4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
24 #include "qemu/cutils.h"
26 #include "exec/exec-all.h"
28 #include "hw/qdev-core.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
40 #else /* !CONFIG_USER_ONLY */
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
53 #include <linux/falloc.h>
57 #include "exec/cpu-all.h"
58 #include "qemu/rcu_queue.h"
59 #include "qemu/main-loop.h"
60 #include "translate-all.h"
61 #include "sysemu/replay.h"
63 #include "exec/memory-internal.h"
64 #include "exec/ram_addr.h"
67 #include "migration/vmstate.h"
69 #include "qemu/range.h"
71 #include "qemu/mmap-alloc.h"
74 #include "monitor/monitor.h"
76 //#define DEBUG_SUBPAGE
78 #if !defined(CONFIG_USER_ONLY)
79 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
80 * are protected by the ramlist lock.
82 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
84 static MemoryRegion
*system_memory
;
85 static MemoryRegion
*system_io
;
87 AddressSpace address_space_io
;
88 AddressSpace address_space_memory
;
90 MemoryRegion io_mem_rom
, io_mem_notdirty
;
91 static MemoryRegion io_mem_unassigned
;
93 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
94 #define RAM_PREALLOC (1 << 0)
96 /* RAM is mmap-ed with MAP_SHARED */
97 #define RAM_SHARED (1 << 1)
99 /* Only a portion of RAM (used_length) is actually used, and migrated.
100 * This used_length size can change across reboots.
102 #define RAM_RESIZEABLE (1 << 2)
106 #ifdef TARGET_PAGE_BITS_VARY
107 int target_page_bits
;
108 bool target_page_bits_decided
;
111 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
112 /* current CPU in the current thread. It is only valid inside
114 __thread CPUState
*current_cpu
;
115 /* 0 = Do not count executed instructions.
116 1 = Precise instruction counting.
117 2 = Adaptive rate instruction counting. */
120 bool set_preferred_target_page_bits(int bits
)
122 /* The target page size is the lowest common denominator for all
123 * the CPUs in the system, so we can only make it smaller, never
124 * larger. And we can't make it smaller once we've committed to
127 #ifdef TARGET_PAGE_BITS_VARY
128 assert(bits
>= TARGET_PAGE_BITS_MIN
);
129 if (target_page_bits
== 0 || target_page_bits
> bits
) {
130 if (target_page_bits_decided
) {
133 target_page_bits
= bits
;
139 #if !defined(CONFIG_USER_ONLY)
141 static void finalize_target_page_bits(void)
143 #ifdef TARGET_PAGE_BITS_VARY
144 if (target_page_bits
== 0) {
145 target_page_bits
= TARGET_PAGE_BITS_MIN
;
147 target_page_bits_decided
= true;
151 typedef struct PhysPageEntry PhysPageEntry
;
153 struct PhysPageEntry
{
154 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
156 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
160 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
162 /* Size of the L2 (and L3, etc) page tables. */
163 #define ADDR_SPACE_BITS 64
166 #define P_L2_SIZE (1 << P_L2_BITS)
168 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
170 typedef PhysPageEntry Node
[P_L2_SIZE
];
172 typedef struct PhysPageMap
{
175 unsigned sections_nb
;
176 unsigned sections_nb_alloc
;
178 unsigned nodes_nb_alloc
;
180 MemoryRegionSection
*sections
;
183 struct AddressSpaceDispatch
{
186 MemoryRegionSection
*mru_section
;
187 /* This is a multi-level map on the physical address space.
188 * The bottom level has pointers to MemoryRegionSections.
190 PhysPageEntry phys_map
;
195 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
196 typedef struct subpage_t
{
200 uint16_t sub_section
[];
203 #define PHYS_SECTION_UNASSIGNED 0
204 #define PHYS_SECTION_NOTDIRTY 1
205 #define PHYS_SECTION_ROM 2
206 #define PHYS_SECTION_WATCH 3
208 static void io_mem_init(void);
209 static void memory_map_init(void);
210 static void tcg_commit(MemoryListener
*listener
);
212 static MemoryRegion io_mem_watch
;
215 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
216 * @cpu: the CPU whose AddressSpace this is
217 * @as: the AddressSpace itself
218 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
219 * @tcg_as_listener: listener for tracking changes to the AddressSpace
221 struct CPUAddressSpace
{
224 struct AddressSpaceDispatch
*memory_dispatch
;
225 MemoryListener tcg_as_listener
;
228 struct DirtyBitmapSnapshot
{
231 unsigned long dirty
[];
236 #if !defined(CONFIG_USER_ONLY)
238 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
240 static unsigned alloc_hint
= 16;
241 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
242 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
243 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
244 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
245 alloc_hint
= map
->nodes_nb_alloc
;
249 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
256 ret
= map
->nodes_nb
++;
258 assert(ret
!= PHYS_MAP_NODE_NIL
);
259 assert(ret
!= map
->nodes_nb_alloc
);
261 e
.skip
= leaf
? 0 : 1;
262 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
263 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
264 memcpy(&p
[i
], &e
, sizeof(e
));
269 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
270 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
274 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
276 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
277 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
279 p
= map
->nodes
[lp
->ptr
];
280 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
282 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
283 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
289 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
295 static void phys_page_set(AddressSpaceDispatch
*d
,
296 hwaddr index
, hwaddr nb
,
299 /* Wildly overreserve - it doesn't matter much. */
300 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
302 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
305 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
306 * and update our entry so we can skip it and go directly to the destination.
308 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
310 unsigned valid_ptr
= P_L2_SIZE
;
315 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
320 for (i
= 0; i
< P_L2_SIZE
; i
++) {
321 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
328 phys_page_compact(&p
[i
], nodes
);
332 /* We can only compress if there's only one child. */
337 assert(valid_ptr
< P_L2_SIZE
);
339 /* Don't compress if it won't fit in the # of bits we have. */
340 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
344 lp
->ptr
= p
[valid_ptr
].ptr
;
345 if (!p
[valid_ptr
].skip
) {
346 /* If our only child is a leaf, make this a leaf. */
347 /* By design, we should have made this node a leaf to begin with so we
348 * should never reach here.
349 * But since it's so simple to handle this, let's do it just in case we
354 lp
->skip
+= p
[valid_ptr
].skip
;
358 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
360 if (d
->phys_map
.skip
) {
361 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
365 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
368 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
369 * the section must cover the entire address space.
371 return int128_gethi(section
->size
) ||
372 range_covers_byte(section
->offset_within_address_space
,
373 int128_getlo(section
->size
), addr
);
376 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
377 Node
*nodes
, MemoryRegionSection
*sections
)
380 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
383 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
384 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
385 return §ions
[PHYS_SECTION_UNASSIGNED
];
388 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
391 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
392 return §ions
[lp
.ptr
];
394 return §ions
[PHYS_SECTION_UNASSIGNED
];
398 bool memory_region_is_unassigned(MemoryRegion
*mr
)
400 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
401 && mr
!= &io_mem_watch
;
404 /* Called from RCU critical section */
405 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
407 bool resolve_subpage
)
409 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
413 if (section
&& section
!= &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] &&
414 section_covers_addr(section
, addr
)) {
417 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
,
421 if (resolve_subpage
&& section
->mr
->subpage
) {
422 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
423 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
426 atomic_set(&d
->mru_section
, section
);
431 /* Called from RCU critical section */
432 static MemoryRegionSection
*
433 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
434 hwaddr
*plen
, bool resolve_subpage
)
436 MemoryRegionSection
*section
;
440 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
441 /* Compute offset within MemoryRegionSection */
442 addr
-= section
->offset_within_address_space
;
444 /* Compute offset within MemoryRegion */
445 *xlat
= addr
+ section
->offset_within_region
;
449 /* MMIO registers can be expected to perform full-width accesses based only
450 * on their address, without considering adjacent registers that could
451 * decode to completely different MemoryRegions. When such registers
452 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
453 * regions overlap wildly. For this reason we cannot clamp the accesses
456 * If the length is small (as is the case for address_space_ldl/stl),
457 * everything works fine. If the incoming length is large, however,
458 * the caller really has to do the clamping through memory_access_size.
460 if (memory_region_is_ram(mr
)) {
461 diff
= int128_sub(section
->size
, int128_make64(addr
));
462 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
467 /* Called from RCU critical section */
468 static MemoryRegionSection
address_space_do_translate(AddressSpace
*as
,
476 MemoryRegionSection
*section
;
480 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
481 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, is_mmio
);
484 if (!mr
->iommu_ops
) {
488 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
489 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
490 | (addr
& iotlb
.addr_mask
));
491 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
492 if (!(iotlb
.perm
& (1 << is_write
))) {
496 as
= iotlb
.target_as
;
504 return (MemoryRegionSection
) { .mr
= &io_mem_unassigned
};
507 /* Called from RCU critical section */
508 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
511 MemoryRegionSection section
;
514 /* Try to get maximum page mask during translation. */
517 /* This can never be MMIO. */
518 section
= address_space_do_translate(as
, addr
, &xlat
, &plen
,
521 /* Illegal translation */
522 if (section
.mr
== &io_mem_unassigned
) {
526 /* Convert memory region offset into address space offset */
527 xlat
+= section
.offset_within_address_space
-
528 section
.offset_within_region
;
530 if (plen
== (hwaddr
)-1) {
532 * We use default page size here. Logically it only happens
533 * for identity mappings.
535 plen
= TARGET_PAGE_SIZE
;
538 /* Convert to address mask */
541 return (IOMMUTLBEntry
) {
542 .target_as
= section
.address_space
,
543 .iova
= addr
& ~plen
,
544 .translated_addr
= xlat
& ~plen
,
546 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551 return (IOMMUTLBEntry
) {0};
554 /* Called from RCU critical section */
555 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
556 hwaddr
*xlat
, hwaddr
*plen
,
560 MemoryRegionSection section
;
562 /* This can be MMIO, so setup MMIO bit. */
563 section
= address_space_do_translate(as
, addr
, xlat
, plen
, is_write
, true);
566 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
567 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
568 *plen
= MIN(page
, *plen
);
574 /* Called from RCU critical section */
575 MemoryRegionSection
*
576 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
577 hwaddr
*xlat
, hwaddr
*plen
)
579 MemoryRegionSection
*section
;
580 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
582 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
584 assert(!section
->mr
->iommu_ops
);
589 #if !defined(CONFIG_USER_ONLY)
591 static int cpu_common_post_load(void *opaque
, int version_id
)
593 CPUState
*cpu
= opaque
;
595 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
596 version_id is increased. */
597 cpu
->interrupt_request
&= ~0x01;
603 static int cpu_common_pre_load(void *opaque
)
605 CPUState
*cpu
= opaque
;
607 cpu
->exception_index
= -1;
612 static bool cpu_common_exception_index_needed(void *opaque
)
614 CPUState
*cpu
= opaque
;
616 return tcg_enabled() && cpu
->exception_index
!= -1;
619 static const VMStateDescription vmstate_cpu_common_exception_index
= {
620 .name
= "cpu_common/exception_index",
622 .minimum_version_id
= 1,
623 .needed
= cpu_common_exception_index_needed
,
624 .fields
= (VMStateField
[]) {
625 VMSTATE_INT32(exception_index
, CPUState
),
626 VMSTATE_END_OF_LIST()
630 static bool cpu_common_crash_occurred_needed(void *opaque
)
632 CPUState
*cpu
= opaque
;
634 return cpu
->crash_occurred
;
637 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
638 .name
= "cpu_common/crash_occurred",
640 .minimum_version_id
= 1,
641 .needed
= cpu_common_crash_occurred_needed
,
642 .fields
= (VMStateField
[]) {
643 VMSTATE_BOOL(crash_occurred
, CPUState
),
644 VMSTATE_END_OF_LIST()
648 const VMStateDescription vmstate_cpu_common
= {
649 .name
= "cpu_common",
651 .minimum_version_id
= 1,
652 .pre_load
= cpu_common_pre_load
,
653 .post_load
= cpu_common_post_load
,
654 .fields
= (VMStateField
[]) {
655 VMSTATE_UINT32(halted
, CPUState
),
656 VMSTATE_UINT32(interrupt_request
, CPUState
),
657 VMSTATE_END_OF_LIST()
659 .subsections
= (const VMStateDescription
*[]) {
660 &vmstate_cpu_common_exception_index
,
661 &vmstate_cpu_common_crash_occurred
,
668 CPUState
*qemu_get_cpu(int index
)
673 if (cpu
->cpu_index
== index
) {
681 #if !defined(CONFIG_USER_ONLY)
682 void cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
, int asidx
)
684 CPUAddressSpace
*newas
;
686 /* Target code should have set num_ases before calling us */
687 assert(asidx
< cpu
->num_ases
);
690 /* address space 0 gets the convenience alias */
694 /* KVM cannot currently support multiple address spaces. */
695 assert(asidx
== 0 || !kvm_enabled());
697 if (!cpu
->cpu_ases
) {
698 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
701 newas
= &cpu
->cpu_ases
[asidx
];
705 newas
->tcg_as_listener
.commit
= tcg_commit
;
706 memory_listener_register(&newas
->tcg_as_listener
, as
);
710 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
712 /* Return the AddressSpace corresponding to the specified index */
713 return cpu
->cpu_ases
[asidx
].as
;
717 void cpu_exec_unrealizefn(CPUState
*cpu
)
719 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
721 cpu_list_remove(cpu
);
723 if (cc
->vmsd
!= NULL
) {
724 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
726 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
727 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
731 void cpu_exec_initfn(CPUState
*cpu
)
736 #ifndef CONFIG_USER_ONLY
737 cpu
->thread_id
= qemu_get_thread_id();
739 /* This is a softmmu CPU object, so create a property for it
740 * so users can wire up its memory. (This can't go in qom/cpu.c
741 * because that file is compiled only once for both user-mode
742 * and system builds.) The default if no link is set up is to use
743 * the system address space.
745 object_property_add_link(OBJECT(cpu
), "memory", TYPE_MEMORY_REGION
,
746 (Object
**)&cpu
->memory
,
747 qdev_prop_allow_set_link_before_realize
,
748 OBJ_PROP_LINK_UNREF_ON_RELEASE
,
750 cpu
->memory
= system_memory
;
751 object_ref(OBJECT(cpu
->memory
));
755 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
757 CPUClass
*cc ATTRIBUTE_UNUSED
= CPU_GET_CLASS(cpu
);
761 #ifndef CONFIG_USER_ONLY
762 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
763 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
765 if (cc
->vmsd
!= NULL
) {
766 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
771 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
773 /* Flush the whole TB as this will not have race conditions
774 * even if we don't have proper locking yet.
775 * Ideally we would just invalidate the TBs for the
781 #if defined(CONFIG_USER_ONLY)
782 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
787 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
793 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
797 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
798 int flags
, CPUWatchpoint
**watchpoint
)
803 /* Add a watchpoint. */
804 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
805 int flags
, CPUWatchpoint
**watchpoint
)
809 /* forbid ranges which are empty or run off the end of the address space */
810 if (len
== 0 || (addr
+ len
- 1) < addr
) {
811 error_report("tried to set invalid watchpoint at %"
812 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
815 wp
= g_malloc(sizeof(*wp
));
821 /* keep all GDB-injected watchpoints in front */
822 if (flags
& BP_GDB
) {
823 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
825 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
828 tlb_flush_page(cpu
, addr
);
835 /* Remove a specific watchpoint. */
836 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
841 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
842 if (addr
== wp
->vaddr
&& len
== wp
->len
843 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
844 cpu_watchpoint_remove_by_ref(cpu
, wp
);
851 /* Remove a specific watchpoint by reference. */
852 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
854 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
856 tlb_flush_page(cpu
, watchpoint
->vaddr
);
861 /* Remove all matching watchpoints. */
862 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
864 CPUWatchpoint
*wp
, *next
;
866 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
867 if (wp
->flags
& mask
) {
868 cpu_watchpoint_remove_by_ref(cpu
, wp
);
873 /* Return true if this watchpoint address matches the specified
874 * access (ie the address range covered by the watchpoint overlaps
875 * partially or completely with the address range covered by the
878 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
882 /* We know the lengths are non-zero, but a little caution is
883 * required to avoid errors in the case where the range ends
884 * exactly at the top of the address space and so addr + len
885 * wraps round to zero.
887 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
888 vaddr addrend
= addr
+ len
- 1;
890 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
895 /* Add a breakpoint. */
896 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
897 CPUBreakpoint
**breakpoint
)
901 bp
= g_malloc(sizeof(*bp
));
906 /* keep all GDB-injected breakpoints in front */
907 if (flags
& BP_GDB
) {
908 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
910 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
913 breakpoint_invalidate(cpu
, pc
);
921 /* Remove a specific breakpoint. */
922 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
926 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
927 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
928 cpu_breakpoint_remove_by_ref(cpu
, bp
);
935 /* Remove a specific breakpoint by reference. */
936 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
938 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
940 breakpoint_invalidate(cpu
, breakpoint
->pc
);
945 /* Remove all matching breakpoints. */
946 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
948 CPUBreakpoint
*bp
, *next
;
950 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
951 if (bp
->flags
& mask
) {
952 cpu_breakpoint_remove_by_ref(cpu
, bp
);
957 /* enable or disable single step mode. EXCP_DEBUG is returned by the
958 CPU loop after each instruction */
959 void cpu_single_step(CPUState
*cpu
, int enabled
)
961 if (cpu
->singlestep_enabled
!= enabled
) {
962 cpu
->singlestep_enabled
= enabled
;
964 kvm_update_guest_debug(cpu
, 0);
966 /* must flush all the translated code to avoid inconsistencies */
967 /* XXX: only flush what is necessary */
973 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
980 fprintf(stderr
, "qemu: fatal: ");
981 vfprintf(stderr
, fmt
, ap
);
982 fprintf(stderr
, "\n");
983 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
984 if (qemu_log_separate()) {
986 qemu_log("qemu: fatal: ");
987 qemu_log_vprintf(fmt
, ap2
);
989 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
997 #if defined(CONFIG_USER_ONLY)
999 struct sigaction act
;
1000 sigfillset(&act
.sa_mask
);
1001 act
.sa_handler
= SIG_DFL
;
1002 sigaction(SIGABRT
, &act
, NULL
);
1008 #if !defined(CONFIG_USER_ONLY)
1009 /* Called from RCU critical section */
1010 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1014 block
= atomic_rcu_read(&ram_list
.mru_block
);
1015 if (block
&& addr
- block
->offset
< block
->max_length
) {
1018 RAMBLOCK_FOREACH(block
) {
1019 if (addr
- block
->offset
< block
->max_length
) {
1024 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1028 /* It is safe to write mru_block outside the iothread lock. This
1033 * xxx removed from list
1037 * call_rcu(reclaim_ramblock, xxx);
1040 * atomic_rcu_set is not needed here. The block was already published
1041 * when it was placed into the list. Here we're just making an extra
1042 * copy of the pointer.
1044 ram_list
.mru_block
= block
;
1048 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1055 end
= TARGET_PAGE_ALIGN(start
+ length
);
1056 start
&= TARGET_PAGE_MASK
;
1059 block
= qemu_get_ram_block(start
);
1060 assert(block
== qemu_get_ram_block(end
- 1));
1061 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1063 tlb_reset_dirty(cpu
, start1
, length
);
1068 /* Note: start and end must be within the same ram block. */
1069 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1073 DirtyMemoryBlocks
*blocks
;
1074 unsigned long end
, page
;
1081 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1082 page
= start
>> TARGET_PAGE_BITS
;
1086 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1088 while (page
< end
) {
1089 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1090 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1091 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1093 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1100 if (dirty
&& tcg_enabled()) {
1101 tlb_reset_dirty_range_all(start
, length
);
1107 DirtyBitmapSnapshot
*cpu_physical_memory_snapshot_and_clear_dirty
1108 (ram_addr_t start
, ram_addr_t length
, unsigned client
)
1110 DirtyMemoryBlocks
*blocks
;
1111 unsigned long align
= 1UL << (TARGET_PAGE_BITS
+ BITS_PER_LEVEL
);
1112 ram_addr_t first
= QEMU_ALIGN_DOWN(start
, align
);
1113 ram_addr_t last
= QEMU_ALIGN_UP(start
+ length
, align
);
1114 DirtyBitmapSnapshot
*snap
;
1115 unsigned long page
, end
, dest
;
1117 snap
= g_malloc0(sizeof(*snap
) +
1118 ((last
- first
) >> (TARGET_PAGE_BITS
+ 3)));
1119 snap
->start
= first
;
1122 page
= first
>> TARGET_PAGE_BITS
;
1123 end
= last
>> TARGET_PAGE_BITS
;
1128 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1130 while (page
< end
) {
1131 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1132 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1133 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1135 assert(QEMU_IS_ALIGNED(offset
, (1 << BITS_PER_LEVEL
)));
1136 assert(QEMU_IS_ALIGNED(num
, (1 << BITS_PER_LEVEL
)));
1137 offset
>>= BITS_PER_LEVEL
;
1139 bitmap_copy_and_clear_atomic(snap
->dirty
+ dest
,
1140 blocks
->blocks
[idx
] + offset
,
1143 dest
+= num
>> BITS_PER_LEVEL
;
1148 if (tcg_enabled()) {
1149 tlb_reset_dirty_range_all(start
, length
);
1155 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot
*snap
,
1159 unsigned long page
, end
;
1161 assert(start
>= snap
->start
);
1162 assert(start
+ length
<= snap
->end
);
1164 end
= TARGET_PAGE_ALIGN(start
+ length
- snap
->start
) >> TARGET_PAGE_BITS
;
1165 page
= (start
- snap
->start
) >> TARGET_PAGE_BITS
;
1167 while (page
< end
) {
1168 if (test_bit(page
, snap
->dirty
)) {
1176 /* Called from RCU critical section */
1177 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1178 MemoryRegionSection
*section
,
1180 hwaddr paddr
, hwaddr xlat
,
1182 target_ulong
*address
)
1187 if (memory_region_is_ram(section
->mr
)) {
1189 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1190 if (!section
->readonly
) {
1191 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1193 iotlb
|= PHYS_SECTION_ROM
;
1196 AddressSpaceDispatch
*d
;
1198 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1199 iotlb
= section
- d
->map
.sections
;
1203 /* Make accesses to pages with watchpoints go via the
1204 watchpoint trap routines. */
1205 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1206 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1207 /* Avoid trapping reads of pages with a write breakpoint. */
1208 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1209 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1210 *address
|= TLB_MMIO
;
1218 #endif /* defined(CONFIG_USER_ONLY) */
1220 #if !defined(CONFIG_USER_ONLY)
1222 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1224 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1226 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1227 qemu_anon_ram_alloc
;
1230 * Set a custom physical guest memory alloator.
1231 * Accelerators with unusual needs may need this. Hopefully, we can
1232 * get rid of it eventually.
1234 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1236 phys_mem_alloc
= alloc
;
1239 static uint16_t phys_section_add(PhysPageMap
*map
,
1240 MemoryRegionSection
*section
)
1242 /* The physical section number is ORed with a page-aligned
1243 * pointer to produce the iotlb entries. Thus it should
1244 * never overflow into the page-aligned value.
1246 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1248 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1249 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1250 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1251 map
->sections_nb_alloc
);
1253 map
->sections
[map
->sections_nb
] = *section
;
1254 memory_region_ref(section
->mr
);
1255 return map
->sections_nb
++;
1258 static void phys_section_destroy(MemoryRegion
*mr
)
1260 bool have_sub_page
= mr
->subpage
;
1262 memory_region_unref(mr
);
1264 if (have_sub_page
) {
1265 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1266 object_unref(OBJECT(&subpage
->iomem
));
1271 static void phys_sections_free(PhysPageMap
*map
)
1273 while (map
->sections_nb
> 0) {
1274 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1275 phys_section_destroy(section
->mr
);
1277 g_free(map
->sections
);
1281 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1284 hwaddr base
= section
->offset_within_address_space
1286 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
1287 d
->map
.nodes
, d
->map
.sections
);
1288 MemoryRegionSection subsection
= {
1289 .offset_within_address_space
= base
,
1290 .size
= int128_make64(TARGET_PAGE_SIZE
),
1294 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1296 if (!(existing
->mr
->subpage
)) {
1297 subpage
= subpage_init(d
->as
, base
);
1298 subsection
.address_space
= d
->as
;
1299 subsection
.mr
= &subpage
->iomem
;
1300 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1301 phys_section_add(&d
->map
, &subsection
));
1303 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1305 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1306 end
= start
+ int128_get64(section
->size
) - 1;
1307 subpage_register(subpage
, start
, end
,
1308 phys_section_add(&d
->map
, section
));
1312 static void register_multipage(AddressSpaceDispatch
*d
,
1313 MemoryRegionSection
*section
)
1315 hwaddr start_addr
= section
->offset_within_address_space
;
1316 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1317 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1321 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1324 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1326 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1327 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1328 MemoryRegionSection now
= *section
, remain
= *section
;
1329 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1331 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1332 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1333 - now
.offset_within_address_space
;
1335 now
.size
= int128_min(int128_make64(left
), now
.size
);
1336 register_subpage(d
, &now
);
1338 now
.size
= int128_zero();
1340 while (int128_ne(remain
.size
, now
.size
)) {
1341 remain
.size
= int128_sub(remain
.size
, now
.size
);
1342 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1343 remain
.offset_within_region
+= int128_get64(now
.size
);
1345 if (int128_lt(remain
.size
, page_size
)) {
1346 register_subpage(d
, &now
);
1347 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1348 now
.size
= page_size
;
1349 register_subpage(d
, &now
);
1351 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1352 register_multipage(d
, &now
);
1357 void qemu_flush_coalesced_mmio_buffer(void)
1360 kvm_flush_coalesced_mmio_buffer();
1363 void qemu_mutex_lock_ramlist(void)
1365 qemu_mutex_lock(&ram_list
.mutex
);
1368 void qemu_mutex_unlock_ramlist(void)
1370 qemu_mutex_unlock(&ram_list
.mutex
);
1373 void ram_block_dump(Monitor
*mon
)
1379 monitor_printf(mon
, "%24s %8s %18s %18s %18s\n",
1380 "Block Name", "PSize", "Offset", "Used", "Total");
1381 RAMBLOCK_FOREACH(block
) {
1382 psize
= size_to_str(block
->page_size
);
1383 monitor_printf(mon
, "%24s %8s 0x%016" PRIx64
" 0x%016" PRIx64
1384 " 0x%016" PRIx64
"\n", block
->idstr
, psize
,
1385 (uint64_t)block
->offset
,
1386 (uint64_t)block
->used_length
,
1387 (uint64_t)block
->max_length
);
1395 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1396 * may or may not name the same files / on the same filesystem now as
1397 * when we actually open and map them. Iterate over the file
1398 * descriptors instead, and use qemu_fd_getpagesize().
1400 static int find_max_supported_pagesize(Object
*obj
, void *opaque
)
1403 long *hpsize_min
= opaque
;
1405 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1406 mem_path
= object_property_get_str(obj
, "mem-path", NULL
);
1408 long hpsize
= qemu_mempath_getpagesize(mem_path
);
1409 if (hpsize
< *hpsize_min
) {
1410 *hpsize_min
= hpsize
;
1413 *hpsize_min
= getpagesize();
1420 long qemu_getrampagesize(void)
1422 long hpsize
= LONG_MAX
;
1423 long mainrampagesize
;
1424 Object
*memdev_root
;
1427 mainrampagesize
= qemu_mempath_getpagesize(mem_path
);
1429 mainrampagesize
= getpagesize();
1432 /* it's possible we have memory-backend objects with
1433 * hugepage-backed RAM. these may get mapped into system
1434 * address space via -numa parameters or memory hotplug
1435 * hooks. we want to take these into account, but we
1436 * also want to make sure these supported hugepage
1437 * sizes are applicable across the entire range of memory
1438 * we may boot from, so we take the min across all
1439 * backends, and assume normal pages in cases where a
1440 * backend isn't backed by hugepages.
1442 memdev_root
= object_resolve_path("/objects", NULL
);
1444 object_child_foreach(memdev_root
, find_max_supported_pagesize
, &hpsize
);
1446 if (hpsize
== LONG_MAX
) {
1447 /* No additional memory regions found ==> Report main RAM page size */
1448 return mainrampagesize
;
1451 /* If NUMA is disabled or the NUMA nodes are not backed with a
1452 * memory-backend, then there is at least one node using "normal" RAM,
1453 * so if its page size is smaller we have got to report that size instead.
1455 if (hpsize
> mainrampagesize
&&
1456 (nb_numa_nodes
== 0 || numa_info
[0].node_memdev
== NULL
)) {
1459 error_report("Huge page support disabled (n/a for main memory).");
1462 return mainrampagesize
;
1468 long qemu_getrampagesize(void)
1470 return getpagesize();
1475 static int64_t get_file_size(int fd
)
1477 int64_t size
= lseek(fd
, 0, SEEK_END
);
1484 static void *file_ram_alloc(RAMBlock
*block
,
1489 bool unlink_on_error
= false;
1491 char *sanitized_name
;
1493 void *area
= MAP_FAILED
;
1497 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1499 "host lacks kvm mmu notifiers, -mem-path unsupported");
1504 fd
= open(path
, O_RDWR
);
1506 /* @path names an existing file, use it */
1509 if (errno
== ENOENT
) {
1510 /* @path names a file that doesn't exist, create it */
1511 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1513 unlink_on_error
= true;
1516 } else if (errno
== EISDIR
) {
1517 /* @path names a directory, create a file there */
1518 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1519 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1520 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1526 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1528 g_free(sanitized_name
);
1530 fd
= mkstemp(filename
);
1538 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1539 error_setg_errno(errp
, errno
,
1540 "can't open backing store %s for guest RAM",
1545 * Try again on EINTR and EEXIST. The latter happens when
1546 * something else creates the file between our two open().
1550 block
->page_size
= qemu_fd_getpagesize(fd
);
1551 block
->mr
->align
= block
->page_size
;
1552 #if defined(__s390x__)
1553 if (kvm_enabled()) {
1554 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1558 file_size
= get_file_size(fd
);
1560 if (memory
< block
->page_size
) {
1561 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1562 "or larger than page size 0x%zx",
1563 memory
, block
->page_size
);
1567 if (file_size
> 0 && file_size
< memory
) {
1568 error_setg(errp
, "backing store %s size 0x%" PRIx64
1569 " does not match 'size' option 0x" RAM_ADDR_FMT
,
1570 path
, file_size
, memory
);
1574 memory
= ROUND_UP(memory
, block
->page_size
);
1577 * ftruncate is not supported by hugetlbfs in older
1578 * hosts, so don't bother bailing out on errors.
1579 * If anything goes wrong with it under other filesystems,
1582 * Do not truncate the non-empty backend file to avoid corrupting
1583 * the existing data in the file. Disabling shrinking is not
1584 * enough. For example, the current vNVDIMM implementation stores
1585 * the guest NVDIMM labels at the end of the backend file. If the
1586 * backend file is later extended, QEMU will not be able to find
1587 * those labels. Therefore, extending the non-empty backend file
1588 * is disabled as well.
1590 if (!file_size
&& ftruncate(fd
, memory
)) {
1591 perror("ftruncate");
1594 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1595 block
->flags
& RAM_SHARED
);
1596 if (area
== MAP_FAILED
) {
1597 error_setg_errno(errp
, errno
,
1598 "unable to map backing store for guest RAM");
1603 os_mem_prealloc(fd
, area
, memory
, smp_cpus
, errp
);
1604 if (errp
&& *errp
) {
1613 if (area
!= MAP_FAILED
) {
1614 qemu_ram_munmap(area
, memory
);
1616 if (unlink_on_error
) {
1626 /* Called with the ramlist lock held. */
1627 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1629 RAMBlock
*block
, *next_block
;
1630 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1632 assert(size
!= 0); /* it would hand out same offset multiple times */
1634 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1638 RAMBLOCK_FOREACH(block
) {
1639 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1641 end
= block
->offset
+ block
->max_length
;
1643 RAMBLOCK_FOREACH(next_block
) {
1644 if (next_block
->offset
>= end
) {
1645 next
= MIN(next
, next_block
->offset
);
1648 if (next
- end
>= size
&& next
- end
< mingap
) {
1650 mingap
= next
- end
;
1654 if (offset
== RAM_ADDR_MAX
) {
1655 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1663 unsigned long last_ram_page(void)
1666 ram_addr_t last
= 0;
1669 RAMBLOCK_FOREACH(block
) {
1670 last
= MAX(last
, block
->offset
+ block
->max_length
);
1673 return last
>> TARGET_PAGE_BITS
;
1676 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1680 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1681 if (!machine_dump_guest_core(current_machine
)) {
1682 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1684 perror("qemu_madvise");
1685 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1686 "but dump_guest_core=off specified\n");
1691 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1696 bool qemu_ram_is_shared(RAMBlock
*rb
)
1698 return rb
->flags
& RAM_SHARED
;
1701 /* Called with iothread lock held. */
1702 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1707 assert(!new_block
->idstr
[0]);
1710 char *id
= qdev_get_dev_path(dev
);
1712 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1716 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1719 RAMBLOCK_FOREACH(block
) {
1720 if (block
!= new_block
&&
1721 !strcmp(block
->idstr
, new_block
->idstr
)) {
1722 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1730 /* Called with iothread lock held. */
1731 void qemu_ram_unset_idstr(RAMBlock
*block
)
1733 /* FIXME: arch_init.c assumes that this is not called throughout
1734 * migration. Ignore the problem since hot-unplug during migration
1735 * does not work anyway.
1738 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1742 size_t qemu_ram_pagesize(RAMBlock
*rb
)
1744 return rb
->page_size
;
1747 /* Returns the largest size of page in use */
1748 size_t qemu_ram_pagesize_largest(void)
1753 RAMBLOCK_FOREACH(block
) {
1754 largest
= MAX(largest
, qemu_ram_pagesize(block
));
1760 static int memory_try_enable_merging(void *addr
, size_t len
)
1762 if (!machine_mem_merge(current_machine
)) {
1763 /* disabled by the user */
1767 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1770 /* Only legal before guest might have detected the memory size: e.g. on
1771 * incoming migration, or right after reset.
1773 * As memory core doesn't know how is memory accessed, it is up to
1774 * resize callback to update device state and/or add assertions to detect
1775 * misuse, if necessary.
1777 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1781 newsize
= HOST_PAGE_ALIGN(newsize
);
1783 if (block
->used_length
== newsize
) {
1787 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1788 error_setg_errno(errp
, EINVAL
,
1789 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1790 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1791 newsize
, block
->used_length
);
1795 if (block
->max_length
< newsize
) {
1796 error_setg_errno(errp
, EINVAL
,
1797 "Length too large: %s: 0x" RAM_ADDR_FMT
1798 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1799 newsize
, block
->max_length
);
1803 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1804 block
->used_length
= newsize
;
1805 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1807 memory_region_set_size(block
->mr
, newsize
);
1808 if (block
->resized
) {
1809 block
->resized(block
->idstr
, newsize
, block
->host
);
1814 /* Called with ram_list.mutex held */
1815 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1816 ram_addr_t new_ram_size
)
1818 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1819 DIRTY_MEMORY_BLOCK_SIZE
);
1820 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1821 DIRTY_MEMORY_BLOCK_SIZE
);
1824 /* Only need to extend if block count increased */
1825 if (new_num_blocks
<= old_num_blocks
) {
1829 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1830 DirtyMemoryBlocks
*old_blocks
;
1831 DirtyMemoryBlocks
*new_blocks
;
1834 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1835 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1836 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1838 if (old_num_blocks
) {
1839 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1840 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1843 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1844 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1847 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1850 g_free_rcu(old_blocks
, rcu
);
1855 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1858 RAMBlock
*last_block
= NULL
;
1859 ram_addr_t old_ram_size
, new_ram_size
;
1862 old_ram_size
= last_ram_page();
1864 qemu_mutex_lock_ramlist();
1865 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1867 if (!new_block
->host
) {
1868 if (xen_enabled()) {
1869 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1870 new_block
->mr
, &err
);
1872 error_propagate(errp
, err
);
1873 qemu_mutex_unlock_ramlist();
1877 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1878 &new_block
->mr
->align
);
1879 if (!new_block
->host
) {
1880 error_setg_errno(errp
, errno
,
1881 "cannot set up guest memory '%s'",
1882 memory_region_name(new_block
->mr
));
1883 qemu_mutex_unlock_ramlist();
1886 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1890 new_ram_size
= MAX(old_ram_size
,
1891 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1892 if (new_ram_size
> old_ram_size
) {
1893 dirty_memory_extend(old_ram_size
, new_ram_size
);
1895 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1896 * QLIST (which has an RCU-friendly variant) does not have insertion at
1897 * tail, so save the last element in last_block.
1899 RAMBLOCK_FOREACH(block
) {
1901 if (block
->max_length
< new_block
->max_length
) {
1906 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1907 } else if (last_block
) {
1908 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1909 } else { /* list is empty */
1910 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1912 ram_list
.mru_block
= NULL
;
1914 /* Write list before version */
1917 qemu_mutex_unlock_ramlist();
1919 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1920 new_block
->used_length
,
1923 if (new_block
->host
) {
1924 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1925 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1926 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1927 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1928 ram_block_notify_add(new_block
->host
, new_block
->max_length
);
1933 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1934 bool share
, const char *mem_path
,
1937 RAMBlock
*new_block
;
1938 Error
*local_err
= NULL
;
1940 if (xen_enabled()) {
1941 error_setg(errp
, "-mem-path not supported with Xen");
1945 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1947 * file_ram_alloc() needs to allocate just like
1948 * phys_mem_alloc, but we haven't bothered to provide
1952 "-mem-path not supported with this accelerator");
1956 size
= HOST_PAGE_ALIGN(size
);
1957 new_block
= g_malloc0(sizeof(*new_block
));
1959 new_block
->used_length
= size
;
1960 new_block
->max_length
= size
;
1961 new_block
->flags
= share
? RAM_SHARED
: 0;
1962 new_block
->host
= file_ram_alloc(new_block
, size
,
1964 if (!new_block
->host
) {
1969 ram_block_add(new_block
, &local_err
);
1972 error_propagate(errp
, local_err
);
1980 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
1981 void (*resized
)(const char*,
1984 void *host
, bool resizeable
,
1985 MemoryRegion
*mr
, Error
**errp
)
1987 RAMBlock
*new_block
;
1988 Error
*local_err
= NULL
;
1990 size
= HOST_PAGE_ALIGN(size
);
1991 max_size
= HOST_PAGE_ALIGN(max_size
);
1992 new_block
= g_malloc0(sizeof(*new_block
));
1994 new_block
->resized
= resized
;
1995 new_block
->used_length
= size
;
1996 new_block
->max_length
= max_size
;
1997 assert(max_size
>= size
);
1999 new_block
->page_size
= getpagesize();
2000 new_block
->host
= host
;
2002 new_block
->flags
|= RAM_PREALLOC
;
2005 new_block
->flags
|= RAM_RESIZEABLE
;
2007 ram_block_add(new_block
, &local_err
);
2010 error_propagate(errp
, local_err
);
2016 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2017 MemoryRegion
*mr
, Error
**errp
)
2019 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
2022 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
2024 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
2027 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
2028 void (*resized
)(const char*,
2031 MemoryRegion
*mr
, Error
**errp
)
2033 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
2036 static void reclaim_ramblock(RAMBlock
*block
)
2038 if (block
->flags
& RAM_PREALLOC
) {
2040 } else if (xen_enabled()) {
2041 xen_invalidate_map_cache_entry(block
->host
);
2043 } else if (block
->fd
>= 0) {
2044 qemu_ram_munmap(block
->host
, block
->max_length
);
2048 qemu_anon_ram_free(block
->host
, block
->max_length
);
2053 void qemu_ram_free(RAMBlock
*block
)
2060 ram_block_notify_remove(block
->host
, block
->max_length
);
2063 qemu_mutex_lock_ramlist();
2064 QLIST_REMOVE_RCU(block
, next
);
2065 ram_list
.mru_block
= NULL
;
2066 /* Write list before version */
2069 call_rcu(block
, reclaim_ramblock
, rcu
);
2070 qemu_mutex_unlock_ramlist();
2074 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2081 RAMBLOCK_FOREACH(block
) {
2082 offset
= addr
- block
->offset
;
2083 if (offset
< block
->max_length
) {
2084 vaddr
= ramblock_ptr(block
, offset
);
2085 if (block
->flags
& RAM_PREALLOC
) {
2087 } else if (xen_enabled()) {
2091 if (block
->fd
>= 0) {
2092 flags
|= (block
->flags
& RAM_SHARED
?
2093 MAP_SHARED
: MAP_PRIVATE
);
2094 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2095 flags
, block
->fd
, offset
);
2098 * Remap needs to match alloc. Accelerators that
2099 * set phys_mem_alloc never remap. If they did,
2100 * we'd need a remap hook here.
2102 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
2104 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2105 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2108 if (area
!= vaddr
) {
2109 fprintf(stderr
, "Could not remap addr: "
2110 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
2114 memory_try_enable_merging(vaddr
, length
);
2115 qemu_ram_setup_dump(vaddr
, length
);
2120 #endif /* !_WIN32 */
2122 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2123 * This should not be used for general purpose DMA. Use address_space_map
2124 * or address_space_rw instead. For local memory (e.g. video ram) that the
2125 * device owns, use memory_region_get_ram_ptr.
2127 * Called within RCU critical section.
2129 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
2131 RAMBlock
*block
= ram_block
;
2133 if (block
== NULL
) {
2134 block
= qemu_get_ram_block(addr
);
2135 addr
-= block
->offset
;
2138 if (xen_enabled() && block
->host
== NULL
) {
2139 /* We need to check if the requested address is in the RAM
2140 * because we don't want to map the entire memory in QEMU.
2141 * In that case just map until the end of the page.
2143 if (block
->offset
== 0) {
2144 return xen_map_cache(addr
, 0, 0, false);
2147 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, false);
2149 return ramblock_ptr(block
, addr
);
2152 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2153 * but takes a size argument.
2155 * Called within RCU critical section.
2157 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
2160 RAMBlock
*block
= ram_block
;
2165 if (block
== NULL
) {
2166 block
= qemu_get_ram_block(addr
);
2167 addr
-= block
->offset
;
2169 *size
= MIN(*size
, block
->max_length
- addr
);
2171 if (xen_enabled() && block
->host
== NULL
) {
2172 /* We need to check if the requested address is in the RAM
2173 * because we don't want to map the entire memory in QEMU.
2174 * In that case just map the requested area.
2176 if (block
->offset
== 0) {
2177 return xen_map_cache(addr
, *size
, 1, true);
2180 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, true);
2183 return ramblock_ptr(block
, addr
);
2187 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2190 * ptr: Host pointer to look up
2191 * round_offset: If true round the result offset down to a page boundary
2192 * *ram_addr: set to result ram_addr
2193 * *offset: set to result offset within the RAMBlock
2195 * Returns: RAMBlock (or NULL if not found)
2197 * By the time this function returns, the returned pointer is not protected
2198 * by RCU anymore. If the caller is not within an RCU critical section and
2199 * does not hold the iothread lock, it must have other means of protecting the
2200 * pointer, such as a reference to the region that includes the incoming
2203 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
2207 uint8_t *host
= ptr
;
2209 if (xen_enabled()) {
2210 ram_addr_t ram_addr
;
2212 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2213 block
= qemu_get_ram_block(ram_addr
);
2215 *offset
= ram_addr
- block
->offset
;
2222 block
= atomic_rcu_read(&ram_list
.mru_block
);
2223 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
2227 RAMBLOCK_FOREACH(block
) {
2228 /* This case append when the block is not mapped. */
2229 if (block
->host
== NULL
) {
2232 if (host
- block
->host
< block
->max_length
) {
2241 *offset
= (host
- block
->host
);
2243 *offset
&= TARGET_PAGE_MASK
;
2250 * Finds the named RAMBlock
2252 * name: The name of RAMBlock to find
2254 * Returns: RAMBlock (or NULL if not found)
2256 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2260 RAMBLOCK_FOREACH(block
) {
2261 if (!strcmp(name
, block
->idstr
)) {
2269 /* Some of the softmmu routines need to translate from a host pointer
2270 (typically a TLB entry) back to a ram offset. */
2271 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2276 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2278 return RAM_ADDR_INVALID
;
2281 return block
->offset
+ offset
;
2284 /* Called within RCU critical section. */
2285 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2286 uint64_t val
, unsigned size
)
2288 bool locked
= false;
2290 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2293 tb_invalidate_phys_page_fast(ram_addr
, size
);
2297 stb_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2300 stw_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2303 stl_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2313 /* Set both VGA and migration bits for simplicity and to remove
2314 * the notdirty callback faster.
2316 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2317 DIRTY_CLIENTS_NOCODE
);
2318 /* we remove the notdirty callback only if the code has been
2320 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2321 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2325 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2326 unsigned size
, bool is_write
)
2331 static const MemoryRegionOps notdirty_mem_ops
= {
2332 .write
= notdirty_mem_write
,
2333 .valid
.accepts
= notdirty_mem_accepts
,
2334 .endianness
= DEVICE_NATIVE_ENDIAN
,
2337 /* Generate a debug exception if a watchpoint has been hit. */
2338 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2340 CPUState
*cpu
= current_cpu
;
2341 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2342 CPUArchState
*env
= cpu
->env_ptr
;
2343 target_ulong pc
, cs_base
;
2348 if (cpu
->watchpoint_hit
) {
2349 /* We re-entered the check after replacing the TB. Now raise
2350 * the debug interrupt so that is will trigger after the
2351 * current instruction. */
2352 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2355 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2356 vaddr
= cc
->adjust_watchpoint_address(cpu
, vaddr
, len
);
2357 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2358 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2359 && (wp
->flags
& flags
)) {
2360 if (flags
== BP_MEM_READ
) {
2361 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2363 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2365 wp
->hitaddr
= vaddr
;
2366 wp
->hitattrs
= attrs
;
2367 if (!cpu
->watchpoint_hit
) {
2368 if (wp
->flags
& BP_CPU
&&
2369 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2370 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2373 cpu
->watchpoint_hit
= wp
;
2375 /* Both tb_lock and iothread_mutex will be reset when
2376 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2377 * back into the cpu_exec main loop.
2380 tb_check_watchpoint(cpu
);
2381 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2382 cpu
->exception_index
= EXCP_DEBUG
;
2385 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2386 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2387 cpu_loop_exit_noexc(cpu
);
2391 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2396 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2397 so these check for a hit then pass through to the normal out-of-line
2399 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2400 unsigned size
, MemTxAttrs attrs
)
2404 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2405 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2407 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2410 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2413 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2416 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2424 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2425 uint64_t val
, unsigned size
,
2429 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2430 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2432 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2435 address_space_stb(as
, addr
, val
, attrs
, &res
);
2438 address_space_stw(as
, addr
, val
, attrs
, &res
);
2441 address_space_stl(as
, addr
, val
, attrs
, &res
);
2448 static const MemoryRegionOps watch_mem_ops
= {
2449 .read_with_attrs
= watch_mem_read
,
2450 .write_with_attrs
= watch_mem_write
,
2451 .endianness
= DEVICE_NATIVE_ENDIAN
,
2454 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2455 unsigned len
, MemTxAttrs attrs
)
2457 subpage_t
*subpage
= opaque
;
2461 #if defined(DEBUG_SUBPAGE)
2462 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2463 subpage
, len
, addr
);
2465 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2472 *data
= ldub_p(buf
);
2475 *data
= lduw_p(buf
);
2488 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2489 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2491 subpage_t
*subpage
= opaque
;
2494 #if defined(DEBUG_SUBPAGE)
2495 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2496 " value %"PRIx64
"\n",
2497 __func__
, subpage
, len
, addr
, value
);
2515 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2519 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2520 unsigned len
, bool is_write
)
2522 subpage_t
*subpage
= opaque
;
2523 #if defined(DEBUG_SUBPAGE)
2524 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2525 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2528 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2532 static const MemoryRegionOps subpage_ops
= {
2533 .read_with_attrs
= subpage_read
,
2534 .write_with_attrs
= subpage_write
,
2535 .impl
.min_access_size
= 1,
2536 .impl
.max_access_size
= 8,
2537 .valid
.min_access_size
= 1,
2538 .valid
.max_access_size
= 8,
2539 .valid
.accepts
= subpage_accepts
,
2540 .endianness
= DEVICE_NATIVE_ENDIAN
,
2543 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2548 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2550 idx
= SUBPAGE_IDX(start
);
2551 eidx
= SUBPAGE_IDX(end
);
2552 #if defined(DEBUG_SUBPAGE)
2553 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2554 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2556 for (; idx
<= eidx
; idx
++) {
2557 mmio
->sub_section
[idx
] = section
;
2563 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2567 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2570 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2571 NULL
, TARGET_PAGE_SIZE
);
2572 mmio
->iomem
.subpage
= true;
2573 #if defined(DEBUG_SUBPAGE)
2574 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2575 mmio
, base
, TARGET_PAGE_SIZE
);
2577 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2582 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2586 MemoryRegionSection section
= {
2587 .address_space
= as
,
2589 .offset_within_address_space
= 0,
2590 .offset_within_region
= 0,
2591 .size
= int128_2_64(),
2594 return phys_section_add(map
, §ion
);
2597 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2599 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2600 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2601 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2602 MemoryRegionSection
*sections
= d
->map
.sections
;
2604 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2607 static void io_mem_init(void)
2609 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2610 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2613 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2614 * which can be called without the iothread mutex.
2616 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2618 memory_region_clear_global_locking(&io_mem_notdirty
);
2620 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2624 static void mem_begin(MemoryListener
*listener
)
2626 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2627 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2630 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2631 assert(n
== PHYS_SECTION_UNASSIGNED
);
2632 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2633 assert(n
== PHYS_SECTION_NOTDIRTY
);
2634 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2635 assert(n
== PHYS_SECTION_ROM
);
2636 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2637 assert(n
== PHYS_SECTION_WATCH
);
2639 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2641 as
->next_dispatch
= d
;
2644 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2646 phys_sections_free(&d
->map
);
2650 static void mem_commit(MemoryListener
*listener
)
2652 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2653 AddressSpaceDispatch
*cur
= as
->dispatch
;
2654 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2656 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2658 atomic_rcu_set(&as
->dispatch
, next
);
2660 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2664 static void tcg_commit(MemoryListener
*listener
)
2666 CPUAddressSpace
*cpuas
;
2667 AddressSpaceDispatch
*d
;
2669 /* since each CPU stores ram addresses in its TLB cache, we must
2670 reset the modified entries */
2671 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2672 cpu_reloading_memory_map();
2673 /* The CPU and TLB are protected by the iothread lock.
2674 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2675 * may have split the RCU critical section.
2677 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2678 atomic_rcu_set(&cpuas
->memory_dispatch
, d
);
2679 tlb_flush(cpuas
->cpu
);
2682 void address_space_init_dispatch(AddressSpace
*as
)
2684 as
->dispatch
= NULL
;
2685 as
->dispatch_listener
= (MemoryListener
) {
2687 .commit
= mem_commit
,
2688 .region_add
= mem_add
,
2689 .region_nop
= mem_add
,
2692 memory_listener_register(&as
->dispatch_listener
, as
);
2695 void address_space_unregister(AddressSpace
*as
)
2697 memory_listener_unregister(&as
->dispatch_listener
);
2700 void address_space_destroy_dispatch(AddressSpace
*as
)
2702 AddressSpaceDispatch
*d
= as
->dispatch
;
2704 atomic_rcu_set(&as
->dispatch
, NULL
);
2706 call_rcu(d
, address_space_dispatch_free
, rcu
);
2710 static void memory_map_init(void)
2712 system_memory
= g_malloc(sizeof(*system_memory
));
2714 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2715 address_space_init(&address_space_memory
, system_memory
, "memory");
2717 system_io
= g_malloc(sizeof(*system_io
));
2718 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2720 address_space_init(&address_space_io
, system_io
, "I/O");
2723 MemoryRegion
*get_system_memory(void)
2725 return system_memory
;
2728 MemoryRegion
*get_system_io(void)
2733 #endif /* !defined(CONFIG_USER_ONLY) */
2735 /* physical memory access (slow version, mainly for debug) */
2736 #if defined(CONFIG_USER_ONLY)
2737 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2738 uint8_t *buf
, int len
, int is_write
)
2745 page
= addr
& TARGET_PAGE_MASK
;
2746 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2749 flags
= page_get_flags(page
);
2750 if (!(flags
& PAGE_VALID
))
2753 if (!(flags
& PAGE_WRITE
))
2755 /* XXX: this code should not depend on lock_user */
2756 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2759 unlock_user(p
, addr
, l
);
2761 if (!(flags
& PAGE_READ
))
2763 /* XXX: this code should not depend on lock_user */
2764 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2767 unlock_user(p
, addr
, 0);
2778 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2781 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2782 addr
+= memory_region_get_ram_addr(mr
);
2784 /* No early return if dirty_log_mask is or becomes 0, because
2785 * cpu_physical_memory_set_dirty_range will still call
2786 * xen_modified_memory.
2788 if (dirty_log_mask
) {
2790 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2792 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2794 tb_invalidate_phys_range(addr
, addr
+ length
);
2796 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2798 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2801 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2803 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2805 /* Regions are assumed to support 1-4 byte accesses unless
2806 otherwise specified. */
2807 if (access_size_max
== 0) {
2808 access_size_max
= 4;
2811 /* Bound the maximum access by the alignment of the address. */
2812 if (!mr
->ops
->impl
.unaligned
) {
2813 unsigned align_size_max
= addr
& -addr
;
2814 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2815 access_size_max
= align_size_max
;
2819 /* Don't attempt accesses larger than the maximum. */
2820 if (l
> access_size_max
) {
2821 l
= access_size_max
;
2828 static bool prepare_mmio_access(MemoryRegion
*mr
)
2830 bool unlocked
= !qemu_mutex_iothread_locked();
2831 bool release_lock
= false;
2833 if (unlocked
&& mr
->global_locking
) {
2834 qemu_mutex_lock_iothread();
2836 release_lock
= true;
2838 if (mr
->flush_coalesced_mmio
) {
2840 qemu_mutex_lock_iothread();
2842 qemu_flush_coalesced_mmio_buffer();
2844 qemu_mutex_unlock_iothread();
2848 return release_lock
;
2851 /* Called within RCU critical section. */
2852 static MemTxResult
address_space_write_continue(AddressSpace
*as
, hwaddr addr
,
2855 int len
, hwaddr addr1
,
2856 hwaddr l
, MemoryRegion
*mr
)
2860 MemTxResult result
= MEMTX_OK
;
2861 bool release_lock
= false;
2864 if (!memory_access_is_direct(mr
, true)) {
2865 release_lock
|= prepare_mmio_access(mr
);
2866 l
= memory_access_size(mr
, l
, addr1
);
2867 /* XXX: could force current_cpu to NULL to avoid
2871 /* 64 bit write access */
2873 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2877 /* 32 bit write access */
2878 val
= (uint32_t)ldl_p(buf
);
2879 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2883 /* 16 bit write access */
2885 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2889 /* 8 bit write access */
2891 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2899 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2900 memcpy(ptr
, buf
, l
);
2901 invalidate_and_set_dirty(mr
, addr1
, l
);
2905 qemu_mutex_unlock_iothread();
2906 release_lock
= false;
2918 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2924 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2925 const uint8_t *buf
, int len
)
2930 MemTxResult result
= MEMTX_OK
;
2935 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2936 result
= address_space_write_continue(as
, addr
, attrs
, buf
, len
,
2944 /* Called within RCU critical section. */
2945 MemTxResult
address_space_read_continue(AddressSpace
*as
, hwaddr addr
,
2946 MemTxAttrs attrs
, uint8_t *buf
,
2947 int len
, hwaddr addr1
, hwaddr l
,
2952 MemTxResult result
= MEMTX_OK
;
2953 bool release_lock
= false;
2956 if (!memory_access_is_direct(mr
, false)) {
2958 release_lock
|= prepare_mmio_access(mr
);
2959 l
= memory_access_size(mr
, l
, addr1
);
2962 /* 64 bit read access */
2963 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
2968 /* 32 bit read access */
2969 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
2974 /* 16 bit read access */
2975 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
2980 /* 8 bit read access */
2981 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
2990 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2991 memcpy(buf
, ptr
, l
);
2995 qemu_mutex_unlock_iothread();
2996 release_lock
= false;
3008 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
3014 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
3015 MemTxAttrs attrs
, uint8_t *buf
, int len
)
3020 MemTxResult result
= MEMTX_OK
;
3025 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
3026 result
= address_space_read_continue(as
, addr
, attrs
, buf
, len
,
3034 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
3035 uint8_t *buf
, int len
, bool is_write
)
3038 return address_space_write(as
, addr
, attrs
, (uint8_t *)buf
, len
);
3040 return address_space_read(as
, addr
, attrs
, (uint8_t *)buf
, len
);
3044 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
3045 int len
, int is_write
)
3047 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
3048 buf
, len
, is_write
);
3051 enum write_rom_type
{
3056 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
3057 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
3067 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3069 if (!(memory_region_is_ram(mr
) ||
3070 memory_region_is_romd(mr
))) {
3071 l
= memory_access_size(mr
, l
, addr1
);
3074 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3077 memcpy(ptr
, buf
, l
);
3078 invalidate_and_set_dirty(mr
, addr1
, l
);
3081 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
3092 /* used for ROM loading : can write in RAM and ROM */
3093 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
3094 const uint8_t *buf
, int len
)
3096 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
3099 void cpu_flush_icache_range(hwaddr start
, int len
)
3102 * This function should do the same thing as an icache flush that was
3103 * triggered from within the guest. For TCG we are always cache coherent,
3104 * so there is no need to flush anything. For KVM / Xen we need to flush
3105 * the host's instruction cache at least.
3107 if (tcg_enabled()) {
3111 cpu_physical_memory_write_rom_internal(&address_space_memory
,
3112 start
, NULL
, len
, FLUSH_CACHE
);
3123 static BounceBuffer bounce
;
3125 typedef struct MapClient
{
3127 QLIST_ENTRY(MapClient
) link
;
3130 QemuMutex map_client_list_lock
;
3131 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3132 = QLIST_HEAD_INITIALIZER(map_client_list
);
3134 static void cpu_unregister_map_client_do(MapClient
*client
)
3136 QLIST_REMOVE(client
, link
);
3140 static void cpu_notify_map_clients_locked(void)
3144 while (!QLIST_EMPTY(&map_client_list
)) {
3145 client
= QLIST_FIRST(&map_client_list
);
3146 qemu_bh_schedule(client
->bh
);
3147 cpu_unregister_map_client_do(client
);
3151 void cpu_register_map_client(QEMUBH
*bh
)
3153 MapClient
*client
= g_malloc(sizeof(*client
));
3155 qemu_mutex_lock(&map_client_list_lock
);
3157 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3158 if (!atomic_read(&bounce
.in_use
)) {
3159 cpu_notify_map_clients_locked();
3161 qemu_mutex_unlock(&map_client_list_lock
);
3164 void cpu_exec_init_all(void)
3166 qemu_mutex_init(&ram_list
.mutex
);
3167 /* The data structures we set up here depend on knowing the page size,
3168 * so no more changes can be made after this point.
3169 * In an ideal world, nothing we did before we had finished the
3170 * machine setup would care about the target page size, and we could
3171 * do this much later, rather than requiring board models to state
3172 * up front what their requirements are.
3174 finalize_target_page_bits();
3177 qemu_mutex_init(&map_client_list_lock
);
3180 void cpu_unregister_map_client(QEMUBH
*bh
)
3184 qemu_mutex_lock(&map_client_list_lock
);
3185 QLIST_FOREACH(client
, &map_client_list
, link
) {
3186 if (client
->bh
== bh
) {
3187 cpu_unregister_map_client_do(client
);
3191 qemu_mutex_unlock(&map_client_list_lock
);
3194 static void cpu_notify_map_clients(void)
3196 qemu_mutex_lock(&map_client_list_lock
);
3197 cpu_notify_map_clients_locked();
3198 qemu_mutex_unlock(&map_client_list_lock
);
3201 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
3209 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3210 if (!memory_access_is_direct(mr
, is_write
)) {
3211 l
= memory_access_size(mr
, l
, addr
);
3212 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
3226 address_space_extend_translation(AddressSpace
*as
, hwaddr addr
, hwaddr target_len
,
3227 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
3232 MemoryRegion
*this_mr
;
3238 if (target_len
== 0) {
3243 this_mr
= address_space_translate(as
, addr
, &xlat
, &len
, is_write
);
3244 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3250 /* Map a physical memory region into a host virtual address.
3251 * May map a subset of the requested range, given by and returned in *plen.
3252 * May return NULL if resources needed to perform the mapping are exhausted.
3253 * Use only for reads OR writes - not for read-modify-write operations.
3254 * Use cpu_register_map_client() to know when retrying the map operation is
3255 * likely to succeed.
3257 void *address_space_map(AddressSpace
*as
,
3273 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3275 if (!memory_access_is_direct(mr
, is_write
)) {
3276 if (atomic_xchg(&bounce
.in_use
, true)) {
3280 /* Avoid unbounded allocations */
3281 l
= MIN(l
, TARGET_PAGE_SIZE
);
3282 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3286 memory_region_ref(mr
);
3289 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
3295 return bounce
.buffer
;
3299 memory_region_ref(mr
);
3300 *plen
= address_space_extend_translation(as
, addr
, len
, mr
, xlat
, l
, is_write
);
3301 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
);
3307 /* Unmaps a memory region previously mapped by address_space_map().
3308 * Will also mark the memory as dirty if is_write == 1. access_len gives
3309 * the amount of memory that was actually read or written by the caller.
3311 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3312 int is_write
, hwaddr access_len
)
3314 if (buffer
!= bounce
.buffer
) {
3318 mr
= memory_region_from_host(buffer
, &addr1
);
3321 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3323 if (xen_enabled()) {
3324 xen_invalidate_map_cache_entry(buffer
);
3326 memory_region_unref(mr
);
3330 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3331 bounce
.buffer
, access_len
);
3333 qemu_vfree(bounce
.buffer
);
3334 bounce
.buffer
= NULL
;
3335 memory_region_unref(bounce
.mr
);
3336 atomic_mb_set(&bounce
.in_use
, false);
3337 cpu_notify_map_clients();
3340 void *cpu_physical_memory_map(hwaddr addr
,
3344 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3347 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3348 int is_write
, hwaddr access_len
)
3350 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3353 #define ARG1_DECL AddressSpace *as
3356 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3357 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3358 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3359 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3360 #define RCU_READ_LOCK(...) rcu_read_lock()
3361 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3362 #include "memory_ldst.inc.c"
3364 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3376 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3382 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3387 #define ARG1_DECL MemoryRegionCache *cache
3389 #define SUFFIX _cached
3390 #define TRANSLATE(addr, ...) \
3391 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3392 #define IS_DIRECT(mr, is_write) true
3393 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3394 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3395 #define RCU_READ_LOCK() rcu_read_lock()
3396 #define RCU_READ_UNLOCK() rcu_read_unlock()
3397 #include "memory_ldst.inc.c"
3399 /* virtual memory access for debug (includes writing to ROM) */
3400 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3401 uint8_t *buf
, int len
, int is_write
)
3407 cpu_synchronize_state(cpu
);
3412 page
= addr
& TARGET_PAGE_MASK
;
3413 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3414 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3415 /* if no physical page mapped, return an error */
3416 if (phys_addr
== -1)
3418 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3421 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3423 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3426 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3427 MEMTXATTRS_UNSPECIFIED
,
3438 * Allows code that needs to deal with migration bitmaps etc to still be built
3439 * target independent.
3441 size_t qemu_target_page_size(void)
3443 return TARGET_PAGE_SIZE
;
3449 * A helper function for the _utterly broken_ virtio device model to find out if
3450 * it's running on a big endian machine. Don't do this at home kids!
3452 bool target_words_bigendian(void);
3453 bool target_words_bigendian(void)
3455 #if defined(TARGET_WORDS_BIGENDIAN)
3462 #ifndef CONFIG_USER_ONLY
3463 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3470 mr
= address_space_translate(&address_space_memory
,
3471 phys_addr
, &phys_addr
, &l
, false);
3473 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3478 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3484 RAMBLOCK_FOREACH(block
) {
3485 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3486 block
->used_length
, opaque
);
3496 * Unmap pages of memory from start to start+length such that
3497 * they a) read as 0, b) Trigger whatever fault mechanism
3498 * the OS provides for postcopy.
3499 * The pages must be unmapped by the end of the function.
3500 * Returns: 0 on success, none-0 on failure
3503 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
)
3507 uint8_t *host_startaddr
= rb
->host
+ start
;
3509 if ((uintptr_t)host_startaddr
& (rb
->page_size
- 1)) {
3510 error_report("ram_block_discard_range: Unaligned start address: %p",
3515 if ((start
+ length
) <= rb
->used_length
) {
3516 uint8_t *host_endaddr
= host_startaddr
+ length
;
3517 if ((uintptr_t)host_endaddr
& (rb
->page_size
- 1)) {
3518 error_report("ram_block_discard_range: Unaligned end address: %p",
3523 errno
= ENOTSUP
; /* If we are missing MADVISE etc */
3525 if (rb
->page_size
== qemu_host_page_size
) {
3526 #if defined(CONFIG_MADVISE)
3527 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3530 ret
= madvise(host_startaddr
, length
, MADV_DONTNEED
);
3533 /* Huge page case - unfortunately it can't do DONTNEED, but
3534 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3537 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3538 ret
= fallocate(rb
->fd
, FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
3544 error_report("ram_block_discard_range: Failed to discard range "
3545 "%s:%" PRIx64
" +%zx (%d)",
3546 rb
->idstr
, start
, length
, ret
);
3549 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3550 "/%zx/" RAM_ADDR_FMT
")",
3551 rb
->idstr
, start
, length
, rb
->used_length
);