4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
38 #include <sys/times.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
51 #include <linux/if_tun.h>
53 #include <arpa/inet.h>
56 #include <sys/select.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
70 #include <linux/rtc.h>
72 /* For the benefit of older linux systems which don't supply it,
73 we use a local copy of hpet.h. */
74 /* #include <linux/hpet.h> */
77 #include <linux/ppdev.h>
78 #include <linux/parport.h>
82 #include <sys/ethernet.h>
83 #include <sys/sockio.h>
84 #include <netinet/arp.h>
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_icmp.h> // must come after ip.h
89 #include <netinet/udp.h>
90 #include <netinet/tcp.h>
98 #if defined(__OpenBSD__)
102 #if defined(CONFIG_VDE)
103 #include <libvdeplug.h>
109 #include <sys/timeb.h>
110 #include <mmsystem.h>
111 #define getopt_long_only getopt_long
112 #define memalign(align, size) malloc(size)
116 #if defined(__APPLE__) || defined(main)
118 int qemu_main(int argc
, char **argv
, char **envp
);
119 int main(int argc
, char **argv
)
121 return qemu_main(argc
, argv
, NULL
);
124 #define main qemu_main
126 #endif /* CONFIG_SDL */
130 #define main qemu_main
131 #endif /* CONFIG_COCOA */
134 #include "hw/boards.h"
136 #include "hw/pcmcia.h"
138 #include "hw/audiodev.h"
142 #include "hw/watchdog.h"
143 #include "hw/smbios.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
156 #include "audio/audio.h"
157 #include "migration.h"
160 #include "qemu-option.h"
164 #include "exec-all.h"
166 #include "qemu_socket.h"
168 #include "slirp/libslirp.h"
170 //#define DEBUG_UNUSED_IOPORT
171 //#define DEBUG_IOPORT
173 //#define DEBUG_SLIRP
177 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
179 # define LOG_IOPORT(...) do { } while (0)
182 #define DEFAULT_RAM_SIZE 128
184 /* Max number of USB devices that can be specified on the commandline. */
185 #define MAX_USB_CMDLINE 8
187 /* Max number of bluetooth switches on the commandline. */
188 #define MAX_BT_CMDLINE 10
190 /* XXX: use a two level table to limit memory usage */
191 #define MAX_IOPORTS 65536
193 static const char *data_dir
;
194 const char *bios_name
= NULL
;
195 static void *ioport_opaque
[MAX_IOPORTS
];
196 static IOPortReadFunc
*ioport_read_table
[3][MAX_IOPORTS
];
197 static IOPortWriteFunc
*ioport_write_table
[3][MAX_IOPORTS
];
198 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
199 to store the VM snapshots */
200 DriveInfo drives_table
[MAX_DRIVES
+1];
202 enum vga_retrace_method vga_retrace_method
= VGA_RETRACE_DUMB
;
203 static DisplayState
*display_state
;
204 DisplayType display_type
= DT_DEFAULT
;
205 const char* keyboard_layout
= NULL
;
206 int64_t ticks_per_sec
;
209 NICInfo nd_table
[MAX_NICS
];
211 static int autostart
;
212 static int rtc_utc
= 1;
213 static int rtc_date_offset
= -1; /* -1 means no change */
214 int cirrus_vga_enabled
= 1;
215 int std_vga_enabled
= 0;
216 int vmsvga_enabled
= 0;
217 int xenfb_enabled
= 0;
219 int graphic_width
= 1024;
220 int graphic_height
= 768;
221 int graphic_depth
= 8;
223 int graphic_width
= 800;
224 int graphic_height
= 600;
225 int graphic_depth
= 15;
227 static int full_screen
= 0;
229 static int no_frame
= 0;
232 CharDriverState
*serial_hds
[MAX_SERIAL_PORTS
];
233 CharDriverState
*parallel_hds
[MAX_PARALLEL_PORTS
];
234 CharDriverState
*virtcon_hds
[MAX_VIRTIO_CONSOLES
];
236 int win2k_install_hack
= 0;
242 const char *vnc_display
;
243 int acpi_enabled
= 1;
245 int virtio_balloon
= 1;
246 const char *virtio_balloon_devaddr
;
251 int graphic_rotate
= 0;
255 WatchdogTimerModel
*watchdog
= NULL
;
256 int watchdog_action
= WDT_RESET
;
257 const char *option_rom
[MAX_OPTION_ROMS
];
259 int semihosting_enabled
= 0;
263 const char *qemu_name
;
265 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
266 unsigned int nb_prom_envs
= 0;
267 const char *prom_envs
[MAX_PROM_ENVS
];
270 struct drive_opt drives_opt
[MAX_DRIVES
];
273 uint64_t node_mem
[MAX_NODES
];
274 uint64_t node_cpumask
[MAX_NODES
];
276 static CPUState
*cur_cpu
;
277 static CPUState
*next_cpu
;
278 static int timer_alarm_pending
= 1;
279 /* Conversion factor from emulated instructions to virtual clock ticks. */
280 static int icount_time_shift
;
281 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
282 #define MAX_ICOUNT_SHIFT 10
283 /* Compensate for varying guest execution speed. */
284 static int64_t qemu_icount_bias
;
285 static QEMUTimer
*icount_rt_timer
;
286 static QEMUTimer
*icount_vm_timer
;
287 static QEMUTimer
*nographic_timer
;
289 uint8_t qemu_uuid
[16];
291 /***********************************************************/
292 /* x86 ISA bus support */
294 target_phys_addr_t isa_mem_base
= 0;
297 static IOPortReadFunc default_ioport_readb
, default_ioport_readw
, default_ioport_readl
;
298 static IOPortWriteFunc default_ioport_writeb
, default_ioport_writew
, default_ioport_writel
;
300 static uint32_t ioport_read(int index
, uint32_t address
)
302 static IOPortReadFunc
*default_func
[3] = {
303 default_ioport_readb
,
304 default_ioport_readw
,
307 IOPortReadFunc
*func
= ioport_read_table
[index
][address
];
309 func
= default_func
[index
];
310 return func(ioport_opaque
[address
], address
);
313 static void ioport_write(int index
, uint32_t address
, uint32_t data
)
315 static IOPortWriteFunc
*default_func
[3] = {
316 default_ioport_writeb
,
317 default_ioport_writew
,
318 default_ioport_writel
320 IOPortWriteFunc
*func
= ioport_write_table
[index
][address
];
322 func
= default_func
[index
];
323 func(ioport_opaque
[address
], address
, data
);
326 static uint32_t default_ioport_readb(void *opaque
, uint32_t address
)
328 #ifdef DEBUG_UNUSED_IOPORT
329 fprintf(stderr
, "unused inb: port=0x%04x\n", address
);
334 static void default_ioport_writeb(void *opaque
, uint32_t address
, uint32_t data
)
336 #ifdef DEBUG_UNUSED_IOPORT
337 fprintf(stderr
, "unused outb: port=0x%04x data=0x%02x\n", address
, data
);
341 /* default is to make two byte accesses */
342 static uint32_t default_ioport_readw(void *opaque
, uint32_t address
)
345 data
= ioport_read(0, address
);
346 address
= (address
+ 1) & (MAX_IOPORTS
- 1);
347 data
|= ioport_read(0, address
) << 8;
351 static void default_ioport_writew(void *opaque
, uint32_t address
, uint32_t data
)
353 ioport_write(0, address
, data
& 0xff);
354 address
= (address
+ 1) & (MAX_IOPORTS
- 1);
355 ioport_write(0, address
, (data
>> 8) & 0xff);
358 static uint32_t default_ioport_readl(void *opaque
, uint32_t address
)
360 #ifdef DEBUG_UNUSED_IOPORT
361 fprintf(stderr
, "unused inl: port=0x%04x\n", address
);
366 static void default_ioport_writel(void *opaque
, uint32_t address
, uint32_t data
)
368 #ifdef DEBUG_UNUSED_IOPORT
369 fprintf(stderr
, "unused outl: port=0x%04x data=0x%02x\n", address
, data
);
373 /* size is the word size in byte */
374 int register_ioport_read(int start
, int length
, int size
,
375 IOPortReadFunc
*func
, void *opaque
)
381 } else if (size
== 2) {
383 } else if (size
== 4) {
386 hw_error("register_ioport_read: invalid size");
389 for(i
= start
; i
< start
+ length
; i
+= size
) {
390 ioport_read_table
[bsize
][i
] = func
;
391 if (ioport_opaque
[i
] != NULL
&& ioport_opaque
[i
] != opaque
)
392 hw_error("register_ioport_read: invalid opaque");
393 ioport_opaque
[i
] = opaque
;
398 /* size is the word size in byte */
399 int register_ioport_write(int start
, int length
, int size
,
400 IOPortWriteFunc
*func
, void *opaque
)
406 } else if (size
== 2) {
408 } else if (size
== 4) {
411 hw_error("register_ioport_write: invalid size");
414 for(i
= start
; i
< start
+ length
; i
+= size
) {
415 ioport_write_table
[bsize
][i
] = func
;
416 if (ioport_opaque
[i
] != NULL
&& ioport_opaque
[i
] != opaque
)
417 hw_error("register_ioport_write: invalid opaque");
418 ioport_opaque
[i
] = opaque
;
423 void isa_unassign_ioport(int start
, int length
)
427 for(i
= start
; i
< start
+ length
; i
++) {
428 ioport_read_table
[0][i
] = default_ioport_readb
;
429 ioport_read_table
[1][i
] = default_ioport_readw
;
430 ioport_read_table
[2][i
] = default_ioport_readl
;
432 ioport_write_table
[0][i
] = default_ioport_writeb
;
433 ioport_write_table
[1][i
] = default_ioport_writew
;
434 ioport_write_table
[2][i
] = default_ioport_writel
;
436 ioport_opaque
[i
] = NULL
;
440 /***********************************************************/
442 void cpu_outb(CPUState
*env
, int addr
, int val
)
444 LOG_IOPORT("outb: %04x %02x\n", addr
, val
);
445 ioport_write(0, addr
, val
);
448 env
->last_io_time
= cpu_get_time_fast();
452 void cpu_outw(CPUState
*env
, int addr
, int val
)
454 LOG_IOPORT("outw: %04x %04x\n", addr
, val
);
455 ioport_write(1, addr
, val
);
458 env
->last_io_time
= cpu_get_time_fast();
462 void cpu_outl(CPUState
*env
, int addr
, int val
)
464 LOG_IOPORT("outl: %04x %08x\n", addr
, val
);
465 ioport_write(2, addr
, val
);
468 env
->last_io_time
= cpu_get_time_fast();
472 int cpu_inb(CPUState
*env
, int addr
)
475 val
= ioport_read(0, addr
);
476 LOG_IOPORT("inb : %04x %02x\n", addr
, val
);
479 env
->last_io_time
= cpu_get_time_fast();
484 int cpu_inw(CPUState
*env
, int addr
)
487 val
= ioport_read(1, addr
);
488 LOG_IOPORT("inw : %04x %04x\n", addr
, val
);
491 env
->last_io_time
= cpu_get_time_fast();
496 int cpu_inl(CPUState
*env
, int addr
)
499 val
= ioport_read(2, addr
);
500 LOG_IOPORT("inl : %04x %08x\n", addr
, val
);
503 env
->last_io_time
= cpu_get_time_fast();
508 /***********************************************************/
509 void hw_error(const char *fmt
, ...)
515 fprintf(stderr
, "qemu: hardware error: ");
516 vfprintf(stderr
, fmt
, ap
);
517 fprintf(stderr
, "\n");
518 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
519 fprintf(stderr
, "CPU #%d:\n", env
->cpu_index
);
521 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
);
523 cpu_dump_state(env
, stderr
, fprintf
, 0);
533 static QEMUBalloonEvent
*qemu_balloon_event
;
534 void *qemu_balloon_event_opaque
;
536 void qemu_add_balloon_handler(QEMUBalloonEvent
*func
, void *opaque
)
538 qemu_balloon_event
= func
;
539 qemu_balloon_event_opaque
= opaque
;
542 void qemu_balloon(ram_addr_t target
)
544 if (qemu_balloon_event
)
545 qemu_balloon_event(qemu_balloon_event_opaque
, target
);
548 ram_addr_t
qemu_balloon_status(void)
550 if (qemu_balloon_event
)
551 return qemu_balloon_event(qemu_balloon_event_opaque
, 0);
555 /***********************************************************/
558 static QEMUPutKBDEvent
*qemu_put_kbd_event
;
559 static void *qemu_put_kbd_event_opaque
;
560 static QEMUPutMouseEntry
*qemu_put_mouse_event_head
;
561 static QEMUPutMouseEntry
*qemu_put_mouse_event_current
;
563 void qemu_add_kbd_event_handler(QEMUPutKBDEvent
*func
, void *opaque
)
565 qemu_put_kbd_event_opaque
= opaque
;
566 qemu_put_kbd_event
= func
;
569 QEMUPutMouseEntry
*qemu_add_mouse_event_handler(QEMUPutMouseEvent
*func
,
570 void *opaque
, int absolute
,
573 QEMUPutMouseEntry
*s
, *cursor
;
575 s
= qemu_mallocz(sizeof(QEMUPutMouseEntry
));
577 s
->qemu_put_mouse_event
= func
;
578 s
->qemu_put_mouse_event_opaque
= opaque
;
579 s
->qemu_put_mouse_event_absolute
= absolute
;
580 s
->qemu_put_mouse_event_name
= qemu_strdup(name
);
583 if (!qemu_put_mouse_event_head
) {
584 qemu_put_mouse_event_head
= qemu_put_mouse_event_current
= s
;
588 cursor
= qemu_put_mouse_event_head
;
589 while (cursor
->next
!= NULL
)
590 cursor
= cursor
->next
;
593 qemu_put_mouse_event_current
= s
;
598 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry
*entry
)
600 QEMUPutMouseEntry
*prev
= NULL
, *cursor
;
602 if (!qemu_put_mouse_event_head
|| entry
== NULL
)
605 cursor
= qemu_put_mouse_event_head
;
606 while (cursor
!= NULL
&& cursor
!= entry
) {
608 cursor
= cursor
->next
;
611 if (cursor
== NULL
) // does not exist or list empty
613 else if (prev
== NULL
) { // entry is head
614 qemu_put_mouse_event_head
= cursor
->next
;
615 if (qemu_put_mouse_event_current
== entry
)
616 qemu_put_mouse_event_current
= cursor
->next
;
617 qemu_free(entry
->qemu_put_mouse_event_name
);
622 prev
->next
= entry
->next
;
624 if (qemu_put_mouse_event_current
== entry
)
625 qemu_put_mouse_event_current
= prev
;
627 qemu_free(entry
->qemu_put_mouse_event_name
);
631 void kbd_put_keycode(int keycode
)
633 if (qemu_put_kbd_event
) {
634 qemu_put_kbd_event(qemu_put_kbd_event_opaque
, keycode
);
638 void kbd_mouse_event(int dx
, int dy
, int dz
, int buttons_state
)
640 QEMUPutMouseEvent
*mouse_event
;
641 void *mouse_event_opaque
;
644 if (!qemu_put_mouse_event_current
) {
649 qemu_put_mouse_event_current
->qemu_put_mouse_event
;
651 qemu_put_mouse_event_current
->qemu_put_mouse_event_opaque
;
654 if (graphic_rotate
) {
655 if (qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
)
658 width
= graphic_width
- 1;
659 mouse_event(mouse_event_opaque
,
660 width
- dy
, dx
, dz
, buttons_state
);
662 mouse_event(mouse_event_opaque
,
663 dx
, dy
, dz
, buttons_state
);
667 int kbd_mouse_is_absolute(void)
669 if (!qemu_put_mouse_event_current
)
672 return qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
;
675 void do_info_mice(Monitor
*mon
)
677 QEMUPutMouseEntry
*cursor
;
680 if (!qemu_put_mouse_event_head
) {
681 monitor_printf(mon
, "No mouse devices connected\n");
685 monitor_printf(mon
, "Mouse devices available:\n");
686 cursor
= qemu_put_mouse_event_head
;
687 while (cursor
!= NULL
) {
688 monitor_printf(mon
, "%c Mouse #%d: %s\n",
689 (cursor
== qemu_put_mouse_event_current
? '*' : ' '),
690 index
, cursor
->qemu_put_mouse_event_name
);
692 cursor
= cursor
->next
;
696 void do_mouse_set(Monitor
*mon
, int index
)
698 QEMUPutMouseEntry
*cursor
;
701 if (!qemu_put_mouse_event_head
) {
702 monitor_printf(mon
, "No mouse devices connected\n");
706 cursor
= qemu_put_mouse_event_head
;
707 while (cursor
!= NULL
&& index
!= i
) {
709 cursor
= cursor
->next
;
713 qemu_put_mouse_event_current
= cursor
;
715 monitor_printf(mon
, "Mouse at given index not found\n");
718 /* compute with 96 bit intermediate result: (a*b)/c */
719 uint64_t muldiv64(uint64_t a
, uint32_t b
, uint32_t c
)
724 #ifdef WORDS_BIGENDIAN
734 rl
= (uint64_t)u
.l
.low
* (uint64_t)b
;
735 rh
= (uint64_t)u
.l
.high
* (uint64_t)b
;
738 res
.l
.low
= (((rh
% c
) << 32) + (rl
& 0xffffffff)) / c
;
742 /***********************************************************/
743 /* real time host monotonic timer */
745 #define QEMU_TIMER_BASE 1000000000LL
749 static int64_t clock_freq
;
751 static void init_get_clock(void)
755 ret
= QueryPerformanceFrequency(&freq
);
757 fprintf(stderr
, "Could not calibrate ticks\n");
760 clock_freq
= freq
.QuadPart
;
763 static int64_t get_clock(void)
766 QueryPerformanceCounter(&ti
);
767 return muldiv64(ti
.QuadPart
, QEMU_TIMER_BASE
, clock_freq
);
772 static int use_rt_clock
;
774 static void init_get_clock(void)
777 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
778 || defined(__DragonFly__)
781 if (clock_gettime(CLOCK_MONOTONIC
, &ts
) == 0) {
788 static int64_t get_clock(void)
790 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
791 || defined(__DragonFly__)
794 clock_gettime(CLOCK_MONOTONIC
, &ts
);
795 return ts
.tv_sec
* 1000000000LL + ts
.tv_nsec
;
799 /* XXX: using gettimeofday leads to problems if the date
800 changes, so it should be avoided. */
802 gettimeofday(&tv
, NULL
);
803 return tv
.tv_sec
* 1000000000LL + (tv
.tv_usec
* 1000);
808 /* Return the virtual CPU time, based on the instruction counter. */
809 static int64_t cpu_get_icount(void)
812 CPUState
*env
= cpu_single_env
;;
813 icount
= qemu_icount
;
816 fprintf(stderr
, "Bad clock read\n");
817 icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
819 return qemu_icount_bias
+ (icount
<< icount_time_shift
);
822 /***********************************************************/
823 /* guest cycle counter */
825 static int64_t cpu_ticks_prev
;
826 static int64_t cpu_ticks_offset
;
827 static int64_t cpu_clock_offset
;
828 static int cpu_ticks_enabled
;
830 /* return the host CPU cycle counter and handle stop/restart */
831 int64_t cpu_get_ticks(void)
834 return cpu_get_icount();
836 if (!cpu_ticks_enabled
) {
837 return cpu_ticks_offset
;
840 ticks
= cpu_get_real_ticks();
841 if (cpu_ticks_prev
> ticks
) {
842 /* Note: non increasing ticks may happen if the host uses
844 cpu_ticks_offset
+= cpu_ticks_prev
- ticks
;
846 cpu_ticks_prev
= ticks
;
847 return ticks
+ cpu_ticks_offset
;
851 /* return the host CPU monotonic timer and handle stop/restart */
852 static int64_t cpu_get_clock(void)
855 if (!cpu_ticks_enabled
) {
856 return cpu_clock_offset
;
859 return ti
+ cpu_clock_offset
;
863 /* enable cpu_get_ticks() */
864 void cpu_enable_ticks(void)
866 if (!cpu_ticks_enabled
) {
867 cpu_ticks_offset
-= cpu_get_real_ticks();
868 cpu_clock_offset
-= get_clock();
869 cpu_ticks_enabled
= 1;
873 /* disable cpu_get_ticks() : the clock is stopped. You must not call
874 cpu_get_ticks() after that. */
875 void cpu_disable_ticks(void)
877 if (cpu_ticks_enabled
) {
878 cpu_ticks_offset
= cpu_get_ticks();
879 cpu_clock_offset
= cpu_get_clock();
880 cpu_ticks_enabled
= 0;
884 /***********************************************************/
887 #define QEMU_TIMER_REALTIME 0
888 #define QEMU_TIMER_VIRTUAL 1
892 /* XXX: add frequency */
900 struct QEMUTimer
*next
;
903 struct qemu_alarm_timer
{
907 int (*start
)(struct qemu_alarm_timer
*t
);
908 void (*stop
)(struct qemu_alarm_timer
*t
);
909 void (*rearm
)(struct qemu_alarm_timer
*t
);
913 #define ALARM_FLAG_DYNTICKS 0x1
914 #define ALARM_FLAG_EXPIRED 0x2
916 static inline int alarm_has_dynticks(struct qemu_alarm_timer
*t
)
918 return t
&& (t
->flags
& ALARM_FLAG_DYNTICKS
);
921 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer
*t
)
923 if (!alarm_has_dynticks(t
))
929 /* TODO: MIN_TIMER_REARM_US should be optimized */
930 #define MIN_TIMER_REARM_US 250
932 static struct qemu_alarm_timer
*alarm_timer
;
936 struct qemu_alarm_win32
{
939 } alarm_win32_data
= {0, -1};
941 static int win32_start_timer(struct qemu_alarm_timer
*t
);
942 static void win32_stop_timer(struct qemu_alarm_timer
*t
);
943 static void win32_rearm_timer(struct qemu_alarm_timer
*t
);
947 static int unix_start_timer(struct qemu_alarm_timer
*t
);
948 static void unix_stop_timer(struct qemu_alarm_timer
*t
);
952 static int dynticks_start_timer(struct qemu_alarm_timer
*t
);
953 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
);
954 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
);
956 static int hpet_start_timer(struct qemu_alarm_timer
*t
);
957 static void hpet_stop_timer(struct qemu_alarm_timer
*t
);
959 static int rtc_start_timer(struct qemu_alarm_timer
*t
);
960 static void rtc_stop_timer(struct qemu_alarm_timer
*t
);
962 #endif /* __linux__ */
966 /* Correlation between real and virtual time is always going to be
967 fairly approximate, so ignore small variation.
968 When the guest is idle real and virtual time will be aligned in
970 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
972 static void icount_adjust(void)
977 static int64_t last_delta
;
978 /* If the VM is not running, then do nothing. */
982 cur_time
= cpu_get_clock();
983 cur_icount
= qemu_get_clock(vm_clock
);
984 delta
= cur_icount
- cur_time
;
985 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
987 && last_delta
+ ICOUNT_WOBBLE
< delta
* 2
988 && icount_time_shift
> 0) {
989 /* The guest is getting too far ahead. Slow time down. */
993 && last_delta
- ICOUNT_WOBBLE
> delta
* 2
994 && icount_time_shift
< MAX_ICOUNT_SHIFT
) {
995 /* The guest is getting too far behind. Speed time up. */
999 qemu_icount_bias
= cur_icount
- (qemu_icount
<< icount_time_shift
);
1002 static void icount_adjust_rt(void * opaque
)
1004 qemu_mod_timer(icount_rt_timer
,
1005 qemu_get_clock(rt_clock
) + 1000);
1009 static void icount_adjust_vm(void * opaque
)
1011 qemu_mod_timer(icount_vm_timer
,
1012 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
1016 static void init_icount_adjust(void)
1018 /* Have both realtime and virtual time triggers for speed adjustment.
1019 The realtime trigger catches emulated time passing too slowly,
1020 the virtual time trigger catches emulated time passing too fast.
1021 Realtime triggers occur even when idle, so use them less frequently
1022 than VM triggers. */
1023 icount_rt_timer
= qemu_new_timer(rt_clock
, icount_adjust_rt
, NULL
);
1024 qemu_mod_timer(icount_rt_timer
,
1025 qemu_get_clock(rt_clock
) + 1000);
1026 icount_vm_timer
= qemu_new_timer(vm_clock
, icount_adjust_vm
, NULL
);
1027 qemu_mod_timer(icount_vm_timer
,
1028 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
1031 static struct qemu_alarm_timer alarm_timers
[] = {
1034 {"dynticks", ALARM_FLAG_DYNTICKS
, dynticks_start_timer
,
1035 dynticks_stop_timer
, dynticks_rearm_timer
, NULL
},
1036 /* HPET - if available - is preferred */
1037 {"hpet", 0, hpet_start_timer
, hpet_stop_timer
, NULL
, NULL
},
1038 /* ...otherwise try RTC */
1039 {"rtc", 0, rtc_start_timer
, rtc_stop_timer
, NULL
, NULL
},
1041 {"unix", 0, unix_start_timer
, unix_stop_timer
, NULL
, NULL
},
1043 {"dynticks", ALARM_FLAG_DYNTICKS
, win32_start_timer
,
1044 win32_stop_timer
, win32_rearm_timer
, &alarm_win32_data
},
1045 {"win32", 0, win32_start_timer
,
1046 win32_stop_timer
, NULL
, &alarm_win32_data
},
1051 static void show_available_alarms(void)
1055 printf("Available alarm timers, in order of precedence:\n");
1056 for (i
= 0; alarm_timers
[i
].name
; i
++)
1057 printf("%s\n", alarm_timers
[i
].name
);
1060 static void configure_alarms(char const *opt
)
1064 int count
= ARRAY_SIZE(alarm_timers
) - 1;
1067 struct qemu_alarm_timer tmp
;
1069 if (!strcmp(opt
, "?")) {
1070 show_available_alarms();
1076 /* Reorder the array */
1077 name
= strtok(arg
, ",");
1079 for (i
= 0; i
< count
&& alarm_timers
[i
].name
; i
++) {
1080 if (!strcmp(alarm_timers
[i
].name
, name
))
1085 fprintf(stderr
, "Unknown clock %s\n", name
);
1094 tmp
= alarm_timers
[i
];
1095 alarm_timers
[i
] = alarm_timers
[cur
];
1096 alarm_timers
[cur
] = tmp
;
1100 name
= strtok(NULL
, ",");
1106 /* Disable remaining timers */
1107 for (i
= cur
; i
< count
; i
++)
1108 alarm_timers
[i
].name
= NULL
;
1110 show_available_alarms();
1115 QEMUClock
*rt_clock
;
1116 QEMUClock
*vm_clock
;
1118 static QEMUTimer
*active_timers
[2];
1120 static QEMUClock
*qemu_new_clock(int type
)
1123 clock
= qemu_mallocz(sizeof(QEMUClock
));
1128 QEMUTimer
*qemu_new_timer(QEMUClock
*clock
, QEMUTimerCB
*cb
, void *opaque
)
1132 ts
= qemu_mallocz(sizeof(QEMUTimer
));
1135 ts
->opaque
= opaque
;
1139 void qemu_free_timer(QEMUTimer
*ts
)
1144 /* stop a timer, but do not dealloc it */
1145 void qemu_del_timer(QEMUTimer
*ts
)
1149 /* NOTE: this code must be signal safe because
1150 qemu_timer_expired() can be called from a signal. */
1151 pt
= &active_timers
[ts
->clock
->type
];
1164 /* modify the current timer so that it will be fired when current_time
1165 >= expire_time. The corresponding callback will be called. */
1166 void qemu_mod_timer(QEMUTimer
*ts
, int64_t expire_time
)
1172 /* add the timer in the sorted list */
1173 /* NOTE: this code must be signal safe because
1174 qemu_timer_expired() can be called from a signal. */
1175 pt
= &active_timers
[ts
->clock
->type
];
1180 if (t
->expire_time
> expire_time
)
1184 ts
->expire_time
= expire_time
;
1188 /* Rearm if necessary */
1189 if (pt
== &active_timers
[ts
->clock
->type
]) {
1190 if ((alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) == 0) {
1191 qemu_rearm_alarm_timer(alarm_timer
);
1193 /* Interrupt execution to force deadline recalculation. */
1195 qemu_notify_event();
1199 int qemu_timer_pending(QEMUTimer
*ts
)
1202 for(t
= active_timers
[ts
->clock
->type
]; t
!= NULL
; t
= t
->next
) {
1209 static inline int qemu_timer_expired(QEMUTimer
*timer_head
, int64_t current_time
)
1213 return (timer_head
->expire_time
<= current_time
);
1216 static void qemu_run_timers(QEMUTimer
**ptimer_head
, int64_t current_time
)
1222 if (!ts
|| ts
->expire_time
> current_time
)
1224 /* remove timer from the list before calling the callback */
1225 *ptimer_head
= ts
->next
;
1228 /* run the callback (the timer list can be modified) */
1233 int64_t qemu_get_clock(QEMUClock
*clock
)
1235 switch(clock
->type
) {
1236 case QEMU_TIMER_REALTIME
:
1237 return get_clock() / 1000000;
1239 case QEMU_TIMER_VIRTUAL
:
1241 return cpu_get_icount();
1243 return cpu_get_clock();
1248 static void init_timers(void)
1251 ticks_per_sec
= QEMU_TIMER_BASE
;
1252 rt_clock
= qemu_new_clock(QEMU_TIMER_REALTIME
);
1253 vm_clock
= qemu_new_clock(QEMU_TIMER_VIRTUAL
);
1257 void qemu_put_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1259 uint64_t expire_time
;
1261 if (qemu_timer_pending(ts
)) {
1262 expire_time
= ts
->expire_time
;
1266 qemu_put_be64(f
, expire_time
);
1269 void qemu_get_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1271 uint64_t expire_time
;
1273 expire_time
= qemu_get_be64(f
);
1274 if (expire_time
!= -1) {
1275 qemu_mod_timer(ts
, expire_time
);
1281 static void timer_save(QEMUFile
*f
, void *opaque
)
1283 if (cpu_ticks_enabled
) {
1284 hw_error("cannot save state if virtual timers are running");
1286 qemu_put_be64(f
, cpu_ticks_offset
);
1287 qemu_put_be64(f
, ticks_per_sec
);
1288 qemu_put_be64(f
, cpu_clock_offset
);
1291 static int timer_load(QEMUFile
*f
, void *opaque
, int version_id
)
1293 if (version_id
!= 1 && version_id
!= 2)
1295 if (cpu_ticks_enabled
) {
1298 cpu_ticks_offset
=qemu_get_be64(f
);
1299 ticks_per_sec
=qemu_get_be64(f
);
1300 if (version_id
== 2) {
1301 cpu_clock_offset
=qemu_get_be64(f
);
1306 static void qemu_event_increment(void);
1309 static void CALLBACK
host_alarm_handler(UINT uTimerID
, UINT uMsg
,
1310 DWORD_PTR dwUser
, DWORD_PTR dw1
,
1313 static void host_alarm_handler(int host_signum
)
1317 #define DISP_FREQ 1000
1319 static int64_t delta_min
= INT64_MAX
;
1320 static int64_t delta_max
, delta_cum
, last_clock
, delta
, ti
;
1322 ti
= qemu_get_clock(vm_clock
);
1323 if (last_clock
!= 0) {
1324 delta
= ti
- last_clock
;
1325 if (delta
< delta_min
)
1327 if (delta
> delta_max
)
1330 if (++count
== DISP_FREQ
) {
1331 printf("timer: min=%" PRId64
" us max=%" PRId64
" us avg=%" PRId64
" us avg_freq=%0.3f Hz\n",
1332 muldiv64(delta_min
, 1000000, ticks_per_sec
),
1333 muldiv64(delta_max
, 1000000, ticks_per_sec
),
1334 muldiv64(delta_cum
, 1000000 / DISP_FREQ
, ticks_per_sec
),
1335 (double)ticks_per_sec
/ ((double)delta_cum
/ DISP_FREQ
));
1337 delta_min
= INT64_MAX
;
1345 if (alarm_has_dynticks(alarm_timer
) ||
1347 qemu_timer_expired(active_timers
[QEMU_TIMER_VIRTUAL
],
1348 qemu_get_clock(vm_clock
))) ||
1349 qemu_timer_expired(active_timers
[QEMU_TIMER_REALTIME
],
1350 qemu_get_clock(rt_clock
))) {
1351 qemu_event_increment();
1352 if (alarm_timer
) alarm_timer
->flags
|= ALARM_FLAG_EXPIRED
;
1354 #ifndef CONFIG_IOTHREAD
1356 /* stop the currently executing cpu because a timer occured */
1359 if (next_cpu
->kqemu_enabled
) {
1360 kqemu_cpu_interrupt(next_cpu
);
1365 timer_alarm_pending
= 1;
1366 qemu_notify_event();
1370 static int64_t qemu_next_deadline(void)
1374 if (active_timers
[QEMU_TIMER_VIRTUAL
]) {
1375 delta
= active_timers
[QEMU_TIMER_VIRTUAL
]->expire_time
-
1376 qemu_get_clock(vm_clock
);
1378 /* To avoid problems with overflow limit this to 2^32. */
1388 #if defined(__linux__) || defined(_WIN32)
1389 static uint64_t qemu_next_deadline_dyntick(void)
1397 delta
= (qemu_next_deadline() + 999) / 1000;
1399 if (active_timers
[QEMU_TIMER_REALTIME
]) {
1400 rtdelta
= (active_timers
[QEMU_TIMER_REALTIME
]->expire_time
-
1401 qemu_get_clock(rt_clock
))*1000;
1402 if (rtdelta
< delta
)
1406 if (delta
< MIN_TIMER_REARM_US
)
1407 delta
= MIN_TIMER_REARM_US
;
1415 /* Sets a specific flag */
1416 static int fcntl_setfl(int fd
, int flag
)
1420 flags
= fcntl(fd
, F_GETFL
);
1424 if (fcntl(fd
, F_SETFL
, flags
| flag
) == -1)
1430 #if defined(__linux__)
1432 #define RTC_FREQ 1024
1434 static void enable_sigio_timer(int fd
)
1436 struct sigaction act
;
1439 sigfillset(&act
.sa_mask
);
1441 act
.sa_handler
= host_alarm_handler
;
1443 sigaction(SIGIO
, &act
, NULL
);
1444 fcntl_setfl(fd
, O_ASYNC
);
1445 fcntl(fd
, F_SETOWN
, getpid());
1448 static int hpet_start_timer(struct qemu_alarm_timer
*t
)
1450 struct hpet_info info
;
1453 fd
= open("/dev/hpet", O_RDONLY
);
1458 r
= ioctl(fd
, HPET_IRQFREQ
, RTC_FREQ
);
1460 fprintf(stderr
, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1461 "error, but for better emulation accuracy type:\n"
1462 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1466 /* Check capabilities */
1467 r
= ioctl(fd
, HPET_INFO
, &info
);
1471 /* Enable periodic mode */
1472 r
= ioctl(fd
, HPET_EPI
, 0);
1473 if (info
.hi_flags
&& (r
< 0))
1476 /* Enable interrupt */
1477 r
= ioctl(fd
, HPET_IE_ON
, 0);
1481 enable_sigio_timer(fd
);
1482 t
->priv
= (void *)(long)fd
;
1490 static void hpet_stop_timer(struct qemu_alarm_timer
*t
)
1492 int fd
= (long)t
->priv
;
1497 static int rtc_start_timer(struct qemu_alarm_timer
*t
)
1500 unsigned long current_rtc_freq
= 0;
1502 TFR(rtc_fd
= open("/dev/rtc", O_RDONLY
));
1505 ioctl(rtc_fd
, RTC_IRQP_READ
, ¤t_rtc_freq
);
1506 if (current_rtc_freq
!= RTC_FREQ
&&
1507 ioctl(rtc_fd
, RTC_IRQP_SET
, RTC_FREQ
) < 0) {
1508 fprintf(stderr
, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1509 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1510 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1513 if (ioctl(rtc_fd
, RTC_PIE_ON
, 0) < 0) {
1519 enable_sigio_timer(rtc_fd
);
1521 t
->priv
= (void *)(long)rtc_fd
;
1526 static void rtc_stop_timer(struct qemu_alarm_timer
*t
)
1528 int rtc_fd
= (long)t
->priv
;
1533 static int dynticks_start_timer(struct qemu_alarm_timer
*t
)
1537 struct sigaction act
;
1539 sigfillset(&act
.sa_mask
);
1541 act
.sa_handler
= host_alarm_handler
;
1543 sigaction(SIGALRM
, &act
, NULL
);
1546 * Initialize ev struct to 0 to avoid valgrind complaining
1547 * about uninitialized data in timer_create call
1549 memset(&ev
, 0, sizeof(ev
));
1550 ev
.sigev_value
.sival_int
= 0;
1551 ev
.sigev_notify
= SIGEV_SIGNAL
;
1552 ev
.sigev_signo
= SIGALRM
;
1554 if (timer_create(CLOCK_REALTIME
, &ev
, &host_timer
)) {
1555 perror("timer_create");
1557 /* disable dynticks */
1558 fprintf(stderr
, "Dynamic Ticks disabled\n");
1563 t
->priv
= (void *)(long)host_timer
;
1568 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
)
1570 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1572 timer_delete(host_timer
);
1575 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
)
1577 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1578 struct itimerspec timeout
;
1579 int64_t nearest_delta_us
= INT64_MAX
;
1582 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1583 !active_timers
[QEMU_TIMER_VIRTUAL
])
1586 nearest_delta_us
= qemu_next_deadline_dyntick();
1588 /* check whether a timer is already running */
1589 if (timer_gettime(host_timer
, &timeout
)) {
1591 fprintf(stderr
, "Internal timer error: aborting\n");
1594 current_us
= timeout
.it_value
.tv_sec
* 1000000 + timeout
.it_value
.tv_nsec
/1000;
1595 if (current_us
&& current_us
<= nearest_delta_us
)
1598 timeout
.it_interval
.tv_sec
= 0;
1599 timeout
.it_interval
.tv_nsec
= 0; /* 0 for one-shot timer */
1600 timeout
.it_value
.tv_sec
= nearest_delta_us
/ 1000000;
1601 timeout
.it_value
.tv_nsec
= (nearest_delta_us
% 1000000) * 1000;
1602 if (timer_settime(host_timer
, 0 /* RELATIVE */, &timeout
, NULL
)) {
1604 fprintf(stderr
, "Internal timer error: aborting\n");
1609 #endif /* defined(__linux__) */
1611 static int unix_start_timer(struct qemu_alarm_timer
*t
)
1613 struct sigaction act
;
1614 struct itimerval itv
;
1618 sigfillset(&act
.sa_mask
);
1620 act
.sa_handler
= host_alarm_handler
;
1622 sigaction(SIGALRM
, &act
, NULL
);
1624 itv
.it_interval
.tv_sec
= 0;
1625 /* for i386 kernel 2.6 to get 1 ms */
1626 itv
.it_interval
.tv_usec
= 999;
1627 itv
.it_value
.tv_sec
= 0;
1628 itv
.it_value
.tv_usec
= 10 * 1000;
1630 err
= setitimer(ITIMER_REAL
, &itv
, NULL
);
1637 static void unix_stop_timer(struct qemu_alarm_timer
*t
)
1639 struct itimerval itv
;
1641 memset(&itv
, 0, sizeof(itv
));
1642 setitimer(ITIMER_REAL
, &itv
, NULL
);
1645 #endif /* !defined(_WIN32) */
1650 static int win32_start_timer(struct qemu_alarm_timer
*t
)
1653 struct qemu_alarm_win32
*data
= t
->priv
;
1656 memset(&tc
, 0, sizeof(tc
));
1657 timeGetDevCaps(&tc
, sizeof(tc
));
1659 if (data
->period
< tc
.wPeriodMin
)
1660 data
->period
= tc
.wPeriodMin
;
1662 timeBeginPeriod(data
->period
);
1664 flags
= TIME_CALLBACK_FUNCTION
;
1665 if (alarm_has_dynticks(t
))
1666 flags
|= TIME_ONESHOT
;
1668 flags
|= TIME_PERIODIC
;
1670 data
->timerId
= timeSetEvent(1, // interval (ms)
1671 data
->period
, // resolution
1672 host_alarm_handler
, // function
1673 (DWORD
)t
, // parameter
1676 if (!data
->timerId
) {
1677 perror("Failed to initialize win32 alarm timer");
1678 timeEndPeriod(data
->period
);
1685 static void win32_stop_timer(struct qemu_alarm_timer
*t
)
1687 struct qemu_alarm_win32
*data
= t
->priv
;
1689 timeKillEvent(data
->timerId
);
1690 timeEndPeriod(data
->period
);
1693 static void win32_rearm_timer(struct qemu_alarm_timer
*t
)
1695 struct qemu_alarm_win32
*data
= t
->priv
;
1696 uint64_t nearest_delta_us
;
1698 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1699 !active_timers
[QEMU_TIMER_VIRTUAL
])
1702 nearest_delta_us
= qemu_next_deadline_dyntick();
1703 nearest_delta_us
/= 1000;
1705 timeKillEvent(data
->timerId
);
1707 data
->timerId
= timeSetEvent(1,
1711 TIME_ONESHOT
| TIME_PERIODIC
);
1713 if (!data
->timerId
) {
1714 perror("Failed to re-arm win32 alarm timer");
1716 timeEndPeriod(data
->period
);
1723 static int init_timer_alarm(void)
1725 struct qemu_alarm_timer
*t
= NULL
;
1728 for (i
= 0; alarm_timers
[i
].name
; i
++) {
1729 t
= &alarm_timers
[i
];
1749 static void quit_timers(void)
1751 alarm_timer
->stop(alarm_timer
);
1755 /***********************************************************/
1756 /* host time/date access */
1757 void qemu_get_timedate(struct tm
*tm
, int offset
)
1764 if (rtc_date_offset
== -1) {
1768 ret
= localtime(&ti
);
1770 ti
-= rtc_date_offset
;
1774 memcpy(tm
, ret
, sizeof(struct tm
));
1777 int qemu_timedate_diff(struct tm
*tm
)
1781 if (rtc_date_offset
== -1)
1783 seconds
= mktimegm(tm
);
1785 seconds
= mktime(tm
);
1787 seconds
= mktimegm(tm
) + rtc_date_offset
;
1789 return seconds
- time(NULL
);
1793 static void socket_cleanup(void)
1798 static int socket_init(void)
1803 ret
= WSAStartup(MAKEWORD(2,2), &Data
);
1805 err
= WSAGetLastError();
1806 fprintf(stderr
, "WSAStartup: %d\n", err
);
1809 atexit(socket_cleanup
);
1814 int get_next_param_value(char *buf
, int buf_size
,
1815 const char *tag
, const char **pstr
)
1822 p
= get_opt_name(option
, sizeof(option
), p
, '=');
1826 if (!strcmp(tag
, option
)) {
1827 *pstr
= get_opt_value(buf
, buf_size
, p
);
1828 if (**pstr
== ',') {
1833 p
= get_opt_value(NULL
, 0, p
);
1842 int get_param_value(char *buf
, int buf_size
,
1843 const char *tag
, const char *str
)
1845 return get_next_param_value(buf
, buf_size
, tag
, &str
);
1848 int check_params(char *buf
, int buf_size
,
1849 const char * const *params
, const char *str
)
1855 while (*p
!= '\0') {
1856 p
= get_opt_name(buf
, buf_size
, p
, '=');
1861 for (i
= 0; params
[i
] != NULL
; i
++) {
1862 if (!strcmp(params
[i
], buf
)) {
1866 if (params
[i
] == NULL
) {
1869 p
= get_opt_value(NULL
, 0, p
);
1878 /***********************************************************/
1879 /* Bluetooth support */
1882 static struct HCIInfo
*hci_table
[MAX_NICS
];
1884 static struct bt_vlan_s
{
1885 struct bt_scatternet_s net
;
1887 struct bt_vlan_s
*next
;
1890 /* find or alloc a new bluetooth "VLAN" */
1891 static struct bt_scatternet_s
*qemu_find_bt_vlan(int id
)
1893 struct bt_vlan_s
**pvlan
, *vlan
;
1894 for (vlan
= first_bt_vlan
; vlan
!= NULL
; vlan
= vlan
->next
) {
1898 vlan
= qemu_mallocz(sizeof(struct bt_vlan_s
));
1900 pvlan
= &first_bt_vlan
;
1901 while (*pvlan
!= NULL
)
1902 pvlan
= &(*pvlan
)->next
;
1907 static void null_hci_send(struct HCIInfo
*hci
, const uint8_t *data
, int len
)
1911 static int null_hci_addr_set(struct HCIInfo
*hci
, const uint8_t *bd_addr
)
1916 static struct HCIInfo null_hci
= {
1917 .cmd_send
= null_hci_send
,
1918 .sco_send
= null_hci_send
,
1919 .acl_send
= null_hci_send
,
1920 .bdaddr_set
= null_hci_addr_set
,
1923 struct HCIInfo
*qemu_next_hci(void)
1925 if (cur_hci
== nb_hcis
)
1928 return hci_table
[cur_hci
++];
1931 static struct HCIInfo
*hci_init(const char *str
)
1934 struct bt_scatternet_s
*vlan
= 0;
1936 if (!strcmp(str
, "null"))
1939 else if (!strncmp(str
, "host", 4) && (str
[4] == '\0' || str
[4] == ':'))
1941 return bt_host_hci(str
[4] ? str
+ 5 : "hci0");
1942 else if (!strncmp(str
, "hci", 3)) {
1945 if (!strncmp(str
+ 3, ",vlan=", 6)) {
1946 vlan
= qemu_find_bt_vlan(strtol(str
+ 9, &endp
, 0));
1951 vlan
= qemu_find_bt_vlan(0);
1953 return bt_new_hci(vlan
);
1956 fprintf(stderr
, "qemu: Unknown bluetooth HCI `%s'.\n", str
);
1961 static int bt_hci_parse(const char *str
)
1963 struct HCIInfo
*hci
;
1966 if (nb_hcis
>= MAX_NICS
) {
1967 fprintf(stderr
, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS
);
1971 hci
= hci_init(str
);
1980 bdaddr
.b
[5] = 0x56 + nb_hcis
;
1981 hci
->bdaddr_set(hci
, bdaddr
.b
);
1983 hci_table
[nb_hcis
++] = hci
;
1988 static void bt_vhci_add(int vlan_id
)
1990 struct bt_scatternet_s
*vlan
= qemu_find_bt_vlan(vlan_id
);
1993 fprintf(stderr
, "qemu: warning: adding a VHCI to "
1994 "an empty scatternet %i\n", vlan_id
);
1996 bt_vhci_init(bt_new_hci(vlan
));
1999 static struct bt_device_s
*bt_device_add(const char *opt
)
2001 struct bt_scatternet_s
*vlan
;
2003 char *endp
= strstr(opt
, ",vlan=");
2004 int len
= (endp
? endp
- opt
: strlen(opt
)) + 1;
2007 pstrcpy(devname
, MIN(sizeof(devname
), len
), opt
);
2010 vlan_id
= strtol(endp
+ 6, &endp
, 0);
2012 fprintf(stderr
, "qemu: unrecognised bluetooth vlan Id\n");
2017 vlan
= qemu_find_bt_vlan(vlan_id
);
2020 fprintf(stderr
, "qemu: warning: adding a slave device to "
2021 "an empty scatternet %i\n", vlan_id
);
2023 if (!strcmp(devname
, "keyboard"))
2024 return bt_keyboard_init(vlan
);
2026 fprintf(stderr
, "qemu: unsupported bluetooth device `%s'\n", devname
);
2030 static int bt_parse(const char *opt
)
2032 const char *endp
, *p
;
2035 if (strstart(opt
, "hci", &endp
)) {
2036 if (!*endp
|| *endp
== ',') {
2038 if (!strstart(endp
, ",vlan=", 0))
2041 return bt_hci_parse(opt
);
2043 } else if (strstart(opt
, "vhci", &endp
)) {
2044 if (!*endp
|| *endp
== ',') {
2046 if (strstart(endp
, ",vlan=", &p
)) {
2047 vlan
= strtol(p
, (char **) &endp
, 0);
2049 fprintf(stderr
, "qemu: bad scatternet '%s'\n", p
);
2053 fprintf(stderr
, "qemu: bad parameter '%s'\n", endp
+ 1);
2062 } else if (strstart(opt
, "device:", &endp
))
2063 return !bt_device_add(endp
);
2065 fprintf(stderr
, "qemu: bad bluetooth parameter '%s'\n", opt
);
2069 /***********************************************************/
2070 /* QEMU Block devices */
2072 #define HD_ALIAS "index=%d,media=disk"
2073 #define CDROM_ALIAS "index=2,media=cdrom"
2074 #define FD_ALIAS "index=%d,if=floppy"
2075 #define PFLASH_ALIAS "if=pflash"
2076 #define MTD_ALIAS "if=mtd"
2077 #define SD_ALIAS "index=0,if=sd"
2079 static int drive_opt_get_free_idx(void)
2083 for (index
= 0; index
< MAX_DRIVES
; index
++)
2084 if (!drives_opt
[index
].used
) {
2085 drives_opt
[index
].used
= 1;
2092 static int drive_get_free_idx(void)
2096 for (index
= 0; index
< MAX_DRIVES
; index
++)
2097 if (!drives_table
[index
].used
) {
2098 drives_table
[index
].used
= 1;
2105 int drive_add(const char *file
, const char *fmt
, ...)
2108 int index
= drive_opt_get_free_idx();
2110 if (nb_drives_opt
>= MAX_DRIVES
|| index
== -1) {
2111 fprintf(stderr
, "qemu: too many drives\n");
2115 drives_opt
[index
].file
= file
;
2117 vsnprintf(drives_opt
[index
].opt
,
2118 sizeof(drives_opt
[0].opt
), fmt
, ap
);
2125 void drive_remove(int index
)
2127 drives_opt
[index
].used
= 0;
2131 int drive_get_index(BlockInterfaceType type
, int bus
, int unit
)
2135 /* seek interface, bus and unit */
2137 for (index
= 0; index
< MAX_DRIVES
; index
++)
2138 if (drives_table
[index
].type
== type
&&
2139 drives_table
[index
].bus
== bus
&&
2140 drives_table
[index
].unit
== unit
&&
2141 drives_table
[index
].used
)
2147 int drive_get_max_bus(BlockInterfaceType type
)
2153 for (index
= 0; index
< nb_drives
; index
++) {
2154 if(drives_table
[index
].type
== type
&&
2155 drives_table
[index
].bus
> max_bus
)
2156 max_bus
= drives_table
[index
].bus
;
2161 const char *drive_get_serial(BlockDriverState
*bdrv
)
2165 for (index
= 0; index
< nb_drives
; index
++)
2166 if (drives_table
[index
].bdrv
== bdrv
)
2167 return drives_table
[index
].serial
;
2172 BlockInterfaceErrorAction
drive_get_onerror(BlockDriverState
*bdrv
)
2176 for (index
= 0; index
< nb_drives
; index
++)
2177 if (drives_table
[index
].bdrv
== bdrv
)
2178 return drives_table
[index
].onerror
;
2180 return BLOCK_ERR_STOP_ENOSPC
;
2183 static void bdrv_format_print(void *opaque
, const char *name
)
2185 fprintf(stderr
, " %s", name
);
2188 void drive_uninit(BlockDriverState
*bdrv
)
2192 for (i
= 0; i
< MAX_DRIVES
; i
++)
2193 if (drives_table
[i
].bdrv
== bdrv
) {
2194 drives_table
[i
].bdrv
= NULL
;
2195 drives_table
[i
].used
= 0;
2196 drive_remove(drives_table
[i
].drive_opt_idx
);
2202 int drive_init(struct drive_opt
*arg
, int snapshot
, void *opaque
)
2208 const char *mediastr
= "";
2209 BlockInterfaceType type
;
2210 enum { MEDIA_DISK
, MEDIA_CDROM
} media
;
2211 int bus_id
, unit_id
;
2212 int cyls
, heads
, secs
, translation
;
2213 BlockDriverState
*bdrv
;
2214 BlockDriver
*drv
= NULL
;
2215 QEMUMachine
*machine
= opaque
;
2219 int bdrv_flags
, onerror
;
2220 const char *devaddr
;
2221 int drives_table_idx
;
2222 char *str
= arg
->opt
;
2223 static const char * const params
[] = { "bus", "unit", "if", "index",
2224 "cyls", "heads", "secs", "trans",
2225 "media", "snapshot", "file",
2226 "cache", "format", "serial",
2230 if (check_params(buf
, sizeof(buf
), params
, str
) < 0) {
2231 fprintf(stderr
, "qemu: unknown parameter '%s' in '%s'\n",
2237 cyls
= heads
= secs
= 0;
2240 translation
= BIOS_ATA_TRANSLATION_AUTO
;
2244 if (machine
->use_scsi
) {
2246 max_devs
= MAX_SCSI_DEVS
;
2247 pstrcpy(devname
, sizeof(devname
), "scsi");
2250 max_devs
= MAX_IDE_DEVS
;
2251 pstrcpy(devname
, sizeof(devname
), "ide");
2255 /* extract parameters */
2257 if (get_param_value(buf
, sizeof(buf
), "bus", str
)) {
2258 bus_id
= strtol(buf
, NULL
, 0);
2260 fprintf(stderr
, "qemu: '%s' invalid bus id\n", str
);
2265 if (get_param_value(buf
, sizeof(buf
), "unit", str
)) {
2266 unit_id
= strtol(buf
, NULL
, 0);
2268 fprintf(stderr
, "qemu: '%s' invalid unit id\n", str
);
2273 if (get_param_value(buf
, sizeof(buf
), "if", str
)) {
2274 pstrcpy(devname
, sizeof(devname
), buf
);
2275 if (!strcmp(buf
, "ide")) {
2277 max_devs
= MAX_IDE_DEVS
;
2278 } else if (!strcmp(buf
, "scsi")) {
2280 max_devs
= MAX_SCSI_DEVS
;
2281 } else if (!strcmp(buf
, "floppy")) {
2284 } else if (!strcmp(buf
, "pflash")) {
2287 } else if (!strcmp(buf
, "mtd")) {
2290 } else if (!strcmp(buf
, "sd")) {
2293 } else if (!strcmp(buf
, "virtio")) {
2296 } else if (!strcmp(buf
, "xen")) {
2300 fprintf(stderr
, "qemu: '%s' unsupported bus type '%s'\n", str
, buf
);
2305 if (get_param_value(buf
, sizeof(buf
), "index", str
)) {
2306 index
= strtol(buf
, NULL
, 0);
2308 fprintf(stderr
, "qemu: '%s' invalid index\n", str
);
2313 if (get_param_value(buf
, sizeof(buf
), "cyls", str
)) {
2314 cyls
= strtol(buf
, NULL
, 0);
2317 if (get_param_value(buf
, sizeof(buf
), "heads", str
)) {
2318 heads
= strtol(buf
, NULL
, 0);
2321 if (get_param_value(buf
, sizeof(buf
), "secs", str
)) {
2322 secs
= strtol(buf
, NULL
, 0);
2325 if (cyls
|| heads
|| secs
) {
2326 if (cyls
< 1 || cyls
> 16383) {
2327 fprintf(stderr
, "qemu: '%s' invalid physical cyls number\n", str
);
2330 if (heads
< 1 || heads
> 16) {
2331 fprintf(stderr
, "qemu: '%s' invalid physical heads number\n", str
);
2334 if (secs
< 1 || secs
> 63) {
2335 fprintf(stderr
, "qemu: '%s' invalid physical secs number\n", str
);
2340 if (get_param_value(buf
, sizeof(buf
), "trans", str
)) {
2343 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2347 if (!strcmp(buf
, "none"))
2348 translation
= BIOS_ATA_TRANSLATION_NONE
;
2349 else if (!strcmp(buf
, "lba"))
2350 translation
= BIOS_ATA_TRANSLATION_LBA
;
2351 else if (!strcmp(buf
, "auto"))
2352 translation
= BIOS_ATA_TRANSLATION_AUTO
;
2354 fprintf(stderr
, "qemu: '%s' invalid translation type\n", str
);
2359 if (get_param_value(buf
, sizeof(buf
), "media", str
)) {
2360 if (!strcmp(buf
, "disk")) {
2362 } else if (!strcmp(buf
, "cdrom")) {
2363 if (cyls
|| secs
|| heads
) {
2365 "qemu: '%s' invalid physical CHS format\n", str
);
2368 media
= MEDIA_CDROM
;
2370 fprintf(stderr
, "qemu: '%s' invalid media\n", str
);
2375 if (get_param_value(buf
, sizeof(buf
), "snapshot", str
)) {
2376 if (!strcmp(buf
, "on"))
2378 else if (!strcmp(buf
, "off"))
2381 fprintf(stderr
, "qemu: '%s' invalid snapshot option\n", str
);
2386 if (get_param_value(buf
, sizeof(buf
), "cache", str
)) {
2387 if (!strcmp(buf
, "off") || !strcmp(buf
, "none"))
2389 else if (!strcmp(buf
, "writethrough"))
2391 else if (!strcmp(buf
, "writeback"))
2394 fprintf(stderr
, "qemu: invalid cache option\n");
2399 if (get_param_value(buf
, sizeof(buf
), "format", str
)) {
2400 if (strcmp(buf
, "?") == 0) {
2401 fprintf(stderr
, "qemu: Supported formats:");
2402 bdrv_iterate_format(bdrv_format_print
, NULL
);
2403 fprintf(stderr
, "\n");
2406 drv
= bdrv_find_format(buf
);
2408 fprintf(stderr
, "qemu: '%s' invalid format\n", buf
);
2413 if (arg
->file
== NULL
)
2414 get_param_value(file
, sizeof(file
), "file", str
);
2416 pstrcpy(file
, sizeof(file
), arg
->file
);
2418 if (!get_param_value(serial
, sizeof(serial
), "serial", str
))
2419 memset(serial
, 0, sizeof(serial
));
2421 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2422 if (get_param_value(buf
, sizeof(serial
), "werror", str
)) {
2423 if (type
!= IF_IDE
&& type
!= IF_SCSI
&& type
!= IF_VIRTIO
) {
2424 fprintf(stderr
, "werror is no supported by this format\n");
2427 if (!strcmp(buf
, "ignore"))
2428 onerror
= BLOCK_ERR_IGNORE
;
2429 else if (!strcmp(buf
, "enospc"))
2430 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2431 else if (!strcmp(buf
, "stop"))
2432 onerror
= BLOCK_ERR_STOP_ANY
;
2433 else if (!strcmp(buf
, "report"))
2434 onerror
= BLOCK_ERR_REPORT
;
2436 fprintf(stderr
, "qemu: '%s' invalid write error action\n", buf
);
2442 if (get_param_value(buf
, sizeof(buf
), "addr", str
)) {
2443 if (type
!= IF_VIRTIO
) {
2444 fprintf(stderr
, "addr is not supported by in '%s'\n", str
);
2447 devaddr
= strdup(buf
);
2450 /* compute bus and unit according index */
2453 if (bus_id
!= 0 || unit_id
!= -1) {
2455 "qemu: '%s' index cannot be used with bus and unit\n", str
);
2463 unit_id
= index
% max_devs
;
2464 bus_id
= index
/ max_devs
;
2468 /* if user doesn't specify a unit_id,
2469 * try to find the first free
2472 if (unit_id
== -1) {
2474 while (drive_get_index(type
, bus_id
, unit_id
) != -1) {
2476 if (max_devs
&& unit_id
>= max_devs
) {
2477 unit_id
-= max_devs
;
2485 if (max_devs
&& unit_id
>= max_devs
) {
2486 fprintf(stderr
, "qemu: '%s' unit %d too big (max is %d)\n",
2487 str
, unit_id
, max_devs
- 1);
2492 * ignore multiple definitions
2495 if (drive_get_index(type
, bus_id
, unit_id
) != -1)
2500 if (type
== IF_IDE
|| type
== IF_SCSI
)
2501 mediastr
= (media
== MEDIA_CDROM
) ? "-cd" : "-hd";
2503 snprintf(buf
, sizeof(buf
), "%s%i%s%i",
2504 devname
, bus_id
, mediastr
, unit_id
);
2506 snprintf(buf
, sizeof(buf
), "%s%s%i",
2507 devname
, mediastr
, unit_id
);
2508 bdrv
= bdrv_new(buf
);
2509 drives_table_idx
= drive_get_free_idx();
2510 drives_table
[drives_table_idx
].bdrv
= bdrv
;
2511 drives_table
[drives_table_idx
].devaddr
= devaddr
;
2512 drives_table
[drives_table_idx
].type
= type
;
2513 drives_table
[drives_table_idx
].bus
= bus_id
;
2514 drives_table
[drives_table_idx
].unit
= unit_id
;
2515 drives_table
[drives_table_idx
].onerror
= onerror
;
2516 drives_table
[drives_table_idx
].drive_opt_idx
= arg
- drives_opt
;
2517 strncpy(drives_table
[drives_table_idx
].serial
, serial
, sizeof(serial
));
2527 bdrv_set_geometry_hint(bdrv
, cyls
, heads
, secs
);
2528 bdrv_set_translation_hint(bdrv
, translation
);
2532 bdrv_set_type_hint(bdrv
, BDRV_TYPE_CDROM
);
2537 /* FIXME: This isn't really a floppy, but it's a reasonable
2540 bdrv_set_type_hint(bdrv
, BDRV_TYPE_FLOPPY
);
2553 bdrv_flags
|= BDRV_O_SNAPSHOT
;
2554 cache
= 2; /* always use write-back with snapshot */
2556 if (cache
== 0) /* no caching */
2557 bdrv_flags
|= BDRV_O_NOCACHE
;
2558 else if (cache
== 2) /* write-back */
2559 bdrv_flags
|= BDRV_O_CACHE_WB
;
2560 else if (cache
== 3) /* not specified */
2561 bdrv_flags
|= BDRV_O_CACHE_DEF
;
2562 if (bdrv_open2(bdrv
, file
, bdrv_flags
, drv
) < 0) {
2563 fprintf(stderr
, "qemu: could not open disk image %s\n",
2567 if (bdrv_key_required(bdrv
))
2569 return drives_table_idx
;
2572 static void numa_add(const char *optarg
)
2576 unsigned long long value
, endvalue
;
2579 optarg
= get_opt_name(option
, 128, optarg
, ',') + 1;
2580 if (!strcmp(option
, "node")) {
2581 if (get_param_value(option
, 128, "nodeid", optarg
) == 0) {
2582 nodenr
= nb_numa_nodes
;
2584 nodenr
= strtoull(option
, NULL
, 10);
2587 if (get_param_value(option
, 128, "mem", optarg
) == 0) {
2588 node_mem
[nodenr
] = 0;
2590 value
= strtoull(option
, &endptr
, 0);
2592 case 0: case 'M': case 'm':
2599 node_mem
[nodenr
] = value
;
2601 if (get_param_value(option
, 128, "cpus", optarg
) == 0) {
2602 node_cpumask
[nodenr
] = 0;
2604 value
= strtoull(option
, &endptr
, 10);
2607 fprintf(stderr
, "only 64 CPUs in NUMA mode supported.\n");
2609 if (*endptr
== '-') {
2610 endvalue
= strtoull(endptr
+1, &endptr
, 10);
2611 if (endvalue
>= 63) {
2614 "only 63 CPUs in NUMA mode supported.\n");
2616 value
= (1 << (endvalue
+ 1)) - (1 << value
);
2621 node_cpumask
[nodenr
] = value
;
2628 /***********************************************************/
2631 static USBPort
*used_usb_ports
;
2632 static USBPort
*free_usb_ports
;
2634 /* ??? Maybe change this to register a hub to keep track of the topology. */
2635 void qemu_register_usb_port(USBPort
*port
, void *opaque
, int index
,
2636 usb_attachfn attach
)
2638 port
->opaque
= opaque
;
2639 port
->index
= index
;
2640 port
->attach
= attach
;
2641 port
->next
= free_usb_ports
;
2642 free_usb_ports
= port
;
2645 int usb_device_add_dev(USBDevice
*dev
)
2649 /* Find a USB port to add the device to. */
2650 port
= free_usb_ports
;
2654 /* Create a new hub and chain it on. */
2655 free_usb_ports
= NULL
;
2656 port
->next
= used_usb_ports
;
2657 used_usb_ports
= port
;
2659 hub
= usb_hub_init(VM_USB_HUB_SIZE
);
2660 usb_attach(port
, hub
);
2661 port
= free_usb_ports
;
2664 free_usb_ports
= port
->next
;
2665 port
->next
= used_usb_ports
;
2666 used_usb_ports
= port
;
2667 usb_attach(port
, dev
);
2671 static void usb_msd_password_cb(void *opaque
, int err
)
2673 USBDevice
*dev
= opaque
;
2676 usb_device_add_dev(dev
);
2678 dev
->handle_destroy(dev
);
2681 static int usb_device_add(const char *devname
, int is_hotplug
)
2686 if (!free_usb_ports
)
2689 if (strstart(devname
, "host:", &p
)) {
2690 dev
= usb_host_device_open(p
);
2691 } else if (!strcmp(devname
, "mouse")) {
2692 dev
= usb_mouse_init();
2693 } else if (!strcmp(devname
, "tablet")) {
2694 dev
= usb_tablet_init();
2695 } else if (!strcmp(devname
, "keyboard")) {
2696 dev
= usb_keyboard_init();
2697 } else if (strstart(devname
, "disk:", &p
)) {
2698 BlockDriverState
*bs
;
2700 dev
= usb_msd_init(p
);
2703 bs
= usb_msd_get_bdrv(dev
);
2704 if (bdrv_key_required(bs
)) {
2707 monitor_read_bdrv_key_start(cur_mon
, bs
, usb_msd_password_cb
,
2712 } else if (!strcmp(devname
, "wacom-tablet")) {
2713 dev
= usb_wacom_init();
2714 } else if (strstart(devname
, "serial:", &p
)) {
2715 dev
= usb_serial_init(p
);
2716 #ifdef CONFIG_BRLAPI
2717 } else if (!strcmp(devname
, "braille")) {
2718 dev
= usb_baum_init();
2720 } else if (strstart(devname
, "net:", &p
)) {
2723 if (net_client_init(NULL
, "nic", p
) < 0)
2725 nd_table
[nic
].model
= "usb";
2726 dev
= usb_net_init(&nd_table
[nic
]);
2727 } else if (!strcmp(devname
, "bt") || strstart(devname
, "bt:", &p
)) {
2728 dev
= usb_bt_init(devname
[2] ? hci_init(p
) :
2729 bt_new_hci(qemu_find_bt_vlan(0)));
2736 return usb_device_add_dev(dev
);
2739 int usb_device_del_addr(int bus_num
, int addr
)
2745 if (!used_usb_ports
)
2751 lastp
= &used_usb_ports
;
2752 port
= used_usb_ports
;
2753 while (port
&& port
->dev
->addr
!= addr
) {
2754 lastp
= &port
->next
;
2762 *lastp
= port
->next
;
2763 usb_attach(port
, NULL
);
2764 dev
->handle_destroy(dev
);
2765 port
->next
= free_usb_ports
;
2766 free_usb_ports
= port
;
2770 static int usb_device_del(const char *devname
)
2775 if (strstart(devname
, "host:", &p
))
2776 return usb_host_device_close(p
);
2778 if (!used_usb_ports
)
2781 p
= strchr(devname
, '.');
2784 bus_num
= strtoul(devname
, NULL
, 0);
2785 addr
= strtoul(p
+ 1, NULL
, 0);
2787 return usb_device_del_addr(bus_num
, addr
);
2790 void do_usb_add(Monitor
*mon
, const char *devname
)
2792 usb_device_add(devname
, 1);
2795 void do_usb_del(Monitor
*mon
, const char *devname
)
2797 usb_device_del(devname
);
2800 void usb_info(Monitor
*mon
)
2804 const char *speed_str
;
2807 monitor_printf(mon
, "USB support not enabled\n");
2811 for (port
= used_usb_ports
; port
; port
= port
->next
) {
2815 switch(dev
->speed
) {
2819 case USB_SPEED_FULL
:
2822 case USB_SPEED_HIGH
:
2829 monitor_printf(mon
, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2830 0, dev
->addr
, speed_str
, dev
->devname
);
2834 /***********************************************************/
2835 /* PCMCIA/Cardbus */
2837 static struct pcmcia_socket_entry_s
{
2838 PCMCIASocket
*socket
;
2839 struct pcmcia_socket_entry_s
*next
;
2840 } *pcmcia_sockets
= 0;
2842 void pcmcia_socket_register(PCMCIASocket
*socket
)
2844 struct pcmcia_socket_entry_s
*entry
;
2846 entry
= qemu_malloc(sizeof(struct pcmcia_socket_entry_s
));
2847 entry
->socket
= socket
;
2848 entry
->next
= pcmcia_sockets
;
2849 pcmcia_sockets
= entry
;
2852 void pcmcia_socket_unregister(PCMCIASocket
*socket
)
2854 struct pcmcia_socket_entry_s
*entry
, **ptr
;
2856 ptr
= &pcmcia_sockets
;
2857 for (entry
= *ptr
; entry
; ptr
= &entry
->next
, entry
= *ptr
)
2858 if (entry
->socket
== socket
) {
2864 void pcmcia_info(Monitor
*mon
)
2866 struct pcmcia_socket_entry_s
*iter
;
2868 if (!pcmcia_sockets
)
2869 monitor_printf(mon
, "No PCMCIA sockets\n");
2871 for (iter
= pcmcia_sockets
; iter
; iter
= iter
->next
)
2872 monitor_printf(mon
, "%s: %s\n", iter
->socket
->slot_string
,
2873 iter
->socket
->attached
? iter
->socket
->card_string
:
2877 /***********************************************************/
2878 /* register display */
2880 struct DisplayAllocator default_allocator
= {
2881 defaultallocator_create_displaysurface
,
2882 defaultallocator_resize_displaysurface
,
2883 defaultallocator_free_displaysurface
2886 void register_displaystate(DisplayState
*ds
)
2896 DisplayState
*get_displaystate(void)
2898 return display_state
;
2901 DisplayAllocator
*register_displayallocator(DisplayState
*ds
, DisplayAllocator
*da
)
2903 if(ds
->allocator
== &default_allocator
) ds
->allocator
= da
;
2904 return ds
->allocator
;
2909 static void dumb_display_init(void)
2911 DisplayState
*ds
= qemu_mallocz(sizeof(DisplayState
));
2912 ds
->allocator
= &default_allocator
;
2913 ds
->surface
= qemu_create_displaysurface(ds
, 640, 480);
2914 register_displaystate(ds
);
2917 /***********************************************************/
2920 typedef struct IOHandlerRecord
{
2922 IOCanRWHandler
*fd_read_poll
;
2924 IOHandler
*fd_write
;
2927 /* temporary data */
2929 struct IOHandlerRecord
*next
;
2932 static IOHandlerRecord
*first_io_handler
;
2934 /* XXX: fd_read_poll should be suppressed, but an API change is
2935 necessary in the character devices to suppress fd_can_read(). */
2936 int qemu_set_fd_handler2(int fd
,
2937 IOCanRWHandler
*fd_read_poll
,
2939 IOHandler
*fd_write
,
2942 IOHandlerRecord
**pioh
, *ioh
;
2944 if (!fd_read
&& !fd_write
) {
2945 pioh
= &first_io_handler
;
2950 if (ioh
->fd
== fd
) {
2957 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
2961 ioh
= qemu_mallocz(sizeof(IOHandlerRecord
));
2962 ioh
->next
= first_io_handler
;
2963 first_io_handler
= ioh
;
2966 ioh
->fd_read_poll
= fd_read_poll
;
2967 ioh
->fd_read
= fd_read
;
2968 ioh
->fd_write
= fd_write
;
2969 ioh
->opaque
= opaque
;
2975 int qemu_set_fd_handler(int fd
,
2977 IOHandler
*fd_write
,
2980 return qemu_set_fd_handler2(fd
, NULL
, fd_read
, fd_write
, opaque
);
2984 /***********************************************************/
2985 /* Polling handling */
2987 typedef struct PollingEntry
{
2990 struct PollingEntry
*next
;
2993 static PollingEntry
*first_polling_entry
;
2995 int qemu_add_polling_cb(PollingFunc
*func
, void *opaque
)
2997 PollingEntry
**ppe
, *pe
;
2998 pe
= qemu_mallocz(sizeof(PollingEntry
));
3000 pe
->opaque
= opaque
;
3001 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
);
3006 void qemu_del_polling_cb(PollingFunc
*func
, void *opaque
)
3008 PollingEntry
**ppe
, *pe
;
3009 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
) {
3011 if (pe
->func
== func
&& pe
->opaque
== opaque
) {
3019 /***********************************************************/
3020 /* Wait objects support */
3021 typedef struct WaitObjects
{
3023 HANDLE events
[MAXIMUM_WAIT_OBJECTS
+ 1];
3024 WaitObjectFunc
*func
[MAXIMUM_WAIT_OBJECTS
+ 1];
3025 void *opaque
[MAXIMUM_WAIT_OBJECTS
+ 1];
3028 static WaitObjects wait_objects
= {0};
3030 int qemu_add_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
3032 WaitObjects
*w
= &wait_objects
;
3034 if (w
->num
>= MAXIMUM_WAIT_OBJECTS
)
3036 w
->events
[w
->num
] = handle
;
3037 w
->func
[w
->num
] = func
;
3038 w
->opaque
[w
->num
] = opaque
;
3043 void qemu_del_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
3046 WaitObjects
*w
= &wait_objects
;
3049 for (i
= 0; i
< w
->num
; i
++) {
3050 if (w
->events
[i
] == handle
)
3053 w
->events
[i
] = w
->events
[i
+ 1];
3054 w
->func
[i
] = w
->func
[i
+ 1];
3055 w
->opaque
[i
] = w
->opaque
[i
+ 1];
3063 /***********************************************************/
3064 /* ram save/restore */
3066 static int ram_get_page(QEMUFile
*f
, uint8_t *buf
, int len
)
3070 v
= qemu_get_byte(f
);
3073 if (qemu_get_buffer(f
, buf
, len
) != len
)
3077 v
= qemu_get_byte(f
);
3078 memset(buf
, v
, len
);
3084 if (qemu_file_has_error(f
))
3090 static int ram_load_v1(QEMUFile
*f
, void *opaque
)
3095 if (qemu_get_be32(f
) != last_ram_offset
)
3097 for(i
= 0; i
< last_ram_offset
; i
+= TARGET_PAGE_SIZE
) {
3098 ret
= ram_get_page(f
, qemu_get_ram_ptr(i
), TARGET_PAGE_SIZE
);
3105 #define BDRV_HASH_BLOCK_SIZE 1024
3106 #define IOBUF_SIZE 4096
3107 #define RAM_CBLOCK_MAGIC 0xfabe
3109 typedef struct RamDecompressState
{
3112 uint8_t buf
[IOBUF_SIZE
];
3113 } RamDecompressState
;
3115 static int ram_decompress_open(RamDecompressState
*s
, QEMUFile
*f
)
3118 memset(s
, 0, sizeof(*s
));
3120 ret
= inflateInit(&s
->zstream
);
3126 static int ram_decompress_buf(RamDecompressState
*s
, uint8_t *buf
, int len
)
3130 s
->zstream
.avail_out
= len
;
3131 s
->zstream
.next_out
= buf
;
3132 while (s
->zstream
.avail_out
> 0) {
3133 if (s
->zstream
.avail_in
== 0) {
3134 if (qemu_get_be16(s
->f
) != RAM_CBLOCK_MAGIC
)
3136 clen
= qemu_get_be16(s
->f
);
3137 if (clen
> IOBUF_SIZE
)
3139 qemu_get_buffer(s
->f
, s
->buf
, clen
);
3140 s
->zstream
.avail_in
= clen
;
3141 s
->zstream
.next_in
= s
->buf
;
3143 ret
= inflate(&s
->zstream
, Z_PARTIAL_FLUSH
);
3144 if (ret
!= Z_OK
&& ret
!= Z_STREAM_END
) {
3151 static void ram_decompress_close(RamDecompressState
*s
)
3153 inflateEnd(&s
->zstream
);
3156 #define RAM_SAVE_FLAG_FULL 0x01
3157 #define RAM_SAVE_FLAG_COMPRESS 0x02
3158 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3159 #define RAM_SAVE_FLAG_PAGE 0x08
3160 #define RAM_SAVE_FLAG_EOS 0x10
3162 static int is_dup_page(uint8_t *page
, uint8_t ch
)
3164 uint32_t val
= ch
<< 24 | ch
<< 16 | ch
<< 8 | ch
;
3165 uint32_t *array
= (uint32_t *)page
;
3168 for (i
= 0; i
< (TARGET_PAGE_SIZE
/ 4); i
++) {
3169 if (array
[i
] != val
)
3176 static int ram_save_block(QEMUFile
*f
)
3178 static ram_addr_t current_addr
= 0;
3179 ram_addr_t saved_addr
= current_addr
;
3180 ram_addr_t addr
= 0;
3183 while (addr
< last_ram_offset
) {
3184 if (cpu_physical_memory_get_dirty(current_addr
, MIGRATION_DIRTY_FLAG
)) {
3187 cpu_physical_memory_reset_dirty(current_addr
,
3188 current_addr
+ TARGET_PAGE_SIZE
,
3189 MIGRATION_DIRTY_FLAG
);
3191 p
= qemu_get_ram_ptr(current_addr
);
3193 if (is_dup_page(p
, *p
)) {
3194 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_COMPRESS
);
3195 qemu_put_byte(f
, *p
);
3197 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_PAGE
);
3198 qemu_put_buffer(f
, p
, TARGET_PAGE_SIZE
);
3204 addr
+= TARGET_PAGE_SIZE
;
3205 current_addr
= (saved_addr
+ addr
) % last_ram_offset
;
3211 static uint64_t bytes_transferred
= 0;
3213 static ram_addr_t
ram_save_remaining(void)
3216 ram_addr_t count
= 0;
3218 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
3219 if (cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
3226 uint64_t ram_bytes_remaining(void)
3228 return ram_save_remaining() * TARGET_PAGE_SIZE
;
3231 uint64_t ram_bytes_transferred(void)
3233 return bytes_transferred
;
3236 uint64_t ram_bytes_total(void)
3238 return last_ram_offset
;
3241 static int ram_save_live(QEMUFile
*f
, int stage
, void *opaque
)
3244 uint64_t bytes_transferred_last
;
3246 uint64_t expected_time
= 0;
3248 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX
) != 0) {
3249 qemu_file_set_error(f
);
3254 /* Make sure all dirty bits are set */
3255 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
3256 if (!cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
3257 cpu_physical_memory_set_dirty(addr
);
3260 /* Enable dirty memory tracking */
3261 cpu_physical_memory_set_dirty_tracking(1);
3263 qemu_put_be64(f
, last_ram_offset
| RAM_SAVE_FLAG_MEM_SIZE
);
3266 bytes_transferred_last
= bytes_transferred
;
3267 bwidth
= get_clock();
3269 while (!qemu_file_rate_limit(f
)) {
3272 ret
= ram_save_block(f
);
3273 bytes_transferred
+= ret
* TARGET_PAGE_SIZE
;
3274 if (ret
== 0) /* no more blocks */
3278 bwidth
= get_clock() - bwidth
;
3279 bwidth
= (bytes_transferred
- bytes_transferred_last
) / bwidth
;
3281 /* if we haven't transferred anything this round, force expected_time to a
3282 * a very high value, but without crashing */
3286 /* try transferring iterative blocks of memory */
3290 /* flush all remaining blocks regardless of rate limiting */
3291 while (ram_save_block(f
) != 0) {
3292 bytes_transferred
+= TARGET_PAGE_SIZE
;
3294 cpu_physical_memory_set_dirty_tracking(0);
3297 qemu_put_be64(f
, RAM_SAVE_FLAG_EOS
);
3299 expected_time
= ram_save_remaining() * TARGET_PAGE_SIZE
/ bwidth
;
3301 return (stage
== 2) && (expected_time
<= migrate_max_downtime());
3304 static int ram_load_dead(QEMUFile
*f
, void *opaque
)
3306 RamDecompressState s1
, *s
= &s1
;
3310 if (ram_decompress_open(s
, f
) < 0)
3312 for(i
= 0; i
< last_ram_offset
; i
+= BDRV_HASH_BLOCK_SIZE
) {
3313 if (ram_decompress_buf(s
, buf
, 1) < 0) {
3314 fprintf(stderr
, "Error while reading ram block header\n");
3318 if (ram_decompress_buf(s
, qemu_get_ram_ptr(i
),
3319 BDRV_HASH_BLOCK_SIZE
) < 0) {
3320 fprintf(stderr
, "Error while reading ram block address=0x%08" PRIx64
, (uint64_t)i
);
3325 printf("Error block header\n");
3329 ram_decompress_close(s
);
3334 static int ram_load(QEMUFile
*f
, void *opaque
, int version_id
)
3339 if (version_id
== 1)
3340 return ram_load_v1(f
, opaque
);
3342 if (version_id
== 2) {
3343 if (qemu_get_be32(f
) != last_ram_offset
)
3345 return ram_load_dead(f
, opaque
);
3348 if (version_id
!= 3)
3352 addr
= qemu_get_be64(f
);
3354 flags
= addr
& ~TARGET_PAGE_MASK
;
3355 addr
&= TARGET_PAGE_MASK
;
3357 if (flags
& RAM_SAVE_FLAG_MEM_SIZE
) {
3358 if (addr
!= last_ram_offset
)
3362 if (flags
& RAM_SAVE_FLAG_FULL
) {
3363 if (ram_load_dead(f
, opaque
) < 0)
3367 if (flags
& RAM_SAVE_FLAG_COMPRESS
) {
3368 uint8_t ch
= qemu_get_byte(f
);
3369 memset(qemu_get_ram_ptr(addr
), ch
, TARGET_PAGE_SIZE
);
3372 (!kvm_enabled() || kvm_has_sync_mmu())) {
3373 madvise(qemu_get_ram_ptr(addr
), TARGET_PAGE_SIZE
, MADV_DONTNEED
);
3376 } else if (flags
& RAM_SAVE_FLAG_PAGE
)
3377 qemu_get_buffer(f
, qemu_get_ram_ptr(addr
), TARGET_PAGE_SIZE
);
3378 } while (!(flags
& RAM_SAVE_FLAG_EOS
));
3383 void qemu_service_io(void)
3385 qemu_notify_event();
3388 /***********************************************************/
3389 /* bottom halves (can be seen as timers which expire ASAP) */
3400 static QEMUBH
*first_bh
= NULL
;
3402 QEMUBH
*qemu_bh_new(QEMUBHFunc
*cb
, void *opaque
)
3405 bh
= qemu_mallocz(sizeof(QEMUBH
));
3407 bh
->opaque
= opaque
;
3408 bh
->next
= first_bh
;
3413 int qemu_bh_poll(void)
3419 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3420 if (!bh
->deleted
&& bh
->scheduled
) {
3429 /* remove deleted bhs */
3443 void qemu_bh_schedule_idle(QEMUBH
*bh
)
3451 void qemu_bh_schedule(QEMUBH
*bh
)
3457 /* stop the currently executing CPU to execute the BH ASAP */
3458 qemu_notify_event();
3461 void qemu_bh_cancel(QEMUBH
*bh
)
3466 void qemu_bh_delete(QEMUBH
*bh
)
3472 static void qemu_bh_update_timeout(int *timeout
)
3476 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3477 if (!bh
->deleted
&& bh
->scheduled
) {
3479 /* idle bottom halves will be polled at least
3481 *timeout
= MIN(10, *timeout
);
3483 /* non-idle bottom halves will be executed
3492 /***********************************************************/
3493 /* machine registration */
3495 static QEMUMachine
*first_machine
= NULL
;
3496 QEMUMachine
*current_machine
= NULL
;
3498 int qemu_register_machine(QEMUMachine
*m
)
3501 pm
= &first_machine
;
3509 static QEMUMachine
*find_machine(const char *name
)
3513 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
3514 if (!strcmp(m
->name
, name
))
3520 static QEMUMachine
*find_default_machine(void)
3524 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
3525 if (m
->is_default
) {
3532 /***********************************************************/
3533 /* main execution loop */
3535 static void gui_update(void *opaque
)
3537 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3538 DisplayState
*ds
= opaque
;
3539 DisplayChangeListener
*dcl
= ds
->listeners
;
3543 while (dcl
!= NULL
) {
3544 if (dcl
->gui_timer_interval
&&
3545 dcl
->gui_timer_interval
< interval
)
3546 interval
= dcl
->gui_timer_interval
;
3549 qemu_mod_timer(ds
->gui_timer
, interval
+ qemu_get_clock(rt_clock
));
3552 static void nographic_update(void *opaque
)
3554 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3556 qemu_mod_timer(nographic_timer
, interval
+ qemu_get_clock(rt_clock
));
3559 struct vm_change_state_entry
{
3560 VMChangeStateHandler
*cb
;
3562 LIST_ENTRY (vm_change_state_entry
) entries
;
3565 static LIST_HEAD(vm_change_state_head
, vm_change_state_entry
) vm_change_state_head
;
3567 VMChangeStateEntry
*qemu_add_vm_change_state_handler(VMChangeStateHandler
*cb
,
3570 VMChangeStateEntry
*e
;
3572 e
= qemu_mallocz(sizeof (*e
));
3576 LIST_INSERT_HEAD(&vm_change_state_head
, e
, entries
);
3580 void qemu_del_vm_change_state_handler(VMChangeStateEntry
*e
)
3582 LIST_REMOVE (e
, entries
);
3586 static void vm_state_notify(int running
, int reason
)
3588 VMChangeStateEntry
*e
;
3590 for (e
= vm_change_state_head
.lh_first
; e
; e
= e
->entries
.le_next
) {
3591 e
->cb(e
->opaque
, running
, reason
);
3595 static void resume_all_vcpus(void);
3596 static void pause_all_vcpus(void);
3603 vm_state_notify(1, 0);
3604 qemu_rearm_alarm_timer(alarm_timer
);
3609 /* reset/shutdown handler */
3611 typedef struct QEMUResetEntry
{
3612 QEMUResetHandler
*func
;
3614 struct QEMUResetEntry
*next
;
3617 static QEMUResetEntry
*first_reset_entry
;
3618 static int reset_requested
;
3619 static int shutdown_requested
;
3620 static int powerdown_requested
;
3621 static int debug_requested
;
3622 static int vmstop_requested
;
3624 int qemu_shutdown_requested(void)
3626 int r
= shutdown_requested
;
3627 shutdown_requested
= 0;
3631 int qemu_reset_requested(void)
3633 int r
= reset_requested
;
3634 reset_requested
= 0;
3638 int qemu_powerdown_requested(void)
3640 int r
= powerdown_requested
;
3641 powerdown_requested
= 0;
3645 static int qemu_debug_requested(void)
3647 int r
= debug_requested
;
3648 debug_requested
= 0;
3652 static int qemu_vmstop_requested(void)
3654 int r
= vmstop_requested
;
3655 vmstop_requested
= 0;
3659 static void do_vm_stop(int reason
)
3662 cpu_disable_ticks();
3665 vm_state_notify(0, reason
);
3669 void qemu_register_reset(QEMUResetHandler
*func
, void *opaque
)
3671 QEMUResetEntry
**pre
, *re
;
3673 pre
= &first_reset_entry
;
3674 while (*pre
!= NULL
)
3675 pre
= &(*pre
)->next
;
3676 re
= qemu_mallocz(sizeof(QEMUResetEntry
));
3678 re
->opaque
= opaque
;
3683 void qemu_system_reset(void)
3687 /* reset all devices */
3688 for(re
= first_reset_entry
; re
!= NULL
; re
= re
->next
) {
3689 re
->func(re
->opaque
);
3693 void qemu_system_reset_request(void)
3696 shutdown_requested
= 1;
3698 reset_requested
= 1;
3700 qemu_notify_event();
3703 void qemu_system_shutdown_request(void)
3705 shutdown_requested
= 1;
3706 qemu_notify_event();
3709 void qemu_system_powerdown_request(void)
3711 powerdown_requested
= 1;
3712 qemu_notify_event();
3715 #ifdef CONFIG_IOTHREAD
3716 static void qemu_system_vmstop_request(int reason
)
3718 vmstop_requested
= reason
;
3719 qemu_notify_event();
3724 static int io_thread_fd
= -1;
3726 static void qemu_event_increment(void)
3728 static const char byte
= 0;
3730 if (io_thread_fd
== -1)
3733 write(io_thread_fd
, &byte
, sizeof(byte
));
3736 static void qemu_event_read(void *opaque
)
3738 int fd
= (unsigned long)opaque
;
3741 /* Drain the notify pipe */
3744 len
= read(fd
, buffer
, sizeof(buffer
));
3745 } while ((len
== -1 && errno
== EINTR
) || len
> 0);
3748 static int qemu_event_init(void)
3757 err
= fcntl_setfl(fds
[0], O_NONBLOCK
);
3761 err
= fcntl_setfl(fds
[1], O_NONBLOCK
);
3765 qemu_set_fd_handler2(fds
[0], NULL
, qemu_event_read
, NULL
,
3766 (void *)(unsigned long)fds
[0]);
3768 io_thread_fd
= fds
[1];
3777 HANDLE qemu_event_handle
;
3779 static void dummy_event_handler(void *opaque
)
3783 static int qemu_event_init(void)
3785 qemu_event_handle
= CreateEvent(NULL
, FALSE
, FALSE
, NULL
);
3786 if (!qemu_event_handle
) {
3787 perror("Failed CreateEvent");
3790 qemu_add_wait_object(qemu_event_handle
, dummy_event_handler
, NULL
);
3794 static void qemu_event_increment(void)
3796 SetEvent(qemu_event_handle
);
3800 static int cpu_can_run(CPUState
*env
)
3809 #ifndef CONFIG_IOTHREAD
3810 static int qemu_init_main_loop(void)
3812 return qemu_event_init();
3815 void qemu_init_vcpu(void *_env
)
3817 CPUState
*env
= _env
;
3824 int qemu_cpu_self(void *env
)
3829 static void resume_all_vcpus(void)
3833 static void pause_all_vcpus(void)
3837 void qemu_cpu_kick(void *env
)
3842 void qemu_notify_event(void)
3844 CPUState
*env
= cpu_single_env
;
3849 if (env
->kqemu_enabled
)
3850 kqemu_cpu_interrupt(env
);
3855 #define qemu_mutex_lock_iothread() do { } while (0)
3856 #define qemu_mutex_unlock_iothread() do { } while (0)
3858 void vm_stop(int reason
)
3863 #else /* CONFIG_IOTHREAD */
3865 #include "qemu-thread.h"
3867 QemuMutex qemu_global_mutex
;
3868 static QemuMutex qemu_fair_mutex
;
3870 static QemuThread io_thread
;
3872 static QemuThread
*tcg_cpu_thread
;
3873 static QemuCond
*tcg_halt_cond
;
3875 static int qemu_system_ready
;
3877 static QemuCond qemu_cpu_cond
;
3879 static QemuCond qemu_system_cond
;
3880 static QemuCond qemu_pause_cond
;
3882 static void block_io_signals(void);
3883 static void unblock_io_signals(void);
3884 static int tcg_has_work(void);
3886 static int qemu_init_main_loop(void)
3890 ret
= qemu_event_init();
3894 qemu_cond_init(&qemu_pause_cond
);
3895 qemu_mutex_init(&qemu_fair_mutex
);
3896 qemu_mutex_init(&qemu_global_mutex
);
3897 qemu_mutex_lock(&qemu_global_mutex
);
3899 unblock_io_signals();
3900 qemu_thread_self(&io_thread
);
3905 static void qemu_wait_io_event(CPUState
*env
)
3907 while (!tcg_has_work())
3908 qemu_cond_timedwait(env
->halt_cond
, &qemu_global_mutex
, 1000);
3910 qemu_mutex_unlock(&qemu_global_mutex
);
3913 * Users of qemu_global_mutex can be starved, having no chance
3914 * to acquire it since this path will get to it first.
3915 * So use another lock to provide fairness.
3917 qemu_mutex_lock(&qemu_fair_mutex
);
3918 qemu_mutex_unlock(&qemu_fair_mutex
);
3920 qemu_mutex_lock(&qemu_global_mutex
);
3924 qemu_cond_signal(&qemu_pause_cond
);
3928 static int qemu_cpu_exec(CPUState
*env
);
3930 static void *kvm_cpu_thread_fn(void *arg
)
3932 CPUState
*env
= arg
;
3935 qemu_thread_self(env
->thread
);
3937 /* signal CPU creation */
3938 qemu_mutex_lock(&qemu_global_mutex
);
3940 qemu_cond_signal(&qemu_cpu_cond
);
3942 /* and wait for machine initialization */
3943 while (!qemu_system_ready
)
3944 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
3947 if (cpu_can_run(env
))
3949 qemu_wait_io_event(env
);
3955 static void tcg_cpu_exec(void);
3957 static void *tcg_cpu_thread_fn(void *arg
)
3959 CPUState
*env
= arg
;
3962 qemu_thread_self(env
->thread
);
3964 /* signal CPU creation */
3965 qemu_mutex_lock(&qemu_global_mutex
);
3966 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
3968 qemu_cond_signal(&qemu_cpu_cond
);
3970 /* and wait for machine initialization */
3971 while (!qemu_system_ready
)
3972 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
3976 qemu_wait_io_event(cur_cpu
);
3982 void qemu_cpu_kick(void *_env
)
3984 CPUState
*env
= _env
;
3985 qemu_cond_broadcast(env
->halt_cond
);
3987 qemu_thread_signal(env
->thread
, SIGUSR1
);
3990 int qemu_cpu_self(void *env
)
3992 return (cpu_single_env
!= NULL
);
3995 static void cpu_signal(int sig
)
3998 cpu_exit(cpu_single_env
);
4001 static void block_io_signals(void)
4004 struct sigaction sigact
;
4007 sigaddset(&set
, SIGUSR2
);
4008 sigaddset(&set
, SIGIO
);
4009 sigaddset(&set
, SIGALRM
);
4010 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
4013 sigaddset(&set
, SIGUSR1
);
4014 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
4016 memset(&sigact
, 0, sizeof(sigact
));
4017 sigact
.sa_handler
= cpu_signal
;
4018 sigaction(SIGUSR1
, &sigact
, NULL
);
4021 static void unblock_io_signals(void)
4026 sigaddset(&set
, SIGUSR2
);
4027 sigaddset(&set
, SIGIO
);
4028 sigaddset(&set
, SIGALRM
);
4029 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
4032 sigaddset(&set
, SIGUSR1
);
4033 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
4036 static void qemu_signal_lock(unsigned int msecs
)
4038 qemu_mutex_lock(&qemu_fair_mutex
);
4040 while (qemu_mutex_trylock(&qemu_global_mutex
)) {
4041 qemu_thread_signal(tcg_cpu_thread
, SIGUSR1
);
4042 if (!qemu_mutex_timedlock(&qemu_global_mutex
, msecs
))
4045 qemu_mutex_unlock(&qemu_fair_mutex
);
4048 static void qemu_mutex_lock_iothread(void)
4050 if (kvm_enabled()) {
4051 qemu_mutex_lock(&qemu_fair_mutex
);
4052 qemu_mutex_lock(&qemu_global_mutex
);
4053 qemu_mutex_unlock(&qemu_fair_mutex
);
4055 qemu_signal_lock(100);
4058 static void qemu_mutex_unlock_iothread(void)
4060 qemu_mutex_unlock(&qemu_global_mutex
);
4063 static int all_vcpus_paused(void)
4065 CPUState
*penv
= first_cpu
;
4070 penv
= (CPUState
*)penv
->next_cpu
;
4076 static void pause_all_vcpus(void)
4078 CPUState
*penv
= first_cpu
;
4082 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4083 qemu_cpu_kick(penv
);
4084 penv
= (CPUState
*)penv
->next_cpu
;
4087 while (!all_vcpus_paused()) {
4088 qemu_cond_timedwait(&qemu_pause_cond
, &qemu_global_mutex
, 100);
4091 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4092 penv
= (CPUState
*)penv
->next_cpu
;
4097 static void resume_all_vcpus(void)
4099 CPUState
*penv
= first_cpu
;
4104 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4105 qemu_cpu_kick(penv
);
4106 penv
= (CPUState
*)penv
->next_cpu
;
4110 static void tcg_init_vcpu(void *_env
)
4112 CPUState
*env
= _env
;
4113 /* share a single thread for all cpus with TCG */
4114 if (!tcg_cpu_thread
) {
4115 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
4116 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
4117 qemu_cond_init(env
->halt_cond
);
4118 qemu_thread_create(env
->thread
, tcg_cpu_thread_fn
, env
);
4119 while (env
->created
== 0)
4120 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
4121 tcg_cpu_thread
= env
->thread
;
4122 tcg_halt_cond
= env
->halt_cond
;
4124 env
->thread
= tcg_cpu_thread
;
4125 env
->halt_cond
= tcg_halt_cond
;
4129 static void kvm_start_vcpu(CPUState
*env
)
4132 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
4133 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
4134 qemu_cond_init(env
->halt_cond
);
4135 qemu_thread_create(env
->thread
, kvm_cpu_thread_fn
, env
);
4136 while (env
->created
== 0)
4137 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
4140 void qemu_init_vcpu(void *_env
)
4142 CPUState
*env
= _env
;
4145 kvm_start_vcpu(env
);
4150 void qemu_notify_event(void)
4152 qemu_event_increment();
4155 void vm_stop(int reason
)
4158 qemu_thread_self(&me
);
4160 if (!qemu_thread_equal(&me
, &io_thread
)) {
4161 qemu_system_vmstop_request(reason
);
4163 * FIXME: should not return to device code in case
4164 * vm_stop() has been requested.
4166 if (cpu_single_env
) {
4167 cpu_exit(cpu_single_env
);
4168 cpu_single_env
->stop
= 1;
4179 static void host_main_loop_wait(int *timeout
)
4185 /* XXX: need to suppress polling by better using win32 events */
4187 for(pe
= first_polling_entry
; pe
!= NULL
; pe
= pe
->next
) {
4188 ret
|= pe
->func(pe
->opaque
);
4192 WaitObjects
*w
= &wait_objects
;
4194 ret
= WaitForMultipleObjects(w
->num
, w
->events
, FALSE
, *timeout
);
4195 if (WAIT_OBJECT_0
+ 0 <= ret
&& ret
<= WAIT_OBJECT_0
+ w
->num
- 1) {
4196 if (w
->func
[ret
- WAIT_OBJECT_0
])
4197 w
->func
[ret
- WAIT_OBJECT_0
](w
->opaque
[ret
- WAIT_OBJECT_0
]);
4199 /* Check for additional signaled events */
4200 for(i
= (ret
- WAIT_OBJECT_0
+ 1); i
< w
->num
; i
++) {
4202 /* Check if event is signaled */
4203 ret2
= WaitForSingleObject(w
->events
[i
], 0);
4204 if(ret2
== WAIT_OBJECT_0
) {
4206 w
->func
[i
](w
->opaque
[i
]);
4207 } else if (ret2
== WAIT_TIMEOUT
) {
4209 err
= GetLastError();
4210 fprintf(stderr
, "WaitForSingleObject error %d %d\n", i
, err
);
4213 } else if (ret
== WAIT_TIMEOUT
) {
4215 err
= GetLastError();
4216 fprintf(stderr
, "WaitForMultipleObjects error %d %d\n", ret
, err
);
4223 static void host_main_loop_wait(int *timeout
)
4228 void main_loop_wait(int timeout
)
4230 IOHandlerRecord
*ioh
;
4231 fd_set rfds
, wfds
, xfds
;
4235 qemu_bh_update_timeout(&timeout
);
4237 host_main_loop_wait(&timeout
);
4239 /* poll any events */
4240 /* XXX: separate device handlers from system ones */
4245 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
4249 (!ioh
->fd_read_poll
||
4250 ioh
->fd_read_poll(ioh
->opaque
) != 0)) {
4251 FD_SET(ioh
->fd
, &rfds
);
4255 if (ioh
->fd_write
) {
4256 FD_SET(ioh
->fd
, &wfds
);
4262 tv
.tv_sec
= timeout
/ 1000;
4263 tv
.tv_usec
= (timeout
% 1000) * 1000;
4265 slirp_select_fill(&nfds
, &rfds
, &wfds
, &xfds
);
4267 qemu_mutex_unlock_iothread();
4268 ret
= select(nfds
+ 1, &rfds
, &wfds
, &xfds
, &tv
);
4269 qemu_mutex_lock_iothread();
4271 IOHandlerRecord
**pioh
;
4273 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
4274 if (!ioh
->deleted
&& ioh
->fd_read
&& FD_ISSET(ioh
->fd
, &rfds
)) {
4275 ioh
->fd_read(ioh
->opaque
);
4277 if (!ioh
->deleted
&& ioh
->fd_write
&& FD_ISSET(ioh
->fd
, &wfds
)) {
4278 ioh
->fd_write(ioh
->opaque
);
4282 /* remove deleted IO handlers */
4283 pioh
= &first_io_handler
;
4294 slirp_select_poll(&rfds
, &wfds
, &xfds
, (ret
< 0));
4296 /* rearm timer, if not periodic */
4297 if (alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) {
4298 alarm_timer
->flags
&= ~ALARM_FLAG_EXPIRED
;
4299 qemu_rearm_alarm_timer(alarm_timer
);
4302 /* vm time timers */
4304 if (!cur_cpu
|| likely(!(cur_cpu
->singlestep_enabled
& SSTEP_NOTIMER
)))
4305 qemu_run_timers(&active_timers
[QEMU_TIMER_VIRTUAL
],
4306 qemu_get_clock(vm_clock
));
4309 /* real time timers */
4310 qemu_run_timers(&active_timers
[QEMU_TIMER_REALTIME
],
4311 qemu_get_clock(rt_clock
));
4313 /* Check bottom-halves last in case any of the earlier events triggered
4319 static int qemu_cpu_exec(CPUState
*env
)
4322 #ifdef CONFIG_PROFILER
4326 #ifdef CONFIG_PROFILER
4327 ti
= profile_getclock();
4332 qemu_icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
4333 env
->icount_decr
.u16
.low
= 0;
4334 env
->icount_extra
= 0;
4335 count
= qemu_next_deadline();
4336 count
= (count
+ (1 << icount_time_shift
) - 1)
4337 >> icount_time_shift
;
4338 qemu_icount
+= count
;
4339 decr
= (count
> 0xffff) ? 0xffff : count
;
4341 env
->icount_decr
.u16
.low
= decr
;
4342 env
->icount_extra
= count
;
4344 ret
= cpu_exec(env
);
4345 #ifdef CONFIG_PROFILER
4346 qemu_time
+= profile_getclock() - ti
;
4349 /* Fold pending instructions back into the
4350 instruction counter, and clear the interrupt flag. */
4351 qemu_icount
-= (env
->icount_decr
.u16
.low
4352 + env
->icount_extra
);
4353 env
->icount_decr
.u32
= 0;
4354 env
->icount_extra
= 0;
4359 static void tcg_cpu_exec(void)
4363 if (next_cpu
== NULL
)
4364 next_cpu
= first_cpu
;
4365 for (; next_cpu
!= NULL
; next_cpu
= next_cpu
->next_cpu
) {
4366 CPUState
*env
= cur_cpu
= next_cpu
;
4370 if (timer_alarm_pending
) {
4371 timer_alarm_pending
= 0;
4374 if (cpu_can_run(env
))
4375 ret
= qemu_cpu_exec(env
);
4376 if (ret
== EXCP_DEBUG
) {
4377 gdb_set_stop_cpu(env
);
4378 debug_requested
= 1;
4384 static int cpu_has_work(CPUState
*env
)
4392 if (qemu_cpu_has_work(env
))
4397 static int tcg_has_work(void)
4401 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
4402 if (cpu_has_work(env
))
4407 static int qemu_calculate_timeout(void)
4409 #ifndef CONFIG_IOTHREAD
4414 else if (tcg_has_work())
4416 else if (!use_icount
)
4419 /* XXX: use timeout computed from timers */
4422 /* Advance virtual time to the next event. */
4423 if (use_icount
== 1) {
4424 /* When not using an adaptive execution frequency
4425 we tend to get badly out of sync with real time,
4426 so just delay for a reasonable amount of time. */
4429 delta
= cpu_get_icount() - cpu_get_clock();
4432 /* If virtual time is ahead of real time then just
4434 timeout
= (delta
/ 1000000) + 1;
4436 /* Wait for either IO to occur or the next
4438 add
= qemu_next_deadline();
4439 /* We advance the timer before checking for IO.
4440 Limit the amount we advance so that early IO
4441 activity won't get the guest too far ahead. */
4445 add
= (add
+ (1 << icount_time_shift
) - 1)
4446 >> icount_time_shift
;
4448 timeout
= delta
/ 1000000;
4455 #else /* CONFIG_IOTHREAD */
4460 static int vm_can_run(void)
4462 if (powerdown_requested
)
4464 if (reset_requested
)
4466 if (shutdown_requested
)
4468 if (debug_requested
)
4473 static void main_loop(void)
4477 #ifdef CONFIG_IOTHREAD
4478 qemu_system_ready
= 1;
4479 qemu_cond_broadcast(&qemu_system_cond
);
4484 #ifdef CONFIG_PROFILER
4487 #ifndef CONFIG_IOTHREAD
4490 #ifdef CONFIG_PROFILER
4491 ti
= profile_getclock();
4493 main_loop_wait(qemu_calculate_timeout());
4494 #ifdef CONFIG_PROFILER
4495 dev_time
+= profile_getclock() - ti
;
4497 } while (vm_can_run());
4499 if (qemu_debug_requested())
4500 vm_stop(EXCP_DEBUG
);
4501 if (qemu_shutdown_requested()) {
4508 if (qemu_reset_requested()) {
4510 qemu_system_reset();
4513 if (qemu_powerdown_requested())
4514 qemu_system_powerdown();
4515 if ((r
= qemu_vmstop_requested()))
4521 static void version(void)
4523 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION
", Copyright (c) 2003-2008 Fabrice Bellard\n");
4526 static void help(int exitcode
)
4529 printf("usage: %s [options] [disk_image]\n"
4531 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4533 #define DEF(option, opt_arg, opt_enum, opt_help) \
4535 #define DEFHEADING(text) stringify(text) "\n"
4536 #include "qemu-options.h"
4541 "During emulation, the following keys are useful:\n"
4542 "ctrl-alt-f toggle full screen\n"
4543 "ctrl-alt-n switch to virtual console 'n'\n"
4544 "ctrl-alt toggle mouse and keyboard grab\n"
4546 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4551 DEFAULT_NETWORK_SCRIPT
,
4552 DEFAULT_NETWORK_DOWN_SCRIPT
,
4554 DEFAULT_GDBSTUB_PORT
,
4559 #define HAS_ARG 0x0001
4562 #define DEF(option, opt_arg, opt_enum, opt_help) \
4564 #define DEFHEADING(text)
4565 #include "qemu-options.h"
4571 typedef struct QEMUOption
{
4577 static const QEMUOption qemu_options
[] = {
4578 { "h", 0, QEMU_OPTION_h
},
4579 #define DEF(option, opt_arg, opt_enum, opt_help) \
4580 { option, opt_arg, opt_enum },
4581 #define DEFHEADING(text)
4582 #include "qemu-options.h"
4590 struct soundhw soundhw
[] = {
4591 #ifdef HAS_AUDIO_CHOICE
4592 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4598 { .init_isa
= pcspk_audio_init
}
4605 "Creative Sound Blaster 16",
4608 { .init_isa
= SB16_init
}
4612 #ifdef CONFIG_CS4231A
4618 { .init_isa
= cs4231a_init
}
4626 "Yamaha YMF262 (OPL3)",
4628 "Yamaha YM3812 (OPL2)",
4632 { .init_isa
= Adlib_init
}
4639 "Gravis Ultrasound GF1",
4642 { .init_isa
= GUS_init
}
4649 "Intel 82801AA AC97 Audio",
4652 { .init_pci
= ac97_init
}
4656 #ifdef CONFIG_ES1370
4659 "ENSONIQ AudioPCI ES1370",
4662 { .init_pci
= es1370_init
}
4666 #endif /* HAS_AUDIO_CHOICE */
4668 { NULL
, NULL
, 0, 0, { NULL
} }
4671 static void select_soundhw (const char *optarg
)
4675 if (*optarg
== '?') {
4678 printf ("Valid sound card names (comma separated):\n");
4679 for (c
= soundhw
; c
->name
; ++c
) {
4680 printf ("%-11s %s\n", c
->name
, c
->descr
);
4682 printf ("\n-soundhw all will enable all of the above\n");
4683 exit (*optarg
!= '?');
4691 if (!strcmp (optarg
, "all")) {
4692 for (c
= soundhw
; c
->name
; ++c
) {
4700 e
= strchr (p
, ',');
4701 l
= !e
? strlen (p
) : (size_t) (e
- p
);
4703 for (c
= soundhw
; c
->name
; ++c
) {
4704 if (!strncmp (c
->name
, p
, l
)) {
4713 "Unknown sound card name (too big to show)\n");
4716 fprintf (stderr
, "Unknown sound card name `%.*s'\n",
4721 p
+= l
+ (e
!= NULL
);
4725 goto show_valid_cards
;
4730 static void select_vgahw (const char *p
)
4734 cirrus_vga_enabled
= 0;
4735 std_vga_enabled
= 0;
4738 if (strstart(p
, "std", &opts
)) {
4739 std_vga_enabled
= 1;
4740 } else if (strstart(p
, "cirrus", &opts
)) {
4741 cirrus_vga_enabled
= 1;
4742 } else if (strstart(p
, "vmware", &opts
)) {
4744 } else if (strstart(p
, "xenfb", &opts
)) {
4746 } else if (!strstart(p
, "none", &opts
)) {
4748 fprintf(stderr
, "Unknown vga type: %s\n", p
);
4752 const char *nextopt
;
4754 if (strstart(opts
, ",retrace=", &nextopt
)) {
4756 if (strstart(opts
, "dumb", &nextopt
))
4757 vga_retrace_method
= VGA_RETRACE_DUMB
;
4758 else if (strstart(opts
, "precise", &nextopt
))
4759 vga_retrace_method
= VGA_RETRACE_PRECISE
;
4760 else goto invalid_vga
;
4761 } else goto invalid_vga
;
4767 static int balloon_parse(const char *arg
)
4772 if (!strcmp(arg
, "none")) {
4774 } else if (!strncmp(arg
, "virtio", 6)) {
4776 if (arg
[6] == ',') {
4778 if (get_param_value(buf
, sizeof(buf
), "addr", p
)) {
4779 virtio_balloon_devaddr
= strdup(buf
);
4790 static BOOL WINAPI
qemu_ctrl_handler(DWORD type
)
4792 exit(STATUS_CONTROL_C_EXIT
);
4797 int qemu_uuid_parse(const char *str
, uint8_t *uuid
)
4801 if(strlen(str
) != 36)
4804 ret
= sscanf(str
, UUID_FMT
, &uuid
[0], &uuid
[1], &uuid
[2], &uuid
[3],
4805 &uuid
[4], &uuid
[5], &uuid
[6], &uuid
[7], &uuid
[8], &uuid
[9],
4806 &uuid
[10], &uuid
[11], &uuid
[12], &uuid
[13], &uuid
[14], &uuid
[15]);
4812 smbios_add_field(1, offsetof(struct smbios_type_1
, uuid
), 16, uuid
);
4818 #define MAX_NET_CLIENTS 32
4822 static void termsig_handler(int signal
)
4824 qemu_system_shutdown_request();
4827 static void sigchld_handler(int signal
)
4829 waitpid(-1, NULL
, WNOHANG
);
4832 static void sighandler_setup(void)
4834 struct sigaction act
;
4836 memset(&act
, 0, sizeof(act
));
4837 act
.sa_handler
= termsig_handler
;
4838 sigaction(SIGINT
, &act
, NULL
);
4839 sigaction(SIGHUP
, &act
, NULL
);
4840 sigaction(SIGTERM
, &act
, NULL
);
4842 act
.sa_handler
= sigchld_handler
;
4843 act
.sa_flags
= SA_NOCLDSTOP
;
4844 sigaction(SIGCHLD
, &act
, NULL
);
4850 /* Look for support files in the same directory as the executable. */
4851 static char *find_datadir(const char *argv0
)
4857 len
= GetModuleFileName(NULL
, buf
, sizeof(buf
) - 1);
4864 while (p
!= buf
&& *p
!= '\\')
4867 if (access(buf
, R_OK
) == 0) {
4868 return qemu_strdup(buf
);
4874 /* Find a likely location for support files using the location of the binary.
4875 For installed binaries this will be "$bindir/../share/qemu". When
4876 running from the build tree this will be "$bindir/../pc-bios". */
4877 #define SHARE_SUFFIX "/share/qemu"
4878 #define BUILD_SUFFIX "/pc-bios"
4879 static char *find_datadir(const char *argv0
)
4889 #if defined(__linux__)
4892 len
= readlink("/proc/self/exe", buf
, sizeof(buf
) - 1);
4898 #elif defined(__FreeBSD__)
4901 len
= readlink("/proc/curproc/file", buf
, sizeof(buf
) - 1);
4908 /* If we don't have any way of figuring out the actual executable
4909 location then try argv[0]. */
4914 p
= realpath(argv0
, p
);
4922 max_len
= strlen(dir
) +
4923 MAX(strlen(SHARE_SUFFIX
), strlen(BUILD_SUFFIX
)) + 1;
4924 res
= qemu_mallocz(max_len
);
4925 snprintf(res
, max_len
, "%s%s", dir
, SHARE_SUFFIX
);
4926 if (access(res
, R_OK
)) {
4927 snprintf(res
, max_len
, "%s%s", dir
, BUILD_SUFFIX
);
4928 if (access(res
, R_OK
)) {
4942 char *qemu_find_file(int type
, const char *name
)
4948 /* If name contains path separators then try it as a straight path. */
4949 if ((strchr(name
, '/') || strchr(name
, '\\'))
4950 && access(name
, R_OK
) == 0) {
4951 return strdup(name
);
4954 case QEMU_FILE_TYPE_BIOS
:
4957 case QEMU_FILE_TYPE_KEYMAP
:
4958 subdir
= "keymaps/";
4963 len
= strlen(data_dir
) + strlen(name
) + strlen(subdir
) + 2;
4964 buf
= qemu_mallocz(len
);
4965 snprintf(buf
, len
, "%s/%s%s", data_dir
, subdir
, name
);
4966 if (access(buf
, R_OK
)) {
4973 int main(int argc
, char **argv
, char **envp
)
4975 const char *gdbstub_dev
= NULL
;
4976 uint32_t boot_devices_bitmap
= 0;
4978 int snapshot
, linux_boot
, net_boot
;
4979 const char *initrd_filename
;
4980 const char *kernel_filename
, *kernel_cmdline
;
4981 const char *boot_devices
= "";
4983 DisplayChangeListener
*dcl
;
4984 int cyls
, heads
, secs
, translation
;
4985 const char *net_clients
[MAX_NET_CLIENTS
];
4987 const char *bt_opts
[MAX_BT_CMDLINE
];
4991 const char *r
, *optarg
;
4992 CharDriverState
*monitor_hd
= NULL
;
4993 const char *monitor_device
;
4994 const char *serial_devices
[MAX_SERIAL_PORTS
];
4995 int serial_device_index
;
4996 const char *parallel_devices
[MAX_PARALLEL_PORTS
];
4997 int parallel_device_index
;
4998 const char *virtio_consoles
[MAX_VIRTIO_CONSOLES
];
4999 int virtio_console_index
;
5000 const char *loadvm
= NULL
;
5001 QEMUMachine
*machine
;
5002 const char *cpu_model
;
5003 const char *usb_devices
[MAX_USB_CMDLINE
];
5004 int usb_devices_index
;
5009 const char *pid_file
= NULL
;
5010 const char *incoming
= NULL
;
5013 struct passwd
*pwd
= NULL
;
5014 const char *chroot_dir
= NULL
;
5015 const char *run_as
= NULL
;
5018 int show_vnc_port
= 0;
5020 qemu_cache_utils_init(envp
);
5022 LIST_INIT (&vm_change_state_head
);
5025 struct sigaction act
;
5026 sigfillset(&act
.sa_mask
);
5028 act
.sa_handler
= SIG_IGN
;
5029 sigaction(SIGPIPE
, &act
, NULL
);
5032 SetConsoleCtrlHandler(qemu_ctrl_handler
, TRUE
);
5033 /* Note: cpu_interrupt() is currently not SMP safe, so we force
5034 QEMU to run on a single CPU */
5039 h
= GetCurrentProcess();
5040 if (GetProcessAffinityMask(h
, &mask
, &smask
)) {
5041 for(i
= 0; i
< 32; i
++) {
5042 if (mask
& (1 << i
))
5047 SetProcessAffinityMask(h
, mask
);
5053 module_call_init(MODULE_INIT_MACHINE
);
5054 machine
= find_default_machine();
5056 initrd_filename
= NULL
;
5059 kernel_filename
= NULL
;
5060 kernel_cmdline
= "";
5061 cyls
= heads
= secs
= 0;
5062 translation
= BIOS_ATA_TRANSLATION_AUTO
;
5063 monitor_device
= "vc:80Cx24C";
5065 serial_devices
[0] = "vc:80Cx24C";
5066 for(i
= 1; i
< MAX_SERIAL_PORTS
; i
++)
5067 serial_devices
[i
] = NULL
;
5068 serial_device_index
= 0;
5070 parallel_devices
[0] = "vc:80Cx24C";
5071 for(i
= 1; i
< MAX_PARALLEL_PORTS
; i
++)
5072 parallel_devices
[i
] = NULL
;
5073 parallel_device_index
= 0;
5075 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++)
5076 virtio_consoles
[i
] = NULL
;
5077 virtio_console_index
= 0;
5079 for (i
= 0; i
< MAX_NODES
; i
++) {
5081 node_cpumask
[i
] = 0;
5084 usb_devices_index
= 0;
5098 register_watchdogs();
5106 hda_index
= drive_add(argv
[optind
++], HD_ALIAS
, 0);
5108 const QEMUOption
*popt
;
5111 /* Treat --foo the same as -foo. */
5114 popt
= qemu_options
;
5117 fprintf(stderr
, "%s: invalid option -- '%s'\n",
5121 if (!strcmp(popt
->name
, r
+ 1))
5125 if (popt
->flags
& HAS_ARG
) {
5126 if (optind
>= argc
) {
5127 fprintf(stderr
, "%s: option '%s' requires an argument\n",
5131 optarg
= argv
[optind
++];
5136 switch(popt
->index
) {
5138 machine
= find_machine(optarg
);
5141 printf("Supported machines are:\n");
5142 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
5143 printf("%-10s %s%s\n",
5145 m
->is_default
? " (default)" : "");
5147 exit(*optarg
!= '?');
5150 case QEMU_OPTION_cpu
:
5151 /* hw initialization will check this */
5152 if (*optarg
== '?') {
5153 /* XXX: implement xxx_cpu_list for targets that still miss it */
5154 #if defined(cpu_list)
5155 cpu_list(stdout
, &fprintf
);
5162 case QEMU_OPTION_initrd
:
5163 initrd_filename
= optarg
;
5165 case QEMU_OPTION_hda
:
5167 hda_index
= drive_add(optarg
, HD_ALIAS
, 0);
5169 hda_index
= drive_add(optarg
, HD_ALIAS
5170 ",cyls=%d,heads=%d,secs=%d%s",
5171 0, cyls
, heads
, secs
,
5172 translation
== BIOS_ATA_TRANSLATION_LBA
?
5174 translation
== BIOS_ATA_TRANSLATION_NONE
?
5175 ",trans=none" : "");
5177 case QEMU_OPTION_hdb
:
5178 case QEMU_OPTION_hdc
:
5179 case QEMU_OPTION_hdd
:
5180 drive_add(optarg
, HD_ALIAS
, popt
->index
- QEMU_OPTION_hda
);
5182 case QEMU_OPTION_drive
:
5183 drive_add(NULL
, "%s", optarg
);
5185 case QEMU_OPTION_mtdblock
:
5186 drive_add(optarg
, MTD_ALIAS
);
5188 case QEMU_OPTION_sd
:
5189 drive_add(optarg
, SD_ALIAS
);
5191 case QEMU_OPTION_pflash
:
5192 drive_add(optarg
, PFLASH_ALIAS
);
5194 case QEMU_OPTION_snapshot
:
5197 case QEMU_OPTION_hdachs
:
5201 cyls
= strtol(p
, (char **)&p
, 0);
5202 if (cyls
< 1 || cyls
> 16383)
5207 heads
= strtol(p
, (char **)&p
, 0);
5208 if (heads
< 1 || heads
> 16)
5213 secs
= strtol(p
, (char **)&p
, 0);
5214 if (secs
< 1 || secs
> 63)
5218 if (!strcmp(p
, "none"))
5219 translation
= BIOS_ATA_TRANSLATION_NONE
;
5220 else if (!strcmp(p
, "lba"))
5221 translation
= BIOS_ATA_TRANSLATION_LBA
;
5222 else if (!strcmp(p
, "auto"))
5223 translation
= BIOS_ATA_TRANSLATION_AUTO
;
5226 } else if (*p
!= '\0') {
5228 fprintf(stderr
, "qemu: invalid physical CHS format\n");
5231 if (hda_index
!= -1)
5232 snprintf(drives_opt
[hda_index
].opt
,
5233 sizeof(drives_opt
[hda_index
].opt
),
5234 HD_ALIAS
",cyls=%d,heads=%d,secs=%d%s",
5235 0, cyls
, heads
, secs
,
5236 translation
== BIOS_ATA_TRANSLATION_LBA
?
5238 translation
== BIOS_ATA_TRANSLATION_NONE
?
5239 ",trans=none" : "");
5242 case QEMU_OPTION_numa
:
5243 if (nb_numa_nodes
>= MAX_NODES
) {
5244 fprintf(stderr
, "qemu: too many NUMA nodes\n");
5249 case QEMU_OPTION_nographic
:
5250 display_type
= DT_NOGRAPHIC
;
5252 #ifdef CONFIG_CURSES
5253 case QEMU_OPTION_curses
:
5254 display_type
= DT_CURSES
;
5257 case QEMU_OPTION_portrait
:
5260 case QEMU_OPTION_kernel
:
5261 kernel_filename
= optarg
;
5263 case QEMU_OPTION_append
:
5264 kernel_cmdline
= optarg
;
5266 case QEMU_OPTION_cdrom
:
5267 drive_add(optarg
, CDROM_ALIAS
);
5269 case QEMU_OPTION_boot
:
5270 boot_devices
= optarg
;
5271 /* We just do some generic consistency checks */
5273 /* Could easily be extended to 64 devices if needed */
5276 boot_devices_bitmap
= 0;
5277 for (p
= boot_devices
; *p
!= '\0'; p
++) {
5278 /* Allowed boot devices are:
5279 * a b : floppy disk drives
5280 * c ... f : IDE disk drives
5281 * g ... m : machine implementation dependant drives
5282 * n ... p : network devices
5283 * It's up to each machine implementation to check
5284 * if the given boot devices match the actual hardware
5285 * implementation and firmware features.
5287 if (*p
< 'a' || *p
> 'q') {
5288 fprintf(stderr
, "Invalid boot device '%c'\n", *p
);
5291 if (boot_devices_bitmap
& (1 << (*p
- 'a'))) {
5293 "Boot device '%c' was given twice\n",*p
);
5296 boot_devices_bitmap
|= 1 << (*p
- 'a');
5300 case QEMU_OPTION_fda
:
5301 case QEMU_OPTION_fdb
:
5302 drive_add(optarg
, FD_ALIAS
, popt
->index
- QEMU_OPTION_fda
);
5305 case QEMU_OPTION_no_fd_bootchk
:
5309 case QEMU_OPTION_net
:
5310 if (nb_net_clients
>= MAX_NET_CLIENTS
) {
5311 fprintf(stderr
, "qemu: too many network clients\n");
5314 net_clients
[nb_net_clients
] = optarg
;
5318 case QEMU_OPTION_tftp
:
5319 legacy_tftp_prefix
= optarg
;
5321 case QEMU_OPTION_bootp
:
5322 legacy_bootp_filename
= optarg
;
5325 case QEMU_OPTION_smb
:
5326 net_slirp_smb(optarg
);
5329 case QEMU_OPTION_redir
:
5330 net_slirp_redir(optarg
);
5333 case QEMU_OPTION_bt
:
5334 if (nb_bt_opts
>= MAX_BT_CMDLINE
) {
5335 fprintf(stderr
, "qemu: too many bluetooth options\n");
5338 bt_opts
[nb_bt_opts
++] = optarg
;
5341 case QEMU_OPTION_audio_help
:
5345 case QEMU_OPTION_soundhw
:
5346 select_soundhw (optarg
);
5352 case QEMU_OPTION_version
:
5356 case QEMU_OPTION_m
: {
5360 value
= strtoul(optarg
, &ptr
, 10);
5362 case 0: case 'M': case 'm':
5369 fprintf(stderr
, "qemu: invalid ram size: %s\n", optarg
);
5373 /* On 32-bit hosts, QEMU is limited by virtual address space */
5374 if (value
> (2047 << 20)
5375 #ifndef CONFIG_KQEMU
5376 && HOST_LONG_BITS
== 32
5379 fprintf(stderr
, "qemu: at most 2047 MB RAM can be simulated\n");
5382 if (value
!= (uint64_t)(ram_addr_t
)value
) {
5383 fprintf(stderr
, "qemu: ram size too large\n");
5392 const CPULogItem
*item
;
5394 mask
= cpu_str_to_log_mask(optarg
);
5396 printf("Log items (comma separated):\n");
5397 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
5398 printf("%-10s %s\n", item
->name
, item
->help
);
5406 gdbstub_dev
= "tcp::" DEFAULT_GDBSTUB_PORT
;
5408 case QEMU_OPTION_gdb
:
5409 gdbstub_dev
= optarg
;
5414 case QEMU_OPTION_bios
:
5417 case QEMU_OPTION_singlestep
:
5425 keyboard_layout
= optarg
;
5428 case QEMU_OPTION_localtime
:
5431 case QEMU_OPTION_vga
:
5432 select_vgahw (optarg
);
5434 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5440 w
= strtol(p
, (char **)&p
, 10);
5443 fprintf(stderr
, "qemu: invalid resolution or depth\n");
5449 h
= strtol(p
, (char **)&p
, 10);
5454 depth
= strtol(p
, (char **)&p
, 10);
5455 if (depth
!= 8 && depth
!= 15 && depth
!= 16 &&
5456 depth
!= 24 && depth
!= 32)
5458 } else if (*p
== '\0') {
5459 depth
= graphic_depth
;
5466 graphic_depth
= depth
;
5470 case QEMU_OPTION_echr
:
5473 term_escape_char
= strtol(optarg
, &r
, 0);
5475 printf("Bad argument to echr\n");
5478 case QEMU_OPTION_monitor
:
5479 monitor_device
= optarg
;
5481 case QEMU_OPTION_serial
:
5482 if (serial_device_index
>= MAX_SERIAL_PORTS
) {
5483 fprintf(stderr
, "qemu: too many serial ports\n");
5486 serial_devices
[serial_device_index
] = optarg
;
5487 serial_device_index
++;
5489 case QEMU_OPTION_watchdog
:
5490 i
= select_watchdog(optarg
);
5492 exit (i
== 1 ? 1 : 0);
5494 case QEMU_OPTION_watchdog_action
:
5495 if (select_watchdog_action(optarg
) == -1) {
5496 fprintf(stderr
, "Unknown -watchdog-action parameter\n");
5500 case QEMU_OPTION_virtiocon
:
5501 if (virtio_console_index
>= MAX_VIRTIO_CONSOLES
) {
5502 fprintf(stderr
, "qemu: too many virtio consoles\n");
5505 virtio_consoles
[virtio_console_index
] = optarg
;
5506 virtio_console_index
++;
5508 case QEMU_OPTION_parallel
:
5509 if (parallel_device_index
>= MAX_PARALLEL_PORTS
) {
5510 fprintf(stderr
, "qemu: too many parallel ports\n");
5513 parallel_devices
[parallel_device_index
] = optarg
;
5514 parallel_device_index
++;
5516 case QEMU_OPTION_loadvm
:
5519 case QEMU_OPTION_full_screen
:
5523 case QEMU_OPTION_no_frame
:
5526 case QEMU_OPTION_alt_grab
:
5529 case QEMU_OPTION_no_quit
:
5532 case QEMU_OPTION_sdl
:
5533 display_type
= DT_SDL
;
5536 case QEMU_OPTION_pidfile
:
5540 case QEMU_OPTION_win2k_hack
:
5541 win2k_install_hack
= 1;
5543 case QEMU_OPTION_rtc_td_hack
:
5546 case QEMU_OPTION_acpitable
:
5547 if(acpi_table_add(optarg
) < 0) {
5548 fprintf(stderr
, "Wrong acpi table provided\n");
5552 case QEMU_OPTION_smbios
:
5553 if(smbios_entry_add(optarg
) < 0) {
5554 fprintf(stderr
, "Wrong smbios provided\n");
5560 case QEMU_OPTION_no_kqemu
:
5563 case QEMU_OPTION_kernel_kqemu
:
5568 case QEMU_OPTION_enable_kvm
:
5575 case QEMU_OPTION_usb
:
5578 case QEMU_OPTION_usbdevice
:
5580 if (usb_devices_index
>= MAX_USB_CMDLINE
) {
5581 fprintf(stderr
, "Too many USB devices\n");
5584 usb_devices
[usb_devices_index
] = optarg
;
5585 usb_devices_index
++;
5587 case QEMU_OPTION_smp
:
5588 smp_cpus
= atoi(optarg
);
5590 fprintf(stderr
, "Invalid number of CPUs\n");
5594 case QEMU_OPTION_vnc
:
5595 display_type
= DT_VNC
;
5596 vnc_display
= optarg
;
5599 case QEMU_OPTION_no_acpi
:
5602 case QEMU_OPTION_no_hpet
:
5605 case QEMU_OPTION_balloon
:
5606 if (balloon_parse(optarg
) < 0) {
5607 fprintf(stderr
, "Unknown -balloon argument %s\n", optarg
);
5612 case QEMU_OPTION_no_reboot
:
5615 case QEMU_OPTION_no_shutdown
:
5618 case QEMU_OPTION_show_cursor
:
5621 case QEMU_OPTION_uuid
:
5622 if(qemu_uuid_parse(optarg
, qemu_uuid
) < 0) {
5623 fprintf(stderr
, "Fail to parse UUID string."
5624 " Wrong format.\n");
5629 case QEMU_OPTION_daemonize
:
5633 case QEMU_OPTION_option_rom
:
5634 if (nb_option_roms
>= MAX_OPTION_ROMS
) {
5635 fprintf(stderr
, "Too many option ROMs\n");
5638 option_rom
[nb_option_roms
] = optarg
;
5641 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5642 case QEMU_OPTION_semihosting
:
5643 semihosting_enabled
= 1;
5646 case QEMU_OPTION_name
:
5649 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5650 case QEMU_OPTION_prom_env
:
5651 if (nb_prom_envs
>= MAX_PROM_ENVS
) {
5652 fprintf(stderr
, "Too many prom variables\n");
5655 prom_envs
[nb_prom_envs
] = optarg
;
5660 case QEMU_OPTION_old_param
:
5664 case QEMU_OPTION_clock
:
5665 configure_alarms(optarg
);
5667 case QEMU_OPTION_startdate
:
5670 time_t rtc_start_date
;
5671 if (!strcmp(optarg
, "now")) {
5672 rtc_date_offset
= -1;
5674 if (sscanf(optarg
, "%d-%d-%dT%d:%d:%d",
5682 } else if (sscanf(optarg
, "%d-%d-%d",
5685 &tm
.tm_mday
) == 3) {
5694 rtc_start_date
= mktimegm(&tm
);
5695 if (rtc_start_date
== -1) {
5697 fprintf(stderr
, "Invalid date format. Valid format are:\n"
5698 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5701 rtc_date_offset
= time(NULL
) - rtc_start_date
;
5705 case QEMU_OPTION_tb_size
:
5706 tb_size
= strtol(optarg
, NULL
, 0);
5710 case QEMU_OPTION_icount
:
5712 if (strcmp(optarg
, "auto") == 0) {
5713 icount_time_shift
= -1;
5715 icount_time_shift
= strtol(optarg
, NULL
, 0);
5718 case QEMU_OPTION_incoming
:
5722 case QEMU_OPTION_chroot
:
5723 chroot_dir
= optarg
;
5725 case QEMU_OPTION_runas
:
5730 case QEMU_OPTION_xen_domid
:
5731 xen_domid
= atoi(optarg
);
5733 case QEMU_OPTION_xen_create
:
5734 xen_mode
= XEN_CREATE
;
5736 case QEMU_OPTION_xen_attach
:
5737 xen_mode
= XEN_ATTACH
;
5744 /* If no data_dir is specified then try to find it relative to the
5747 data_dir
= find_datadir(argv
[0]);
5749 /* If all else fails use the install patch specified when building. */
5751 data_dir
= CONFIG_QEMU_SHAREDIR
;
5754 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5755 if (kvm_allowed
&& kqemu_allowed
) {
5757 "You can not enable both KVM and kqemu at the same time\n");
5762 machine
->max_cpus
= machine
->max_cpus
?: 1; /* Default to UP */
5763 if (smp_cpus
> machine
->max_cpus
) {
5764 fprintf(stderr
, "Number of SMP cpus requested (%d), exceeds max cpus "
5765 "supported by machine `%s' (%d)\n", smp_cpus
, machine
->name
,
5770 if (display_type
== DT_NOGRAPHIC
) {
5771 if (serial_device_index
== 0)
5772 serial_devices
[0] = "stdio";
5773 if (parallel_device_index
== 0)
5774 parallel_devices
[0] = "null";
5775 if (strncmp(monitor_device
, "vc", 2) == 0)
5776 monitor_device
= "stdio";
5783 if (pipe(fds
) == -1)
5794 len
= read(fds
[0], &status
, 1);
5795 if (len
== -1 && (errno
== EINTR
))
5800 else if (status
== 1) {
5801 fprintf(stderr
, "Could not acquire pidfile\n");
5818 signal(SIGTSTP
, SIG_IGN
);
5819 signal(SIGTTOU
, SIG_IGN
);
5820 signal(SIGTTIN
, SIG_IGN
);
5823 if (pid_file
&& qemu_create_pidfile(pid_file
) != 0) {
5826 write(fds
[1], &status
, 1);
5828 fprintf(stderr
, "Could not acquire pid file\n");
5837 if (qemu_init_main_loop()) {
5838 fprintf(stderr
, "qemu_init_main_loop failed\n");
5841 linux_boot
= (kernel_filename
!= NULL
);
5843 if (!linux_boot
&& *kernel_cmdline
!= '\0') {
5844 fprintf(stderr
, "-append only allowed with -kernel option\n");
5848 if (!linux_boot
&& initrd_filename
!= NULL
) {
5849 fprintf(stderr
, "-initrd only allowed with -kernel option\n");
5853 /* boot to floppy or the default cd if no hard disk defined yet */
5854 if (!boot_devices
[0]) {
5855 boot_devices
= "cad";
5857 setvbuf(stdout
, NULL
, _IOLBF
, 0);
5860 if (init_timer_alarm() < 0) {
5861 fprintf(stderr
, "could not initialize alarm timer\n");
5864 if (use_icount
&& icount_time_shift
< 0) {
5866 /* 125MIPS seems a reasonable initial guess at the guest speed.
5867 It will be corrected fairly quickly anyway. */
5868 icount_time_shift
= 3;
5869 init_icount_adjust();
5876 /* init network clients */
5877 if (nb_net_clients
== 0) {
5878 /* if no clients, we use a default config */
5879 net_clients
[nb_net_clients
++] = "nic";
5881 net_clients
[nb_net_clients
++] = "user";
5885 for(i
= 0;i
< nb_net_clients
; i
++) {
5886 if (net_client_parse(net_clients
[i
]) < 0)
5890 net_boot
= (boot_devices_bitmap
>> ('n' - 'a')) & 0xF;
5891 net_set_boot_mask(net_boot
);
5895 /* init the bluetooth world */
5896 for (i
= 0; i
< nb_bt_opts
; i
++)
5897 if (bt_parse(bt_opts
[i
]))
5900 /* init the memory */
5902 ram_size
= DEFAULT_RAM_SIZE
* 1024 * 1024;
5905 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5906 guest ram allocation. It needs to go away. */
5907 if (kqemu_allowed
) {
5908 kqemu_phys_ram_size
= ram_size
+ 8 * 1024 * 1024 + 4 * 1024 * 1024;
5909 kqemu_phys_ram_base
= qemu_vmalloc(kqemu_phys_ram_size
);
5910 if (!kqemu_phys_ram_base
) {
5911 fprintf(stderr
, "Could not allocate physical memory\n");
5917 /* init the dynamic translator */
5918 cpu_exec_init_all(tb_size
* 1024 * 1024);
5922 /* we always create the cdrom drive, even if no disk is there */
5924 if (nb_drives_opt
< MAX_DRIVES
)
5925 drive_add(NULL
, CDROM_ALIAS
);
5927 /* we always create at least one floppy */
5929 if (nb_drives_opt
< MAX_DRIVES
)
5930 drive_add(NULL
, FD_ALIAS
, 0);
5932 /* we always create one sd slot, even if no card is in it */
5934 if (nb_drives_opt
< MAX_DRIVES
)
5935 drive_add(NULL
, SD_ALIAS
);
5937 /* open the virtual block devices */
5939 for(i
= 0; i
< nb_drives_opt
; i
++)
5940 if (drive_init(&drives_opt
[i
], snapshot
, machine
) == -1)
5943 register_savevm("timer", 0, 2, timer_save
, timer_load
, NULL
);
5944 register_savevm_live("ram", 0, 3, ram_save_live
, NULL
, ram_load
, NULL
);
5947 /* must be after terminal init, SDL library changes signal handlers */
5951 /* Maintain compatibility with multiple stdio monitors */
5952 if (!strcmp(monitor_device
,"stdio")) {
5953 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5954 const char *devname
= serial_devices
[i
];
5955 if (devname
&& !strcmp(devname
,"mon:stdio")) {
5956 monitor_device
= NULL
;
5958 } else if (devname
&& !strcmp(devname
,"stdio")) {
5959 monitor_device
= NULL
;
5960 serial_devices
[i
] = "mon:stdio";
5966 if (nb_numa_nodes
> 0) {
5969 if (nb_numa_nodes
> smp_cpus
) {
5970 nb_numa_nodes
= smp_cpus
;
5973 /* If no memory size if given for any node, assume the default case
5974 * and distribute the available memory equally across all nodes
5976 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5977 if (node_mem
[i
] != 0)
5980 if (i
== nb_numa_nodes
) {
5981 uint64_t usedmem
= 0;
5983 /* On Linux, the each node's border has to be 8MB aligned,
5984 * the final node gets the rest.
5986 for (i
= 0; i
< nb_numa_nodes
- 1; i
++) {
5987 node_mem
[i
] = (ram_size
/ nb_numa_nodes
) & ~((1 << 23UL) - 1);
5988 usedmem
+= node_mem
[i
];
5990 node_mem
[i
] = ram_size
- usedmem
;
5993 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5994 if (node_cpumask
[i
] != 0)
5997 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5998 * must cope with this anyway, because there are BIOSes out there in
5999 * real machines which also use this scheme.
6001 if (i
== nb_numa_nodes
) {
6002 for (i
= 0; i
< smp_cpus
; i
++) {
6003 node_cpumask
[i
% nb_numa_nodes
] |= 1 << i
;
6008 if (kvm_enabled()) {
6011 ret
= kvm_init(smp_cpus
);
6013 fprintf(stderr
, "failed to initialize KVM\n");
6018 if (monitor_device
) {
6019 monitor_hd
= qemu_chr_open("monitor", monitor_device
, NULL
);
6021 fprintf(stderr
, "qemu: could not open monitor device '%s'\n", monitor_device
);
6026 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
6027 const char *devname
= serial_devices
[i
];
6028 if (devname
&& strcmp(devname
, "none")) {
6030 snprintf(label
, sizeof(label
), "serial%d", i
);
6031 serial_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
6032 if (!serial_hds
[i
]) {
6033 fprintf(stderr
, "qemu: could not open serial device '%s'\n",
6040 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
6041 const char *devname
= parallel_devices
[i
];
6042 if (devname
&& strcmp(devname
, "none")) {
6044 snprintf(label
, sizeof(label
), "parallel%d", i
);
6045 parallel_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
6046 if (!parallel_hds
[i
]) {
6047 fprintf(stderr
, "qemu: could not open parallel device '%s'\n",
6054 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
6055 const char *devname
= virtio_consoles
[i
];
6056 if (devname
&& strcmp(devname
, "none")) {
6058 snprintf(label
, sizeof(label
), "virtcon%d", i
);
6059 virtcon_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
6060 if (!virtcon_hds
[i
]) {
6061 fprintf(stderr
, "qemu: could not open virtio console '%s'\n",
6068 module_call_init(MODULE_INIT_DEVICE
);
6070 machine
->init(ram_size
, boot_devices
,
6071 kernel_filename
, kernel_cmdline
, initrd_filename
, cpu_model
);
6074 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
6075 for (i
= 0; i
< nb_numa_nodes
; i
++) {
6076 if (node_cpumask
[i
] & (1 << env
->cpu_index
)) {
6082 current_machine
= machine
;
6084 /* init USB devices */
6086 for(i
= 0; i
< usb_devices_index
; i
++) {
6087 if (usb_device_add(usb_devices
[i
], 0) < 0) {
6088 fprintf(stderr
, "Warning: could not add USB device %s\n",
6095 dumb_display_init();
6096 /* just use the first displaystate for the moment */
6099 if (display_type
== DT_DEFAULT
) {
6100 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
6101 display_type
= DT_SDL
;
6103 display_type
= DT_VNC
;
6104 vnc_display
= "localhost:0,to=99";
6110 switch (display_type
) {
6113 #if defined(CONFIG_CURSES)
6115 curses_display_init(ds
, full_screen
);
6118 #if defined(CONFIG_SDL)
6120 sdl_display_init(ds
, full_screen
, no_frame
);
6122 #elif defined(CONFIG_COCOA)
6124 cocoa_display_init(ds
, full_screen
);
6128 vnc_display_init(ds
);
6129 if (vnc_display_open(ds
, vnc_display
) < 0)
6132 if (show_vnc_port
) {
6133 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds
));
6141 dcl
= ds
->listeners
;
6142 while (dcl
!= NULL
) {
6143 if (dcl
->dpy_refresh
!= NULL
) {
6144 ds
->gui_timer
= qemu_new_timer(rt_clock
, gui_update
, ds
);
6145 qemu_mod_timer(ds
->gui_timer
, qemu_get_clock(rt_clock
));
6150 if (display_type
== DT_NOGRAPHIC
|| display_type
== DT_VNC
) {
6151 nographic_timer
= qemu_new_timer(rt_clock
, nographic_update
, NULL
);
6152 qemu_mod_timer(nographic_timer
, qemu_get_clock(rt_clock
));
6155 text_consoles_set_display(display_state
);
6156 qemu_chr_initial_reset();
6158 if (monitor_device
&& monitor_hd
)
6159 monitor_init(monitor_hd
, MONITOR_USE_READLINE
| MONITOR_IS_DEFAULT
);
6161 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
6162 const char *devname
= serial_devices
[i
];
6163 if (devname
&& strcmp(devname
, "none")) {
6164 if (strstart(devname
, "vc", 0))
6165 qemu_chr_printf(serial_hds
[i
], "serial%d console\r\n", i
);
6169 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
6170 const char *devname
= parallel_devices
[i
];
6171 if (devname
&& strcmp(devname
, "none")) {
6172 if (strstart(devname
, "vc", 0))
6173 qemu_chr_printf(parallel_hds
[i
], "parallel%d console\r\n", i
);
6177 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
6178 const char *devname
= virtio_consoles
[i
];
6179 if (virtcon_hds
[i
] && devname
) {
6180 if (strstart(devname
, "vc", 0))
6181 qemu_chr_printf(virtcon_hds
[i
], "virtio console%d\r\n", i
);
6185 if (gdbstub_dev
&& gdbserver_start(gdbstub_dev
) < 0) {
6186 fprintf(stderr
, "qemu: could not open gdbserver on device '%s'\n",
6192 do_loadvm(cur_mon
, loadvm
);
6195 autostart
= 0; /* fixme how to deal with -daemonize */
6196 qemu_start_incoming_migration(incoming
);
6208 len
= write(fds
[1], &status
, 1);
6209 if (len
== -1 && (errno
== EINTR
))
6216 TFR(fd
= open("/dev/null", O_RDWR
));
6222 pwd
= getpwnam(run_as
);
6224 fprintf(stderr
, "User \"%s\" doesn't exist\n", run_as
);
6230 if (chroot(chroot_dir
) < 0) {
6231 fprintf(stderr
, "chroot failed\n");
6238 if (setgid(pwd
->pw_gid
) < 0) {
6239 fprintf(stderr
, "Failed to setgid(%d)\n", pwd
->pw_gid
);
6242 if (setuid(pwd
->pw_uid
) < 0) {
6243 fprintf(stderr
, "Failed to setuid(%d)\n", pwd
->pw_uid
);
6246 if (setuid(0) != -1) {
6247 fprintf(stderr
, "Dropping privileges failed\n");