_array
)[index
]);
209 static void set_refcount_ro5(void *refcount_array
, uint64_t index
,
212 assert(!(value
>> 32));
213 ((uint32_t *)refcount_array
)[index
] = cpu_to_be32(value
);
216 static uint64_t get_refcount_ro6(const void *refcount_array
, uint64_t index
)
218 return be64_to_cpu(((const uint64_t *)refcount_array
)[index
]);
221 static void set_refcount_ro6(void *refcount_array
, uint64_t index
,
224 ((uint64_t *)refcount_array
)[index
] = cpu_to_be64(value
);
228 static int load_refcount_block(BlockDriverState
*bs
,
229 int64_t refcount_block_offset
,
230 void **refcount_block
)
232 BDRVQcow2State
*s
= bs
->opaque
;
234 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_LOAD
);
235 return qcow2_cache_get(bs
, s
->refcount_block_cache
, refcount_block_offset
,
240 * Retrieves the refcount of the cluster given by its index and stores it in
241 * *refcount. Returns 0 on success and -errno on failure.
243 int qcow2_get_refcount(BlockDriverState
*bs
, int64_t cluster_index
,
246 BDRVQcow2State
*s
= bs
->opaque
;
247 uint64_t refcount_table_index
, block_index
;
248 int64_t refcount_block_offset
;
250 void *refcount_block
;
252 refcount_table_index
= cluster_index
>> s
->refcount_block_bits
;
253 if (refcount_table_index
>= s
->refcount_table_size
) {
257 refcount_block_offset
=
258 s
->refcount_table
[refcount_table_index
] & REFT_OFFSET_MASK
;
259 if (!refcount_block_offset
) {
264 if (offset_into_cluster(s
, refcount_block_offset
)) {
265 qcow2_signal_corruption(bs
, true, -1, -1, "Refblock offset %#" PRIx64
266 " unaligned (reftable index: %#" PRIx64
")",
267 refcount_block_offset
, refcount_table_index
);
271 ret
= qcow2_cache_get(bs
, s
->refcount_block_cache
, refcount_block_offset
,
277 block_index
= cluster_index
& (s
->refcount_block_size
- 1);
278 *refcount
= s
->get_refcount(refcount_block
, block_index
);
280 qcow2_cache_put(s
->refcount_block_cache
, &refcount_block
);
285 /* Checks if two offsets are described by the same refcount block */
286 static int in_same_refcount_block(BDRVQcow2State
*s
, uint64_t offset_a
,
289 uint64_t block_a
= offset_a
>> (s
->cluster_bits
+ s
->refcount_block_bits
);
290 uint64_t block_b
= offset_b
>> (s
->cluster_bits
+ s
->refcount_block_bits
);
292 return (block_a
== block_b
);
296 * Loads a refcount block. If it doesn't exist yet, it is allocated first
297 * (including growing the refcount table if needed).
299 * Returns 0 on success or -errno in error case
301 static int alloc_refcount_block(BlockDriverState
*bs
,
302 int64_t cluster_index
, void **refcount_block
)
304 BDRVQcow2State
*s
= bs
->opaque
;
305 unsigned int refcount_table_index
;
308 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC
);
310 /* Find the refcount block for the given cluster */
311 refcount_table_index
= cluster_index
>> s
->refcount_block_bits
;
313 if (refcount_table_index
< s
->refcount_table_size
) {
315 uint64_t refcount_block_offset
=
316 s
->refcount_table
[refcount_table_index
] & REFT_OFFSET_MASK
;
318 /* If it's already there, we're done */
319 if (refcount_block_offset
) {
320 if (offset_into_cluster(s
, refcount_block_offset
)) {
321 qcow2_signal_corruption(bs
, true, -1, -1, "Refblock offset %#"
322 PRIx64
" unaligned (reftable index: "
323 "%#x)", refcount_block_offset
,
324 refcount_table_index
);
328 return load_refcount_block(bs
, refcount_block_offset
,
334 * If we came here, we need to allocate something. Something is at least
335 * a cluster for the new refcount block. It may also include a new refcount
336 * table if the old refcount table is too small.
338 * Note that allocating clusters here needs some special care:
340 * - We can't use the normal qcow2_alloc_clusters(), it would try to
341 * increase the refcount and very likely we would end up with an endless
342 * recursion. Instead we must place the refcount blocks in a way that
343 * they can describe them themselves.
345 * - We need to consider that at this point we are inside update_refcounts
346 * and potentially doing an initial refcount increase. This means that
347 * some clusters have already been allocated by the caller, but their
348 * refcount isn't accurate yet. If we allocate clusters for metadata, we
349 * need to return -EAGAIN to signal the caller that it needs to restart
350 * the search for free clusters.
352 * - alloc_clusters_noref and qcow2_free_clusters may load a different
353 * refcount block into the cache
356 *refcount_block
= NULL
;
358 /* We write to the refcount table, so we might depend on L2 tables */
359 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
364 /* Allocate the refcount block itself and mark it as used */
365 int64_t new_block
= alloc_clusters_noref(bs
, s
->cluster_size
);
370 /* If we're allocating the block at offset 0 then something is wrong */
371 if (new_block
== 0) {
372 qcow2_signal_corruption(bs
, true, -1, -1, "Preventing invalid "
373 "allocation of refcount block at offset 0");
378 fprintf(stderr
, "qcow2: Allocate refcount block %d for %" PRIx64
380 refcount_table_index
, cluster_index
<< s
->cluster_bits
, new_block
);
383 if (in_same_refcount_block(s
, new_block
, cluster_index
<< s
->cluster_bits
)) {
384 /* Zero the new refcount block before updating it */
385 ret
= qcow2_cache_get_empty(bs
, s
->refcount_block_cache
, new_block
,
391 memset(*refcount_block
, 0, s
->cluster_size
);
393 /* The block describes itself, need to update the cache */
394 int block_index
= (new_block
>> s
->cluster_bits
) &
395 (s
->refcount_block_size
- 1);
396 s
->set_refcount(*refcount_block
, block_index
, 1);
398 /* Described somewhere else. This can recurse at most twice before we
399 * arrive at a block that describes itself. */
400 ret
= update_refcount(bs
, new_block
, s
->cluster_size
, 1, false,
401 QCOW2_DISCARD_NEVER
);
406 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
411 /* Initialize the new refcount block only after updating its refcount,
412 * update_refcount uses the refcount cache itself */
413 ret
= qcow2_cache_get_empty(bs
, s
->refcount_block_cache
, new_block
,
419 memset(*refcount_block
, 0, s
->cluster_size
);
422 /* Now the new refcount block needs to be written to disk */
423 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_WRITE
);
424 qcow2_cache_entry_mark_dirty(s
->refcount_block_cache
, *refcount_block
);
425 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
430 /* If the refcount table is big enough, just hook the block up there */
431 if (refcount_table_index
< s
->refcount_table_size
) {
432 uint64_t data64
= cpu_to_be64(new_block
);
433 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_HOOKUP
);
434 ret
= bdrv_pwrite_sync(bs
->file
,
435 s
->refcount_table_offset
+ refcount_table_index
* sizeof(uint64_t),
436 &data64
, sizeof(data64
));
441 s
->refcount_table
[refcount_table_index
] = new_block
;
442 /* If there's a hole in s->refcount_table then it can happen
443 * that refcount_table_index < s->max_refcount_table_index */
444 s
->max_refcount_table_index
=
445 MAX(s
->max_refcount_table_index
, refcount_table_index
);
447 /* The new refcount block may be where the caller intended to put its
448 * data, so let it restart the search. */
452 qcow2_cache_put(s
->refcount_block_cache
, refcount_block
);
455 * If we come here, we need to grow the refcount table. Again, a new
456 * refcount table needs some space and we can't simply allocate to avoid
459 * Therefore let's grab new refcount blocks at the end of the image, which
460 * will describe themselves and the new refcount table. This way we can
461 * reference them only in the new table and do the switch to the new
462 * refcount table at once without producing an inconsistent state in
465 BLKDBG_EVENT(bs
->file
, BLKDBG_REFTABLE_GROW
);
467 /* Calculate the number of refcount blocks needed so far; this will be the
468 * basis for calculating the index of the first cluster used for the
469 * self-describing refcount structures which we are about to create.
471 * Because we reached this point, there cannot be any refcount entries for
472 * cluster_index or higher indices yet. However, because new_block has been
473 * allocated to describe that cluster (and it will assume this role later
474 * on), we cannot use that index; also, new_block may actually have a higher
475 * cluster index than cluster_index, so it needs to be taken into account
476 * here (and 1 needs to be added to its value because that cluster is used).
478 uint64_t blocks_used
= DIV_ROUND_UP(MAX(cluster_index
+ 1,
479 (new_block
>> s
->cluster_bits
) + 1),
480 s
->refcount_block_size
);
482 /* Create the new refcount table and blocks */
483 uint64_t meta_offset
= (blocks_used
* s
->refcount_block_size
) *
486 ret
= qcow2_refcount_area(bs
, meta_offset
, 0, false,
487 refcount_table_index
, new_block
);
492 ret
= load_refcount_block(bs
, new_block
, refcount_block
);
497 /* If we were trying to do the initial refcount update for some cluster
498 * allocation, we might have used the same clusters to store newly
499 * allocated metadata. Make the caller search some new space. */
503 if (*refcount_block
!= NULL
) {
504 qcow2_cache_put(s
->refcount_block_cache
, refcount_block
);
510 * Starting at @start_offset, this function creates new self-covering refcount
511 * structures: A new refcount table and refcount blocks which cover all of
512 * themselves, and a number of @additional_clusters beyond their end.
513 * @start_offset must be at the end of the image file, that is, there must be
514 * only empty space beyond it.
515 * If @exact_size is false, the refcount table will have 50 % more entries than
516 * necessary so it will not need to grow again soon.
517 * If @new_refblock_offset is not zero, it contains the offset of a refcount
518 * block that should be entered into the new refcount table at index
519 * @new_refblock_index.
521 * Returns: The offset after the new refcount structures (i.e. where the
522 * @additional_clusters may be placed) on success, -errno on error.
524 int64_t qcow2_refcount_area(BlockDriverState
*bs
, uint64_t start_offset
,
525 uint64_t additional_clusters
, bool exact_size
,
526 int new_refblock_index
,
527 uint64_t new_refblock_offset
)
529 BDRVQcow2State
*s
= bs
->opaque
;
530 uint64_t total_refblock_count_u64
, additional_refblock_count
;
531 int total_refblock_count
, table_size
, area_reftable_index
, table_clusters
;
533 uint64_t table_offset
, block_offset
, end_offset
;
537 assert(!(start_offset
% s
->cluster_size
));
539 qcow2_refcount_metadata_size(start_offset
/ s
->cluster_size
+
541 s
->cluster_size
, s
->refcount_order
,
542 !exact_size
, &total_refblock_count_u64
);
543 if (total_refblock_count_u64
> QCOW_MAX_REFTABLE_SIZE
) {
546 total_refblock_count
= total_refblock_count_u64
;
548 /* Index in the refcount table of the first refcount block to cover the area
549 * of refcount structures we are about to create; we know that
550 * @total_refblock_count can cover @start_offset, so this will definitely
551 * fit into an int. */
552 area_reftable_index
= (start_offset
/ s
->cluster_size
) /
553 s
->refcount_block_size
;
556 table_size
= total_refblock_count
;
558 table_size
= total_refblock_count
+
559 DIV_ROUND_UP(total_refblock_count
, 2);
561 /* The qcow2 file can only store the reftable size in number of clusters */
562 table_size
= ROUND_UP(table_size
, s
->cluster_size
/ sizeof(uint64_t));
563 table_clusters
= (table_size
* sizeof(uint64_t)) / s
->cluster_size
;
565 if (table_size
> QCOW_MAX_REFTABLE_SIZE
) {
569 new_table
= g_try_new0(uint64_t, table_size
);
571 assert(table_size
> 0);
572 if (new_table
== NULL
) {
577 /* Fill the new refcount table */
578 if (table_size
> s
->max_refcount_table_index
) {
579 /* We're actually growing the reftable */
580 memcpy(new_table
, s
->refcount_table
,
581 (s
->max_refcount_table_index
+ 1) * sizeof(uint64_t));
583 /* Improbable case: We're shrinking the reftable. However, the caller
584 * has assured us that there is only empty space beyond @start_offset,
585 * so we can simply drop all of the refblocks that won't fit into the
587 memcpy(new_table
, s
->refcount_table
, table_size
* sizeof(uint64_t));
590 if (new_refblock_offset
) {
591 assert(new_refblock_index
< total_refblock_count
);
592 new_table
[new_refblock_index
] = new_refblock_offset
;
595 /* Count how many new refblocks we have to create */
596 additional_refblock_count
= 0;
597 for (i
= area_reftable_index
; i
< total_refblock_count
; i
++) {
599 additional_refblock_count
++;
603 table_offset
= start_offset
+ additional_refblock_count
* s
->cluster_size
;
604 end_offset
= table_offset
+ table_clusters
* s
->cluster_size
;
606 /* Fill the refcount blocks, and create new ones, if necessary */
607 block_offset
= start_offset
;
608 for (i
= area_reftable_index
; i
< total_refblock_count
; i
++) {
610 uint64_t first_offset_covered
;
612 /* Reuse an existing refblock if possible, create a new one otherwise */
614 ret
= qcow2_cache_get(bs
, s
->refcount_block_cache
, new_table
[i
],
620 ret
= qcow2_cache_get_empty(bs
, s
->refcount_block_cache
,
621 block_offset
, &refblock_data
);
625 memset(refblock_data
, 0, s
->cluster_size
);
626 qcow2_cache_entry_mark_dirty(s
->refcount_block_cache
,
629 new_table
[i
] = block_offset
;
630 block_offset
+= s
->cluster_size
;
633 /* First host offset covered by this refblock */
634 first_offset_covered
= (uint64_t)i
* s
->refcount_block_size
*
636 if (first_offset_covered
< end_offset
) {
639 /* Set the refcount of all of the new refcount structures to 1 */
641 if (first_offset_covered
< start_offset
) {
642 assert(i
== area_reftable_index
);
643 j
= (start_offset
- first_offset_covered
) / s
->cluster_size
;
644 assert(j
< s
->refcount_block_size
);
649 end_index
= MIN((end_offset
- first_offset_covered
) /
651 s
->refcount_block_size
);
653 for (; j
< end_index
; j
++) {
654 /* The caller guaranteed us this space would be empty */
655 assert(s
->get_refcount(refblock_data
, j
) == 0);
656 s
->set_refcount(refblock_data
, j
, 1);
659 qcow2_cache_entry_mark_dirty(s
->refcount_block_cache
,
663 qcow2_cache_put(s
->refcount_block_cache
, &refblock_data
);
666 assert(block_offset
== table_offset
);
668 /* Write refcount blocks to disk */
669 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS
);
670 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
675 /* Write refcount table to disk */
676 for (i
= 0; i
< total_refblock_count
; i
++) {
677 cpu_to_be64s(&new_table
[i
]);
680 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE
);
681 ret
= bdrv_pwrite_sync(bs
->file
, table_offset
, new_table
,
682 table_size
* sizeof(uint64_t));
687 for (i
= 0; i
< total_refblock_count
; i
++) {
688 be64_to_cpus(&new_table
[i
]);
691 /* Hook up the new refcount table in the qcow2 header */
696 data
.d64
= cpu_to_be64(table_offset
);
697 data
.d32
= cpu_to_be32(table_clusters
);
698 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE
);
699 ret
= bdrv_pwrite_sync(bs
->file
,
700 offsetof(QCowHeader
, refcount_table_offset
),
701 &data
, sizeof(data
));
706 /* And switch it in memory */
707 uint64_t old_table_offset
= s
->refcount_table_offset
;
708 uint64_t old_table_size
= s
->refcount_table_size
;
710 g_free(s
->refcount_table
);
711 s
->refcount_table
= new_table
;
712 s
->refcount_table_size
= table_size
;
713 s
->refcount_table_offset
= table_offset
;
714 update_max_refcount_table_index(s
);
716 /* Free old table. */
717 qcow2_free_clusters(bs
, old_table_offset
, old_table_size
* sizeof(uint64_t),
718 QCOW2_DISCARD_OTHER
);
727 void qcow2_process_discards(BlockDriverState
*bs
, int ret
)
729 BDRVQcow2State
*s
= bs
->opaque
;
730 Qcow2DiscardRegion
*d
, *next
;
732 QTAILQ_FOREACH_SAFE(d
, &s
->discards
, next
, next
) {
733 QTAILQ_REMOVE(&s
->discards
, d
, next
);
735 /* Discard is optional, ignore the return value */
737 bdrv_pdiscard(bs
->file
->bs
, d
->offset
, d
->bytes
);
744 static void update_refcount_discard(BlockDriverState
*bs
,
745 uint64_t offset
, uint64_t length
)
747 BDRVQcow2State
*s
= bs
->opaque
;
748 Qcow2DiscardRegion
*d
, *p
, *next
;
750 QTAILQ_FOREACH(d
, &s
->discards
, next
) {
751 uint64_t new_start
= MIN(offset
, d
->offset
);
752 uint64_t new_end
= MAX(offset
+ length
, d
->offset
+ d
->bytes
);
754 if (new_end
- new_start
<= length
+ d
->bytes
) {
755 /* There can't be any overlap, areas ending up here have no
756 * references any more and therefore shouldn't get freed another
758 assert(d
->bytes
+ length
== new_end
- new_start
);
759 d
->offset
= new_start
;
760 d
->bytes
= new_end
- new_start
;
765 d
= g_malloc(sizeof(*d
));
766 *d
= (Qcow2DiscardRegion
) {
771 QTAILQ_INSERT_TAIL(&s
->discards
, d
, next
);
774 /* Merge discard requests if they are adjacent now */
775 QTAILQ_FOREACH_SAFE(p
, &s
->discards
, next
, next
) {
777 || p
->offset
> d
->offset
+ d
->bytes
778 || d
->offset
> p
->offset
+ p
->bytes
)
783 /* Still no overlap possible */
784 assert(p
->offset
== d
->offset
+ d
->bytes
785 || d
->offset
== p
->offset
+ p
->bytes
);
787 QTAILQ_REMOVE(&s
->discards
, p
, next
);
788 d
->offset
= MIN(d
->offset
, p
->offset
);
789 d
->bytes
+= p
->bytes
;
794 /* XXX: cache several refcount block clusters ? */
795 /* @addend is the absolute value of the addend; if @decrease is set, @addend
796 * will be subtracted from the current refcount, otherwise it will be added */
797 static int QEMU_WARN_UNUSED_RESULT
update_refcount(BlockDriverState
*bs
,
802 enum qcow2_discard_type type
)
804 BDRVQcow2State
*s
= bs
->opaque
;
805 int64_t start
, last
, cluster_offset
;
806 void *refcount_block
= NULL
;
807 int64_t old_table_index
= -1;
811 fprintf(stderr
, "update_refcount: offset=%" PRId64
" size=%" PRId64
812 " addend=%s%" PRIu64
"\n", offset
, length
, decrease
? "-" : "",
817 } else if (length
== 0) {
822 qcow2_cache_set_dependency(bs
, s
->refcount_block_cache
,
826 start
= start_of_cluster(s
, offset
);
827 last
= start_of_cluster(s
, offset
+ length
- 1);
828 for(cluster_offset
= start
; cluster_offset
<= last
;
829 cluster_offset
+= s
->cluster_size
)
833 int64_t cluster_index
= cluster_offset
>> s
->cluster_bits
;
834 int64_t table_index
= cluster_index
>> s
->refcount_block_bits
;
836 /* Load the refcount block and allocate it if needed */
837 if (table_index
!= old_table_index
) {
838 if (refcount_block
) {
839 qcow2_cache_put(s
->refcount_block_cache
, &refcount_block
);
841 ret
= alloc_refcount_block(bs
, cluster_index
, &refcount_block
);
846 old_table_index
= table_index
;
848 qcow2_cache_entry_mark_dirty(s
->refcount_block_cache
, refcount_block
);
850 /* we can update the count and save it */
851 block_index
= cluster_index
& (s
->refcount_block_size
- 1);
853 refcount
= s
->get_refcount(refcount_block
, block_index
);
854 if (decrease
? (refcount
- addend
> refcount
)
855 : (refcount
+ addend
< refcount
||
856 refcount
+ addend
> s
->refcount_max
))
866 if (refcount
== 0 && cluster_index
< s
->free_cluster_index
) {
867 s
->free_cluster_index
= cluster_index
;
869 s
->set_refcount(refcount_block
, block_index
, refcount
);
874 table
= qcow2_cache_is_table_offset(s
->refcount_block_cache
,
877 qcow2_cache_put(s
->refcount_block_cache
, &refcount_block
);
878 qcow2_cache_discard(s
->refcount_block_cache
, table
);
881 table
= qcow2_cache_is_table_offset(s
->l2_table_cache
, offset
);
883 qcow2_cache_discard(s
->l2_table_cache
, table
);
886 if (s
->discard_passthrough
[type
]) {
887 update_refcount_discard(bs
, cluster_offset
, s
->cluster_size
);
894 if (!s
->cache_discards
) {
895 qcow2_process_discards(bs
, ret
);
898 /* Write last changed block to disk */
899 if (refcount_block
) {
900 qcow2_cache_put(s
->refcount_block_cache
, &refcount_block
);
904 * Try do undo any updates if an error is returned (This may succeed in
905 * some cases like ENOSPC for allocating a new refcount block)
909 dummy
= update_refcount(bs
, offset
, cluster_offset
- offset
, addend
,
910 !decrease
, QCOW2_DISCARD_NEVER
);
918 * Increases or decreases the refcount of a given cluster.
920 * @addend is the absolute value of the addend; if @decrease is set, @addend
921 * will be subtracted from the current refcount, otherwise it will be added.
923 * On success 0 is returned; on failure -errno is returned.
925 int qcow2_update_cluster_refcount(BlockDriverState
*bs
,
926 int64_t cluster_index
,
927 uint64_t addend
, bool decrease
,
928 enum qcow2_discard_type type
)
930 BDRVQcow2State
*s
= bs
->opaque
;
933 ret
= update_refcount(bs
, cluster_index
<< s
->cluster_bits
, 1, addend
,
944 /*********************************************************/
945 /* cluster allocation functions */
949 /* return < 0 if error */
950 static int64_t alloc_clusters_noref(BlockDriverState
*bs
, uint64_t size
)
952 BDRVQcow2State
*s
= bs
->opaque
;
953 uint64_t i
, nb_clusters
, refcount
;
956 /* We can't allocate clusters if they may still be queued for discard. */
957 if (s
->cache_discards
) {
958 qcow2_process_discards(bs
, 0);
961 nb_clusters
= size_to_clusters(s
, size
);
963 for(i
= 0; i
< nb_clusters
; i
++) {
964 uint64_t next_cluster_index
= s
->free_cluster_index
++;
965 ret
= qcow2_get_refcount(bs
, next_cluster_index
, &refcount
);
969 } else if (refcount
!= 0) {
974 /* Make sure that all offsets in the "allocated" range are representable
976 if (s
->free_cluster_index
> 0 &&
977 s
->free_cluster_index
- 1 > (INT64_MAX
>> s
->cluster_bits
))
983 fprintf(stderr
, "alloc_clusters: size=%" PRId64
" -> %" PRId64
"\n",
985 (s
->free_cluster_index
- nb_clusters
) << s
->cluster_bits
);
987 return (s
->free_cluster_index
- nb_clusters
) << s
->cluster_bits
;
990 int64_t qcow2_alloc_clusters(BlockDriverState
*bs
, uint64_t size
)
995 BLKDBG_EVENT(bs
->file
, BLKDBG_CLUSTER_ALLOC
);
997 offset
= alloc_clusters_noref(bs
, size
);
1002 ret
= update_refcount(bs
, offset
, size
, 1, false, QCOW2_DISCARD_NEVER
);
1003 } while (ret
== -EAGAIN
);
1012 int64_t qcow2_alloc_clusters_at(BlockDriverState
*bs
, uint64_t offset
,
1013 int64_t nb_clusters
)
1015 BDRVQcow2State
*s
= bs
->opaque
;
1016 uint64_t cluster_index
, refcount
;
1020 assert(nb_clusters
>= 0);
1021 if (nb_clusters
== 0) {
1026 /* Check how many clusters there are free */
1027 cluster_index
= offset
>> s
->cluster_bits
;
1028 for(i
= 0; i
< nb_clusters
; i
++) {
1029 ret
= qcow2_get_refcount(bs
, cluster_index
++, &refcount
);
1032 } else if (refcount
!= 0) {
1037 /* And then allocate them */
1038 ret
= update_refcount(bs
, offset
, i
<< s
->cluster_bits
, 1, false,
1039 QCOW2_DISCARD_NEVER
);
1040 } while (ret
== -EAGAIN
);
1049 /* only used to allocate compressed sectors. We try to allocate
1050 contiguous sectors. size must be <= cluster_size */
1051 int64_t qcow2_alloc_bytes(BlockDriverState
*bs
, int size
)
1053 BDRVQcow2State
*s
= bs
->opaque
;
1055 size_t free_in_cluster
;
1058 BLKDBG_EVENT(bs
->file
, BLKDBG_CLUSTER_ALLOC_BYTES
);
1059 assert(size
> 0 && size
<= s
->cluster_size
);
1060 assert(!s
->free_byte_offset
|| offset_into_cluster(s
, s
->free_byte_offset
));
1062 offset
= s
->free_byte_offset
;
1066 ret
= qcow2_get_refcount(bs
, offset
>> s
->cluster_bits
, &refcount
);
1071 if (refcount
== s
->refcount_max
) {
1076 free_in_cluster
= s
->cluster_size
- offset_into_cluster(s
, offset
);
1078 if (!offset
|| free_in_cluster
< size
) {
1079 int64_t new_cluster
= alloc_clusters_noref(bs
, s
->cluster_size
);
1080 if (new_cluster
< 0) {
1084 if (new_cluster
== 0) {
1085 qcow2_signal_corruption(bs
, true, -1, -1, "Preventing invalid "
1086 "allocation of compressed cluster "
1091 if (!offset
|| ROUND_UP(offset
, s
->cluster_size
) != new_cluster
) {
1092 offset
= new_cluster
;
1093 free_in_cluster
= s
->cluster_size
;
1095 free_in_cluster
+= s
->cluster_size
;
1100 ret
= update_refcount(bs
, offset
, size
, 1, false, QCOW2_DISCARD_NEVER
);
1104 } while (ret
== -EAGAIN
);
1109 /* The cluster refcount was incremented; refcount blocks must be flushed
1110 * before the caller's L2 table updates. */
1111 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
, s
->refcount_block_cache
);
1113 s
->free_byte_offset
= offset
+ size
;
1114 if (!offset_into_cluster(s
, s
->free_byte_offset
)) {
1115 s
->free_byte_offset
= 0;
1121 void qcow2_free_clusters(BlockDriverState
*bs
,
1122 int64_t offset
, int64_t size
,
1123 enum qcow2_discard_type type
)
1127 BLKDBG_EVENT(bs
->file
, BLKDBG_CLUSTER_FREE
);
1128 ret
= update_refcount(bs
, offset
, size
, 1, true, type
);
1130 fprintf(stderr
, "qcow2_free_clusters failed: %s\n", strerror(-ret
));
1131 /* TODO Remember the clusters to free them later and avoid leaking */
1136 * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1137 * normal cluster, compressed cluster, etc.)
1139 void qcow2_free_any_clusters(BlockDriverState
*bs
, uint64_t l2_entry
,
1140 int nb_clusters
, enum qcow2_discard_type type
)
1142 BDRVQcow2State
*s
= bs
->opaque
;
1144 switch (qcow2_get_cluster_type(l2_entry
)) {
1145 case QCOW2_CLUSTER_COMPRESSED
:
1148 nb_csectors
= ((l2_entry
>> s
->csize_shift
) &
1150 qcow2_free_clusters(bs
,
1151 (l2_entry
& s
->cluster_offset_mask
) & ~511,
1152 nb_csectors
* 512, type
);
1155 case QCOW2_CLUSTER_NORMAL
:
1156 case QCOW2_CLUSTER_ZERO_ALLOC
:
1157 if (offset_into_cluster(s
, l2_entry
& L2E_OFFSET_MASK
)) {
1158 qcow2_signal_corruption(bs
, false, -1, -1,
1159 "Cannot free unaligned cluster %#llx",
1160 l2_entry
& L2E_OFFSET_MASK
);
1162 qcow2_free_clusters(bs
, l2_entry
& L2E_OFFSET_MASK
,
1163 nb_clusters
<< s
->cluster_bits
, type
);
1166 case QCOW2_CLUSTER_ZERO_PLAIN
:
1167 case QCOW2_CLUSTER_UNALLOCATED
:
1174 int coroutine_fn
qcow2_write_caches(BlockDriverState
*bs
)
1176 BDRVQcow2State
*s
= bs
->opaque
;
1179 ret
= qcow2_cache_write(bs
, s
->l2_table_cache
);
1184 if (qcow2_need_accurate_refcounts(s
)) {
1185 ret
= qcow2_cache_write(bs
, s
->refcount_block_cache
);
1194 int coroutine_fn
qcow2_flush_caches(BlockDriverState
*bs
)
1196 int ret
= qcow2_write_caches(bs
);
1201 return bdrv_flush(bs
->file
->bs
);
1204 /*********************************************************/
1205 /* snapshots and image creation */
1209 /* update the refcounts of snapshots and the copied flag */
1210 int qcow2_update_snapshot_refcount(BlockDriverState
*bs
,
1211 int64_t l1_table_offset
, int l1_size
, int addend
)
1213 BDRVQcow2State
*s
= bs
->opaque
;
1214 uint64_t *l1_table
, *l2_slice
, l2_offset
, entry
, l1_size2
, refcount
;
1215 bool l1_allocated
= false;
1216 int64_t old_entry
, old_l2_offset
;
1217 unsigned slice
, slice_size2
, n_slices
;
1218 int i
, j
, l1_modified
= 0, nb_csectors
;
1221 assert(addend
>= -1 && addend
<= 1);
1225 l1_size2
= l1_size
* sizeof(uint64_t);
1226 slice_size2
= s
->l2_slice_size
* sizeof(uint64_t);
1227 n_slices
= s
->cluster_size
/ slice_size2
;
1229 s
->cache_discards
= true;
1231 /* WARNING: qcow2_snapshot_goto relies on this function not using the
1232 * l1_table_offset when it is the current s->l1_table_offset! Be careful
1233 * when changing this! */
1234 if (l1_table_offset
!= s
->l1_table_offset
) {
1235 l1_table
= g_try_malloc0(ROUND_UP(l1_size2
, 512));
1236 if (l1_size2
&& l1_table
== NULL
) {
1240 l1_allocated
= true;
1242 ret
= bdrv_pread(bs
->file
, l1_table_offset
, l1_table
, l1_size2
);
1247 for (i
= 0; i
< l1_size
; i
++) {
1248 be64_to_cpus(&l1_table
[i
]);
1251 assert(l1_size
== s
->l1_size
);
1252 l1_table
= s
->l1_table
;
1253 l1_allocated
= false;
1256 for (i
= 0; i
< l1_size
; i
++) {
1257 l2_offset
= l1_table
[i
];
1259 old_l2_offset
= l2_offset
;
1260 l2_offset
&= L1E_OFFSET_MASK
;
1262 if (offset_into_cluster(s
, l2_offset
)) {
1263 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#"
1264 PRIx64
" unaligned (L1 index: %#x)",
1270 for (slice
= 0; slice
< n_slices
; slice
++) {
1271 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
,
1272 l2_offset
+ slice
* slice_size2
,
1273 (void **) &l2_slice
);
1278 for (j
= 0; j
< s
->l2_slice_size
; j
++) {
1279 uint64_t cluster_index
;
1282 entry
= be64_to_cpu(l2_slice
[j
]);
1284 entry
&= ~QCOW_OFLAG_COPIED
;
1285 offset
= entry
& L2E_OFFSET_MASK
;
1287 switch (qcow2_get_cluster_type(entry
)) {
1288 case QCOW2_CLUSTER_COMPRESSED
:
1289 nb_csectors
= ((entry
>> s
->csize_shift
) &
1292 ret
= update_refcount(
1293 bs
, (entry
& s
->cluster_offset_mask
) & ~511,
1294 nb_csectors
* 512, abs(addend
), addend
< 0,
1295 QCOW2_DISCARD_SNAPSHOT
);
1300 /* compressed clusters are never modified */
1304 case QCOW2_CLUSTER_NORMAL
:
1305 case QCOW2_CLUSTER_ZERO_ALLOC
:
1306 if (offset_into_cluster(s
, offset
)) {
1307 /* Here l2_index means table (not slice) index */
1308 int l2_index
= slice
* s
->l2_slice_size
+ j
;
1309 qcow2_signal_corruption(
1310 bs
, true, -1, -1, "Cluster "
1311 "allocation offset %#" PRIx64
1312 " unaligned (L2 offset: %#"
1313 PRIx64
", L2 index: %#x)",
1314 offset
, l2_offset
, l2_index
);
1319 cluster_index
= offset
>> s
->cluster_bits
;
1320 assert(cluster_index
);
1322 ret
= qcow2_update_cluster_refcount(
1323 bs
, cluster_index
, abs(addend
), addend
< 0,
1324 QCOW2_DISCARD_SNAPSHOT
);
1330 ret
= qcow2_get_refcount(bs
, cluster_index
, &refcount
);
1336 case QCOW2_CLUSTER_ZERO_PLAIN
:
1337 case QCOW2_CLUSTER_UNALLOCATED
:
1345 if (refcount
== 1) {
1346 entry
|= QCOW_OFLAG_COPIED
;
1348 if (entry
!= old_entry
) {
1350 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
1351 s
->refcount_block_cache
);
1353 l2_slice
[j
] = cpu_to_be64(entry
);
1354 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
,
1359 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1363 ret
= qcow2_update_cluster_refcount(bs
, l2_offset
>>
1365 abs(addend
), addend
< 0,
1366 QCOW2_DISCARD_SNAPSHOT
);
1371 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
1375 } else if (refcount
== 1) {
1376 l2_offset
|= QCOW_OFLAG_COPIED
;
1378 if (l2_offset
!= old_l2_offset
) {
1379 l1_table
[i
] = l2_offset
;
1385 ret
= bdrv_flush(bs
);
1388 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1391 s
->cache_discards
= false;
1392 qcow2_process_discards(bs
, ret
);
1394 /* Update L1 only if it isn't deleted anyway (addend = -1) */
1395 if (ret
== 0 && addend
>= 0 && l1_modified
) {
1396 for (i
= 0; i
< l1_size
; i
++) {
1397 cpu_to_be64s(&l1_table
[i
]);
1400 ret
= bdrv_pwrite_sync(bs
->file
, l1_table_offset
,
1401 l1_table
, l1_size2
);
1403 for (i
= 0; i
< l1_size
; i
++) {
1404 be64_to_cpus(&l1_table
[i
]);
1415 /*********************************************************/
1416 /* refcount checking functions */
1419 static uint64_t refcount_array_byte_size(BDRVQcow2State
*s
, uint64_t entries
)
1421 /* This assertion holds because there is no way we can address more than
1422 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1423 * offsets have to be representable in bytes); due to every cluster
1424 * corresponding to one refcount entry, we are well below that limit */
1425 assert(entries
< (UINT64_C(1) << (64 - 9)));
1427 /* Thanks to the assertion this will not overflow, because
1428 * s->refcount_order < 7.
1429 * (note: x << s->refcount_order == x * s->refcount_bits) */
1430 return DIV_ROUND_UP(entries
<< s
->refcount_order
, 8);
1434 * Reallocates *array so that it can hold new_size entries. *size must contain
1435 * the current number of entries in *array. If the reallocation fails, *array
1436 * and *size will not be modified and -errno will be returned. If the
1437 * reallocation is successful, *array will be set to the new buffer, *size
1438 * will be set to new_size and 0 will be returned. The size of the reallocated
1439 * refcount array buffer will be aligned to a cluster boundary, and the newly
1440 * allocated area will be zeroed.
1442 static int realloc_refcount_array(BDRVQcow2State
*s
, void **array
,
1443 int64_t *size
, int64_t new_size
)
1445 int64_t old_byte_size
, new_byte_size
;
1448 /* Round to clusters so the array can be directly written to disk */
1449 old_byte_size
= size_to_clusters(s
, refcount_array_byte_size(s
, *size
))
1451 new_byte_size
= size_to_clusters(s
, refcount_array_byte_size(s
, new_size
))
1454 if (new_byte_size
== old_byte_size
) {
1459 assert(new_byte_size
> 0);
1461 if (new_byte_size
> SIZE_MAX
) {
1465 new_ptr
= g_try_realloc(*array
, new_byte_size
);
1470 if (new_byte_size
> old_byte_size
) {
1471 memset((char *)new_ptr
+ old_byte_size
, 0,
1472 new_byte_size
- old_byte_size
);
1482 * Increases the refcount for a range of clusters in a given refcount table.
1483 * This is used to construct a temporary refcount table out of L1 and L2 tables
1484 * which can be compared to the refcount table saved in the image.
1486 * Modifies the number of errors in res.
1488 int qcow2_inc_refcounts_imrt(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1489 void **refcount_table
,
1490 int64_t *refcount_table_size
,
1491 int64_t offset
, int64_t size
)
1493 BDRVQcow2State
*s
= bs
->opaque
;
1494 uint64_t start
, last
, cluster_offset
, k
, refcount
;
1501 start
= start_of_cluster(s
, offset
);
1502 last
= start_of_cluster(s
, offset
+ size
- 1);
1503 for(cluster_offset
= start
; cluster_offset
<= last
;
1504 cluster_offset
+= s
->cluster_size
) {
1505 k
= cluster_offset
>> s
->cluster_bits
;
1506 if (k
>= *refcount_table_size
) {
1507 ret
= realloc_refcount_array(s
, refcount_table
,
1508 refcount_table_size
, k
+ 1);
1510 res
->check_errors
++;
1515 refcount
= s
->get_refcount(*refcount_table
, k
);
1516 if (refcount
== s
->refcount_max
) {
1517 fprintf(stderr
, "ERROR: overflow cluster offset=0x%" PRIx64
1518 "\n", cluster_offset
);
1519 fprintf(stderr
, "Use qemu-img amend to increase the refcount entry "
1520 "width or qemu-img convert to create a clean copy if the "
1521 "image cannot be opened for writing\n");
1525 s
->set_refcount(*refcount_table
, k
, refcount
+ 1);
1531 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1533 CHECK_FRAG_INFO
= 0x2, /* update BlockFragInfo counters */
1537 * Increases the refcount in the given refcount table for the all clusters
1538 * referenced in the L2 table. While doing so, performs some checks on L2
1541 * Returns the number of errors found by the checks or -errno if an internal
1544 static int check_refcounts_l2(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1545 void **refcount_table
,
1546 int64_t *refcount_table_size
, int64_t l2_offset
,
1547 int flags
, BdrvCheckMode fix
)
1549 BDRVQcow2State
*s
= bs
->opaque
;
1550 uint64_t *l2_table
, l2_entry
;
1551 uint64_t next_contiguous_offset
= 0;
1552 int i
, l2_size
, nb_csectors
, ret
;
1554 /* Read L2 table from disk */
1555 l2_size
= s
->l2_size
* sizeof(uint64_t);
1556 l2_table
= g_malloc(l2_size
);
1558 ret
= bdrv_pread(bs
->file
, l2_offset
, l2_table
, l2_size
);
1560 fprintf(stderr
, "ERROR: I/O error in check_refcounts_l2\n");
1561 res
->check_errors
++;
1565 /* Do the actual checks */
1566 for(i
= 0; i
< s
->l2_size
; i
++) {
1567 l2_entry
= be64_to_cpu(l2_table
[i
]);
1569 switch (qcow2_get_cluster_type(l2_entry
)) {
1570 case QCOW2_CLUSTER_COMPRESSED
:
1571 /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1572 if (l2_entry
& QCOW_OFLAG_COPIED
) {
1573 fprintf(stderr
, "ERROR: cluster %" PRId64
": "
1574 "copied flag must never be set for compressed "
1575 "clusters\n", l2_entry
>> s
->cluster_bits
);
1576 l2_entry
&= ~QCOW_OFLAG_COPIED
;
1580 /* Mark cluster as used */
1581 nb_csectors
= ((l2_entry
>> s
->csize_shift
) &
1583 l2_entry
&= s
->cluster_offset_mask
;
1584 ret
= qcow2_inc_refcounts_imrt(bs
, res
,
1585 refcount_table
, refcount_table_size
,
1586 l2_entry
& ~511, nb_csectors
* 512);
1591 if (flags
& CHECK_FRAG_INFO
) {
1592 res
->bfi
.allocated_clusters
++;
1593 res
->bfi
.compressed_clusters
++;
1595 /* Compressed clusters are fragmented by nature. Since they
1596 * take up sub-sector space but we only have sector granularity
1597 * I/O we need to re-read the same sectors even for adjacent
1598 * compressed clusters.
1600 res
->bfi
.fragmented_clusters
++;
1604 case QCOW2_CLUSTER_ZERO_ALLOC
:
1605 case QCOW2_CLUSTER_NORMAL
:
1607 uint64_t offset
= l2_entry
& L2E_OFFSET_MASK
;
1609 if (flags
& CHECK_FRAG_INFO
) {
1610 res
->bfi
.allocated_clusters
++;
1611 if (next_contiguous_offset
&&
1612 offset
!= next_contiguous_offset
) {
1613 res
->bfi
.fragmented_clusters
++;
1615 next_contiguous_offset
= offset
+ s
->cluster_size
;
1618 /* Correct offsets are cluster aligned */
1619 if (offset_into_cluster(s
, offset
)) {
1620 if (qcow2_get_cluster_type(l2_entry
) ==
1621 QCOW2_CLUSTER_ZERO_ALLOC
)
1623 fprintf(stderr
, "%s offset=%" PRIx64
": Preallocated zero "
1624 "cluster is not properly aligned; L2 entry "
1626 fix
& BDRV_FIX_ERRORS
? "Repairing" : "ERROR",
1628 if (fix
& BDRV_FIX_ERRORS
) {
1629 uint64_t l2e_offset
=
1630 l2_offset
+ (uint64_t)i
* sizeof(uint64_t);
1632 l2_entry
= QCOW_OFLAG_ZERO
;
1633 l2_table
[i
] = cpu_to_be64(l2_entry
);
1634 ret
= qcow2_pre_write_overlap_check(bs
,
1635 QCOW2_OL_ACTIVE_L2
| QCOW2_OL_INACTIVE_L2
,
1636 l2e_offset
, sizeof(uint64_t));
1638 fprintf(stderr
, "ERROR: Overlap check failed\n");
1639 res
->check_errors
++;
1640 /* Something is seriously wrong, so abort checking
1645 ret
= bdrv_pwrite_sync(bs
->file
, l2e_offset
,
1646 &l2_table
[i
], sizeof(uint64_t));
1648 fprintf(stderr
, "ERROR: Failed to overwrite L2 "
1649 "table entry: %s\n", strerror(-ret
));
1650 res
->check_errors
++;
1651 /* Do not abort, continue checking the rest of this
1652 * L2 table's entries */
1654 res
->corruptions_fixed
++;
1655 /* Skip marking the cluster as used
1656 * (it is unused now) */
1663 fprintf(stderr
, "ERROR offset=%" PRIx64
": Data cluster is "
1664 "not properly aligned; L2 entry corrupted.\n", offset
);
1669 /* Mark cluster as used */
1670 ret
= qcow2_inc_refcounts_imrt(bs
, res
,
1671 refcount_table
, refcount_table_size
,
1672 offset
, s
->cluster_size
);
1679 case QCOW2_CLUSTER_ZERO_PLAIN
:
1680 case QCOW2_CLUSTER_UNALLOCATED
:
1697 * Increases the refcount for the L1 table, its L2 tables and all referenced
1698 * clusters in the given refcount table. While doing so, performs some checks
1699 * on L1 and L2 entries.
1701 * Returns the number of errors found by the checks or -errno if an internal
1704 static int check_refcounts_l1(BlockDriverState
*bs
,
1705 BdrvCheckResult
*res
,
1706 void **refcount_table
,
1707 int64_t *refcount_table_size
,
1708 int64_t l1_table_offset
, int l1_size
,
1709 int flags
, BdrvCheckMode fix
)
1711 BDRVQcow2State
*s
= bs
->opaque
;
1712 uint64_t *l1_table
= NULL
, l2_offset
, l1_size2
;
1715 l1_size2
= l1_size
* sizeof(uint64_t);
1717 /* Mark L1 table as used */
1718 ret
= qcow2_inc_refcounts_imrt(bs
, res
, refcount_table
, refcount_table_size
,
1719 l1_table_offset
, l1_size2
);
1724 /* Read L1 table entries from disk */
1726 l1_table
= g_try_malloc(l1_size2
);
1727 if (l1_table
== NULL
) {
1729 res
->check_errors
++;
1732 ret
= bdrv_pread(bs
->file
, l1_table_offset
, l1_table
, l1_size2
);
1734 fprintf(stderr
, "ERROR: I/O error in check_refcounts_l1\n");
1735 res
->check_errors
++;
1738 for(i
= 0;i
< l1_size
; i
++)
1739 be64_to_cpus(&l1_table
[i
]);
1742 /* Do the actual checks */
1743 for(i
= 0; i
< l1_size
; i
++) {
1744 l2_offset
= l1_table
[i
];
1746 /* Mark L2 table as used */
1747 l2_offset
&= L1E_OFFSET_MASK
;
1748 ret
= qcow2_inc_refcounts_imrt(bs
, res
,
1749 refcount_table
, refcount_table_size
,
1750 l2_offset
, s
->cluster_size
);
1755 /* L2 tables are cluster aligned */
1756 if (offset_into_cluster(s
, l2_offset
)) {
1757 fprintf(stderr
, "ERROR l2_offset=%" PRIx64
": Table is not "
1758 "cluster aligned; L1 entry corrupted\n", l2_offset
);
1762 /* Process and check L2 entries */
1763 ret
= check_refcounts_l2(bs
, res
, refcount_table
,
1764 refcount_table_size
, l2_offset
, flags
,
1780 * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1782 * This function does not print an error message nor does it increment
1783 * check_errors if qcow2_get_refcount fails (this is because such an error will
1784 * have been already detected and sufficiently signaled by the calling function
1785 * (qcow2_check_refcounts) by the time this function is called).
1787 static int check_oflag_copied(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1790 BDRVQcow2State
*s
= bs
->opaque
;
1791 uint64_t *l2_table
= qemu_blockalign(bs
, s
->cluster_size
);
1796 for (i
= 0; i
< s
->l1_size
; i
++) {
1797 uint64_t l1_entry
= s
->l1_table
[i
];
1798 uint64_t l2_offset
= l1_entry
& L1E_OFFSET_MASK
;
1799 bool l2_dirty
= false;
1805 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
1808 /* don't print message nor increment check_errors */
1811 if ((refcount
== 1) != ((l1_entry
& QCOW_OFLAG_COPIED
) != 0)) {
1812 fprintf(stderr
, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1813 "l1_entry=%" PRIx64
" refcount=%" PRIu64
"\n",
1814 fix
& BDRV_FIX_ERRORS
? "Repairing" :
1816 i
, l1_entry
, refcount
);
1817 if (fix
& BDRV_FIX_ERRORS
) {
1818 s
->l1_table
[i
] = refcount
== 1
1819 ? l1_entry
| QCOW_OFLAG_COPIED
1820 : l1_entry
& ~QCOW_OFLAG_COPIED
;
1821 ret
= qcow2_write_l1_entry(bs
, i
);
1823 res
->check_errors
++;
1826 res
->corruptions_fixed
++;
1832 ret
= bdrv_pread(bs
->file
, l2_offset
, l2_table
,
1833 s
->l2_size
* sizeof(uint64_t));
1835 fprintf(stderr
, "ERROR: Could not read L2 table: %s\n",
1837 res
->check_errors
++;
1841 for (j
= 0; j
< s
->l2_size
; j
++) {
1842 uint64_t l2_entry
= be64_to_cpu(l2_table
[j
]);
1843 uint64_t data_offset
= l2_entry
& L2E_OFFSET_MASK
;
1844 QCow2ClusterType cluster_type
= qcow2_get_cluster_type(l2_entry
);
1846 if (cluster_type
== QCOW2_CLUSTER_NORMAL
||
1847 cluster_type
== QCOW2_CLUSTER_ZERO_ALLOC
) {
1848 ret
= qcow2_get_refcount(bs
,
1849 data_offset
>> s
->cluster_bits
,
1852 /* don't print message nor increment check_errors */
1855 if ((refcount
== 1) != ((l2_entry
& QCOW_OFLAG_COPIED
) != 0)) {
1856 fprintf(stderr
, "%s OFLAG_COPIED data cluster: "
1857 "l2_entry=%" PRIx64
" refcount=%" PRIu64
"\n",
1858 fix
& BDRV_FIX_ERRORS
? "Repairing" :
1860 l2_entry
, refcount
);
1861 if (fix
& BDRV_FIX_ERRORS
) {
1862 l2_table
[j
] = cpu_to_be64(refcount
== 1
1863 ? l2_entry
| QCOW_OFLAG_COPIED
1864 : l2_entry
& ~QCOW_OFLAG_COPIED
);
1866 res
->corruptions_fixed
++;
1875 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_ACTIVE_L2
,
1876 l2_offset
, s
->cluster_size
);
1878 fprintf(stderr
, "ERROR: Could not write L2 table; metadata "
1879 "overlap check failed: %s\n", strerror(-ret
));
1880 res
->check_errors
++;
1884 ret
= bdrv_pwrite(bs
->file
, l2_offset
, l2_table
,
1887 fprintf(stderr
, "ERROR: Could not write L2 table: %s\n",
1889 res
->check_errors
++;
1898 qemu_vfree(l2_table
);
1903 * Checks consistency of refblocks and accounts for each refblock in
1906 static int check_refblocks(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1907 BdrvCheckMode fix
, bool *rebuild
,
1908 void **refcount_table
, int64_t *nb_clusters
)
1910 BDRVQcow2State
*s
= bs
->opaque
;
1914 for(i
= 0; i
< s
->refcount_table_size
; i
++) {
1915 uint64_t offset
, cluster
;
1916 offset
= s
->refcount_table
[i
];
1917 cluster
= offset
>> s
->cluster_bits
;
1919 /* Refcount blocks are cluster aligned */
1920 if (offset_into_cluster(s
, offset
)) {
1921 fprintf(stderr
, "ERROR refcount block %" PRId64
" is not "
1922 "cluster aligned; refcount table entry corrupted\n", i
);
1928 if (cluster
>= *nb_clusters
) {
1929 fprintf(stderr
, "%s refcount block %" PRId64
" is outside image\n",
1930 fix
& BDRV_FIX_ERRORS
? "Repairing" : "ERROR", i
);
1932 if (fix
& BDRV_FIX_ERRORS
) {
1933 int64_t new_nb_clusters
;
1934 Error
*local_err
= NULL
;
1936 if (offset
> INT64_MAX
- s
->cluster_size
) {
1941 ret
= bdrv_truncate(bs
->file
, offset
+ s
->cluster_size
,
1942 PREALLOC_MODE_OFF
, &local_err
);
1944 error_report_err(local_err
);
1947 size
= bdrv_getlength(bs
->file
->bs
);
1953 new_nb_clusters
= size_to_clusters(s
, size
);
1954 assert(new_nb_clusters
>= *nb_clusters
);
1956 ret
= realloc_refcount_array(s
, refcount_table
,
1957 nb_clusters
, new_nb_clusters
);
1959 res
->check_errors
++;
1963 if (cluster
>= *nb_clusters
) {
1968 res
->corruptions_fixed
++;
1969 ret
= qcow2_inc_refcounts_imrt(bs
, res
,
1970 refcount_table
, nb_clusters
,
1971 offset
, s
->cluster_size
);
1975 /* No need to check whether the refcount is now greater than 1:
1976 * This area was just allocated and zeroed, so it can only be
1977 * exactly 1 after qcow2_inc_refcounts_imrt() */
1983 fprintf(stderr
, "ERROR could not resize image: %s\n",
1992 ret
= qcow2_inc_refcounts_imrt(bs
, res
, refcount_table
, nb_clusters
,
1993 offset
, s
->cluster_size
);
1997 if (s
->get_refcount(*refcount_table
, cluster
) != 1) {
1998 fprintf(stderr
, "ERROR refcount block %" PRId64
1999 " refcount=%" PRIu64
"\n", i
,
2000 s
->get_refcount(*refcount_table
, cluster
));
2011 * Calculates an in-memory refcount table.
2013 static int calculate_refcounts(BlockDriverState
*bs
, BdrvCheckResult
*res
,
2014 BdrvCheckMode fix
, bool *rebuild
,
2015 void **refcount_table
, int64_t *nb_clusters
)
2017 BDRVQcow2State
*s
= bs
->opaque
;
2022 if (!*refcount_table
) {
2023 int64_t old_size
= 0;
2024 ret
= realloc_refcount_array(s
, refcount_table
,
2025 &old_size
, *nb_clusters
);
2027 res
->check_errors
++;
2033 ret
= qcow2_inc_refcounts_imrt(bs
, res
, refcount_table
, nb_clusters
,
2034 0, s
->cluster_size
);
2039 /* current L1 table */
2040 ret
= check_refcounts_l1(bs
, res
, refcount_table
, nb_clusters
,
2041 s
->l1_table_offset
, s
->l1_size
, CHECK_FRAG_INFO
,
2048 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2049 sn
= s
->snapshots
+ i
;
2050 if (offset_into_cluster(s
, sn
->l1_table_offset
)) {
2051 fprintf(stderr
, "ERROR snapshot %s (%s) l1_offset=%#" PRIx64
": "
2052 "L1 table is not cluster aligned; snapshot table entry "
2053 "corrupted\n", sn
->id_str
, sn
->name
, sn
->l1_table_offset
);
2057 if (sn
->l1_size
> QCOW_MAX_L1_SIZE
/ sizeof(uint64_t)) {
2058 fprintf(stderr
, "ERROR snapshot %s (%s) l1_size=%#" PRIx32
": "
2059 "L1 table is too large; snapshot table entry corrupted\n",
2060 sn
->id_str
, sn
->name
, sn
->l1_size
);
2064 ret
= check_refcounts_l1(bs
, res
, refcount_table
, nb_clusters
,
2065 sn
->l1_table_offset
, sn
->l1_size
, 0, fix
);
2070 ret
= qcow2_inc_refcounts_imrt(bs
, res
, refcount_table
, nb_clusters
,
2071 s
->snapshots_offset
, s
->snapshots_size
);
2077 ret
= qcow2_inc_refcounts_imrt(bs
, res
, refcount_table
, nb_clusters
,
2078 s
->refcount_table_offset
,
2079 s
->refcount_table_size
* sizeof(uint64_t));
2085 if (s
->crypto_header
.length
) {
2086 ret
= qcow2_inc_refcounts_imrt(bs
, res
, refcount_table
, nb_clusters
,
2087 s
->crypto_header
.offset
,
2088 s
->crypto_header
.length
);
2095 ret
= qcow2_check_bitmaps_refcounts(bs
, res
, refcount_table
, nb_clusters
);
2100 return check_refblocks(bs
, res
, fix
, rebuild
, refcount_table
, nb_clusters
);
2104 * Compares the actual reference count for each cluster in the image against the
2105 * refcount as reported by the refcount structures on-disk.
2107 static void compare_refcounts(BlockDriverState
*bs
, BdrvCheckResult
*res
,
2108 BdrvCheckMode fix
, bool *rebuild
,
2109 int64_t *highest_cluster
,
2110 void *refcount_table
, int64_t nb_clusters
)
2112 BDRVQcow2State
*s
= bs
->opaque
;
2114 uint64_t refcount1
, refcount2
;
2117 for (i
= 0, *highest_cluster
= 0; i
< nb_clusters
; i
++) {
2118 ret
= qcow2_get_refcount(bs
, i
, &refcount1
);
2120 fprintf(stderr
, "Can't get refcount for cluster %" PRId64
": %s\n",
2122 res
->check_errors
++;
2126 refcount2
= s
->get_refcount(refcount_table
, i
);
2128 if (refcount1
> 0 || refcount2
> 0) {
2129 *highest_cluster
= i
;
2132 if (refcount1
!= refcount2
) {
2133 /* Check if we're allowed to fix the mismatch */
2134 int *num_fixed
= NULL
;
2135 if (refcount1
== 0) {
2137 } else if (refcount1
> refcount2
&& (fix
& BDRV_FIX_LEAKS
)) {
2138 num_fixed
= &res
->leaks_fixed
;
2139 } else if (refcount1
< refcount2
&& (fix
& BDRV_FIX_ERRORS
)) {
2140 num_fixed
= &res
->corruptions_fixed
;
2143 fprintf(stderr
, "%s cluster %" PRId64
" refcount=%" PRIu64
2144 " reference=%" PRIu64
"\n",
2145 num_fixed
!= NULL
? "Repairing" :
2146 refcount1
< refcount2
? "ERROR" :
2148 i
, refcount1
, refcount2
);
2151 ret
= update_refcount(bs
, i
<< s
->cluster_bits
, 1,
2152 refcount_diff(refcount1
, refcount2
),
2153 refcount1
> refcount2
,
2154 QCOW2_DISCARD_ALWAYS
);
2161 /* And if we couldn't, print an error */
2162 if (refcount1
< refcount2
) {
2172 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2173 * the on-disk refcount structures.
2175 * On input, *first_free_cluster tells where to start looking, and need not
2176 * actually be a free cluster; the returned offset will not be before that
2177 * cluster. On output, *first_free_cluster points to the first gap found, even
2178 * if that gap was too small to be used as the returned offset.
2180 * Note that *first_free_cluster is a cluster index whereas the return value is
2183 static int64_t alloc_clusters_imrt(BlockDriverState
*bs
,
2185 void **refcount_table
,
2186 int64_t *imrt_nb_clusters
,
2187 int64_t *first_free_cluster
)
2189 BDRVQcow2State
*s
= bs
->opaque
;
2190 int64_t cluster
= *first_free_cluster
, i
;
2191 bool first_gap
= true;
2192 int contiguous_free_clusters
;
2195 /* Starting at *first_free_cluster, find a range of at least cluster_count
2196 * continuously free clusters */
2197 for (contiguous_free_clusters
= 0;
2198 cluster
< *imrt_nb_clusters
&&
2199 contiguous_free_clusters
< cluster_count
;
2202 if (!s
->get_refcount(*refcount_table
, cluster
)) {
2203 contiguous_free_clusters
++;
2205 /* If this is the first free cluster found, update
2206 * *first_free_cluster accordingly */
2207 *first_free_cluster
= cluster
;
2210 } else if (contiguous_free_clusters
) {
2211 contiguous_free_clusters
= 0;
2215 /* If contiguous_free_clusters is greater than zero, it contains the number
2216 * of continuously free clusters until the current cluster; the first free
2217 * cluster in the current "gap" is therefore
2218 * cluster - contiguous_free_clusters */
2220 /* If no such range could be found, grow the in-memory refcount table
2221 * accordingly to append free clusters at the end of the image */
2222 if (contiguous_free_clusters
< cluster_count
) {
2223 /* contiguous_free_clusters clusters are already empty at the image end;
2224 * we need cluster_count clusters; therefore, we have to allocate
2225 * cluster_count - contiguous_free_clusters new clusters at the end of
2226 * the image (which is the current value of cluster; note that cluster
2227 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2229 ret
= realloc_refcount_array(s
, refcount_table
, imrt_nb_clusters
,
2230 cluster
+ cluster_count
2231 - contiguous_free_clusters
);
2237 /* Go back to the first free cluster */
2238 cluster
-= contiguous_free_clusters
;
2239 for (i
= 0; i
< cluster_count
; i
++) {
2240 s
->set_refcount(*refcount_table
, cluster
+ i
, 1);
2243 return cluster
<< s
->cluster_bits
;
2247 * Creates a new refcount structure based solely on the in-memory information
2248 * given through *refcount_table. All necessary allocations will be reflected
2251 * On success, the old refcount structure is leaked (it will be covered by the
2252 * new refcount structure).
2254 static int rebuild_refcount_structure(BlockDriverState
*bs
,
2255 BdrvCheckResult
*res
,
2256 void **refcount_table
,
2257 int64_t *nb_clusters
)
2259 BDRVQcow2State
*s
= bs
->opaque
;
2260 int64_t first_free_cluster
= 0, reftable_offset
= -1, cluster
= 0;
2261 int64_t refblock_offset
, refblock_start
, refblock_index
;
2262 uint32_t reftable_size
= 0;
2263 uint64_t *on_disk_reftable
= NULL
;
2264 void *on_disk_refblock
;
2267 uint64_t reftable_offset
;
2268 uint32_t reftable_clusters
;
2269 } QEMU_PACKED reftable_offset_and_clusters
;
2271 qcow2_cache_empty(bs
, s
->refcount_block_cache
);
2274 for (; cluster
< *nb_clusters
; cluster
++) {
2275 if (!s
->get_refcount(*refcount_table
, cluster
)) {
2279 refblock_index
= cluster
>> s
->refcount_block_bits
;
2280 refblock_start
= refblock_index
<< s
->refcount_block_bits
;
2282 /* Don't allocate a cluster in a refblock already written to disk */
2283 if (first_free_cluster
< refblock_start
) {
2284 first_free_cluster
= refblock_start
;
2286 refblock_offset
= alloc_clusters_imrt(bs
, 1, refcount_table
,
2287 nb_clusters
, &first_free_cluster
);
2288 if (refblock_offset
< 0) {
2289 fprintf(stderr
, "ERROR allocating refblock: %s\n",
2290 strerror(-refblock_offset
));
2291 res
->check_errors
++;
2292 ret
= refblock_offset
;
2296 if (reftable_size
<= refblock_index
) {
2297 uint32_t old_reftable_size
= reftable_size
;
2298 uint64_t *new_on_disk_reftable
;
2300 reftable_size
= ROUND_UP((refblock_index
+ 1) * sizeof(uint64_t),
2301 s
->cluster_size
) / sizeof(uint64_t);
2302 new_on_disk_reftable
= g_try_realloc(on_disk_reftable
,
2305 if (!new_on_disk_reftable
) {
2306 res
->check_errors
++;
2310 on_disk_reftable
= new_on_disk_reftable
;
2312 memset(on_disk_reftable
+ old_reftable_size
, 0,
2313 (reftable_size
- old_reftable_size
) * sizeof(uint64_t));
2315 /* The offset we have for the reftable is now no longer valid;
2316 * this will leak that range, but we can easily fix that by running
2317 * a leak-fixing check after this rebuild operation */
2318 reftable_offset
= -1;
2320 assert(on_disk_reftable
);
2322 on_disk_reftable
[refblock_index
] = refblock_offset
;
2324 /* If this is apparently the last refblock (for now), try to squeeze the
2326 if (refblock_index
== (*nb_clusters
- 1) >> s
->refcount_block_bits
&&
2327 reftable_offset
< 0)
2329 uint64_t reftable_clusters
= size_to_clusters(s
, reftable_size
*
2331 reftable_offset
= alloc_clusters_imrt(bs
, reftable_clusters
,
2332 refcount_table
, nb_clusters
,
2333 &first_free_cluster
);
2334 if (reftable_offset
< 0) {
2335 fprintf(stderr
, "ERROR allocating reftable: %s\n",
2336 strerror(-reftable_offset
));
2337 res
->check_errors
++;
2338 ret
= reftable_offset
;
2343 ret
= qcow2_pre_write_overlap_check(bs
, 0, refblock_offset
,
2346 fprintf(stderr
, "ERROR writing refblock: %s\n", strerror(-ret
));
2350 /* The size of *refcount_table is always cluster-aligned, therefore the
2351 * write operation will not overflow */
2352 on_disk_refblock
= (void *)((char *) *refcount_table
+
2353 refblock_index
* s
->cluster_size
);
2355 ret
= bdrv_write(bs
->file
, refblock_offset
/ BDRV_SECTOR_SIZE
,
2356 on_disk_refblock
, s
->cluster_sectors
);
2358 fprintf(stderr
, "ERROR writing refblock: %s\n", strerror(-ret
));
2362 /* Go to the end of this refblock */
2363 cluster
= refblock_start
+ s
->refcount_block_size
- 1;
2366 if (reftable_offset
< 0) {
2367 uint64_t post_refblock_start
, reftable_clusters
;
2369 post_refblock_start
= ROUND_UP(*nb_clusters
, s
->refcount_block_size
);
2370 reftable_clusters
= size_to_clusters(s
,
2371 reftable_size
* sizeof(uint64_t));
2372 /* Not pretty but simple */
2373 if (first_free_cluster
< post_refblock_start
) {
2374 first_free_cluster
= post_refblock_start
;
2376 reftable_offset
= alloc_clusters_imrt(bs
, reftable_clusters
,
2377 refcount_table
, nb_clusters
,
2378 &first_free_cluster
);
2379 if (reftable_offset
< 0) {
2380 fprintf(stderr
, "ERROR allocating reftable: %s\n",
2381 strerror(-reftable_offset
));
2382 res
->check_errors
++;
2383 ret
= reftable_offset
;
2387 goto write_refblocks
;
2390 for (refblock_index
= 0; refblock_index
< reftable_size
; refblock_index
++) {
2391 cpu_to_be64s(&on_disk_reftable
[refblock_index
]);
2394 ret
= qcow2_pre_write_overlap_check(bs
, 0, reftable_offset
,
2395 reftable_size
* sizeof(uint64_t));
2397 fprintf(stderr
, "ERROR writing reftable: %s\n", strerror(-ret
));
2401 assert(reftable_size
< INT_MAX
/ sizeof(uint64_t));
2402 ret
= bdrv_pwrite(bs
->file
, reftable_offset
, on_disk_reftable
,
2403 reftable_size
* sizeof(uint64_t));
2405 fprintf(stderr
, "ERROR writing reftable: %s\n", strerror(-ret
));
2409 /* Enter new reftable into the image header */
2410 reftable_offset_and_clusters
.reftable_offset
= cpu_to_be64(reftable_offset
);
2411 reftable_offset_and_clusters
.reftable_clusters
=
2412 cpu_to_be32(size_to_clusters(s
, reftable_size
* sizeof(uint64_t)));
2413 ret
= bdrv_pwrite_sync(bs
->file
,
2414 offsetof(QCowHeader
, refcount_table_offset
),
2415 &reftable_offset_and_clusters
,
2416 sizeof(reftable_offset_and_clusters
));
2418 fprintf(stderr
, "ERROR setting reftable: %s\n", strerror(-ret
));
2422 for (refblock_index
= 0; refblock_index
< reftable_size
; refblock_index
++) {
2423 be64_to_cpus(&on_disk_reftable
[refblock_index
]);
2425 s
->refcount_table
= on_disk_reftable
;
2426 s
->refcount_table_offset
= reftable_offset
;
2427 s
->refcount_table_size
= reftable_size
;
2428 update_max_refcount_table_index(s
);
2433 g_free(on_disk_reftable
);
2438 * Checks an image for refcount consistency.
2440 * Returns 0 if no errors are found, the number of errors in case the image is
2441 * detected as corrupted, and -errno when an internal error occurred.
2443 int qcow2_check_refcounts(BlockDriverState
*bs
, BdrvCheckResult
*res
,
2446 BDRVQcow2State
*s
= bs
->opaque
;
2447 BdrvCheckResult pre_compare_res
;
2448 int64_t size
, highest_cluster
, nb_clusters
;
2449 void *refcount_table
= NULL
;
2450 bool rebuild
= false;
2453 size
= bdrv_getlength(bs
->file
->bs
);
2455 res
->check_errors
++;
2459 nb_clusters
= size_to_clusters(s
, size
);
2460 if (nb_clusters
> INT_MAX
) {
2461 res
->check_errors
++;
2465 res
->bfi
.total_clusters
=
2466 size_to_clusters(s
, bs
->total_sectors
* BDRV_SECTOR_SIZE
);
2468 ret
= calculate_refcounts(bs
, res
, fix
, &rebuild
, &refcount_table
,
2474 /* In case we don't need to rebuild the refcount structure (but want to fix
2475 * something), this function is immediately called again, in which case the
2476 * result should be ignored */
2477 pre_compare_res
= *res
;
2478 compare_refcounts(bs
, res
, 0, &rebuild
, &highest_cluster
, refcount_table
,
2481 if (rebuild
&& (fix
& BDRV_FIX_ERRORS
)) {
2482 BdrvCheckResult old_res
= *res
;
2483 int fresh_leaks
= 0;
2485 fprintf(stderr
, "Rebuilding refcount structure\n");
2486 ret
= rebuild_refcount_structure(bs
, res
, &refcount_table
,
2492 res
->corruptions
= 0;
2495 /* Because the old reftable has been exchanged for a new one the
2496 * references have to be recalculated */
2498 memset(refcount_table
, 0, refcount_array_byte_size(s
, nb_clusters
));
2499 ret
= calculate_refcounts(bs
, res
, 0, &rebuild
, &refcount_table
,
2505 if (fix
& BDRV_FIX_LEAKS
) {
2506 /* The old refcount structures are now leaked, fix it; the result
2507 * can be ignored, aside from leaks which were introduced by
2508 * rebuild_refcount_structure() that could not be fixed */
2509 BdrvCheckResult saved_res
= *res
;
2510 *res
= (BdrvCheckResult
){ 0 };
2512 compare_refcounts(bs
, res
, BDRV_FIX_LEAKS
, &rebuild
,
2513 &highest_cluster
, refcount_table
, nb_clusters
);
2515 fprintf(stderr
, "ERROR rebuilt refcount structure is still "
2519 /* Any leaks accounted for here were introduced by
2520 * rebuild_refcount_structure() because that function has created a
2521 * new refcount structure from scratch */
2522 fresh_leaks
= res
->leaks
;
2526 if (res
->corruptions
< old_res
.corruptions
) {
2527 res
->corruptions_fixed
+= old_res
.corruptions
- res
->corruptions
;
2529 if (res
->leaks
< old_res
.leaks
) {
2530 res
->leaks_fixed
+= old_res
.leaks
- res
->leaks
;
2532 res
->leaks
+= fresh_leaks
;
2535 fprintf(stderr
, "ERROR need to rebuild refcount structures\n");
2536 res
->check_errors
++;
2541 if (res
->leaks
|| res
->corruptions
) {
2542 *res
= pre_compare_res
;
2543 compare_refcounts(bs
, res
, fix
, &rebuild
, &highest_cluster
,
2544 refcount_table
, nb_clusters
);
2548 /* check OFLAG_COPIED */
2549 ret
= check_oflag_copied(bs
, res
, fix
);
2554 res
->image_end_offset
= (highest_cluster
+ 1) * s
->cluster_size
;
2558 g_free(refcount_table
);
2563 #define overlaps_with(ofs, sz) \
2564 ranges_overlap(offset, size, ofs, sz)
2567 * Checks if the given offset into the image file is actually free to use by
2568 * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2569 * i.e. a sanity check without relying on the refcount tables.
2571 * The ign parameter specifies what checks not to perform (being a bitmask of
2572 * QCow2MetadataOverlap values), i.e., what sections to ignore.
2575 * - 0 if writing to this offset will not affect the mentioned metadata
2576 * - a positive QCow2MetadataOverlap value indicating one overlapping section
2577 * - a negative value (-errno) indicating an error while performing a check,
2578 * e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2580 int qcow2_check_metadata_overlap(BlockDriverState
*bs
, int ign
, int64_t offset
,
2583 BDRVQcow2State
*s
= bs
->opaque
;
2584 int chk
= s
->overlap_check
& ~ign
;
2591 if (chk
& QCOW2_OL_MAIN_HEADER
) {
2592 if (offset
< s
->cluster_size
) {
2593 return QCOW2_OL_MAIN_HEADER
;
2597 /* align range to test to cluster boundaries */
2598 size
= ROUND_UP(offset_into_cluster(s
, offset
) + size
, s
->cluster_size
);
2599 offset
= start_of_cluster(s
, offset
);
2601 if ((chk
& QCOW2_OL_ACTIVE_L1
) && s
->l1_size
) {
2602 if (overlaps_with(s
->l1_table_offset
, s
->l1_size
* sizeof(uint64_t))) {
2603 return QCOW2_OL_ACTIVE_L1
;
2607 if ((chk
& QCOW2_OL_REFCOUNT_TABLE
) && s
->refcount_table_size
) {
2608 if (overlaps_with(s
->refcount_table_offset
,
2609 s
->refcount_table_size
* sizeof(uint64_t))) {
2610 return QCOW2_OL_REFCOUNT_TABLE
;
2614 if ((chk
& QCOW2_OL_SNAPSHOT_TABLE
) && s
->snapshots_size
) {
2615 if (overlaps_with(s
->snapshots_offset
, s
->snapshots_size
)) {
2616 return QCOW2_OL_SNAPSHOT_TABLE
;
2620 if ((chk
& QCOW2_OL_INACTIVE_L1
) && s
->snapshots
) {
2621 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2622 if (s
->snapshots
[i
].l1_size
&&
2623 overlaps_with(s
->snapshots
[i
].l1_table_offset
,
2624 s
->snapshots
[i
].l1_size
* sizeof(uint64_t))) {
2625 return QCOW2_OL_INACTIVE_L1
;
2630 if ((chk
& QCOW2_OL_ACTIVE_L2
) && s
->l1_table
) {
2631 for (i
= 0; i
< s
->l1_size
; i
++) {
2632 if ((s
->l1_table
[i
] & L1E_OFFSET_MASK
) &&
2633 overlaps_with(s
->l1_table
[i
] & L1E_OFFSET_MASK
,
2635 return QCOW2_OL_ACTIVE_L2
;
2640 if ((chk
& QCOW2_OL_REFCOUNT_BLOCK
) && s
->refcount_table
) {
2641 unsigned last_entry
= s
->max_refcount_table_index
;
2642 assert(last_entry
< s
->refcount_table_size
);
2643 assert(last_entry
+ 1 == s
->refcount_table_size
||
2644 (s
->refcount_table
[last_entry
+ 1] & REFT_OFFSET_MASK
) == 0);
2645 for (i
= 0; i
<= last_entry
; i
++) {
2646 if ((s
->refcount_table
[i
] & REFT_OFFSET_MASK
) &&
2647 overlaps_with(s
->refcount_table
[i
] & REFT_OFFSET_MASK
,
2649 return QCOW2_OL_REFCOUNT_BLOCK
;
2654 if ((chk
& QCOW2_OL_INACTIVE_L2
) && s
->snapshots
) {
2655 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2656 uint64_t l1_ofs
= s
->snapshots
[i
].l1_table_offset
;
2657 uint32_t l1_sz
= s
->snapshots
[i
].l1_size
;
2658 uint64_t l1_sz2
= l1_sz
* sizeof(uint64_t);
2662 ret
= qcow2_validate_table(bs
, l1_ofs
, l1_sz
, sizeof(uint64_t),
2663 QCOW_MAX_L1_SIZE
, "", NULL
);
2668 l1
= g_try_malloc(l1_sz2
);
2670 if (l1_sz2
&& l1
== NULL
) {
2674 ret
= bdrv_pread(bs
->file
, l1_ofs
, l1
, l1_sz2
);
2680 for (j
= 0; j
< l1_sz
; j
++) {
2681 uint64_t l2_ofs
= be64_to_cpu(l1
[j
]) & L1E_OFFSET_MASK
;
2682 if (l2_ofs
&& overlaps_with(l2_ofs
, s
->cluster_size
)) {
2684 return QCOW2_OL_INACTIVE_L2
;
2695 static const char *metadata_ol_names
[] = {
2696 [QCOW2_OL_MAIN_HEADER_BITNR
] = "qcow2_header",
2697 [QCOW2_OL_ACTIVE_L1_BITNR
] = "active L1 table",
2698 [QCOW2_OL_ACTIVE_L2_BITNR
] = "active L2 table",
2699 [QCOW2_OL_REFCOUNT_TABLE_BITNR
] = "refcount table",
2700 [QCOW2_OL_REFCOUNT_BLOCK_BITNR
] = "refcount block",
2701 [QCOW2_OL_SNAPSHOT_TABLE_BITNR
] = "snapshot table",
2702 [QCOW2_OL_INACTIVE_L1_BITNR
] = "inactive L1 table",
2703 [QCOW2_OL_INACTIVE_L2_BITNR
] = "inactive L2 table",
2707 * First performs a check for metadata overlaps (through
2708 * qcow2_check_metadata_overlap); if that fails with a negative value (error
2709 * while performing a check), that value is returned. If an impending overlap
2710 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2711 * and -EIO returned.
2713 * Returns 0 if there were neither overlaps nor errors while checking for
2714 * overlaps; or a negative value (-errno) on error.
2716 int qcow2_pre_write_overlap_check(BlockDriverState
*bs
, int ign
, int64_t offset
,
2719 int ret
= qcow2_check_metadata_overlap(bs
, ign
, offset
, size
);
2723 } else if (ret
> 0) {
2724 int metadata_ol_bitnr
= ctz32(ret
);
2725 assert(metadata_ol_bitnr
< QCOW2_OL_MAX_BITNR
);
2727 qcow2_signal_corruption(bs
, true, offset
, size
, "Preventing invalid "
2728 "write on metadata (overlaps with %s)",
2729 metadata_ol_names
[metadata_ol_bitnr
]);
2736 /* A pointer to a function of this type is given to walk_over_reftable(). That
2737 * function will create refblocks and pass them to a RefblockFinishOp once they
2738 * are completed (@refblock). @refblock_empty is set if the refblock is
2741 * Along with the refblock, a corresponding reftable entry is passed, in the
2742 * reftable @reftable (which may be reallocated) at @reftable_index.
2744 * @allocated should be set to true if a new cluster has been allocated.
2746 typedef int (RefblockFinishOp
)(BlockDriverState
*bs
, uint64_t **reftable
,
2747 uint64_t reftable_index
, uint64_t *reftable_size
,
2748 void *refblock
, bool refblock_empty
,
2749 bool *allocated
, Error
**errp
);
2752 * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2753 * it is not empty) and inserts its offset into the new reftable. The size of
2754 * this new reftable is increased as required.
2756 static int alloc_refblock(BlockDriverState
*bs
, uint64_t **reftable
,
2757 uint64_t reftable_index
, uint64_t *reftable_size
,
2758 void *refblock
, bool refblock_empty
, bool *allocated
,
2761 BDRVQcow2State
*s
= bs
->opaque
;
2764 if (!refblock_empty
&& reftable_index
>= *reftable_size
) {
2765 uint64_t *new_reftable
;
2766 uint64_t new_reftable_size
;
2768 new_reftable_size
= ROUND_UP(reftable_index
+ 1,
2769 s
->cluster_size
/ sizeof(uint64_t));
2770 if (new_reftable_size
> QCOW_MAX_REFTABLE_SIZE
/ sizeof(uint64_t)) {
2772 "This operation would make the refcount table grow "
2773 "beyond the maximum size supported by QEMU, aborting");
2777 new_reftable
= g_try_realloc(*reftable
, new_reftable_size
*
2779 if (!new_reftable
) {
2780 error_setg(errp
, "Failed to increase reftable buffer size");
2784 memset(new_reftable
+ *reftable_size
, 0,
2785 (new_reftable_size
- *reftable_size
) * sizeof(uint64_t));
2787 *reftable
= new_reftable
;
2788 *reftable_size
= new_reftable_size
;
2791 if (!refblock_empty
&& !(*reftable
)[reftable_index
]) {
2792 offset
= qcow2_alloc_clusters(bs
, s
->cluster_size
);
2794 error_setg_errno(errp
, -offset
, "Failed to allocate refblock");
2797 (*reftable
)[reftable_index
] = offset
;
2805 * This "operation" for walk_over_reftable() writes the refblock to disk at the
2806 * offset specified by the new reftable's entry. It does not modify the new
2807 * reftable or change any refcounts.
2809 static int flush_refblock(BlockDriverState
*bs
, uint64_t **reftable
,
2810 uint64_t reftable_index
, uint64_t *reftable_size
,
2811 void *refblock
, bool refblock_empty
, bool *allocated
,
2814 BDRVQcow2State
*s
= bs
->opaque
;
2818 if (reftable_index
< *reftable_size
&& (*reftable
)[reftable_index
]) {
2819 offset
= (*reftable
)[reftable_index
];
2821 ret
= qcow2_pre_write_overlap_check(bs
, 0, offset
, s
->cluster_size
);
2823 error_setg_errno(errp
, -ret
, "Overlap check failed");
2827 ret
= bdrv_pwrite(bs
->file
, offset
, refblock
, s
->cluster_size
);
2829 error_setg_errno(errp
, -ret
, "Failed to write refblock");
2833 assert(refblock_empty
);
2840 * This function walks over the existing reftable and every referenced refblock;
2841 * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2842 * create an equal new entry in the passed @new_refblock. Once that
2843 * @new_refblock is completely filled, @operation will be called.
2845 * @status_cb and @cb_opaque are used for the amend operation's status callback.
2846 * @index is the index of the walk_over_reftable() calls and @total is the total
2847 * number of walk_over_reftable() calls per amend operation. Both are used for
2848 * calculating the parameters for the status callback.
2850 * @allocated is set to true if a new cluster has been allocated.
2852 static int walk_over_reftable(BlockDriverState
*bs
, uint64_t **new_reftable
,
2853 uint64_t *new_reftable_index
,
2854 uint64_t *new_reftable_size
,
2855 void *new_refblock
, int new_refblock_size
,
2856 int new_refcount_bits
,
2857 RefblockFinishOp
*operation
, bool *allocated
,
2858 Qcow2SetRefcountFunc
*new_set_refcount
,
2859 BlockDriverAmendStatusCB
*status_cb
,
2860 void *cb_opaque
, int index
, int total
,
2863 BDRVQcow2State
*s
= bs
->opaque
;
2864 uint64_t reftable_index
;
2865 bool new_refblock_empty
= true;
2867 int new_refblock_index
= 0;
2870 for (reftable_index
= 0; reftable_index
< s
->refcount_table_size
;
2873 uint64_t refblock_offset
= s
->refcount_table
[reftable_index
]
2876 status_cb(bs
, (uint64_t)index
* s
->refcount_table_size
+ reftable_index
,
2877 (uint64_t)total
* s
->refcount_table_size
, cb_opaque
);
2879 if (refblock_offset
) {
2882 if (offset_into_cluster(s
, refblock_offset
)) {
2883 qcow2_signal_corruption(bs
, true, -1, -1, "Refblock offset %#"
2884 PRIx64
" unaligned (reftable index: %#"
2885 PRIx64
")", refblock_offset
,
2888 "Image is corrupt (unaligned refblock offset)");
2892 ret
= qcow2_cache_get(bs
, s
->refcount_block_cache
, refblock_offset
,
2895 error_setg_errno(errp
, -ret
, "Failed to retrieve refblock");
2899 for (refblock_index
= 0; refblock_index
< s
->refcount_block_size
;
2904 if (new_refblock_index
>= new_refblock_size
) {
2905 /* new_refblock is now complete */
2906 ret
= operation(bs
, new_reftable
, *new_reftable_index
,
2907 new_reftable_size
, new_refblock
,
2908 new_refblock_empty
, allocated
, errp
);
2910 qcow2_cache_put(s
->refcount_block_cache
, &refblock
);
2914 (*new_reftable_index
)++;
2915 new_refblock_index
= 0;
2916 new_refblock_empty
= true;
2919 refcount
= s
->get_refcount(refblock
, refblock_index
);
2920 if (new_refcount_bits
< 64 && refcount
>> new_refcount_bits
) {
2923 qcow2_cache_put(s
->refcount_block_cache
, &refblock
);
2925 offset
= ((reftable_index
<< s
->refcount_block_bits
)
2926 + refblock_index
) << s
->cluster_bits
;
2928 error_setg(errp
, "Cannot decrease refcount entry width to "
2929 "%i bits: Cluster at offset %#" PRIx64
" has a "
2930 "refcount of %" PRIu64
, new_refcount_bits
,
2935 if (new_set_refcount
) {
2936 new_set_refcount(new_refblock
, new_refblock_index
++,
2939 new_refblock_index
++;
2941 new_refblock_empty
= new_refblock_empty
&& refcount
== 0;
2944 qcow2_cache_put(s
->refcount_block_cache
, &refblock
);
2946 /* No refblock means every refcount is 0 */
2947 for (refblock_index
= 0; refblock_index
< s
->refcount_block_size
;
2950 if (new_refblock_index
>= new_refblock_size
) {
2951 /* new_refblock is now complete */
2952 ret
= operation(bs
, new_reftable
, *new_reftable_index
,
2953 new_reftable_size
, new_refblock
,
2954 new_refblock_empty
, allocated
, errp
);
2959 (*new_reftable_index
)++;
2960 new_refblock_index
= 0;
2961 new_refblock_empty
= true;
2964 if (new_set_refcount
) {
2965 new_set_refcount(new_refblock
, new_refblock_index
++, 0);
2967 new_refblock_index
++;
2973 if (new_refblock_index
> 0) {
2974 /* Complete the potentially existing partially filled final refblock */
2975 if (new_set_refcount
) {
2976 for (; new_refblock_index
< new_refblock_size
;
2977 new_refblock_index
++)
2979 new_set_refcount(new_refblock
, new_refblock_index
, 0);
2983 ret
= operation(bs
, new_reftable
, *new_reftable_index
,
2984 new_reftable_size
, new_refblock
, new_refblock_empty
,
2990 (*new_reftable_index
)++;
2993 status_cb(bs
, (uint64_t)(index
+ 1) * s
->refcount_table_size
,
2994 (uint64_t)total
* s
->refcount_table_size
, cb_opaque
);
2999 int qcow2_change_refcount_order(BlockDriverState
*bs
, int refcount_order
,
3000 BlockDriverAmendStatusCB
*status_cb
,
3001 void *cb_opaque
, Error
**errp
)
3003 BDRVQcow2State
*s
= bs
->opaque
;
3004 Qcow2GetRefcountFunc
*new_get_refcount
;
3005 Qcow2SetRefcountFunc
*new_set_refcount
;
3006 void *new_refblock
= qemu_blockalign(bs
->file
->bs
, s
->cluster_size
);
3007 uint64_t *new_reftable
= NULL
, new_reftable_size
= 0;
3008 uint64_t *old_reftable
, old_reftable_size
, old_reftable_offset
;
3009 uint64_t new_reftable_index
= 0;
3011 int64_t new_reftable_offset
= 0, allocated_reftable_size
= 0;
3012 int new_refblock_size
, new_refcount_bits
= 1 << refcount_order
;
3013 int old_refcount_order
;
3016 bool new_allocation
;
3018 assert(s
->qcow_version
>= 3);
3019 assert(refcount_order
>= 0 && refcount_order
<= 6);
3021 /* see qcow2_open() */
3022 new_refblock_size
= 1 << (s
->cluster_bits
- (refcount_order
- 3));
3024 new_get_refcount
= get_refcount_funcs
[refcount_order
];
3025 new_set_refcount
= set_refcount_funcs
[refcount_order
];
3031 new_allocation
= false;
3033 /* At least we have to do this walk and the one which writes the
3034 * refblocks; also, at least we have to do this loop here at least
3035 * twice (normally), first to do the allocations, and second to
3036 * determine that everything is correctly allocated, this then makes
3037 * three walks in total */
3038 total_walks
= MAX(walk_index
+ 2, 3);
3040 /* First, allocate the structures so they are present in the refcount
3042 ret
= walk_over_reftable(bs
, &new_reftable
, &new_reftable_index
,
3043 &new_reftable_size
, NULL
, new_refblock_size
,
3044 new_refcount_bits
, &alloc_refblock
,
3045 &new_allocation
, NULL
, status_cb
, cb_opaque
,
3046 walk_index
++, total_walks
, errp
);
3051 new_reftable_index
= 0;
3053 if (new_allocation
) {
3054 if (new_reftable_offset
) {
3055 qcow2_free_clusters(bs
, new_reftable_offset
,
3056 allocated_reftable_size
* sizeof(uint64_t),
3057 QCOW2_DISCARD_NEVER
);
3060 new_reftable_offset
= qcow2_alloc_clusters(bs
, new_reftable_size
*
3062 if (new_reftable_offset
< 0) {
3063 error_setg_errno(errp
, -new_reftable_offset
,
3064 "Failed to allocate the new reftable");
3065 ret
= new_reftable_offset
;
3068 allocated_reftable_size
= new_reftable_size
;
3070 } while (new_allocation
);
3072 /* Second, write the new refblocks */
3073 ret
= walk_over_reftable(bs
, &new_reftable
, &new_reftable_index
,
3074 &new_reftable_size
, new_refblock
,
3075 new_refblock_size
, new_refcount_bits
,
3076 &flush_refblock
, &new_allocation
, new_set_refcount
,
3077 status_cb
, cb_opaque
, walk_index
, walk_index
+ 1,
3082 assert(!new_allocation
);
3085 /* Write the new reftable */
3086 ret
= qcow2_pre_write_overlap_check(bs
, 0, new_reftable_offset
,
3087 new_reftable_size
* sizeof(uint64_t));
3089 error_setg_errno(errp
, -ret
, "Overlap check failed");
3093 for (i
= 0; i
< new_reftable_size
; i
++) {
3094 cpu_to_be64s(&new_reftable
[i
]);
3097 ret
= bdrv_pwrite(bs
->file
, new_reftable_offset
, new_reftable
,
3098 new_reftable_size
* sizeof(uint64_t));
3100 for (i
= 0; i
< new_reftable_size
; i
++) {
3101 be64_to_cpus(&new_reftable
[i
]);
3105 error_setg_errno(errp
, -ret
, "Failed to write the new reftable");
3110 /* Empty the refcount cache */
3111 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
3113 error_setg_errno(errp
, -ret
, "Failed to flush the refblock cache");
3117 /* Update the image header to point to the new reftable; this only updates
3118 * the fields which are relevant to qcow2_update_header(); other fields
3119 * such as s->refcount_table or s->refcount_bits stay stale for now
3120 * (because we have to restore everything if qcow2_update_header() fails) */
3121 old_refcount_order
= s
->refcount_order
;
3122 old_reftable_size
= s
->refcount_table_size
;
3123 old_reftable_offset
= s
->refcount_table_offset
;
3125 s
->refcount_order
= refcount_order
;
3126 s
->refcount_table_size
= new_reftable_size
;
3127 s
->refcount_table_offset
= new_reftable_offset
;
3129 ret
= qcow2_update_header(bs
);
3131 s
->refcount_order
= old_refcount_order
;
3132 s
->refcount_table_size
= old_reftable_size
;
3133 s
->refcount_table_offset
= old_reftable_offset
;
3134 error_setg_errno(errp
, -ret
, "Failed to update the qcow2 header");
3138 /* Now update the rest of the in-memory information */
3139 old_reftable
= s
->refcount_table
;
3140 s
->refcount_table
= new_reftable
;
3141 update_max_refcount_table_index(s
);
3143 s
->refcount_bits
= 1 << refcount_order
;
3144 s
->refcount_max
= UINT64_C(1) << (s
->refcount_bits
- 1);
3145 s
->refcount_max
+= s
->refcount_max
- 1;
3147 s
->refcount_block_bits
= s
->cluster_bits
- (refcount_order
- 3);
3148 s
->refcount_block_size
= 1 << s
->refcount_block_bits
;
3150 s
->get_refcount
= new_get_refcount
;
3151 s
->set_refcount
= new_set_refcount
;
3153 /* For cleaning up all old refblocks and the old reftable below the "done"
3155 new_reftable
= old_reftable
;
3156 new_reftable_size
= old_reftable_size
;
3157 new_reftable_offset
= old_reftable_offset
;
3161 /* On success, new_reftable actually points to the old reftable (and
3162 * new_reftable_size is the old reftable's size); but that is just
3164 for (i
= 0; i
< new_reftable_size
; i
++) {
3165 uint64_t offset
= new_reftable
[i
] & REFT_OFFSET_MASK
;
3167 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
3168 QCOW2_DISCARD_OTHER
);
3171 g_free(new_reftable
);
3173 if (new_reftable_offset
> 0) {
3174 qcow2_free_clusters(bs
, new_reftable_offset
,
3175 new_reftable_size
* sizeof(uint64_t),
3176 QCOW2_DISCARD_OTHER
);
3180 qemu_vfree(new_refblock
);
3184 static int64_t get_refblock_offset(BlockDriverState
*bs
, uint64_t offset
)
3186 BDRVQcow2State
*s
= bs
->opaque
;
3187 uint32_t index
= offset_to_reftable_index(s
, offset
);
3188 int64_t covering_refblock_offset
= 0;
3190 if (index
< s
->refcount_table_size
) {
3191 covering_refblock_offset
= s
->refcount_table
[index
] & REFT_OFFSET_MASK
;
3193 if (!covering_refblock_offset
) {
3194 qcow2_signal_corruption(bs
, true, -1, -1, "Refblock at %#" PRIx64
" is "
3195 "not covered by the refcount structures",
3200 return covering_refblock_offset
;
3203 static int qcow2_discard_refcount_block(BlockDriverState
*bs
,
3204 uint64_t discard_block_offs
)
3206 BDRVQcow2State
*s
= bs
->opaque
;
3207 int64_t refblock_offs
;
3208 uint64_t cluster_index
= discard_block_offs
>> s
->cluster_bits
;
3209 uint32_t block_index
= cluster_index
& (s
->refcount_block_size
- 1);
3213 refblock_offs
= get_refblock_offset(bs
, discard_block_offs
);
3214 if (refblock_offs
< 0) {
3215 return refblock_offs
;
3218 assert(discard_block_offs
!= 0);
3220 ret
= qcow2_cache_get(bs
, s
->refcount_block_cache
, refblock_offs
,
3226 if (s
->get_refcount(refblock
, block_index
) != 1) {
3227 qcow2_signal_corruption(bs
, true, -1, -1, "Invalid refcount:"
3228 " refblock offset %#" PRIx64
3229 ", reftable index %u"
3230 ", block offset %#" PRIx64
3231 ", refcount %#" PRIx64
,
3233 offset_to_reftable_index(s
, discard_block_offs
),
3235 s
->get_refcount(refblock
, block_index
));
3236 qcow2_cache_put(s
->refcount_block_cache
, &refblock
);
3239 s
->set_refcount(refblock
, block_index
, 0);
3241 qcow2_cache_entry_mark_dirty(s
->refcount_block_cache
, refblock
);
3243 qcow2_cache_put(s
->refcount_block_cache
, &refblock
);
3245 if (cluster_index
< s
->free_cluster_index
) {
3246 s
->free_cluster_index
= cluster_index
;
3249 refblock
= qcow2_cache_is_table_offset(s
->refcount_block_cache
,
3250 discard_block_offs
);
3252 /* discard refblock from the cache if refblock is cached */
3253 qcow2_cache_discard(s
->refcount_block_cache
, refblock
);
3255 update_refcount_discard(bs
, discard_block_offs
, s
->cluster_size
);
3260 int qcow2_shrink_reftable(BlockDriverState
*bs
)
3262 BDRVQcow2State
*s
= bs
->opaque
;
3263 uint64_t *reftable_tmp
=
3264 g_malloc(s
->refcount_table_size
* sizeof(uint64_t));
3267 for (i
= 0; i
< s
->refcount_table_size
; i
++) {
3268 int64_t refblock_offs
= s
->refcount_table
[i
] & REFT_OFFSET_MASK
;
3272 if (refblock_offs
== 0) {
3273 reftable_tmp
[i
] = 0;
3276 ret
= qcow2_cache_get(bs
, s
->refcount_block_cache
, refblock_offs
,
3282 /* the refblock has own reference */
3283 if (i
== offset_to_reftable_index(s
, refblock_offs
)) {
3284 uint64_t block_index
= (refblock_offs
>> s
->cluster_bits
) &
3285 (s
->refcount_block_size
- 1);
3286 uint64_t refcount
= s
->get_refcount(refblock
, block_index
);
3288 s
->set_refcount(refblock
, block_index
, 0);
3290 unused_block
= buffer_is_zero(refblock
, s
->cluster_size
);
3292 s
->set_refcount(refblock
, block_index
, refcount
);
3294 unused_block
= buffer_is_zero(refblock
, s
->cluster_size
);
3296 qcow2_cache_put(s
->refcount_block_cache
, &refblock
);
3298 reftable_tmp
[i
] = unused_block
? 0 : cpu_to_be64(s
->refcount_table
[i
]);
3301 ret
= bdrv_pwrite_sync(bs
->file
, s
->refcount_table_offset
, reftable_tmp
,
3302 s
->refcount_table_size
* sizeof(uint64_t));
3304 * If the write in the reftable failed the image may contain a partially
3305 * overwritten reftable. In this case it would be better to clear the
3306 * reftable in memory to avoid possible image corruption.
3308 for (i
= 0; i
< s
->refcount_table_size
; i
++) {
3309 if (s
->refcount_table
[i
] && !reftable_tmp
[i
]) {
3311 ret
= qcow2_discard_refcount_block(bs
, s
->refcount_table
[i
] &
3314 s
->refcount_table
[i
] = 0;
3318 if (!s
->cache_discards
) {
3319 qcow2_process_discards(bs
, ret
);
3323 g_free(reftable_tmp
);
3327 int64_t qcow2_get_last_cluster(BlockDriverState
*bs
, int64_t size
)
3329 BDRVQcow2State
*s
= bs
->opaque
;
3332 for (i
= size_to_clusters(s
, size
) - 1; i
>= 0; i
--) {
3334 int ret
= qcow2_get_refcount(bs
, i
, &refcount
);
3336 fprintf(stderr
, "Can't get refcount for cluster %" PRId64
": %s\n",
3344 qcow2_signal_corruption(bs
, true, -1, -1,
3345 "There are no references in the refcount table.");