spapr_pci: fix multifunction hotplug
[qemu.git] / hw / ppc / spapr_pci.c
blob9f40db2be865518e3e054c7d7b64e8e294141584
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/sysbus.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/msi.h"
30 #include "hw/pci/msix.h"
31 #include "hw/pci/pci_host.h"
32 #include "hw/ppc/spapr.h"
33 #include "hw/pci-host/spapr.h"
34 #include "exec/address-spaces.h"
35 #include <libfdt.h>
36 #include "trace.h"
37 #include "qemu/error-report.h"
38 #include "qapi/qmp/qerror.h"
40 #include "hw/pci/pci_bridge.h"
41 #include "hw/pci/pci_bus.h"
42 #include "hw/ppc/spapr_drc.h"
43 #include "sysemu/device_tree.h"
45 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
46 #define RTAS_QUERY_FN 0
47 #define RTAS_CHANGE_FN 1
48 #define RTAS_RESET_FN 2
49 #define RTAS_CHANGE_MSI_FN 3
50 #define RTAS_CHANGE_MSIX_FN 4
52 /* Interrupt types to return on RTAS_CHANGE_* */
53 #define RTAS_TYPE_MSI 1
54 #define RTAS_TYPE_MSIX 2
56 #define FDT_NAME_MAX 128
58 #define _FDT(exp) \
59 do { \
60 int ret = (exp); \
61 if (ret < 0) { \
62 return ret; \
63 } \
64 } while (0)
66 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
68 sPAPRPHBState *sphb;
70 QLIST_FOREACH(sphb, &spapr->phbs, list) {
71 if (sphb->buid != buid) {
72 continue;
74 return sphb;
77 return NULL;
80 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
81 uint32_t config_addr)
83 sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
84 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
85 int bus_num = (config_addr >> 16) & 0xFF;
86 int devfn = (config_addr >> 8) & 0xFF;
88 if (!phb) {
89 return NULL;
92 return pci_find_device(phb->bus, bus_num, devfn);
95 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
97 /* This handles the encoding of extended config space addresses */
98 return ((arg >> 20) & 0xf00) | (arg & 0xff);
101 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
102 uint32_t addr, uint32_t size,
103 target_ulong rets)
105 PCIDevice *pci_dev;
106 uint32_t val;
108 if ((size != 1) && (size != 2) && (size != 4)) {
109 /* access must be 1, 2 or 4 bytes */
110 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
111 return;
114 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
115 addr = rtas_pci_cfgaddr(addr);
117 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
118 /* Access must be to a valid device, within bounds and
119 * naturally aligned */
120 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
121 return;
124 val = pci_host_config_read_common(pci_dev, addr,
125 pci_config_size(pci_dev), size);
127 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
128 rtas_st(rets, 1, val);
131 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
132 uint32_t token, uint32_t nargs,
133 target_ulong args,
134 uint32_t nret, target_ulong rets)
136 uint64_t buid;
137 uint32_t size, addr;
139 if ((nargs != 4) || (nret != 2)) {
140 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
141 return;
144 buid = rtas_ldq(args, 1);
145 size = rtas_ld(args, 3);
146 addr = rtas_ld(args, 0);
148 finish_read_pci_config(spapr, buid, addr, size, rets);
151 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
152 uint32_t token, uint32_t nargs,
153 target_ulong args,
154 uint32_t nret, target_ulong rets)
156 uint32_t size, addr;
158 if ((nargs != 2) || (nret != 2)) {
159 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
160 return;
163 size = rtas_ld(args, 1);
164 addr = rtas_ld(args, 0);
166 finish_read_pci_config(spapr, 0, addr, size, rets);
169 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
170 uint32_t addr, uint32_t size,
171 uint32_t val, target_ulong rets)
173 PCIDevice *pci_dev;
175 if ((size != 1) && (size != 2) && (size != 4)) {
176 /* access must be 1, 2 or 4 bytes */
177 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
178 return;
181 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
182 addr = rtas_pci_cfgaddr(addr);
184 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
185 /* Access must be to a valid device, within bounds and
186 * naturally aligned */
187 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
188 return;
191 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
192 val, size);
194 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
197 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
198 uint32_t token, uint32_t nargs,
199 target_ulong args,
200 uint32_t nret, target_ulong rets)
202 uint64_t buid;
203 uint32_t val, size, addr;
205 if ((nargs != 5) || (nret != 1)) {
206 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
207 return;
210 buid = rtas_ldq(args, 1);
211 val = rtas_ld(args, 4);
212 size = rtas_ld(args, 3);
213 addr = rtas_ld(args, 0);
215 finish_write_pci_config(spapr, buid, addr, size, val, rets);
218 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
219 uint32_t token, uint32_t nargs,
220 target_ulong args,
221 uint32_t nret, target_ulong rets)
223 uint32_t val, size, addr;
225 if ((nargs != 3) || (nret != 1)) {
226 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
227 return;
231 val = rtas_ld(args, 2);
232 size = rtas_ld(args, 1);
233 addr = rtas_ld(args, 0);
235 finish_write_pci_config(spapr, 0, addr, size, val, rets);
239 * Set MSI/MSIX message data.
240 * This is required for msi_notify()/msix_notify() which
241 * will write at the addresses via spapr_msi_write().
243 * If hwaddr == 0, all entries will have .data == first_irq i.e.
244 * table will be reset.
246 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
247 unsigned first_irq, unsigned req_num)
249 unsigned i;
250 MSIMessage msg = { .address = addr, .data = first_irq };
252 if (!msix) {
253 msi_set_message(pdev, msg);
254 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
255 return;
258 for (i = 0; i < req_num; ++i) {
259 msix_set_message(pdev, i, msg);
260 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
261 if (addr) {
262 ++msg.data;
267 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
268 uint32_t token, uint32_t nargs,
269 target_ulong args, uint32_t nret,
270 target_ulong rets)
272 uint32_t config_addr = rtas_ld(args, 0);
273 uint64_t buid = rtas_ldq(args, 1);
274 unsigned int func = rtas_ld(args, 3);
275 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
276 unsigned int seq_num = rtas_ld(args, 5);
277 unsigned int ret_intr_type;
278 unsigned int irq, max_irqs = 0;
279 sPAPRPHBState *phb = NULL;
280 PCIDevice *pdev = NULL;
281 spapr_pci_msi *msi;
282 int *config_addr_key;
283 Error *err = NULL;
285 switch (func) {
286 case RTAS_CHANGE_MSI_FN:
287 case RTAS_CHANGE_FN:
288 ret_intr_type = RTAS_TYPE_MSI;
289 break;
290 case RTAS_CHANGE_MSIX_FN:
291 ret_intr_type = RTAS_TYPE_MSIX;
292 break;
293 default:
294 error_report("rtas_ibm_change_msi(%u) is not implemented", func);
295 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
296 return;
299 /* Fins sPAPRPHBState */
300 phb = spapr_pci_find_phb(spapr, buid);
301 if (phb) {
302 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
304 if (!phb || !pdev) {
305 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
306 return;
309 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
311 /* Releasing MSIs */
312 if (!req_num) {
313 if (!msi) {
314 trace_spapr_pci_msi("Releasing wrong config", config_addr);
315 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
316 return;
319 xics_free(spapr->icp, msi->first_irq, msi->num);
320 if (msi_present(pdev)) {
321 spapr_msi_setmsg(pdev, 0, false, 0, 0);
323 if (msix_present(pdev)) {
324 spapr_msi_setmsg(pdev, 0, true, 0, 0);
326 g_hash_table_remove(phb->msi, &config_addr);
328 trace_spapr_pci_msi("Released MSIs", config_addr);
329 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
330 rtas_st(rets, 1, 0);
331 return;
334 /* Enabling MSI */
336 /* Check if the device supports as many IRQs as requested */
337 if (ret_intr_type == RTAS_TYPE_MSI) {
338 max_irqs = msi_nr_vectors_allocated(pdev);
339 } else if (ret_intr_type == RTAS_TYPE_MSIX) {
340 max_irqs = pdev->msix_entries_nr;
342 if (!max_irqs) {
343 error_report("Requested interrupt type %d is not enabled for device %x",
344 ret_intr_type, config_addr);
345 rtas_st(rets, 0, -1); /* Hardware error */
346 return;
348 /* Correct the number if the guest asked for too many */
349 if (req_num > max_irqs) {
350 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
351 req_num = max_irqs;
352 irq = 0; /* to avoid misleading trace */
353 goto out;
356 /* Allocate MSIs */
357 irq = xics_alloc_block(spapr->icp, 0, req_num, false,
358 ret_intr_type == RTAS_TYPE_MSI, &err);
359 if (err) {
360 error_reportf_err(err, "Can't allocate MSIs for device %x: ",
361 config_addr);
362 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
363 return;
366 /* Release previous MSIs */
367 if (msi) {
368 xics_free(spapr->icp, msi->first_irq, msi->num);
369 g_hash_table_remove(phb->msi, &config_addr);
372 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
373 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
374 irq, req_num);
376 /* Add MSI device to cache */
377 msi = g_new(spapr_pci_msi, 1);
378 msi->first_irq = irq;
379 msi->num = req_num;
380 config_addr_key = g_new(int, 1);
381 *config_addr_key = config_addr;
382 g_hash_table_insert(phb->msi, config_addr_key, msi);
384 out:
385 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
386 rtas_st(rets, 1, req_num);
387 rtas_st(rets, 2, ++seq_num);
388 if (nret > 3) {
389 rtas_st(rets, 3, ret_intr_type);
392 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
395 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
396 sPAPRMachineState *spapr,
397 uint32_t token,
398 uint32_t nargs,
399 target_ulong args,
400 uint32_t nret,
401 target_ulong rets)
403 uint32_t config_addr = rtas_ld(args, 0);
404 uint64_t buid = rtas_ldq(args, 1);
405 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
406 sPAPRPHBState *phb = NULL;
407 PCIDevice *pdev = NULL;
408 spapr_pci_msi *msi;
410 /* Find sPAPRPHBState */
411 phb = spapr_pci_find_phb(spapr, buid);
412 if (phb) {
413 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
415 if (!phb || !pdev) {
416 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
417 return;
420 /* Find device descriptor and start IRQ */
421 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
422 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
423 trace_spapr_pci_msi("Failed to return vector", config_addr);
424 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
425 return;
427 intr_src_num = msi->first_irq + ioa_intr_num;
428 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
429 intr_src_num);
431 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
432 rtas_st(rets, 1, intr_src_num);
433 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
436 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
437 sPAPRMachineState *spapr,
438 uint32_t token, uint32_t nargs,
439 target_ulong args, uint32_t nret,
440 target_ulong rets)
442 sPAPRPHBState *sphb;
443 sPAPRPHBClass *spc;
444 uint32_t addr, option;
445 uint64_t buid;
446 int ret;
448 if ((nargs != 4) || (nret != 1)) {
449 goto param_error_exit;
452 buid = rtas_ldq(args, 1);
453 addr = rtas_ld(args, 0);
454 option = rtas_ld(args, 3);
456 sphb = spapr_pci_find_phb(spapr, buid);
457 if (!sphb) {
458 goto param_error_exit;
461 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
462 if (!spc->eeh_set_option) {
463 goto param_error_exit;
466 ret = spc->eeh_set_option(sphb, addr, option);
467 rtas_st(rets, 0, ret);
468 return;
470 param_error_exit:
471 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
474 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
475 sPAPRMachineState *spapr,
476 uint32_t token, uint32_t nargs,
477 target_ulong args, uint32_t nret,
478 target_ulong rets)
480 sPAPRPHBState *sphb;
481 sPAPRPHBClass *spc;
482 PCIDevice *pdev;
483 uint32_t addr, option;
484 uint64_t buid;
486 if ((nargs != 4) || (nret != 2)) {
487 goto param_error_exit;
490 buid = rtas_ldq(args, 1);
491 sphb = spapr_pci_find_phb(spapr, buid);
492 if (!sphb) {
493 goto param_error_exit;
496 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
497 if (!spc->eeh_set_option) {
498 goto param_error_exit;
502 * We always have PE address of form "00BB0001". "BB"
503 * represents the bus number of PE's primary bus.
505 option = rtas_ld(args, 3);
506 switch (option) {
507 case RTAS_GET_PE_ADDR:
508 addr = rtas_ld(args, 0);
509 pdev = spapr_pci_find_dev(spapr, buid, addr);
510 if (!pdev) {
511 goto param_error_exit;
514 rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
515 break;
516 case RTAS_GET_PE_MODE:
517 rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
518 break;
519 default:
520 goto param_error_exit;
523 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
524 return;
526 param_error_exit:
527 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
530 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
531 sPAPRMachineState *spapr,
532 uint32_t token, uint32_t nargs,
533 target_ulong args, uint32_t nret,
534 target_ulong rets)
536 sPAPRPHBState *sphb;
537 sPAPRPHBClass *spc;
538 uint64_t buid;
539 int state, ret;
541 if ((nargs != 3) || (nret != 4 && nret != 5)) {
542 goto param_error_exit;
545 buid = rtas_ldq(args, 1);
546 sphb = spapr_pci_find_phb(spapr, buid);
547 if (!sphb) {
548 goto param_error_exit;
551 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
552 if (!spc->eeh_get_state) {
553 goto param_error_exit;
556 ret = spc->eeh_get_state(sphb, &state);
557 rtas_st(rets, 0, ret);
558 if (ret != RTAS_OUT_SUCCESS) {
559 return;
562 rtas_st(rets, 1, state);
563 rtas_st(rets, 2, RTAS_EEH_SUPPORT);
564 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
565 if (nret >= 5) {
566 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
568 return;
570 param_error_exit:
571 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
574 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
575 sPAPRMachineState *spapr,
576 uint32_t token, uint32_t nargs,
577 target_ulong args, uint32_t nret,
578 target_ulong rets)
580 sPAPRPHBState *sphb;
581 sPAPRPHBClass *spc;
582 uint32_t option;
583 uint64_t buid;
584 int ret;
586 if ((nargs != 4) || (nret != 1)) {
587 goto param_error_exit;
590 buid = rtas_ldq(args, 1);
591 option = rtas_ld(args, 3);
592 sphb = spapr_pci_find_phb(spapr, buid);
593 if (!sphb) {
594 goto param_error_exit;
597 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
598 if (!spc->eeh_reset) {
599 goto param_error_exit;
602 ret = spc->eeh_reset(sphb, option);
603 rtas_st(rets, 0, ret);
604 return;
606 param_error_exit:
607 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
610 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
611 sPAPRMachineState *spapr,
612 uint32_t token, uint32_t nargs,
613 target_ulong args, uint32_t nret,
614 target_ulong rets)
616 sPAPRPHBState *sphb;
617 sPAPRPHBClass *spc;
618 uint64_t buid;
619 int ret;
621 if ((nargs != 3) || (nret != 1)) {
622 goto param_error_exit;
625 buid = rtas_ldq(args, 1);
626 sphb = spapr_pci_find_phb(spapr, buid);
627 if (!sphb) {
628 goto param_error_exit;
631 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
632 if (!spc->eeh_configure) {
633 goto param_error_exit;
636 ret = spc->eeh_configure(sphb);
637 rtas_st(rets, 0, ret);
638 return;
640 param_error_exit:
641 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
644 /* To support it later */
645 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
646 sPAPRMachineState *spapr,
647 uint32_t token, uint32_t nargs,
648 target_ulong args, uint32_t nret,
649 target_ulong rets)
651 sPAPRPHBState *sphb;
652 sPAPRPHBClass *spc;
653 int option;
654 uint64_t buid;
656 if ((nargs != 8) || (nret != 1)) {
657 goto param_error_exit;
660 buid = rtas_ldq(args, 1);
661 sphb = spapr_pci_find_phb(spapr, buid);
662 if (!sphb) {
663 goto param_error_exit;
666 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
667 if (!spc->eeh_set_option) {
668 goto param_error_exit;
671 option = rtas_ld(args, 7);
672 switch (option) {
673 case RTAS_SLOT_TEMP_ERR_LOG:
674 case RTAS_SLOT_PERM_ERR_LOG:
675 break;
676 default:
677 goto param_error_exit;
680 /* We don't have error log yet */
681 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
682 return;
684 param_error_exit:
685 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
688 static int pci_spapr_swizzle(int slot, int pin)
690 return (slot + pin) % PCI_NUM_PINS;
693 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
696 * Here we need to convert pci_dev + irq_num to some unique value
697 * which is less than number of IRQs on the specific bus (4). We
698 * use standard PCI swizzling, that is (slot number + pin number)
699 * % 4.
701 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
704 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
707 * Here we use the number returned by pci_spapr_map_irq to find a
708 * corresponding qemu_irq.
710 sPAPRPHBState *phb = opaque;
712 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
713 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
716 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
718 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
719 PCIINTxRoute route;
721 route.mode = PCI_INTX_ENABLED;
722 route.irq = sphb->lsi_table[pin].irq;
724 return route;
728 * MSI/MSIX memory region implementation.
729 * The handler handles both MSI and MSIX.
730 * For MSI-X, the vector number is encoded as a part of the address,
731 * data is set to 0.
732 * For MSI, the vector number is encoded in least bits in data.
734 static void spapr_msi_write(void *opaque, hwaddr addr,
735 uint64_t data, unsigned size)
737 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
738 uint32_t irq = data;
740 trace_spapr_pci_msi_write(addr, data, irq);
742 qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
745 static const MemoryRegionOps spapr_msi_ops = {
746 /* There is no .read as the read result is undefined by PCI spec */
747 .read = NULL,
748 .write = spapr_msi_write,
749 .endianness = DEVICE_LITTLE_ENDIAN
753 * PHB PCI device
755 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
757 sPAPRPHBState *phb = opaque;
759 return &phb->iommu_as;
762 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
764 char *path = NULL, *buf = NULL, *host = NULL;
766 /* Get the PCI VFIO host id */
767 host = object_property_get_str(OBJECT(pdev), "host", NULL);
768 if (!host) {
769 goto err_out;
772 /* Construct the path of the file that will give us the DT location */
773 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
774 g_free(host);
775 if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
776 goto err_out;
778 g_free(path);
780 /* Construct and read from host device tree the loc-code */
781 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
782 g_free(buf);
783 if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
784 goto err_out;
786 return buf;
788 err_out:
789 g_free(path);
790 return NULL;
793 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
795 char *buf;
796 const char *devtype = "qemu";
797 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
799 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
800 buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
801 if (buf) {
802 return buf;
804 devtype = "vfio";
807 * For emulated devices and VFIO-failure case, make up
808 * the loc-code.
810 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
811 devtype, pdev->name, sphb->index, busnr,
812 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
813 return buf;
816 /* Macros to operate with address in OF binding to PCI */
817 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
818 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
819 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
820 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
821 #define b_ss(x) b_x((x), 24, 2) /* the space code */
822 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
823 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
824 #define b_fff(x) b_x((x), 8, 3) /* function number */
825 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
827 /* for 'reg'/'assigned-addresses' OF properties */
828 #define RESOURCE_CELLS_SIZE 2
829 #define RESOURCE_CELLS_ADDRESS 3
831 typedef struct ResourceFields {
832 uint32_t phys_hi;
833 uint32_t phys_mid;
834 uint32_t phys_lo;
835 uint32_t size_hi;
836 uint32_t size_lo;
837 } QEMU_PACKED ResourceFields;
839 typedef struct ResourceProps {
840 ResourceFields reg[8];
841 ResourceFields assigned[7];
842 uint32_t reg_len;
843 uint32_t assigned_len;
844 } ResourceProps;
846 /* fill in the 'reg'/'assigned-resources' OF properties for
847 * a PCI device. 'reg' describes resource requirements for a
848 * device's IO/MEM regions, 'assigned-addresses' describes the
849 * actual resource assignments.
851 * the properties are arrays of ('phys-addr', 'size') pairs describing
852 * the addressable regions of the PCI device, where 'phys-addr' is a
853 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
854 * (phys.hi, phys.mid, phys.lo), and 'size' is a
855 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
857 * phys.hi = 0xYYXXXXZZ, where:
858 * 0xYY = npt000ss
859 * ||| |
860 * ||| +-- space code
861 * ||| |
862 * ||| + 00 if configuration space
863 * ||| + 01 if IO region,
864 * ||| + 10 if 32-bit MEM region
865 * ||| + 11 if 64-bit MEM region
866 * |||
867 * ||+------ for non-relocatable IO: 1 if aliased
868 * || for relocatable IO: 1 if below 64KB
869 * || for MEM: 1 if below 1MB
870 * |+------- 1 if region is prefetchable
871 * +-------- 1 if region is non-relocatable
872 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
873 * bits respectively
874 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
875 * to the region
877 * phys.mid and phys.lo correspond respectively to the hi/lo portions
878 * of the actual address of the region.
880 * how the phys-addr/size values are used differ slightly between
881 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
882 * an additional description for the config space region of the
883 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
884 * to describe the region as relocatable, with an address-mapping
885 * that corresponds directly to the PHB's address space for the
886 * resource. 'assigned-addresses' always has n=1 set with an absolute
887 * address assigned for the resource. in general, 'assigned-addresses'
888 * won't be populated, since addresses for PCI devices are generally
889 * unmapped initially and left to the guest to assign.
891 * note also that addresses defined in these properties are, at least
892 * for PAPR guests, relative to the PHBs IO/MEM windows, and
893 * correspond directly to the addresses in the BARs.
895 * in accordance with PCI Bus Binding to Open Firmware,
896 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
897 * Appendix C.
899 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
901 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
902 uint32_t dev_id = (b_bbbbbbbb(bus_num) |
903 b_ddddd(PCI_SLOT(d->devfn)) |
904 b_fff(PCI_FUNC(d->devfn)));
905 ResourceFields *reg, *assigned;
906 int i, reg_idx = 0, assigned_idx = 0;
908 /* config space region */
909 reg = &rp->reg[reg_idx++];
910 reg->phys_hi = cpu_to_be32(dev_id);
911 reg->phys_mid = 0;
912 reg->phys_lo = 0;
913 reg->size_hi = 0;
914 reg->size_lo = 0;
916 for (i = 0; i < PCI_NUM_REGIONS; i++) {
917 if (!d->io_regions[i].size) {
918 continue;
921 reg = &rp->reg[reg_idx++];
923 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
924 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
925 reg->phys_hi |= cpu_to_be32(b_ss(1));
926 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
927 reg->phys_hi |= cpu_to_be32(b_ss(3));
928 } else {
929 reg->phys_hi |= cpu_to_be32(b_ss(2));
931 reg->phys_mid = 0;
932 reg->phys_lo = 0;
933 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
934 reg->size_lo = cpu_to_be32(d->io_regions[i].size);
936 if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
937 continue;
940 assigned = &rp->assigned[assigned_idx++];
941 assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
942 assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
943 assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
944 assigned->size_hi = reg->size_hi;
945 assigned->size_lo = reg->size_lo;
948 rp->reg_len = reg_idx * sizeof(ResourceFields);
949 rp->assigned_len = assigned_idx * sizeof(ResourceFields);
952 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
953 PCIDevice *pdev);
955 static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
956 sPAPRPHBState *sphb)
958 ResourceProps rp;
959 bool is_bridge = false;
960 int pci_status, err;
961 char *buf = NULL;
962 uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
963 uint32_t max_msi, max_msix;
965 if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
966 PCI_HEADER_TYPE_BRIDGE) {
967 is_bridge = true;
970 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
971 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
972 pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
973 _FDT(fdt_setprop_cell(fdt, offset, "device-id",
974 pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
975 _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
976 pci_default_read_config(dev, PCI_REVISION_ID, 1)));
977 _FDT(fdt_setprop_cell(fdt, offset, "class-code",
978 pci_default_read_config(dev, PCI_CLASS_PROG, 3)));
979 if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
980 _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
981 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
984 if (!is_bridge) {
985 _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
986 pci_default_read_config(dev, PCI_MIN_GNT, 1)));
987 _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
988 pci_default_read_config(dev, PCI_MAX_LAT, 1)));
991 if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
992 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
993 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
996 if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
997 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
998 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
1001 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
1002 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
1004 /* the following fdt cells are masked off the pci status register */
1005 pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1006 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1007 PCI_STATUS_DEVSEL_MASK & pci_status));
1009 if (pci_status & PCI_STATUS_FAST_BACK) {
1010 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1012 if (pci_status & PCI_STATUS_66MHZ) {
1013 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1015 if (pci_status & PCI_STATUS_UDF) {
1016 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1019 /* NOTE: this is normally generated by firmware via path/unit name,
1020 * but in our case we must set it manually since it does not get
1021 * processed by OF beforehand
1023 _FDT(fdt_setprop_string(fdt, offset, "name", "pci"));
1024 buf = spapr_phb_get_loc_code(sphb, dev);
1025 if (!buf) {
1026 error_report("Failed setting the ibm,loc-code");
1027 return -1;
1030 err = fdt_setprop_string(fdt, offset, "ibm,loc-code", buf);
1031 g_free(buf);
1032 if (err < 0) {
1033 return err;
1036 if (drc_index) {
1037 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1040 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1041 RESOURCE_CELLS_ADDRESS));
1042 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1043 RESOURCE_CELLS_SIZE));
1045 max_msi = msi_nr_vectors_allocated(dev);
1046 if (max_msi) {
1047 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1049 max_msix = dev->msix_entries_nr;
1050 if (max_msix) {
1051 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1054 populate_resource_props(dev, &rp);
1055 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1056 _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1057 (uint8_t *)rp.assigned, rp.assigned_len));
1059 return 0;
1062 /* create OF node for pci device and required OF DT properties */
1063 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1064 void *fdt, int node_offset)
1066 int offset, ret;
1067 int slot = PCI_SLOT(dev->devfn);
1068 int func = PCI_FUNC(dev->devfn);
1069 char nodename[FDT_NAME_MAX];
1071 if (func != 0) {
1072 snprintf(nodename, FDT_NAME_MAX, "pci@%x,%x", slot, func);
1073 } else {
1074 snprintf(nodename, FDT_NAME_MAX, "pci@%x", slot);
1076 offset = fdt_add_subnode(fdt, node_offset, nodename);
1077 ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1079 g_assert(!ret);
1080 if (ret) {
1081 return 0;
1083 return offset;
1086 static void spapr_phb_add_pci_device(sPAPRDRConnector *drc,
1087 sPAPRPHBState *phb,
1088 PCIDevice *pdev,
1089 Error **errp)
1091 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1092 DeviceState *dev = DEVICE(pdev);
1093 void *fdt = NULL;
1094 int fdt_start_offset = 0, fdt_size;
1096 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
1097 sPAPRTCETable *tcet = spapr_tce_find_by_liobn(phb->dma_liobn);
1099 spapr_tce_set_need_vfio(tcet, true);
1102 if (dev->hotplugged) {
1103 fdt = create_device_tree(&fdt_size);
1104 fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1105 if (!fdt_start_offset) {
1106 error_setg(errp, "Failed to create pci child device tree node");
1107 goto out;
1111 drck->attach(drc, DEVICE(pdev),
1112 fdt, fdt_start_offset, !dev->hotplugged, errp);
1113 out:
1114 if (*errp) {
1115 g_free(fdt);
1119 static void spapr_phb_remove_pci_device_cb(DeviceState *dev, void *opaque)
1121 /* some version guests do not wait for completion of a device
1122 * cleanup (generally done asynchronously by the kernel) before
1123 * signaling to QEMU that the device is safe, but instead sleep
1124 * for some 'safe' period of time. unfortunately on a busy host
1125 * this sleep isn't guaranteed to be long enough, resulting in
1126 * bad things like IRQ lines being left asserted during final
1127 * device removal. to deal with this we call reset just prior
1128 * to finalizing the device, which will put the device back into
1129 * an 'idle' state, as the device cleanup code expects.
1131 pci_device_reset(PCI_DEVICE(dev));
1132 object_unparent(OBJECT(dev));
1135 static void spapr_phb_remove_pci_device(sPAPRDRConnector *drc,
1136 sPAPRPHBState *phb,
1137 PCIDevice *pdev,
1138 Error **errp)
1140 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1142 drck->detach(drc, DEVICE(pdev), spapr_phb_remove_pci_device_cb, phb, errp);
1145 static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb,
1146 uint32_t busnr,
1147 int32_t devfn)
1149 return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI,
1150 (phb->index << 16) |
1151 (busnr << 8) |
1152 devfn);
1155 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1156 PCIDevice *pdev)
1158 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1159 return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
1162 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1163 PCIDevice *pdev)
1165 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1166 sPAPRDRConnectorClass *drck;
1168 if (!drc) {
1169 return 0;
1172 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1173 return drck->get_index(drc);
1176 static void spapr_phb_hot_plug_child(HotplugHandler *plug_handler,
1177 DeviceState *plugged_dev, Error **errp)
1179 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1180 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1181 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1182 Error *local_err = NULL;
1183 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1184 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1186 /* if DR is disabled we don't need to do anything in the case of
1187 * hotplug or coldplug callbacks
1189 if (!phb->dr_enabled) {
1190 /* if this is a hotplug operation initiated by the user
1191 * we need to let them know it's not enabled
1193 if (plugged_dev->hotplugged) {
1194 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1195 object_get_typename(OBJECT(phb)));
1197 return;
1200 g_assert(drc);
1202 /* Following the QEMU convention used for PCIe multifunction
1203 * hotplug, we do not allow functions to be hotplugged to a
1204 * slot that already has function 0 present
1206 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1207 PCI_FUNC(pdev->devfn) != 0) {
1208 error_setg(errp, "PCI: slot %d function 0 already ocuppied by %s,"
1209 " additional functions can no longer be exposed to guest.",
1210 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1211 return;
1214 spapr_phb_add_pci_device(drc, phb, pdev, &local_err);
1215 if (local_err) {
1216 error_propagate(errp, local_err);
1217 return;
1220 /* If this is function 0, signal hotplug for all the device functions.
1221 * Otherwise defer sending the hotplug event.
1223 if (plugged_dev->hotplugged && PCI_FUNC(pdev->devfn) == 0) {
1224 int i;
1226 for (i = 0; i < 8; i++) {
1227 sPAPRDRConnector *func_drc;
1228 sPAPRDRConnectorClass *func_drck;
1229 sPAPRDREntitySense state;
1231 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1232 PCI_DEVFN(slotnr, i));
1233 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1234 func_drck->entity_sense(func_drc, &state);
1236 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1237 spapr_hotplug_req_add_by_index(func_drc);
1243 static void spapr_phb_hot_unplug_child(HotplugHandler *plug_handler,
1244 DeviceState *plugged_dev, Error **errp)
1246 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1247 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1248 sPAPRDRConnectorClass *drck;
1249 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1250 Error *local_err = NULL;
1252 if (!phb->dr_enabled) {
1253 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1254 object_get_typename(OBJECT(phb)));
1255 return;
1258 g_assert(drc);
1260 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1261 if (!drck->release_pending(drc)) {
1262 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1263 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1264 sPAPRDRConnector *func_drc;
1265 sPAPRDRConnectorClass *func_drck;
1266 sPAPRDREntitySense state;
1267 int i;
1269 /* ensure any other present functions are pending unplug */
1270 if (PCI_FUNC(pdev->devfn) == 0) {
1271 for (i = 1; i < 8; i++) {
1272 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1273 PCI_DEVFN(slotnr, i));
1274 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1275 func_drck->entity_sense(func_drc, &state);
1276 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1277 && !func_drck->release_pending(func_drc)) {
1278 error_setg(errp,
1279 "PCI: slot %d, function %d still present. "
1280 "Must unplug all non-0 functions first.",
1281 slotnr, i);
1282 return;
1287 spapr_phb_remove_pci_device(drc, phb, pdev, &local_err);
1288 if (local_err) {
1289 error_propagate(errp, local_err);
1290 return;
1293 /* if this isn't func 0, defer unplug event. otherwise signal removal
1294 * for all present functions
1296 if (PCI_FUNC(pdev->devfn) == 0) {
1297 for (i = 7; i >= 0; i--) {
1298 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1299 PCI_DEVFN(slotnr, i));
1300 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1301 func_drck->entity_sense(func_drc, &state);
1302 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1303 spapr_hotplug_req_remove_by_index(func_drc);
1310 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1312 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1313 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1314 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1315 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1316 sPAPRPHBClass *info = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(s);
1317 char *namebuf;
1318 int i;
1319 PCIBus *bus;
1320 uint64_t msi_window_size = 4096;
1322 if (sphb->index != (uint32_t)-1) {
1323 hwaddr windows_base;
1325 if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn != (uint32_t)-1)
1326 || (sphb->mem_win_addr != (hwaddr)-1)
1327 || (sphb->io_win_addr != (hwaddr)-1)) {
1328 error_setg(errp, "Either \"index\" or other parameters must"
1329 " be specified for PAPR PHB, not both");
1330 return;
1333 if (sphb->index > SPAPR_PCI_MAX_INDEX) {
1334 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
1335 SPAPR_PCI_MAX_INDEX);
1336 return;
1339 sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
1340 sphb->dma_liobn = SPAPR_PCI_LIOBN(sphb->index, 0);
1342 windows_base = SPAPR_PCI_WINDOW_BASE
1343 + sphb->index * SPAPR_PCI_WINDOW_SPACING;
1344 sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
1345 sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
1348 if (sphb->buid == (uint64_t)-1) {
1349 error_setg(errp, "BUID not specified for PHB");
1350 return;
1353 if (sphb->dma_liobn == (uint32_t)-1) {
1354 error_setg(errp, "LIOBN not specified for PHB");
1355 return;
1358 if (sphb->mem_win_addr == (hwaddr)-1) {
1359 error_setg(errp, "Memory window address not specified for PHB");
1360 return;
1363 if (sphb->io_win_addr == (hwaddr)-1) {
1364 error_setg(errp, "IO window address not specified for PHB");
1365 return;
1368 if (spapr_pci_find_phb(spapr, sphb->buid)) {
1369 error_setg(errp, "PCI host bridges must have unique BUIDs");
1370 return;
1373 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1375 namebuf = alloca(strlen(sphb->dtbusname) + 32);
1377 /* Initialize memory regions */
1378 sprintf(namebuf, "%s.mmio", sphb->dtbusname);
1379 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1381 sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
1382 memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
1383 namebuf, &sphb->memspace,
1384 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1385 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1386 &sphb->memwindow);
1388 /* Initialize IO regions */
1389 sprintf(namebuf, "%s.io", sphb->dtbusname);
1390 memory_region_init(&sphb->iospace, OBJECT(sphb),
1391 namebuf, SPAPR_PCI_IO_WIN_SIZE);
1393 sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
1394 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1395 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1396 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1397 &sphb->iowindow);
1399 bus = pci_register_bus(dev, NULL,
1400 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1401 &sphb->memspace, &sphb->iospace,
1402 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1403 phb->bus = bus;
1404 qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1407 * Initialize PHB address space.
1408 * By default there will be at least one subregion for default
1409 * 32bit DMA window.
1410 * Later the guest might want to create another DMA window
1411 * which will become another memory subregion.
1413 sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
1415 memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1416 namebuf, UINT64_MAX);
1417 address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1418 sphb->dtbusname);
1421 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1422 * we need to allocate some memory to catch those writes coming
1423 * from msi_notify()/msix_notify().
1424 * As MSIMessage:addr is going to be the same and MSIMessage:data
1425 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1426 * be used.
1428 * For KVM we want to ensure that this memory is a full page so that
1429 * our memory slot is of page size granularity.
1431 #ifdef CONFIG_KVM
1432 if (kvm_enabled()) {
1433 msi_window_size = getpagesize();
1435 #endif
1437 memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
1438 "msi", msi_window_size);
1439 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1440 &sphb->msiwindow);
1442 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1444 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1446 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1448 /* Initialize the LSI table */
1449 for (i = 0; i < PCI_NUM_PINS; i++) {
1450 uint32_t irq;
1451 Error *local_err = NULL;
1453 irq = xics_alloc_block(spapr->icp, 0, 1, true, false, &local_err);
1454 if (local_err) {
1455 error_propagate(errp, local_err);
1456 error_prepend(errp, "can't allocate LSIs: ");
1457 return;
1460 sphb->lsi_table[i].irq = irq;
1463 /* allocate connectors for child PCI devices */
1464 if (sphb->dr_enabled) {
1465 for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1466 spapr_dr_connector_new(OBJECT(phb),
1467 SPAPR_DR_CONNECTOR_TYPE_PCI,
1468 (sphb->index << 16) | i);
1472 if (!info->finish_realize) {
1473 error_setg(errp, "finish_realize not defined");
1474 return;
1477 info->finish_realize(sphb, errp);
1479 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1482 static void spapr_phb_finish_realize(sPAPRPHBState *sphb, Error **errp)
1484 sPAPRTCETable *tcet;
1485 uint32_t nb_table;
1487 nb_table = sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT;
1488 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn,
1489 0, SPAPR_TCE_PAGE_SHIFT, nb_table, false);
1490 if (!tcet) {
1491 error_setg(errp, "Unable to create TCE table for %s",
1492 sphb->dtbusname);
1493 return ;
1496 /* Register default 32bit DMA window */
1497 memory_region_add_subregion(&sphb->iommu_root, sphb->dma_win_addr,
1498 spapr_tce_get_iommu(tcet));
1501 static int spapr_phb_children_reset(Object *child, void *opaque)
1503 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1505 if (dev) {
1506 device_reset(dev);
1509 return 0;
1512 static void spapr_phb_reset(DeviceState *qdev)
1514 /* Reset the IOMMU state */
1515 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1518 static Property spapr_phb_properties[] = {
1519 DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1520 DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
1521 DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1),
1522 DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
1523 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1524 SPAPR_PCI_MMIO_WIN_SIZE),
1525 DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
1526 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1527 SPAPR_PCI_IO_WIN_SIZE),
1528 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1529 true),
1530 /* Default DMA window is 0..1GB */
1531 DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
1532 DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
1533 DEFINE_PROP_END_OF_LIST(),
1536 static const VMStateDescription vmstate_spapr_pci_lsi = {
1537 .name = "spapr_pci/lsi",
1538 .version_id = 1,
1539 .minimum_version_id = 1,
1540 .fields = (VMStateField[]) {
1541 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
1543 VMSTATE_END_OF_LIST()
1547 static const VMStateDescription vmstate_spapr_pci_msi = {
1548 .name = "spapr_pci/msi",
1549 .version_id = 1,
1550 .minimum_version_id = 1,
1551 .fields = (VMStateField []) {
1552 VMSTATE_UINT32(key, spapr_pci_msi_mig),
1553 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1554 VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1555 VMSTATE_END_OF_LIST()
1559 static void spapr_pci_pre_save(void *opaque)
1561 sPAPRPHBState *sphb = opaque;
1562 GHashTableIter iter;
1563 gpointer key, value;
1564 int i;
1566 g_free(sphb->msi_devs);
1567 sphb->msi_devs = NULL;
1568 sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1569 if (!sphb->msi_devs_num) {
1570 return;
1572 sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
1574 g_hash_table_iter_init(&iter, sphb->msi);
1575 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1576 sphb->msi_devs[i].key = *(uint32_t *) key;
1577 sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1581 static int spapr_pci_post_load(void *opaque, int version_id)
1583 sPAPRPHBState *sphb = opaque;
1584 gpointer key, value;
1585 int i;
1587 for (i = 0; i < sphb->msi_devs_num; ++i) {
1588 key = g_memdup(&sphb->msi_devs[i].key,
1589 sizeof(sphb->msi_devs[i].key));
1590 value = g_memdup(&sphb->msi_devs[i].value,
1591 sizeof(sphb->msi_devs[i].value));
1592 g_hash_table_insert(sphb->msi, key, value);
1594 g_free(sphb->msi_devs);
1595 sphb->msi_devs = NULL;
1596 sphb->msi_devs_num = 0;
1598 return 0;
1601 static const VMStateDescription vmstate_spapr_pci = {
1602 .name = "spapr_pci",
1603 .version_id = 2,
1604 .minimum_version_id = 2,
1605 .pre_save = spapr_pci_pre_save,
1606 .post_load = spapr_pci_post_load,
1607 .fields = (VMStateField[]) {
1608 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
1609 VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
1610 VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
1611 VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
1612 VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
1613 VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
1614 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1615 vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1616 VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1617 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1618 vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1619 VMSTATE_END_OF_LIST()
1623 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1624 PCIBus *rootbus)
1626 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1628 return sphb->dtbusname;
1631 static void spapr_phb_class_init(ObjectClass *klass, void *data)
1633 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1634 DeviceClass *dc = DEVICE_CLASS(klass);
1635 sPAPRPHBClass *spc = SPAPR_PCI_HOST_BRIDGE_CLASS(klass);
1636 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1638 hc->root_bus_path = spapr_phb_root_bus_path;
1639 dc->realize = spapr_phb_realize;
1640 dc->props = spapr_phb_properties;
1641 dc->reset = spapr_phb_reset;
1642 dc->vmsd = &vmstate_spapr_pci;
1643 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1644 dc->cannot_instantiate_with_device_add_yet = false;
1645 spc->finish_realize = spapr_phb_finish_realize;
1646 hp->plug = spapr_phb_hot_plug_child;
1647 hp->unplug = spapr_phb_hot_unplug_child;
1650 static const TypeInfo spapr_phb_info = {
1651 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
1652 .parent = TYPE_PCI_HOST_BRIDGE,
1653 .instance_size = sizeof(sPAPRPHBState),
1654 .class_init = spapr_phb_class_init,
1655 .class_size = sizeof(sPAPRPHBClass),
1656 .interfaces = (InterfaceInfo[]) {
1657 { TYPE_HOTPLUG_HANDLER },
1662 PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1664 DeviceState *dev;
1666 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1667 qdev_prop_set_uint32(dev, "index", index);
1668 qdev_init_nofail(dev);
1670 return PCI_HOST_BRIDGE(dev);
1673 typedef struct sPAPRFDT {
1674 void *fdt;
1675 int node_off;
1676 sPAPRPHBState *sphb;
1677 } sPAPRFDT;
1679 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
1680 void *opaque)
1682 PCIBus *sec_bus;
1683 sPAPRFDT *p = opaque;
1684 int offset;
1685 sPAPRFDT s_fdt;
1687 offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
1688 if (!offset) {
1689 error_report("Failed to create pci child device tree node");
1690 return;
1693 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1694 PCI_HEADER_TYPE_BRIDGE)) {
1695 return;
1698 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1699 if (!sec_bus) {
1700 return;
1703 s_fdt.fdt = p->fdt;
1704 s_fdt.node_off = offset;
1705 s_fdt.sphb = p->sphb;
1706 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1707 spapr_populate_pci_devices_dt,
1708 &s_fdt);
1711 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
1712 void *opaque)
1714 unsigned int *bus_no = opaque;
1715 unsigned int primary = *bus_no;
1716 unsigned int subordinate = 0xff;
1717 PCIBus *sec_bus = NULL;
1719 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1720 PCI_HEADER_TYPE_BRIDGE)) {
1721 return;
1724 (*bus_no)++;
1725 pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
1726 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
1727 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1729 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1730 if (!sec_bus) {
1731 return;
1734 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
1735 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1736 spapr_phb_pci_enumerate_bridge, bus_no);
1737 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1740 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
1742 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1743 unsigned int bus_no = 0;
1745 pci_for_each_device(bus, pci_bus_num(bus),
1746 spapr_phb_pci_enumerate_bridge,
1747 &bus_no);
1751 int spapr_populate_pci_dt(sPAPRPHBState *phb,
1752 uint32_t xics_phandle,
1753 void *fdt)
1755 int bus_off, i, j, ret;
1756 char nodename[FDT_NAME_MAX];
1757 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
1758 const uint64_t mmiosize = memory_region_size(&phb->memwindow);
1759 const uint64_t w32max = (1ULL << 32) - SPAPR_PCI_MEM_WIN_BUS_OFFSET;
1760 const uint64_t w32size = MIN(w32max, mmiosize);
1761 const uint64_t w64size = (mmiosize > w32size) ? (mmiosize - w32size) : 0;
1762 struct {
1763 uint32_t hi;
1764 uint64_t child;
1765 uint64_t parent;
1766 uint64_t size;
1767 } QEMU_PACKED ranges[] = {
1769 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
1770 cpu_to_be64(phb->io_win_addr),
1771 cpu_to_be64(memory_region_size(&phb->iospace)),
1774 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
1775 cpu_to_be64(phb->mem_win_addr),
1776 cpu_to_be64(w32size),
1779 cpu_to_be32(b_ss(3)), cpu_to_be64(1ULL << 32),
1780 cpu_to_be64(phb->mem_win_addr + w32size),
1781 cpu_to_be64(w64size)
1784 const unsigned sizeof_ranges = (w64size ? 3 : 2) * sizeof(ranges[0]);
1785 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
1786 uint32_t interrupt_map_mask[] = {
1787 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
1788 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
1789 sPAPRTCETable *tcet;
1790 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1791 sPAPRFDT s_fdt;
1793 /* Start populating the FDT */
1794 snprintf(nodename, FDT_NAME_MAX, "pci@%" PRIx64, phb->buid);
1795 bus_off = fdt_add_subnode(fdt, 0, nodename);
1796 if (bus_off < 0) {
1797 return bus_off;
1800 /* Write PHB properties */
1801 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
1802 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
1803 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
1804 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
1805 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
1806 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
1807 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
1808 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
1809 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
1810 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
1811 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS));
1813 /* Build the interrupt-map, this must matches what is done
1814 * in pci_spapr_map_irq
1816 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
1817 &interrupt_map_mask, sizeof(interrupt_map_mask)));
1818 for (i = 0; i < PCI_SLOT_MAX; i++) {
1819 for (j = 0; j < PCI_NUM_PINS; j++) {
1820 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
1821 int lsi_num = pci_spapr_swizzle(i, j);
1823 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
1824 irqmap[1] = 0;
1825 irqmap[2] = 0;
1826 irqmap[3] = cpu_to_be32(j+1);
1827 irqmap[4] = cpu_to_be32(xics_phandle);
1828 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
1829 irqmap[6] = cpu_to_be32(0x8);
1832 /* Write interrupt map */
1833 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
1834 sizeof(interrupt_map)));
1836 tcet = spapr_tce_find_by_liobn(SPAPR_PCI_LIOBN(phb->index, 0));
1837 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
1838 tcet->liobn, tcet->bus_offset,
1839 tcet->nb_table << tcet->page_shift);
1841 /* Walk the bridges and program the bus numbers*/
1842 spapr_phb_pci_enumerate(phb);
1843 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
1845 /* Populate tree nodes with PCI devices attached */
1846 s_fdt.fdt = fdt;
1847 s_fdt.node_off = bus_off;
1848 s_fdt.sphb = phb;
1849 pci_for_each_device(bus, pci_bus_num(bus),
1850 spapr_populate_pci_devices_dt,
1851 &s_fdt);
1853 ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
1854 SPAPR_DR_CONNECTOR_TYPE_PCI);
1855 if (ret) {
1856 return ret;
1859 return 0;
1862 void spapr_pci_rtas_init(void)
1864 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
1865 rtas_read_pci_config);
1866 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
1867 rtas_write_pci_config);
1868 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
1869 rtas_ibm_read_pci_config);
1870 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
1871 rtas_ibm_write_pci_config);
1872 if (msi_nonbroken) {
1873 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
1874 "ibm,query-interrupt-source-number",
1875 rtas_ibm_query_interrupt_source_number);
1876 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
1877 rtas_ibm_change_msi);
1880 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
1881 "ibm,set-eeh-option",
1882 rtas_ibm_set_eeh_option);
1883 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
1884 "ibm,get-config-addr-info2",
1885 rtas_ibm_get_config_addr_info2);
1886 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
1887 "ibm,read-slot-reset-state2",
1888 rtas_ibm_read_slot_reset_state2);
1889 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
1890 "ibm,set-slot-reset",
1891 rtas_ibm_set_slot_reset);
1892 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
1893 "ibm,configure-pe",
1894 rtas_ibm_configure_pe);
1895 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
1896 "ibm,slot-error-detail",
1897 rtas_ibm_slot_error_detail);
1900 static void spapr_pci_register_types(void)
1902 type_register_static(&spapr_phb_info);
1905 type_init(spapr_pci_register_types)
1907 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
1909 bool be = *(bool *)opaque;
1911 if (object_dynamic_cast(OBJECT(dev), "VGA")
1912 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
1913 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
1914 &error_abort);
1916 return 0;
1919 void spapr_pci_switch_vga(bool big_endian)
1921 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1922 sPAPRPHBState *sphb;
1925 * For backward compatibility with existing guests, we switch
1926 * the endianness of the VGA controller when changing the guest
1927 * interrupt mode
1929 QLIST_FOREACH(sphb, &spapr->phbs, list) {
1930 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
1931 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
1932 &big_endian);