hw/arm/virt: Reject gic-version=host for non-KVM
[qemu.git] / hw / intc / armv7m_nvic.c
blob669e82adfc187eefc60da1b2e370c67a4b1cd1f9
1 /*
2 * ARM Nested Vectored Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "hw/sysbus.h"
17 #include "qemu/timer.h"
18 #include "hw/arm/arm.h"
19 #include "exec/address-spaces.h"
20 #include "gic_internal.h"
22 typedef struct {
23 GICState gic;
24 struct {
25 uint32_t control;
26 uint32_t reload;
27 int64_t tick;
28 QEMUTimer *timer;
29 } systick;
30 MemoryRegion sysregmem;
31 MemoryRegion gic_iomem_alias;
32 MemoryRegion container;
33 uint32_t num_irq;
34 qemu_irq sysresetreq;
35 } nvic_state;
37 #define TYPE_NVIC "armv7m_nvic"
38 /**
39 * NVICClass:
40 * @parent_reset: the parent class' reset handler.
42 * A model of the v7M NVIC and System Controller
44 typedef struct NVICClass {
45 /*< private >*/
46 ARMGICClass parent_class;
47 /*< public >*/
48 DeviceRealize parent_realize;
49 void (*parent_reset)(DeviceState *dev);
50 } NVICClass;
52 #define NVIC_CLASS(klass) \
53 OBJECT_CLASS_CHECK(NVICClass, (klass), TYPE_NVIC)
54 #define NVIC_GET_CLASS(obj) \
55 OBJECT_GET_CLASS(NVICClass, (obj), TYPE_NVIC)
56 #define NVIC(obj) \
57 OBJECT_CHECK(nvic_state, (obj), TYPE_NVIC)
59 static const uint8_t nvic_id[] = {
60 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
63 /* qemu timers run at 1GHz. We want something closer to 1MHz. */
64 #define SYSTICK_SCALE 1000ULL
66 #define SYSTICK_ENABLE (1 << 0)
67 #define SYSTICK_TICKINT (1 << 1)
68 #define SYSTICK_CLKSOURCE (1 << 2)
69 #define SYSTICK_COUNTFLAG (1 << 16)
71 int system_clock_scale;
73 /* Conversion factor from qemu timer to SysTick frequencies. */
74 static inline int64_t systick_scale(nvic_state *s)
76 if (s->systick.control & SYSTICK_CLKSOURCE)
77 return system_clock_scale;
78 else
79 return 1000;
82 static void systick_reload(nvic_state *s, int reset)
84 /* The Cortex-M3 Devices Generic User Guide says that "When the
85 * ENABLE bit is set to 1, the counter loads the RELOAD value from the
86 * SYST RVR register and then counts down". So, we need to check the
87 * ENABLE bit before reloading the value.
89 if ((s->systick.control & SYSTICK_ENABLE) == 0) {
90 return;
93 if (reset)
94 s->systick.tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
95 s->systick.tick += (s->systick.reload + 1) * systick_scale(s);
96 timer_mod(s->systick.timer, s->systick.tick);
99 static void systick_timer_tick(void * opaque)
101 nvic_state *s = (nvic_state *)opaque;
102 s->systick.control |= SYSTICK_COUNTFLAG;
103 if (s->systick.control & SYSTICK_TICKINT) {
104 /* Trigger the interrupt. */
105 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
107 if (s->systick.reload == 0) {
108 s->systick.control &= ~SYSTICK_ENABLE;
109 } else {
110 systick_reload(s, 0);
114 static void systick_reset(nvic_state *s)
116 s->systick.control = 0;
117 s->systick.reload = 0;
118 s->systick.tick = 0;
119 timer_del(s->systick.timer);
122 /* The external routines use the hardware vector numbering, ie. the first
123 IRQ is #16. The internal GIC routines use #32 as the first IRQ. */
124 void armv7m_nvic_set_pending(void *opaque, int irq)
126 nvic_state *s = (nvic_state *)opaque;
127 if (irq >= 16)
128 irq += 16;
129 gic_set_pending_private(&s->gic, 0, irq);
132 /* Make pending IRQ active. */
133 int armv7m_nvic_acknowledge_irq(void *opaque)
135 nvic_state *s = (nvic_state *)opaque;
136 uint32_t irq;
138 irq = gic_acknowledge_irq(&s->gic, 0, MEMTXATTRS_UNSPECIFIED);
139 if (irq == 1023)
140 hw_error("Interrupt but no vector\n");
141 if (irq >= 32)
142 irq -= 16;
143 return irq;
146 void armv7m_nvic_complete_irq(void *opaque, int irq)
148 nvic_state *s = (nvic_state *)opaque;
149 if (irq >= 16)
150 irq += 16;
151 gic_complete_irq(&s->gic, 0, irq, MEMTXATTRS_UNSPECIFIED);
154 static uint32_t nvic_readl(nvic_state *s, uint32_t offset)
156 ARMCPU *cpu;
157 uint32_t val;
158 int irq;
160 switch (offset) {
161 case 4: /* Interrupt Control Type. */
162 return (s->num_irq / 32) - 1;
163 case 0x10: /* SysTick Control and Status. */
164 val = s->systick.control;
165 s->systick.control &= ~SYSTICK_COUNTFLAG;
166 return val;
167 case 0x14: /* SysTick Reload Value. */
168 return s->systick.reload;
169 case 0x18: /* SysTick Current Value. */
171 int64_t t;
172 if ((s->systick.control & SYSTICK_ENABLE) == 0)
173 return 0;
174 t = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
175 if (t >= s->systick.tick)
176 return 0;
177 val = ((s->systick.tick - (t + 1)) / systick_scale(s)) + 1;
178 /* The interrupt in triggered when the timer reaches zero.
179 However the counter is not reloaded until the next clock
180 tick. This is a hack to return zero during the first tick. */
181 if (val > s->systick.reload)
182 val = 0;
183 return val;
185 case 0x1c: /* SysTick Calibration Value. */
186 return 10000;
187 case 0xd00: /* CPUID Base. */
188 cpu = ARM_CPU(current_cpu);
189 return cpu->midr;
190 case 0xd04: /* Interrupt Control State. */
191 /* VECTACTIVE */
192 cpu = ARM_CPU(current_cpu);
193 val = cpu->env.v7m.exception;
194 if (val == 1023) {
195 val = 0;
196 } else if (val >= 32) {
197 val -= 16;
199 /* VECTPENDING */
200 if (s->gic.current_pending[0] != 1023)
201 val |= (s->gic.current_pending[0] << 12);
202 /* ISRPENDING and RETTOBASE */
203 for (irq = 32; irq < s->num_irq; irq++) {
204 if (s->gic.irq_state[irq].pending) {
205 val |= (1 << 22);
206 break;
208 if (irq != cpu->env.v7m.exception && s->gic.irq_state[irq].active) {
209 val |= (1 << 11);
212 /* PENDSTSET */
213 if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending)
214 val |= (1 << 26);
215 /* PENDSVSET */
216 if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending)
217 val |= (1 << 28);
218 /* NMIPENDSET */
219 if (s->gic.irq_state[ARMV7M_EXCP_NMI].pending)
220 val |= (1 << 31);
221 return val;
222 case 0xd08: /* Vector Table Offset. */
223 cpu = ARM_CPU(current_cpu);
224 return cpu->env.v7m.vecbase;
225 case 0xd0c: /* Application Interrupt/Reset Control. */
226 return 0xfa050000;
227 case 0xd10: /* System Control. */
228 /* TODO: Implement SLEEPONEXIT. */
229 return 0;
230 case 0xd14: /* Configuration Control. */
231 /* TODO: Implement Configuration Control bits. */
232 return 0;
233 case 0xd24: /* System Handler Status. */
234 val = 0;
235 if (s->gic.irq_state[ARMV7M_EXCP_MEM].active) val |= (1 << 0);
236 if (s->gic.irq_state[ARMV7M_EXCP_BUS].active) val |= (1 << 1);
237 if (s->gic.irq_state[ARMV7M_EXCP_USAGE].active) val |= (1 << 3);
238 if (s->gic.irq_state[ARMV7M_EXCP_SVC].active) val |= (1 << 7);
239 if (s->gic.irq_state[ARMV7M_EXCP_DEBUG].active) val |= (1 << 8);
240 if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].active) val |= (1 << 10);
241 if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].active) val |= (1 << 11);
242 if (s->gic.irq_state[ARMV7M_EXCP_USAGE].pending) val |= (1 << 12);
243 if (s->gic.irq_state[ARMV7M_EXCP_MEM].pending) val |= (1 << 13);
244 if (s->gic.irq_state[ARMV7M_EXCP_BUS].pending) val |= (1 << 14);
245 if (s->gic.irq_state[ARMV7M_EXCP_SVC].pending) val |= (1 << 15);
246 if (s->gic.irq_state[ARMV7M_EXCP_MEM].enabled) val |= (1 << 16);
247 if (s->gic.irq_state[ARMV7M_EXCP_BUS].enabled) val |= (1 << 17);
248 if (s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled) val |= (1 << 18);
249 return val;
250 case 0xd28: /* Configurable Fault Status. */
251 /* TODO: Implement Fault Status. */
252 qemu_log_mask(LOG_UNIMP, "Configurable Fault Status unimplemented\n");
253 return 0;
254 case 0xd2c: /* Hard Fault Status. */
255 case 0xd30: /* Debug Fault Status. */
256 case 0xd34: /* Mem Manage Address. */
257 case 0xd38: /* Bus Fault Address. */
258 case 0xd3c: /* Aux Fault Status. */
259 /* TODO: Implement fault status registers. */
260 qemu_log_mask(LOG_UNIMP, "Fault status registers unimplemented\n");
261 return 0;
262 case 0xd40: /* PFR0. */
263 return 0x00000030;
264 case 0xd44: /* PRF1. */
265 return 0x00000200;
266 case 0xd48: /* DFR0. */
267 return 0x00100000;
268 case 0xd4c: /* AFR0. */
269 return 0x00000000;
270 case 0xd50: /* MMFR0. */
271 return 0x00000030;
272 case 0xd54: /* MMFR1. */
273 return 0x00000000;
274 case 0xd58: /* MMFR2. */
275 return 0x00000000;
276 case 0xd5c: /* MMFR3. */
277 return 0x00000000;
278 case 0xd60: /* ISAR0. */
279 return 0x01141110;
280 case 0xd64: /* ISAR1. */
281 return 0x02111000;
282 case 0xd68: /* ISAR2. */
283 return 0x21112231;
284 case 0xd6c: /* ISAR3. */
285 return 0x01111110;
286 case 0xd70: /* ISAR4. */
287 return 0x01310102;
288 /* TODO: Implement debug registers. */
289 default:
290 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
291 return 0;
295 static void nvic_writel(nvic_state *s, uint32_t offset, uint32_t value)
297 ARMCPU *cpu;
298 uint32_t oldval;
299 switch (offset) {
300 case 0x10: /* SysTick Control and Status. */
301 oldval = s->systick.control;
302 s->systick.control &= 0xfffffff8;
303 s->systick.control |= value & 7;
304 if ((oldval ^ value) & SYSTICK_ENABLE) {
305 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
306 if (value & SYSTICK_ENABLE) {
307 if (s->systick.tick) {
308 s->systick.tick += now;
309 timer_mod(s->systick.timer, s->systick.tick);
310 } else {
311 systick_reload(s, 1);
313 } else {
314 timer_del(s->systick.timer);
315 s->systick.tick -= now;
316 if (s->systick.tick < 0)
317 s->systick.tick = 0;
319 } else if ((oldval ^ value) & SYSTICK_CLKSOURCE) {
320 /* This is a hack. Force the timer to be reloaded
321 when the reference clock is changed. */
322 systick_reload(s, 1);
324 break;
325 case 0x14: /* SysTick Reload Value. */
326 s->systick.reload = value;
327 break;
328 case 0x18: /* SysTick Current Value. Writes reload the timer. */
329 systick_reload(s, 1);
330 s->systick.control &= ~SYSTICK_COUNTFLAG;
331 break;
332 case 0xd04: /* Interrupt Control State. */
333 if (value & (1 << 31)) {
334 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI);
336 if (value & (1 << 28)) {
337 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV);
338 } else if (value & (1 << 27)) {
339 s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending = 0;
340 gic_update(&s->gic);
342 if (value & (1 << 26)) {
343 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
344 } else if (value & (1 << 25)) {
345 s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending = 0;
346 gic_update(&s->gic);
348 break;
349 case 0xd08: /* Vector Table Offset. */
350 cpu = ARM_CPU(current_cpu);
351 cpu->env.v7m.vecbase = value & 0xffffff80;
352 break;
353 case 0xd0c: /* Application Interrupt/Reset Control. */
354 if ((value >> 16) == 0x05fa) {
355 if (value & 4) {
356 qemu_irq_pulse(s->sysresetreq);
358 if (value & 2) {
359 qemu_log_mask(LOG_UNIMP, "VECTCLRACTIVE unimplemented\n");
361 if (value & 1) {
362 qemu_log_mask(LOG_UNIMP, "AIRCR system reset unimplemented\n");
364 if (value & 0x700) {
365 qemu_log_mask(LOG_UNIMP, "PRIGROUP unimplemented\n");
368 break;
369 case 0xd10: /* System Control. */
370 case 0xd14: /* Configuration Control. */
371 /* TODO: Implement control registers. */
372 qemu_log_mask(LOG_UNIMP, "NVIC: SCR and CCR unimplemented\n");
373 break;
374 case 0xd24: /* System Handler Control. */
375 /* TODO: Real hardware allows you to set/clear the active bits
376 under some circumstances. We don't implement this. */
377 s->gic.irq_state[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
378 s->gic.irq_state[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
379 s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
380 break;
381 case 0xd28: /* Configurable Fault Status. */
382 case 0xd2c: /* Hard Fault Status. */
383 case 0xd30: /* Debug Fault Status. */
384 case 0xd34: /* Mem Manage Address. */
385 case 0xd38: /* Bus Fault Address. */
386 case 0xd3c: /* Aux Fault Status. */
387 qemu_log_mask(LOG_UNIMP,
388 "NVIC: fault status registers unimplemented\n");
389 break;
390 case 0xf00: /* Software Triggered Interrupt Register */
391 if ((value & 0x1ff) < s->num_irq) {
392 gic_set_pending_private(&s->gic, 0, value & 0x1ff);
394 break;
395 default:
396 qemu_log_mask(LOG_GUEST_ERROR,
397 "NVIC: Bad write offset 0x%x\n", offset);
401 static uint64_t nvic_sysreg_read(void *opaque, hwaddr addr,
402 unsigned size)
404 nvic_state *s = (nvic_state *)opaque;
405 uint32_t offset = addr;
406 int i;
407 uint32_t val;
409 switch (offset) {
410 case 0xd18 ... 0xd23: /* System Handler Priority. */
411 val = 0;
412 for (i = 0; i < size; i++) {
413 val |= s->gic.priority1[(offset - 0xd14) + i][0] << (i * 8);
415 return val;
416 case 0xfe0 ... 0xfff: /* ID. */
417 if (offset & 3) {
418 return 0;
420 return nvic_id[(offset - 0xfe0) >> 2];
422 if (size == 4) {
423 return nvic_readl(s, offset);
425 qemu_log_mask(LOG_GUEST_ERROR,
426 "NVIC: Bad read of size %d at offset 0x%x\n", size, offset);
427 return 0;
430 static void nvic_sysreg_write(void *opaque, hwaddr addr,
431 uint64_t value, unsigned size)
433 nvic_state *s = (nvic_state *)opaque;
434 uint32_t offset = addr;
435 int i;
437 switch (offset) {
438 case 0xd18 ... 0xd23: /* System Handler Priority. */
439 for (i = 0; i < size; i++) {
440 s->gic.priority1[(offset - 0xd14) + i][0] =
441 (value >> (i * 8)) & 0xff;
443 gic_update(&s->gic);
444 return;
446 if (size == 4) {
447 nvic_writel(s, offset, value);
448 return;
450 qemu_log_mask(LOG_GUEST_ERROR,
451 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
454 static const MemoryRegionOps nvic_sysreg_ops = {
455 .read = nvic_sysreg_read,
456 .write = nvic_sysreg_write,
457 .endianness = DEVICE_NATIVE_ENDIAN,
460 static const VMStateDescription vmstate_nvic = {
461 .name = "armv7m_nvic",
462 .version_id = 1,
463 .minimum_version_id = 1,
464 .fields = (VMStateField[]) {
465 VMSTATE_UINT32(systick.control, nvic_state),
466 VMSTATE_UINT32(systick.reload, nvic_state),
467 VMSTATE_INT64(systick.tick, nvic_state),
468 VMSTATE_TIMER_PTR(systick.timer, nvic_state),
469 VMSTATE_END_OF_LIST()
473 static void armv7m_nvic_reset(DeviceState *dev)
475 nvic_state *s = NVIC(dev);
476 NVICClass *nc = NVIC_GET_CLASS(s);
477 nc->parent_reset(dev);
478 /* Common GIC reset resets to disabled; the NVIC doesn't have
479 * per-CPU interfaces so mark our non-existent CPU interface
480 * as enabled by default, and with a priority mask which allows
481 * all interrupts through.
483 s->gic.cpu_ctlr[0] = GICC_CTLR_EN_GRP0;
484 s->gic.priority_mask[0] = 0x100;
485 /* The NVIC as a whole is always enabled. */
486 s->gic.ctlr = 1;
487 systick_reset(s);
490 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
492 nvic_state *s = NVIC(dev);
493 NVICClass *nc = NVIC_GET_CLASS(s);
494 Error *local_err = NULL;
496 /* The NVIC always has only one CPU */
497 s->gic.num_cpu = 1;
498 /* Tell the common code we're an NVIC */
499 s->gic.revision = 0xffffffff;
500 s->num_irq = s->gic.num_irq;
501 nc->parent_realize(dev, &local_err);
502 if (local_err) {
503 error_propagate(errp, local_err);
504 return;
506 gic_init_irqs_and_distributor(&s->gic);
507 /* The NVIC and system controller register area looks like this:
508 * 0..0xff : system control registers, including systick
509 * 0x100..0xcff : GIC-like registers
510 * 0xd00..0xfff : system control registers
511 * We use overlaying to put the GIC like registers
512 * over the top of the system control register region.
514 memory_region_init(&s->container, OBJECT(s), "nvic", 0x1000);
515 /* The system register region goes at the bottom of the priority
516 * stack as it covers the whole page.
518 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
519 "nvic_sysregs", 0x1000);
520 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
521 /* Alias the GIC region so we can get only the section of it
522 * we need, and layer it on top of the system register region.
524 memory_region_init_alias(&s->gic_iomem_alias, OBJECT(s),
525 "nvic-gic", &s->gic.iomem,
526 0x100, 0xc00);
527 memory_region_add_subregion_overlap(&s->container, 0x100,
528 &s->gic_iomem_alias, 1);
529 /* Map the whole thing into system memory at the location required
530 * by the v7M architecture.
532 memory_region_add_subregion(get_system_memory(), 0xe000e000, &s->container);
533 s->systick.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, systick_timer_tick, s);
536 static void armv7m_nvic_instance_init(Object *obj)
538 /* We have a different default value for the num-irq property
539 * than our superclass. This function runs after qdev init
540 * has set the defaults from the Property array and before
541 * any user-specified property setting, so just modify the
542 * value in the GICState struct.
544 GICState *s = ARM_GIC_COMMON(obj);
545 DeviceState *dev = DEVICE(obj);
546 nvic_state *nvic = NVIC(obj);
547 /* The ARM v7m may have anything from 0 to 496 external interrupt
548 * IRQ lines. We default to 64. Other boards may differ and should
549 * set the num-irq property appropriately.
551 s->num_irq = 64;
552 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
555 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
557 NVICClass *nc = NVIC_CLASS(klass);
558 DeviceClass *dc = DEVICE_CLASS(klass);
560 nc->parent_reset = dc->reset;
561 nc->parent_realize = dc->realize;
562 dc->vmsd = &vmstate_nvic;
563 dc->reset = armv7m_nvic_reset;
564 dc->realize = armv7m_nvic_realize;
567 static const TypeInfo armv7m_nvic_info = {
568 .name = TYPE_NVIC,
569 .parent = TYPE_ARM_GIC_COMMON,
570 .instance_init = armv7m_nvic_instance_init,
571 .instance_size = sizeof(nvic_state),
572 .class_init = armv7m_nvic_class_init,
573 .class_size = sizeof(NVICClass),
576 static void armv7m_nvic_register_types(void)
578 type_register_static(&armv7m_nvic_info);
581 type_init(armv7m_nvic_register_types)