target-arm: Use target_phys_addr_t in get_phys_addr()
[qemu.git] / target-arm / helper.c
blobd66bc3e8327efa58fdc880744df53ae08045d19b
1 #include "cpu.h"
2 #include "gdbstub.h"
3 #include "helper.h"
4 #include "host-utils.h"
5 #include "sysemu.h"
7 #ifndef CONFIG_USER_ONLY
8 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
9 int access_type, int is_user,
10 target_phys_addr_t *phys_ptr, int *prot,
11 target_ulong *page_size);
12 #endif
14 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
16 int nregs;
18 /* VFP data registers are always little-endian. */
19 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
20 if (reg < nregs) {
21 stfq_le_p(buf, env->vfp.regs[reg]);
22 return 8;
24 if (arm_feature(env, ARM_FEATURE_NEON)) {
25 /* Aliases for Q regs. */
26 nregs += 16;
27 if (reg < nregs) {
28 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
29 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
30 return 16;
33 switch (reg - nregs) {
34 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
35 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
36 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
38 return 0;
41 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
43 int nregs;
45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
46 if (reg < nregs) {
47 env->vfp.regs[reg] = ldfq_le_p(buf);
48 return 8;
50 if (arm_feature(env, ARM_FEATURE_NEON)) {
51 nregs += 16;
52 if (reg < nregs) {
53 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
54 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
55 return 16;
58 switch (reg - nregs) {
59 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
60 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
61 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
63 return 0;
66 static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
68 env->cp15.c3 = value;
69 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
70 return 0;
73 static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
75 if (env->cp15.c13_fcse != value) {
76 /* Unlike real hardware the qemu TLB uses virtual addresses,
77 * not modified virtual addresses, so this causes a TLB flush.
79 tlb_flush(env, 1);
80 env->cp15.c13_fcse = value;
82 return 0;
84 static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
85 uint64_t value)
87 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
88 /* For VMSA (when not using the LPAE long descriptor page table
89 * format) this register includes the ASID, so do a TLB flush.
90 * For PMSA it is purely a process ID and no action is needed.
92 tlb_flush(env, 1);
94 env->cp15.c13_context = value;
95 return 0;
98 static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
99 uint64_t value)
101 /* Invalidate all (TLBIALL) */
102 tlb_flush(env, 1);
103 return 0;
106 static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
107 uint64_t value)
109 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
110 tlb_flush_page(env, value & TARGET_PAGE_MASK);
111 return 0;
114 static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
115 uint64_t value)
117 /* Invalidate by ASID (TLBIASID) */
118 tlb_flush(env, value == 0);
119 return 0;
122 static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
123 uint64_t value)
125 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
126 tlb_flush_page(env, value & TARGET_PAGE_MASK);
127 return 0;
130 static const ARMCPRegInfo cp_reginfo[] = {
131 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
132 * version" bits will read as a reserved value, which should cause
133 * Linux to not try to use the debug hardware.
135 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
136 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
137 /* MMU Domain access control / MPU write buffer control */
138 { .name = "DACR", .cp = 15,
139 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
140 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
141 .resetvalue = 0, .writefn = dacr_write },
142 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
143 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
144 .resetvalue = 0, .writefn = fcse_write },
145 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
146 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
147 .resetvalue = 0, .writefn = contextidr_write },
148 /* ??? This covers not just the impdef TLB lockdown registers but also
149 * some v7VMSA registers relating to TEX remap, so it is overly broad.
151 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
152 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
153 /* MMU TLB control. Note that the wildcarding means we cover not just
154 * the unified TLB ops but also the dside/iside/inner-shareable variants.
156 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
157 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, },
158 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
159 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, },
160 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
161 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, },
162 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
163 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, },
164 /* Cache maintenance ops; some of this space may be overridden later. */
165 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
166 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
167 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
168 REGINFO_SENTINEL
171 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
172 /* Not all pre-v6 cores implemented this WFI, so this is slightly
173 * over-broad.
175 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
176 .access = PL1_W, .type = ARM_CP_WFI },
177 REGINFO_SENTINEL
180 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
181 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
182 * is UNPREDICTABLE; we choose to NOP as most implementations do).
184 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
185 .access = PL1_W, .type = ARM_CP_WFI },
186 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
187 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
188 * OMAPCP will override this space.
190 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
191 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
192 .resetvalue = 0 },
193 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
194 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
195 .resetvalue = 0 },
196 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
197 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
198 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
199 REGINFO_SENTINEL
202 static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
204 if (env->cp15.c1_coproc != value) {
205 env->cp15.c1_coproc = value;
206 /* ??? Is this safe when called from within a TB? */
207 tb_flush(env);
209 return 0;
212 static const ARMCPRegInfo v6_cp_reginfo[] = {
213 /* prefetch by MVA in v6, NOP in v7 */
214 { .name = "MVA_prefetch",
215 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
216 .access = PL1_W, .type = ARM_CP_NOP },
217 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
218 .access = PL0_W, .type = ARM_CP_NOP },
219 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
220 .access = PL0_W, .type = ARM_CP_NOP },
221 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
222 .access = PL0_W, .type = ARM_CP_NOP },
223 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
224 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
225 .resetvalue = 0, },
226 /* Watchpoint Fault Address Register : should actually only be present
227 * for 1136, 1176, 11MPCore.
229 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
230 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
231 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
232 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
233 .resetvalue = 0, .writefn = cpacr_write },
234 REGINFO_SENTINEL
237 static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
238 uint64_t *value)
240 /* Generic performance monitor register read function for where
241 * user access may be allowed by PMUSERENR.
243 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
244 return EXCP_UDEF;
246 *value = CPREG_FIELD32(env, ri);
247 return 0;
250 static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
251 uint64_t value)
253 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
254 return EXCP_UDEF;
256 /* only the DP, X, D and E bits are writable */
257 env->cp15.c9_pmcr &= ~0x39;
258 env->cp15.c9_pmcr |= (value & 0x39);
259 return 0;
262 static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
263 uint64_t value)
265 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
266 return EXCP_UDEF;
268 value &= (1 << 31);
269 env->cp15.c9_pmcnten |= value;
270 return 0;
273 static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
274 uint64_t value)
276 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
277 return EXCP_UDEF;
279 value &= (1 << 31);
280 env->cp15.c9_pmcnten &= ~value;
281 return 0;
284 static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
285 uint64_t value)
287 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
288 return EXCP_UDEF;
290 env->cp15.c9_pmovsr &= ~value;
291 return 0;
294 static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
295 uint64_t value)
297 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
298 return EXCP_UDEF;
300 env->cp15.c9_pmxevtyper = value & 0xff;
301 return 0;
304 static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
305 uint64_t value)
307 env->cp15.c9_pmuserenr = value & 1;
308 return 0;
311 static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
312 uint64_t value)
314 /* We have no event counters so only the C bit can be changed */
315 value &= (1 << 31);
316 env->cp15.c9_pminten |= value;
317 return 0;
320 static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
321 uint64_t value)
323 value &= (1 << 31);
324 env->cp15.c9_pminten &= ~value;
325 return 0;
328 static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
329 uint64_t *value)
331 ARMCPU *cpu = arm_env_get_cpu(env);
332 *value = cpu->ccsidr[env->cp15.c0_cssel];
333 return 0;
336 static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
337 uint64_t value)
339 env->cp15.c0_cssel = value & 0xf;
340 return 0;
343 static const ARMCPRegInfo v7_cp_reginfo[] = {
344 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
345 * debug components
347 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
348 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
349 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
350 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
351 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
352 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
353 .access = PL1_W, .type = ARM_CP_NOP },
354 /* Performance monitors are implementation defined in v7,
355 * but with an ARM recommended set of registers, which we
356 * follow (although we don't actually implement any counters)
358 * Performance registers fall into three categories:
359 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
360 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
361 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
362 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
363 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
365 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
366 .access = PL0_RW, .resetvalue = 0,
367 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
368 .readfn = pmreg_read, .writefn = pmcntenset_write },
369 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
370 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
371 .readfn = pmreg_read, .writefn = pmcntenclr_write },
372 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
373 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
374 .readfn = pmreg_read, .writefn = pmovsr_write },
375 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
376 * respect PMUSERENR.
378 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
379 .access = PL0_W, .type = ARM_CP_NOP },
380 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
381 * We choose to RAZ/WI. XXX should respect PMUSERENR.
383 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
384 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
385 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
386 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
387 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
388 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
389 .access = PL0_RW,
390 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
391 .readfn = pmreg_read, .writefn = pmxevtyper_write },
392 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
393 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
394 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
395 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
396 .access = PL0_R | PL1_RW,
397 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
398 .resetvalue = 0,
399 .writefn = pmuserenr_write },
400 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
401 .access = PL1_RW,
402 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
403 .resetvalue = 0,
404 .writefn = pmintenset_write },
405 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
406 .access = PL1_RW,
407 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
408 .resetvalue = 0,
409 .writefn = pmintenclr_write },
410 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
411 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
412 .resetvalue = 0, },
413 { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
414 .access = PL1_R, .readfn = ccsidr_read },
415 { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
416 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
417 .writefn = csselr_write, .resetvalue = 0 },
418 /* Auxiliary ID register: this actually has an IMPDEF value but for now
419 * just RAZ for all cores:
421 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
422 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
423 REGINFO_SENTINEL
426 static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
428 value &= 1;
429 env->teecr = value;
430 return 0;
433 static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
434 uint64_t *value)
436 /* This is a helper function because the user access rights
437 * depend on the value of the TEECR.
439 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
440 return EXCP_UDEF;
442 *value = env->teehbr;
443 return 0;
446 static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
447 uint64_t value)
449 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
450 return EXCP_UDEF;
452 env->teehbr = value;
453 return 0;
456 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
457 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
458 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
459 .resetvalue = 0,
460 .writefn = teecr_write },
461 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
462 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
463 .resetvalue = 0,
464 .readfn = teehbr_read, .writefn = teehbr_write },
465 REGINFO_SENTINEL
468 static const ARMCPRegInfo v6k_cp_reginfo[] = {
469 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
470 .access = PL0_RW,
471 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
472 .resetvalue = 0 },
473 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
474 .access = PL0_R|PL1_W,
475 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
476 .resetvalue = 0 },
477 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
478 .access = PL1_RW,
479 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
480 .resetvalue = 0 },
481 REGINFO_SENTINEL
484 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
485 /* Dummy implementation: RAZ/WI the whole crn=14 space */
486 { .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
487 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
488 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
489 REGINFO_SENTINEL
492 static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
494 if (arm_feature(env, ARM_FEATURE_LPAE)) {
495 env->cp15.c7_par = value;
496 } else if (arm_feature(env, ARM_FEATURE_V7)) {
497 env->cp15.c7_par = value & 0xfffff6ff;
498 } else {
499 env->cp15.c7_par = value & 0xfffff1ff;
501 return 0;
504 #ifndef CONFIG_USER_ONLY
505 /* get_phys_addr() isn't present for user-mode-only targets */
506 static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
508 target_phys_addr_t phys_addr;
509 target_ulong page_size;
510 int prot;
511 int ret, is_user = ri->opc2 & 2;
512 int access_type = ri->opc2 & 1;
514 if (ri->opc2 & 4) {
515 /* Other states are only available with TrustZone */
516 return EXCP_UDEF;
518 ret = get_phys_addr(env, value, access_type, is_user,
519 &phys_addr, &prot, &page_size);
520 if (ret == 0) {
521 /* We do not set any attribute bits in the PAR */
522 if (page_size == (1 << 24)
523 && arm_feature(env, ARM_FEATURE_V7)) {
524 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
525 } else {
526 env->cp15.c7_par = phys_addr & 0xfffff000;
528 } else {
529 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
530 ((ret & (12 << 1)) >> 6) |
531 ((ret & 0xf) << 1) | 1;
533 env->cp15.c7_par_hi = 0;
534 return 0;
536 #endif
538 static const ARMCPRegInfo vapa_cp_reginfo[] = {
539 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
540 .access = PL1_RW, .resetvalue = 0,
541 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
542 .writefn = par_write },
543 #ifndef CONFIG_USER_ONLY
544 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
545 .access = PL1_W, .writefn = ats_write },
546 #endif
547 REGINFO_SENTINEL
550 /* Return basic MPU access permission bits. */
551 static uint32_t simple_mpu_ap_bits(uint32_t val)
553 uint32_t ret;
554 uint32_t mask;
555 int i;
556 ret = 0;
557 mask = 3;
558 for (i = 0; i < 16; i += 2) {
559 ret |= (val >> i) & mask;
560 mask <<= 2;
562 return ret;
565 /* Pad basic MPU access permission bits to extended format. */
566 static uint32_t extended_mpu_ap_bits(uint32_t val)
568 uint32_t ret;
569 uint32_t mask;
570 int i;
571 ret = 0;
572 mask = 3;
573 for (i = 0; i < 16; i += 2) {
574 ret |= (val & mask) << i;
575 mask <<= 2;
577 return ret;
580 static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
581 uint64_t value)
583 env->cp15.c5_data = extended_mpu_ap_bits(value);
584 return 0;
587 static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
588 uint64_t *value)
590 *value = simple_mpu_ap_bits(env->cp15.c5_data);
591 return 0;
594 static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
595 uint64_t value)
597 env->cp15.c5_insn = extended_mpu_ap_bits(value);
598 return 0;
601 static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
602 uint64_t *value)
604 *value = simple_mpu_ap_bits(env->cp15.c5_insn);
605 return 0;
608 static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
609 uint64_t *value)
611 if (ri->crm > 8) {
612 return EXCP_UDEF;
614 *value = env->cp15.c6_region[ri->crm];
615 return 0;
618 static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
619 uint64_t value)
621 if (ri->crm > 8) {
622 return EXCP_UDEF;
624 env->cp15.c6_region[ri->crm] = value;
625 return 0;
628 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
629 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
630 .access = PL1_RW,
631 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
632 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
633 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
634 .access = PL1_RW,
635 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
636 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
637 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
638 .access = PL1_RW,
639 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
640 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
641 .access = PL1_RW,
642 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
643 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
644 .access = PL1_RW,
645 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
646 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
647 .access = PL1_RW,
648 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
649 /* Protection region base and size registers */
650 { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
651 .opc2 = CP_ANY, .access = PL1_RW,
652 .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
653 REGINFO_SENTINEL
656 static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
657 uint64_t value)
659 value &= 7;
660 env->cp15.c2_control = value;
661 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> value);
662 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> value);
663 return 0;
666 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
668 env->cp15.c2_base_mask = 0xffffc000u;
669 env->cp15.c2_control = 0;
670 env->cp15.c2_mask = 0;
673 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
674 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
675 .access = PL1_RW,
676 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
677 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
678 .access = PL1_RW,
679 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
680 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
681 .access = PL1_RW,
682 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
683 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
684 .access = PL1_RW,
685 .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
686 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
687 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
688 .resetfn = vmsa_ttbcr_reset,
689 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
690 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
691 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
692 .resetvalue = 0, },
693 REGINFO_SENTINEL
696 static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
697 uint64_t value)
699 env->cp15.c15_ticonfig = value & 0xe7;
700 /* The OS_TYPE bit in this register changes the reported CPUID! */
701 env->cp15.c0_cpuid = (value & (1 << 5)) ?
702 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
703 return 0;
706 static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
707 uint64_t value)
709 env->cp15.c15_threadid = value & 0xffff;
710 return 0;
713 static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
714 uint64_t value)
716 /* Wait-for-interrupt (deprecated) */
717 cpu_interrupt(env, CPU_INTERRUPT_HALT);
718 return 0;
721 static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
722 uint64_t value)
724 /* On OMAP there are registers indicating the max/min index of dcache lines
725 * containing a dirty line; cache flush operations have to reset these.
727 env->cp15.c15_i_max = 0x000;
728 env->cp15.c15_i_min = 0xff0;
729 return 0;
732 static const ARMCPRegInfo omap_cp_reginfo[] = {
733 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
734 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
735 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
736 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
737 .access = PL1_RW, .type = ARM_CP_NOP },
738 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
739 .access = PL1_RW,
740 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
741 .writefn = omap_ticonfig_write },
742 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
743 .access = PL1_RW,
744 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
745 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
746 .access = PL1_RW, .resetvalue = 0xff0,
747 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
748 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
749 .access = PL1_RW,
750 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
751 .writefn = omap_threadid_write },
752 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
753 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
754 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
755 /* TODO: Peripheral port remap register:
756 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
757 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
758 * when MMU is off.
760 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
761 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE,
762 .writefn = omap_cachemaint_write },
763 { .name = "C9", .cp = 15, .crn = 9,
764 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
765 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
766 REGINFO_SENTINEL
769 static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
770 uint64_t value)
772 value &= 0x3fff;
773 if (env->cp15.c15_cpar != value) {
774 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
775 tb_flush(env);
776 env->cp15.c15_cpar = value;
778 return 0;
781 static const ARMCPRegInfo xscale_cp_reginfo[] = {
782 { .name = "XSCALE_CPAR",
783 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
784 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
785 .writefn = xscale_cpar_write, },
786 { .name = "XSCALE_AUXCR",
787 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
788 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
789 .resetvalue = 0, },
790 REGINFO_SENTINEL
793 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
794 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
795 * implementation of this implementation-defined space.
796 * Ideally this should eventually disappear in favour of actually
797 * implementing the correct behaviour for all cores.
799 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
800 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
801 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
802 REGINFO_SENTINEL
805 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
806 /* Cache status: RAZ because we have no cache so it's always clean */
807 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
808 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
809 REGINFO_SENTINEL
812 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
813 /* We never have a a block transfer operation in progress */
814 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
815 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
816 /* The cache ops themselves: these all NOP for QEMU */
817 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
818 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
819 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
820 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
821 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
822 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
823 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
824 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
825 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
826 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
827 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
828 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
829 REGINFO_SENTINEL
832 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
833 /* The cache test-and-clean instructions always return (1 << 30)
834 * to indicate that there are no dirty cache lines.
836 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
837 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
838 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
839 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
840 REGINFO_SENTINEL
843 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
844 /* Ignore ReadBuffer accesses */
845 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
846 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
847 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
848 .resetvalue = 0 },
849 REGINFO_SENTINEL
852 static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
853 uint64_t *value)
855 uint32_t mpidr = env->cpu_index;
856 /* We don't support setting cluster ID ([8..11])
857 * so these bits always RAZ.
859 if (arm_feature(env, ARM_FEATURE_V7MP)) {
860 mpidr |= (1 << 31);
861 /* Cores which are uniprocessor (non-coherent)
862 * but still implement the MP extensions set
863 * bit 30. (For instance, A9UP.) However we do
864 * not currently model any of those cores.
867 *value = mpidr;
868 return 0;
871 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
872 { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
873 .access = PL1_R, .readfn = mpidr_read },
874 REGINFO_SENTINEL
877 static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
879 *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
880 return 0;
883 static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
885 env->cp15.c7_par_hi = value >> 32;
886 env->cp15.c7_par = value;
887 return 0;
890 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
892 env->cp15.c7_par_hi = 0;
893 env->cp15.c7_par = 0;
896 static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
897 uint64_t *value)
899 *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
900 return 0;
903 static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
904 uint64_t value)
906 env->cp15.c2_base0_hi = value >> 32;
907 env->cp15.c2_base0 = value;
908 /* Writes to the 64 bit format TTBRs may change the ASID */
909 tlb_flush(env, 1);
910 return 0;
913 static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
915 env->cp15.c2_base0_hi = 0;
916 env->cp15.c2_base0 = 0;
919 static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
920 uint64_t *value)
922 *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
923 return 0;
926 static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
927 uint64_t value)
929 env->cp15.c2_base1_hi = value >> 32;
930 env->cp15.c2_base1 = value;
931 return 0;
934 static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
936 env->cp15.c2_base1_hi = 0;
937 env->cp15.c2_base1 = 0;
940 static const ARMCPRegInfo lpae_cp_reginfo[] = {
941 /* NOP AMAIR0/1: the override is because these clash with tha rather
942 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
944 { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
945 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
946 .resetvalue = 0 },
947 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
948 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
949 .resetvalue = 0 },
950 /* 64 bit access versions of the (dummy) debug registers */
951 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
952 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
953 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
954 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
955 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
956 .access = PL1_RW, .type = ARM_CP_64BIT,
957 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
958 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
959 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
960 .writefn = ttbr064_write, .resetfn = ttbr064_reset },
961 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
962 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
963 .writefn = ttbr164_write, .resetfn = ttbr164_reset },
964 REGINFO_SENTINEL
967 static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
969 env->cp15.c1_sys = value;
970 /* ??? Lots of these bits are not implemented. */
971 /* This may enable/disable the MMU, so do a TLB flush. */
972 tlb_flush(env, 1);
973 return 0;
976 void register_cp_regs_for_features(ARMCPU *cpu)
978 /* Register all the coprocessor registers based on feature bits */
979 CPUARMState *env = &cpu->env;
980 if (arm_feature(env, ARM_FEATURE_M)) {
981 /* M profile has no coprocessor registers */
982 return;
985 define_arm_cp_regs(cpu, cp_reginfo);
986 if (arm_feature(env, ARM_FEATURE_V6)) {
987 /* The ID registers all have impdef reset values */
988 ARMCPRegInfo v6_idregs[] = {
989 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
990 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
991 .resetvalue = cpu->id_pfr0 },
992 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
993 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
994 .resetvalue = cpu->id_pfr1 },
995 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
996 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
997 .resetvalue = cpu->id_dfr0 },
998 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
999 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1000 .resetvalue = cpu->id_afr0 },
1001 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1002 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1003 .resetvalue = cpu->id_mmfr0 },
1004 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1005 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1006 .resetvalue = cpu->id_mmfr1 },
1007 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1008 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1009 .resetvalue = cpu->id_mmfr2 },
1010 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1011 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1012 .resetvalue = cpu->id_mmfr3 },
1013 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1014 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1015 .resetvalue = cpu->id_isar0 },
1016 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1017 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1018 .resetvalue = cpu->id_isar1 },
1019 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1020 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1021 .resetvalue = cpu->id_isar2 },
1022 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1023 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1024 .resetvalue = cpu->id_isar3 },
1025 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1026 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1027 .resetvalue = cpu->id_isar4 },
1028 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1029 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1030 .resetvalue = cpu->id_isar5 },
1031 /* 6..7 are as yet unallocated and must RAZ */
1032 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1033 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1034 .resetvalue = 0 },
1035 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1036 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1037 .resetvalue = 0 },
1038 REGINFO_SENTINEL
1040 define_arm_cp_regs(cpu, v6_idregs);
1041 define_arm_cp_regs(cpu, v6_cp_reginfo);
1042 } else {
1043 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1045 if (arm_feature(env, ARM_FEATURE_V6K)) {
1046 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1048 if (arm_feature(env, ARM_FEATURE_V7)) {
1049 /* v7 performance monitor control register: same implementor
1050 * field as main ID register, and we implement no event counters.
1052 ARMCPRegInfo pmcr = {
1053 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1054 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1055 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1056 .readfn = pmreg_read, .writefn = pmcr_write
1058 ARMCPRegInfo clidr = {
1059 .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1060 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1062 define_one_arm_cp_reg(cpu, &pmcr);
1063 define_one_arm_cp_reg(cpu, &clidr);
1064 define_arm_cp_regs(cpu, v7_cp_reginfo);
1065 } else {
1066 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1068 if (arm_feature(env, ARM_FEATURE_MPU)) {
1069 /* These are the MPU registers prior to PMSAv6. Any new
1070 * PMSA core later than the ARM946 will require that we
1071 * implement the PMSAv6 or PMSAv7 registers, which are
1072 * completely different.
1074 assert(!arm_feature(env, ARM_FEATURE_V6));
1075 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1076 } else {
1077 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1079 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1080 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1082 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1083 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1085 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1086 define_arm_cp_regs(cpu, vapa_cp_reginfo);
1088 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1089 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1091 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1092 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1094 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1095 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1097 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1098 define_arm_cp_regs(cpu, omap_cp_reginfo);
1100 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1101 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1103 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1104 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1106 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1107 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1109 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1110 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1112 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1113 define_arm_cp_regs(cpu, lpae_cp_reginfo);
1115 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1116 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1117 * be read-only (ie write causes UNDEF exception).
1120 ARMCPRegInfo id_cp_reginfo[] = {
1121 /* Note that the MIDR isn't a simple constant register because
1122 * of the TI925 behaviour where writes to another register can
1123 * cause the MIDR value to change.
1125 { .name = "MIDR",
1126 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
1127 .access = PL1_R, .resetvalue = cpu->midr,
1128 .writefn = arm_cp_write_ignore,
1129 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid) },
1130 { .name = "CTR",
1131 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1132 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1133 { .name = "TCMTR",
1134 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1135 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1136 { .name = "TLBTR",
1137 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1138 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1139 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1140 { .name = "DUMMY",
1141 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1142 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1143 { .name = "DUMMY",
1144 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1145 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1146 { .name = "DUMMY",
1147 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1148 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1149 { .name = "DUMMY",
1150 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1151 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1152 { .name = "DUMMY",
1153 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1154 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1155 REGINFO_SENTINEL
1157 ARMCPRegInfo crn0_wi_reginfo = {
1158 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1159 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1160 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1162 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1163 arm_feature(env, ARM_FEATURE_STRONGARM)) {
1164 ARMCPRegInfo *r;
1165 /* Register the blanket "writes ignored" value first to cover the
1166 * whole space. Then define the specific ID registers, but update
1167 * their access field to allow write access, so that they ignore
1168 * writes rather than causing them to UNDEF.
1170 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1171 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1172 r->access = PL1_RW;
1173 define_one_arm_cp_reg(cpu, r);
1175 } else {
1176 /* Just register the standard ID registers (read-only, meaning
1177 * that writes will UNDEF).
1179 define_arm_cp_regs(cpu, id_cp_reginfo);
1183 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1184 ARMCPRegInfo auxcr = {
1185 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1186 .access = PL1_RW, .type = ARM_CP_CONST,
1187 .resetvalue = cpu->reset_auxcr
1189 define_one_arm_cp_reg(cpu, &auxcr);
1192 /* Generic registers whose values depend on the implementation */
1194 ARMCPRegInfo sctlr = {
1195 .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1196 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1197 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr
1199 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1200 /* Normally we would always end the TB on an SCTLR write, but Linux
1201 * arch/arm/mach-pxa/sleep.S expects two instructions following
1202 * an MMU enable to execute from cache. Imitate this behaviour.
1204 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1206 define_one_arm_cp_reg(cpu, &sctlr);
1210 ARMCPU *cpu_arm_init(const char *cpu_model)
1212 ARMCPU *cpu;
1213 CPUARMState *env;
1214 static int inited = 0;
1216 if (!object_class_by_name(cpu_model)) {
1217 return NULL;
1219 cpu = ARM_CPU(object_new(cpu_model));
1220 env = &cpu->env;
1221 env->cpu_model_str = cpu_model;
1222 arm_cpu_realize(cpu);
1224 if (tcg_enabled() && !inited) {
1225 inited = 1;
1226 arm_translate_init();
1229 cpu_reset(CPU(cpu));
1230 if (arm_feature(env, ARM_FEATURE_NEON)) {
1231 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1232 51, "arm-neon.xml", 0);
1233 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1234 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1235 35, "arm-vfp3.xml", 0);
1236 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1237 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1238 19, "arm-vfp.xml", 0);
1240 qemu_init_vcpu(env);
1241 return cpu;
1244 typedef struct ARMCPUListState {
1245 fprintf_function cpu_fprintf;
1246 FILE *file;
1247 } ARMCPUListState;
1249 /* Sort alphabetically by type name, except for "any". */
1250 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1252 ObjectClass *class_a = (ObjectClass *)a;
1253 ObjectClass *class_b = (ObjectClass *)b;
1254 const char *name_a, *name_b;
1256 name_a = object_class_get_name(class_a);
1257 name_b = object_class_get_name(class_b);
1258 if (strcmp(name_a, "any") == 0) {
1259 return 1;
1260 } else if (strcmp(name_b, "any") == 0) {
1261 return -1;
1262 } else {
1263 return strcmp(name_a, name_b);
1267 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1269 ObjectClass *oc = data;
1270 ARMCPUListState *s = user_data;
1272 (*s->cpu_fprintf)(s->file, " %s\n",
1273 object_class_get_name(oc));
1276 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1278 ARMCPUListState s = {
1279 .file = f,
1280 .cpu_fprintf = cpu_fprintf,
1282 GSList *list;
1284 list = object_class_get_list(TYPE_ARM_CPU, false);
1285 list = g_slist_sort(list, arm_cpu_list_compare);
1286 (*cpu_fprintf)(f, "Available CPUs:\n");
1287 g_slist_foreach(list, arm_cpu_list_entry, &s);
1288 g_slist_free(list);
1291 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1292 const ARMCPRegInfo *r, void *opaque)
1294 /* Define implementations of coprocessor registers.
1295 * We store these in a hashtable because typically
1296 * there are less than 150 registers in a space which
1297 * is 16*16*16*8*8 = 262144 in size.
1298 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1299 * If a register is defined twice then the second definition is
1300 * used, so this can be used to define some generic registers and
1301 * then override them with implementation specific variations.
1302 * At least one of the original and the second definition should
1303 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1304 * against accidental use.
1306 int crm, opc1, opc2;
1307 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1308 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1309 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1310 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1311 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1312 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1313 /* 64 bit registers have only CRm and Opc1 fields */
1314 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1315 /* Check that the register definition has enough info to handle
1316 * reads and writes if they are permitted.
1318 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1319 if (r->access & PL3_R) {
1320 assert(r->fieldoffset || r->readfn);
1322 if (r->access & PL3_W) {
1323 assert(r->fieldoffset || r->writefn);
1326 /* Bad type field probably means missing sentinel at end of reg list */
1327 assert(cptype_valid(r->type));
1328 for (crm = crmmin; crm <= crmmax; crm++) {
1329 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1330 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1331 uint32_t *key = g_new(uint32_t, 1);
1332 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1333 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1334 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1335 r2->opaque = opaque;
1336 /* Make sure reginfo passed to helpers for wildcarded regs
1337 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1339 r2->crm = crm;
1340 r2->opc1 = opc1;
1341 r2->opc2 = opc2;
1342 /* Overriding of an existing definition must be explicitly
1343 * requested.
1345 if (!(r->type & ARM_CP_OVERRIDE)) {
1346 ARMCPRegInfo *oldreg;
1347 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
1348 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
1349 fprintf(stderr, "Register redefined: cp=%d %d bit "
1350 "crn=%d crm=%d opc1=%d opc2=%d, "
1351 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
1352 r2->crn, r2->crm, r2->opc1, r2->opc2,
1353 oldreg->name, r2->name);
1354 assert(0);
1357 g_hash_table_insert(cpu->cp_regs, key, r2);
1363 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1364 const ARMCPRegInfo *regs, void *opaque)
1366 /* Define a whole list of registers */
1367 const ARMCPRegInfo *r;
1368 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
1369 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1373 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1375 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1378 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1379 uint64_t value)
1381 /* Helper coprocessor write function for write-ignore registers */
1382 return 0;
1385 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1387 /* Helper coprocessor write function for read-as-zero registers */
1388 *value = 0;
1389 return 0;
1392 static int bad_mode_switch(CPUARMState *env, int mode)
1394 /* Return true if it is not valid for us to switch to
1395 * this CPU mode (ie all the UNPREDICTABLE cases in
1396 * the ARM ARM CPSRWriteByInstr pseudocode).
1398 switch (mode) {
1399 case ARM_CPU_MODE_USR:
1400 case ARM_CPU_MODE_SYS:
1401 case ARM_CPU_MODE_SVC:
1402 case ARM_CPU_MODE_ABT:
1403 case ARM_CPU_MODE_UND:
1404 case ARM_CPU_MODE_IRQ:
1405 case ARM_CPU_MODE_FIQ:
1406 return 0;
1407 default:
1408 return 1;
1412 uint32_t cpsr_read(CPUARMState *env)
1414 int ZF;
1415 ZF = (env->ZF == 0);
1416 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
1417 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1418 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
1419 | ((env->condexec_bits & 0xfc) << 8)
1420 | (env->GE << 16);
1423 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1425 if (mask & CPSR_NZCV) {
1426 env->ZF = (~val) & CPSR_Z;
1427 env->NF = val;
1428 env->CF = (val >> 29) & 1;
1429 env->VF = (val << 3) & 0x80000000;
1431 if (mask & CPSR_Q)
1432 env->QF = ((val & CPSR_Q) != 0);
1433 if (mask & CPSR_T)
1434 env->thumb = ((val & CPSR_T) != 0);
1435 if (mask & CPSR_IT_0_1) {
1436 env->condexec_bits &= ~3;
1437 env->condexec_bits |= (val >> 25) & 3;
1439 if (mask & CPSR_IT_2_7) {
1440 env->condexec_bits &= 3;
1441 env->condexec_bits |= (val >> 8) & 0xfc;
1443 if (mask & CPSR_GE) {
1444 env->GE = (val >> 16) & 0xf;
1447 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
1448 if (bad_mode_switch(env, val & CPSR_M)) {
1449 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
1450 * We choose to ignore the attempt and leave the CPSR M field
1451 * untouched.
1453 mask &= ~CPSR_M;
1454 } else {
1455 switch_mode(env, val & CPSR_M);
1458 mask &= ~CACHED_CPSR_BITS;
1459 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
1462 /* Sign/zero extend */
1463 uint32_t HELPER(sxtb16)(uint32_t x)
1465 uint32_t res;
1466 res = (uint16_t)(int8_t)x;
1467 res |= (uint32_t)(int8_t)(x >> 16) << 16;
1468 return res;
1471 uint32_t HELPER(uxtb16)(uint32_t x)
1473 uint32_t res;
1474 res = (uint16_t)(uint8_t)x;
1475 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
1476 return res;
1479 uint32_t HELPER(clz)(uint32_t x)
1481 return clz32(x);
1484 int32_t HELPER(sdiv)(int32_t num, int32_t den)
1486 if (den == 0)
1487 return 0;
1488 if (num == INT_MIN && den == -1)
1489 return INT_MIN;
1490 return num / den;
1493 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
1495 if (den == 0)
1496 return 0;
1497 return num / den;
1500 uint32_t HELPER(rbit)(uint32_t x)
1502 x = ((x & 0xff000000) >> 24)
1503 | ((x & 0x00ff0000) >> 8)
1504 | ((x & 0x0000ff00) << 8)
1505 | ((x & 0x000000ff) << 24);
1506 x = ((x & 0xf0f0f0f0) >> 4)
1507 | ((x & 0x0f0f0f0f) << 4);
1508 x = ((x & 0x88888888) >> 3)
1509 | ((x & 0x44444444) >> 1)
1510 | ((x & 0x22222222) << 1)
1511 | ((x & 0x11111111) << 3);
1512 return x;
1515 uint32_t HELPER(abs)(uint32_t x)
1517 return ((int32_t)x < 0) ? -x : x;
1520 #if defined(CONFIG_USER_ONLY)
1522 void do_interrupt (CPUARMState *env)
1524 env->exception_index = -1;
1527 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
1528 int mmu_idx)
1530 if (rw == 2) {
1531 env->exception_index = EXCP_PREFETCH_ABORT;
1532 env->cp15.c6_insn = address;
1533 } else {
1534 env->exception_index = EXCP_DATA_ABORT;
1535 env->cp15.c6_data = address;
1537 return 1;
1540 /* These should probably raise undefined insn exceptions. */
1541 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
1543 cpu_abort(env, "v7m_mrs %d\n", reg);
1546 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
1548 cpu_abort(env, "v7m_mrs %d\n", reg);
1549 return 0;
1552 void switch_mode(CPUARMState *env, int mode)
1554 if (mode != ARM_CPU_MODE_USR)
1555 cpu_abort(env, "Tried to switch out of user mode\n");
1558 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
1560 cpu_abort(env, "banked r13 write\n");
1563 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
1565 cpu_abort(env, "banked r13 read\n");
1566 return 0;
1569 #else
1571 /* Map CPU modes onto saved register banks. */
1572 static inline int bank_number(CPUARMState *env, int mode)
1574 switch (mode) {
1575 case ARM_CPU_MODE_USR:
1576 case ARM_CPU_MODE_SYS:
1577 return 0;
1578 case ARM_CPU_MODE_SVC:
1579 return 1;
1580 case ARM_CPU_MODE_ABT:
1581 return 2;
1582 case ARM_CPU_MODE_UND:
1583 return 3;
1584 case ARM_CPU_MODE_IRQ:
1585 return 4;
1586 case ARM_CPU_MODE_FIQ:
1587 return 5;
1589 cpu_abort(env, "Bad mode %x\n", mode);
1590 return -1;
1593 void switch_mode(CPUARMState *env, int mode)
1595 int old_mode;
1596 int i;
1598 old_mode = env->uncached_cpsr & CPSR_M;
1599 if (mode == old_mode)
1600 return;
1602 if (old_mode == ARM_CPU_MODE_FIQ) {
1603 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
1604 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
1605 } else if (mode == ARM_CPU_MODE_FIQ) {
1606 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
1607 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
1610 i = bank_number(env, old_mode);
1611 env->banked_r13[i] = env->regs[13];
1612 env->banked_r14[i] = env->regs[14];
1613 env->banked_spsr[i] = env->spsr;
1615 i = bank_number(env, mode);
1616 env->regs[13] = env->banked_r13[i];
1617 env->regs[14] = env->banked_r14[i];
1618 env->spsr = env->banked_spsr[i];
1621 static void v7m_push(CPUARMState *env, uint32_t val)
1623 env->regs[13] -= 4;
1624 stl_phys(env->regs[13], val);
1627 static uint32_t v7m_pop(CPUARMState *env)
1629 uint32_t val;
1630 val = ldl_phys(env->regs[13]);
1631 env->regs[13] += 4;
1632 return val;
1635 /* Switch to V7M main or process stack pointer. */
1636 static void switch_v7m_sp(CPUARMState *env, int process)
1638 uint32_t tmp;
1639 if (env->v7m.current_sp != process) {
1640 tmp = env->v7m.other_sp;
1641 env->v7m.other_sp = env->regs[13];
1642 env->regs[13] = tmp;
1643 env->v7m.current_sp = process;
1647 static void do_v7m_exception_exit(CPUARMState *env)
1649 uint32_t type;
1650 uint32_t xpsr;
1652 type = env->regs[15];
1653 if (env->v7m.exception != 0)
1654 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
1656 /* Switch to the target stack. */
1657 switch_v7m_sp(env, (type & 4) != 0);
1658 /* Pop registers. */
1659 env->regs[0] = v7m_pop(env);
1660 env->regs[1] = v7m_pop(env);
1661 env->regs[2] = v7m_pop(env);
1662 env->regs[3] = v7m_pop(env);
1663 env->regs[12] = v7m_pop(env);
1664 env->regs[14] = v7m_pop(env);
1665 env->regs[15] = v7m_pop(env);
1666 xpsr = v7m_pop(env);
1667 xpsr_write(env, xpsr, 0xfffffdff);
1668 /* Undo stack alignment. */
1669 if (xpsr & 0x200)
1670 env->regs[13] |= 4;
1671 /* ??? The exception return type specifies Thread/Handler mode. However
1672 this is also implied by the xPSR value. Not sure what to do
1673 if there is a mismatch. */
1674 /* ??? Likewise for mismatches between the CONTROL register and the stack
1675 pointer. */
1678 static void do_interrupt_v7m(CPUARMState *env)
1680 uint32_t xpsr = xpsr_read(env);
1681 uint32_t lr;
1682 uint32_t addr;
1684 lr = 0xfffffff1;
1685 if (env->v7m.current_sp)
1686 lr |= 4;
1687 if (env->v7m.exception == 0)
1688 lr |= 8;
1690 /* For exceptions we just mark as pending on the NVIC, and let that
1691 handle it. */
1692 /* TODO: Need to escalate if the current priority is higher than the
1693 one we're raising. */
1694 switch (env->exception_index) {
1695 case EXCP_UDEF:
1696 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
1697 return;
1698 case EXCP_SWI:
1699 env->regs[15] += 2;
1700 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
1701 return;
1702 case EXCP_PREFETCH_ABORT:
1703 case EXCP_DATA_ABORT:
1704 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
1705 return;
1706 case EXCP_BKPT:
1707 if (semihosting_enabled) {
1708 int nr;
1709 nr = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
1710 if (nr == 0xab) {
1711 env->regs[15] += 2;
1712 env->regs[0] = do_arm_semihosting(env);
1713 return;
1716 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
1717 return;
1718 case EXCP_IRQ:
1719 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
1720 break;
1721 case EXCP_EXCEPTION_EXIT:
1722 do_v7m_exception_exit(env);
1723 return;
1724 default:
1725 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1726 return; /* Never happens. Keep compiler happy. */
1729 /* Align stack pointer. */
1730 /* ??? Should only do this if Configuration Control Register
1731 STACKALIGN bit is set. */
1732 if (env->regs[13] & 4) {
1733 env->regs[13] -= 4;
1734 xpsr |= 0x200;
1736 /* Switch to the handler mode. */
1737 v7m_push(env, xpsr);
1738 v7m_push(env, env->regs[15]);
1739 v7m_push(env, env->regs[14]);
1740 v7m_push(env, env->regs[12]);
1741 v7m_push(env, env->regs[3]);
1742 v7m_push(env, env->regs[2]);
1743 v7m_push(env, env->regs[1]);
1744 v7m_push(env, env->regs[0]);
1745 switch_v7m_sp(env, 0);
1746 /* Clear IT bits */
1747 env->condexec_bits = 0;
1748 env->regs[14] = lr;
1749 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
1750 env->regs[15] = addr & 0xfffffffe;
1751 env->thumb = addr & 1;
1754 /* Handle a CPU exception. */
1755 void do_interrupt(CPUARMState *env)
1757 uint32_t addr;
1758 uint32_t mask;
1759 int new_mode;
1760 uint32_t offset;
1762 if (IS_M(env)) {
1763 do_interrupt_v7m(env);
1764 return;
1766 /* TODO: Vectored interrupt controller. */
1767 switch (env->exception_index) {
1768 case EXCP_UDEF:
1769 new_mode = ARM_CPU_MODE_UND;
1770 addr = 0x04;
1771 mask = CPSR_I;
1772 if (env->thumb)
1773 offset = 2;
1774 else
1775 offset = 4;
1776 break;
1777 case EXCP_SWI:
1778 if (semihosting_enabled) {
1779 /* Check for semihosting interrupt. */
1780 if (env->thumb) {
1781 mask = arm_lduw_code(env->regs[15] - 2, env->bswap_code) & 0xff;
1782 } else {
1783 mask = arm_ldl_code(env->regs[15] - 4, env->bswap_code)
1784 & 0xffffff;
1786 /* Only intercept calls from privileged modes, to provide some
1787 semblance of security. */
1788 if (((mask == 0x123456 && !env->thumb)
1789 || (mask == 0xab && env->thumb))
1790 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1791 env->regs[0] = do_arm_semihosting(env);
1792 return;
1795 new_mode = ARM_CPU_MODE_SVC;
1796 addr = 0x08;
1797 mask = CPSR_I;
1798 /* The PC already points to the next instruction. */
1799 offset = 0;
1800 break;
1801 case EXCP_BKPT:
1802 /* See if this is a semihosting syscall. */
1803 if (env->thumb && semihosting_enabled) {
1804 mask = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
1805 if (mask == 0xab
1806 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1807 env->regs[15] += 2;
1808 env->regs[0] = do_arm_semihosting(env);
1809 return;
1812 env->cp15.c5_insn = 2;
1813 /* Fall through to prefetch abort. */
1814 case EXCP_PREFETCH_ABORT:
1815 new_mode = ARM_CPU_MODE_ABT;
1816 addr = 0x0c;
1817 mask = CPSR_A | CPSR_I;
1818 offset = 4;
1819 break;
1820 case EXCP_DATA_ABORT:
1821 new_mode = ARM_CPU_MODE_ABT;
1822 addr = 0x10;
1823 mask = CPSR_A | CPSR_I;
1824 offset = 8;
1825 break;
1826 case EXCP_IRQ:
1827 new_mode = ARM_CPU_MODE_IRQ;
1828 addr = 0x18;
1829 /* Disable IRQ and imprecise data aborts. */
1830 mask = CPSR_A | CPSR_I;
1831 offset = 4;
1832 break;
1833 case EXCP_FIQ:
1834 new_mode = ARM_CPU_MODE_FIQ;
1835 addr = 0x1c;
1836 /* Disable FIQ, IRQ and imprecise data aborts. */
1837 mask = CPSR_A | CPSR_I | CPSR_F;
1838 offset = 4;
1839 break;
1840 default:
1841 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1842 return; /* Never happens. Keep compiler happy. */
1844 /* High vectors. */
1845 if (env->cp15.c1_sys & (1 << 13)) {
1846 addr += 0xffff0000;
1848 switch_mode (env, new_mode);
1849 env->spsr = cpsr_read(env);
1850 /* Clear IT bits. */
1851 env->condexec_bits = 0;
1852 /* Switch to the new mode, and to the correct instruction set. */
1853 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
1854 env->uncached_cpsr |= mask;
1855 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
1856 * and we should just guard the thumb mode on V4 */
1857 if (arm_feature(env, ARM_FEATURE_V4T)) {
1858 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
1860 env->regs[14] = env->regs[15] + offset;
1861 env->regs[15] = addr;
1862 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1865 /* Check section/page access permissions.
1866 Returns the page protection flags, or zero if the access is not
1867 permitted. */
1868 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
1869 int access_type, int is_user)
1871 int prot_ro;
1873 if (domain_prot == 3) {
1874 return PAGE_READ | PAGE_WRITE;
1877 if (access_type == 1)
1878 prot_ro = 0;
1879 else
1880 prot_ro = PAGE_READ;
1882 switch (ap) {
1883 case 0:
1884 if (access_type == 1)
1885 return 0;
1886 switch ((env->cp15.c1_sys >> 8) & 3) {
1887 case 1:
1888 return is_user ? 0 : PAGE_READ;
1889 case 2:
1890 return PAGE_READ;
1891 default:
1892 return 0;
1894 case 1:
1895 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
1896 case 2:
1897 if (is_user)
1898 return prot_ro;
1899 else
1900 return PAGE_READ | PAGE_WRITE;
1901 case 3:
1902 return PAGE_READ | PAGE_WRITE;
1903 case 4: /* Reserved. */
1904 return 0;
1905 case 5:
1906 return is_user ? 0 : prot_ro;
1907 case 6:
1908 return prot_ro;
1909 case 7:
1910 if (!arm_feature (env, ARM_FEATURE_V6K))
1911 return 0;
1912 return prot_ro;
1913 default:
1914 abort();
1918 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
1920 uint32_t table;
1922 if (address & env->cp15.c2_mask)
1923 table = env->cp15.c2_base1 & 0xffffc000;
1924 else
1925 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
1927 table |= (address >> 18) & 0x3ffc;
1928 return table;
1931 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
1932 int is_user, target_phys_addr_t *phys_ptr,
1933 int *prot, target_ulong *page_size)
1935 int code;
1936 uint32_t table;
1937 uint32_t desc;
1938 int type;
1939 int ap;
1940 int domain;
1941 int domain_prot;
1942 target_phys_addr_t phys_addr;
1944 /* Pagetable walk. */
1945 /* Lookup l1 descriptor. */
1946 table = get_level1_table_address(env, address);
1947 desc = ldl_phys(table);
1948 type = (desc & 3);
1949 domain = (desc >> 5) & 0x0f;
1950 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1951 if (type == 0) {
1952 /* Section translation fault. */
1953 code = 5;
1954 goto do_fault;
1956 if (domain_prot == 0 || domain_prot == 2) {
1957 if (type == 2)
1958 code = 9; /* Section domain fault. */
1959 else
1960 code = 11; /* Page domain fault. */
1961 goto do_fault;
1963 if (type == 2) {
1964 /* 1Mb section. */
1965 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1966 ap = (desc >> 10) & 3;
1967 code = 13;
1968 *page_size = 1024 * 1024;
1969 } else {
1970 /* Lookup l2 entry. */
1971 if (type == 1) {
1972 /* Coarse pagetable. */
1973 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1974 } else {
1975 /* Fine pagetable. */
1976 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1978 desc = ldl_phys(table);
1979 switch (desc & 3) {
1980 case 0: /* Page translation fault. */
1981 code = 7;
1982 goto do_fault;
1983 case 1: /* 64k page. */
1984 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1985 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1986 *page_size = 0x10000;
1987 break;
1988 case 2: /* 4k page. */
1989 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1990 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1991 *page_size = 0x1000;
1992 break;
1993 case 3: /* 1k page. */
1994 if (type == 1) {
1995 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1996 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1997 } else {
1998 /* Page translation fault. */
1999 code = 7;
2000 goto do_fault;
2002 } else {
2003 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
2005 ap = (desc >> 4) & 3;
2006 *page_size = 0x400;
2007 break;
2008 default:
2009 /* Never happens, but compiler isn't smart enough to tell. */
2010 abort();
2012 code = 15;
2014 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2015 if (!*prot) {
2016 /* Access permission fault. */
2017 goto do_fault;
2019 *prot |= PAGE_EXEC;
2020 *phys_ptr = phys_addr;
2021 return 0;
2022 do_fault:
2023 return code | (domain << 4);
2026 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
2027 int is_user, target_phys_addr_t *phys_ptr,
2028 int *prot, target_ulong *page_size)
2030 int code;
2031 uint32_t table;
2032 uint32_t desc;
2033 uint32_t xn;
2034 uint32_t pxn = 0;
2035 int type;
2036 int ap;
2037 int domain = 0;
2038 int domain_prot;
2039 target_phys_addr_t phys_addr;
2041 /* Pagetable walk. */
2042 /* Lookup l1 descriptor. */
2043 table = get_level1_table_address(env, address);
2044 desc = ldl_phys(table);
2045 type = (desc & 3);
2046 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
2047 /* Section translation fault, or attempt to use the encoding
2048 * which is Reserved on implementations without PXN.
2050 code = 5;
2051 goto do_fault;
2053 if ((type == 1) || !(desc & (1 << 18))) {
2054 /* Page or Section. */
2055 domain = (desc >> 5) & 0x0f;
2057 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2058 if (domain_prot == 0 || domain_prot == 2) {
2059 if (type != 1) {
2060 code = 9; /* Section domain fault. */
2061 } else {
2062 code = 11; /* Page domain fault. */
2064 goto do_fault;
2066 if (type != 1) {
2067 if (desc & (1 << 18)) {
2068 /* Supersection. */
2069 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
2070 *page_size = 0x1000000;
2071 } else {
2072 /* Section. */
2073 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2074 *page_size = 0x100000;
2076 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2077 xn = desc & (1 << 4);
2078 pxn = desc & 1;
2079 code = 13;
2080 } else {
2081 if (arm_feature(env, ARM_FEATURE_PXN)) {
2082 pxn = (desc >> 2) & 1;
2084 /* Lookup l2 entry. */
2085 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2086 desc = ldl_phys(table);
2087 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2088 switch (desc & 3) {
2089 case 0: /* Page translation fault. */
2090 code = 7;
2091 goto do_fault;
2092 case 1: /* 64k page. */
2093 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2094 xn = desc & (1 << 15);
2095 *page_size = 0x10000;
2096 break;
2097 case 2: case 3: /* 4k page. */
2098 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2099 xn = desc & 1;
2100 *page_size = 0x1000;
2101 break;
2102 default:
2103 /* Never happens, but compiler isn't smart enough to tell. */
2104 abort();
2106 code = 15;
2108 if (domain_prot == 3) {
2109 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2110 } else {
2111 if (pxn && !is_user) {
2112 xn = 1;
2114 if (xn && access_type == 2)
2115 goto do_fault;
2117 /* The simplified model uses AP[0] as an access control bit. */
2118 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2119 /* Access flag fault. */
2120 code = (code == 15) ? 6 : 3;
2121 goto do_fault;
2123 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2124 if (!*prot) {
2125 /* Access permission fault. */
2126 goto do_fault;
2128 if (!xn) {
2129 *prot |= PAGE_EXEC;
2132 *phys_ptr = phys_addr;
2133 return 0;
2134 do_fault:
2135 return code | (domain << 4);
2138 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
2139 int access_type, int is_user,
2140 target_phys_addr_t *phys_ptr, int *prot)
2142 int n;
2143 uint32_t mask;
2144 uint32_t base;
2146 *phys_ptr = address;
2147 for (n = 7; n >= 0; n--) {
2148 base = env->cp15.c6_region[n];
2149 if ((base & 1) == 0)
2150 continue;
2151 mask = 1 << ((base >> 1) & 0x1f);
2152 /* Keep this shift separate from the above to avoid an
2153 (undefined) << 32. */
2154 mask = (mask << 1) - 1;
2155 if (((base ^ address) & ~mask) == 0)
2156 break;
2158 if (n < 0)
2159 return 2;
2161 if (access_type == 2) {
2162 mask = env->cp15.c5_insn;
2163 } else {
2164 mask = env->cp15.c5_data;
2166 mask = (mask >> (n * 4)) & 0xf;
2167 switch (mask) {
2168 case 0:
2169 return 1;
2170 case 1:
2171 if (is_user)
2172 return 1;
2173 *prot = PAGE_READ | PAGE_WRITE;
2174 break;
2175 case 2:
2176 *prot = PAGE_READ;
2177 if (!is_user)
2178 *prot |= PAGE_WRITE;
2179 break;
2180 case 3:
2181 *prot = PAGE_READ | PAGE_WRITE;
2182 break;
2183 case 5:
2184 if (is_user)
2185 return 1;
2186 *prot = PAGE_READ;
2187 break;
2188 case 6:
2189 *prot = PAGE_READ;
2190 break;
2191 default:
2192 /* Bad permission. */
2193 return 1;
2195 *prot |= PAGE_EXEC;
2196 return 0;
2199 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
2200 int access_type, int is_user,
2201 target_phys_addr_t *phys_ptr, int *prot,
2202 target_ulong *page_size)
2204 /* Fast Context Switch Extension. */
2205 if (address < 0x02000000)
2206 address += env->cp15.c13_fcse;
2208 if ((env->cp15.c1_sys & 1) == 0) {
2209 /* MMU/MPU disabled. */
2210 *phys_ptr = address;
2211 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2212 *page_size = TARGET_PAGE_SIZE;
2213 return 0;
2214 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
2215 *page_size = TARGET_PAGE_SIZE;
2216 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
2217 prot);
2218 } else if (env->cp15.c1_sys & (1 << 23)) {
2219 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
2220 prot, page_size);
2221 } else {
2222 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
2223 prot, page_size);
2227 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
2228 int access_type, int mmu_idx)
2230 target_phys_addr_t phys_addr;
2231 target_ulong page_size;
2232 int prot;
2233 int ret, is_user;
2235 is_user = mmu_idx == MMU_USER_IDX;
2236 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
2237 &page_size);
2238 if (ret == 0) {
2239 /* Map a single [sub]page. */
2240 phys_addr &= ~(target_phys_addr_t)0x3ff;
2241 address &= ~(uint32_t)0x3ff;
2242 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
2243 return 0;
2246 if (access_type == 2) {
2247 env->cp15.c5_insn = ret;
2248 env->cp15.c6_insn = address;
2249 env->exception_index = EXCP_PREFETCH_ABORT;
2250 } else {
2251 env->cp15.c5_data = ret;
2252 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
2253 env->cp15.c5_data |= (1 << 11);
2254 env->cp15.c6_data = address;
2255 env->exception_index = EXCP_DATA_ABORT;
2257 return 1;
2260 target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
2262 target_phys_addr_t phys_addr;
2263 target_ulong page_size;
2264 int prot;
2265 int ret;
2267 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
2269 if (ret != 0)
2270 return -1;
2272 return phys_addr;
2275 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2277 if ((env->uncached_cpsr & CPSR_M) == mode) {
2278 env->regs[13] = val;
2279 } else {
2280 env->banked_r13[bank_number(env, mode)] = val;
2284 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2286 if ((env->uncached_cpsr & CPSR_M) == mode) {
2287 return env->regs[13];
2288 } else {
2289 return env->banked_r13[bank_number(env, mode)];
2293 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2295 switch (reg) {
2296 case 0: /* APSR */
2297 return xpsr_read(env) & 0xf8000000;
2298 case 1: /* IAPSR */
2299 return xpsr_read(env) & 0xf80001ff;
2300 case 2: /* EAPSR */
2301 return xpsr_read(env) & 0xff00fc00;
2302 case 3: /* xPSR */
2303 return xpsr_read(env) & 0xff00fdff;
2304 case 5: /* IPSR */
2305 return xpsr_read(env) & 0x000001ff;
2306 case 6: /* EPSR */
2307 return xpsr_read(env) & 0x0700fc00;
2308 case 7: /* IEPSR */
2309 return xpsr_read(env) & 0x0700edff;
2310 case 8: /* MSP */
2311 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2312 case 9: /* PSP */
2313 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2314 case 16: /* PRIMASK */
2315 return (env->uncached_cpsr & CPSR_I) != 0;
2316 case 17: /* BASEPRI */
2317 case 18: /* BASEPRI_MAX */
2318 return env->v7m.basepri;
2319 case 19: /* FAULTMASK */
2320 return (env->uncached_cpsr & CPSR_F) != 0;
2321 case 20: /* CONTROL */
2322 return env->v7m.control;
2323 default:
2324 /* ??? For debugging only. */
2325 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2326 return 0;
2330 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2332 switch (reg) {
2333 case 0: /* APSR */
2334 xpsr_write(env, val, 0xf8000000);
2335 break;
2336 case 1: /* IAPSR */
2337 xpsr_write(env, val, 0xf8000000);
2338 break;
2339 case 2: /* EAPSR */
2340 xpsr_write(env, val, 0xfe00fc00);
2341 break;
2342 case 3: /* xPSR */
2343 xpsr_write(env, val, 0xfe00fc00);
2344 break;
2345 case 5: /* IPSR */
2346 /* IPSR bits are readonly. */
2347 break;
2348 case 6: /* EPSR */
2349 xpsr_write(env, val, 0x0600fc00);
2350 break;
2351 case 7: /* IEPSR */
2352 xpsr_write(env, val, 0x0600fc00);
2353 break;
2354 case 8: /* MSP */
2355 if (env->v7m.current_sp)
2356 env->v7m.other_sp = val;
2357 else
2358 env->regs[13] = val;
2359 break;
2360 case 9: /* PSP */
2361 if (env->v7m.current_sp)
2362 env->regs[13] = val;
2363 else
2364 env->v7m.other_sp = val;
2365 break;
2366 case 16: /* PRIMASK */
2367 if (val & 1)
2368 env->uncached_cpsr |= CPSR_I;
2369 else
2370 env->uncached_cpsr &= ~CPSR_I;
2371 break;
2372 case 17: /* BASEPRI */
2373 env->v7m.basepri = val & 0xff;
2374 break;
2375 case 18: /* BASEPRI_MAX */
2376 val &= 0xff;
2377 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2378 env->v7m.basepri = val;
2379 break;
2380 case 19: /* FAULTMASK */
2381 if (val & 1)
2382 env->uncached_cpsr |= CPSR_F;
2383 else
2384 env->uncached_cpsr &= ~CPSR_F;
2385 break;
2386 case 20: /* CONTROL */
2387 env->v7m.control = val & 3;
2388 switch_v7m_sp(env, (val & 2) != 0);
2389 break;
2390 default:
2391 /* ??? For debugging only. */
2392 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2393 return;
2397 #endif
2399 /* Note that signed overflow is undefined in C. The following routines are
2400 careful to use unsigned types where modulo arithmetic is required.
2401 Failure to do so _will_ break on newer gcc. */
2403 /* Signed saturating arithmetic. */
2405 /* Perform 16-bit signed saturating addition. */
2406 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2408 uint16_t res;
2410 res = a + b;
2411 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2412 if (a & 0x8000)
2413 res = 0x8000;
2414 else
2415 res = 0x7fff;
2417 return res;
2420 /* Perform 8-bit signed saturating addition. */
2421 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2423 uint8_t res;
2425 res = a + b;
2426 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2427 if (a & 0x80)
2428 res = 0x80;
2429 else
2430 res = 0x7f;
2432 return res;
2435 /* Perform 16-bit signed saturating subtraction. */
2436 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2438 uint16_t res;
2440 res = a - b;
2441 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2442 if (a & 0x8000)
2443 res = 0x8000;
2444 else
2445 res = 0x7fff;
2447 return res;
2450 /* Perform 8-bit signed saturating subtraction. */
2451 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2453 uint8_t res;
2455 res = a - b;
2456 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2457 if (a & 0x80)
2458 res = 0x80;
2459 else
2460 res = 0x7f;
2462 return res;
2465 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2466 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2467 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2468 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2469 #define PFX q
2471 #include "op_addsub.h"
2473 /* Unsigned saturating arithmetic. */
2474 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2476 uint16_t res;
2477 res = a + b;
2478 if (res < a)
2479 res = 0xffff;
2480 return res;
2483 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2485 if (a > b)
2486 return a - b;
2487 else
2488 return 0;
2491 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2493 uint8_t res;
2494 res = a + b;
2495 if (res < a)
2496 res = 0xff;
2497 return res;
2500 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2502 if (a > b)
2503 return a - b;
2504 else
2505 return 0;
2508 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2509 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2510 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2511 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2512 #define PFX uq
2514 #include "op_addsub.h"
2516 /* Signed modulo arithmetic. */
2517 #define SARITH16(a, b, n, op) do { \
2518 int32_t sum; \
2519 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2520 RESULT(sum, n, 16); \
2521 if (sum >= 0) \
2522 ge |= 3 << (n * 2); \
2523 } while(0)
2525 #define SARITH8(a, b, n, op) do { \
2526 int32_t sum; \
2527 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2528 RESULT(sum, n, 8); \
2529 if (sum >= 0) \
2530 ge |= 1 << n; \
2531 } while(0)
2534 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2535 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2536 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2537 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2538 #define PFX s
2539 #define ARITH_GE
2541 #include "op_addsub.h"
2543 /* Unsigned modulo arithmetic. */
2544 #define ADD16(a, b, n) do { \
2545 uint32_t sum; \
2546 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2547 RESULT(sum, n, 16); \
2548 if ((sum >> 16) == 1) \
2549 ge |= 3 << (n * 2); \
2550 } while(0)
2552 #define ADD8(a, b, n) do { \
2553 uint32_t sum; \
2554 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2555 RESULT(sum, n, 8); \
2556 if ((sum >> 8) == 1) \
2557 ge |= 1 << n; \
2558 } while(0)
2560 #define SUB16(a, b, n) do { \
2561 uint32_t sum; \
2562 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2563 RESULT(sum, n, 16); \
2564 if ((sum >> 16) == 0) \
2565 ge |= 3 << (n * 2); \
2566 } while(0)
2568 #define SUB8(a, b, n) do { \
2569 uint32_t sum; \
2570 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2571 RESULT(sum, n, 8); \
2572 if ((sum >> 8) == 0) \
2573 ge |= 1 << n; \
2574 } while(0)
2576 #define PFX u
2577 #define ARITH_GE
2579 #include "op_addsub.h"
2581 /* Halved signed arithmetic. */
2582 #define ADD16(a, b, n) \
2583 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2584 #define SUB16(a, b, n) \
2585 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2586 #define ADD8(a, b, n) \
2587 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2588 #define SUB8(a, b, n) \
2589 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2590 #define PFX sh
2592 #include "op_addsub.h"
2594 /* Halved unsigned arithmetic. */
2595 #define ADD16(a, b, n) \
2596 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2597 #define SUB16(a, b, n) \
2598 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2599 #define ADD8(a, b, n) \
2600 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2601 #define SUB8(a, b, n) \
2602 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2603 #define PFX uh
2605 #include "op_addsub.h"
2607 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2609 if (a > b)
2610 return a - b;
2611 else
2612 return b - a;
2615 /* Unsigned sum of absolute byte differences. */
2616 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2618 uint32_t sum;
2619 sum = do_usad(a, b);
2620 sum += do_usad(a >> 8, b >> 8);
2621 sum += do_usad(a >> 16, b >>16);
2622 sum += do_usad(a >> 24, b >> 24);
2623 return sum;
2626 /* For ARMv6 SEL instruction. */
2627 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2629 uint32_t mask;
2631 mask = 0;
2632 if (flags & 1)
2633 mask |= 0xff;
2634 if (flags & 2)
2635 mask |= 0xff00;
2636 if (flags & 4)
2637 mask |= 0xff0000;
2638 if (flags & 8)
2639 mask |= 0xff000000;
2640 return (a & mask) | (b & ~mask);
2643 uint32_t HELPER(logicq_cc)(uint64_t val)
2645 return (val >> 32) | (val != 0);
2648 /* VFP support. We follow the convention used for VFP instrunctions:
2649 Single precition routines have a "s" suffix, double precision a
2650 "d" suffix. */
2652 /* Convert host exception flags to vfp form. */
2653 static inline int vfp_exceptbits_from_host(int host_bits)
2655 int target_bits = 0;
2657 if (host_bits & float_flag_invalid)
2658 target_bits |= 1;
2659 if (host_bits & float_flag_divbyzero)
2660 target_bits |= 2;
2661 if (host_bits & float_flag_overflow)
2662 target_bits |= 4;
2663 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2664 target_bits |= 8;
2665 if (host_bits & float_flag_inexact)
2666 target_bits |= 0x10;
2667 if (host_bits & float_flag_input_denormal)
2668 target_bits |= 0x80;
2669 return target_bits;
2672 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
2674 int i;
2675 uint32_t fpscr;
2677 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2678 | (env->vfp.vec_len << 16)
2679 | (env->vfp.vec_stride << 20);
2680 i = get_float_exception_flags(&env->vfp.fp_status);
2681 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2682 fpscr |= vfp_exceptbits_from_host(i);
2683 return fpscr;
2686 uint32_t vfp_get_fpscr(CPUARMState *env)
2688 return HELPER(vfp_get_fpscr)(env);
2691 /* Convert vfp exception flags to target form. */
2692 static inline int vfp_exceptbits_to_host(int target_bits)
2694 int host_bits = 0;
2696 if (target_bits & 1)
2697 host_bits |= float_flag_invalid;
2698 if (target_bits & 2)
2699 host_bits |= float_flag_divbyzero;
2700 if (target_bits & 4)
2701 host_bits |= float_flag_overflow;
2702 if (target_bits & 8)
2703 host_bits |= float_flag_underflow;
2704 if (target_bits & 0x10)
2705 host_bits |= float_flag_inexact;
2706 if (target_bits & 0x80)
2707 host_bits |= float_flag_input_denormal;
2708 return host_bits;
2711 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
2713 int i;
2714 uint32_t changed;
2716 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2717 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2718 env->vfp.vec_len = (val >> 16) & 7;
2719 env->vfp.vec_stride = (val >> 20) & 3;
2721 changed ^= val;
2722 if (changed & (3 << 22)) {
2723 i = (val >> 22) & 3;
2724 switch (i) {
2725 case 0:
2726 i = float_round_nearest_even;
2727 break;
2728 case 1:
2729 i = float_round_up;
2730 break;
2731 case 2:
2732 i = float_round_down;
2733 break;
2734 case 3:
2735 i = float_round_to_zero;
2736 break;
2738 set_float_rounding_mode(i, &env->vfp.fp_status);
2740 if (changed & (1 << 24)) {
2741 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2742 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2744 if (changed & (1 << 25))
2745 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2747 i = vfp_exceptbits_to_host(val);
2748 set_float_exception_flags(i, &env->vfp.fp_status);
2749 set_float_exception_flags(0, &env->vfp.standard_fp_status);
2752 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
2754 HELPER(vfp_set_fpscr)(env, val);
2757 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2759 #define VFP_BINOP(name) \
2760 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
2762 float_status *fpst = fpstp; \
2763 return float32_ ## name(a, b, fpst); \
2765 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
2767 float_status *fpst = fpstp; \
2768 return float64_ ## name(a, b, fpst); \
2770 VFP_BINOP(add)
2771 VFP_BINOP(sub)
2772 VFP_BINOP(mul)
2773 VFP_BINOP(div)
2774 #undef VFP_BINOP
2776 float32 VFP_HELPER(neg, s)(float32 a)
2778 return float32_chs(a);
2781 float64 VFP_HELPER(neg, d)(float64 a)
2783 return float64_chs(a);
2786 float32 VFP_HELPER(abs, s)(float32 a)
2788 return float32_abs(a);
2791 float64 VFP_HELPER(abs, d)(float64 a)
2793 return float64_abs(a);
2796 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
2798 return float32_sqrt(a, &env->vfp.fp_status);
2801 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
2803 return float64_sqrt(a, &env->vfp.fp_status);
2806 /* XXX: check quiet/signaling case */
2807 #define DO_VFP_cmp(p, type) \
2808 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
2810 uint32_t flags; \
2811 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2812 case 0: flags = 0x6; break; \
2813 case -1: flags = 0x8; break; \
2814 case 1: flags = 0x2; break; \
2815 default: case 2: flags = 0x3; break; \
2817 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2818 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2820 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
2822 uint32_t flags; \
2823 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2824 case 0: flags = 0x6; break; \
2825 case -1: flags = 0x8; break; \
2826 case 1: flags = 0x2; break; \
2827 default: case 2: flags = 0x3; break; \
2829 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2830 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2832 DO_VFP_cmp(s, float32)
2833 DO_VFP_cmp(d, float64)
2834 #undef DO_VFP_cmp
2836 /* Integer to float and float to integer conversions */
2838 #define CONV_ITOF(name, fsz, sign) \
2839 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2841 float_status *fpst = fpstp; \
2842 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
2845 #define CONV_FTOI(name, fsz, sign, round) \
2846 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2848 float_status *fpst = fpstp; \
2849 if (float##fsz##_is_any_nan(x)) { \
2850 float_raise(float_flag_invalid, fpst); \
2851 return 0; \
2853 return float##fsz##_to_##sign##int32##round(x, fpst); \
2856 #define FLOAT_CONVS(name, p, fsz, sign) \
2857 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2858 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2859 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2861 FLOAT_CONVS(si, s, 32, )
2862 FLOAT_CONVS(si, d, 64, )
2863 FLOAT_CONVS(ui, s, 32, u)
2864 FLOAT_CONVS(ui, d, 64, u)
2866 #undef CONV_ITOF
2867 #undef CONV_FTOI
2868 #undef FLOAT_CONVS
2870 /* floating point conversion */
2871 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
2873 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2874 /* ARM requires that S<->D conversion of any kind of NaN generates
2875 * a quiet NaN by forcing the most significant frac bit to 1.
2877 return float64_maybe_silence_nan(r);
2880 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
2882 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2883 /* ARM requires that S<->D conversion of any kind of NaN generates
2884 * a quiet NaN by forcing the most significant frac bit to 1.
2886 return float32_maybe_silence_nan(r);
2889 /* VFP3 fixed point conversion. */
2890 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2891 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2892 void *fpstp) \
2894 float_status *fpst = fpstp; \
2895 float##fsz tmp; \
2896 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2897 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2899 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2900 void *fpstp) \
2902 float_status *fpst = fpstp; \
2903 float##fsz tmp; \
2904 if (float##fsz##_is_any_nan(x)) { \
2905 float_raise(float_flag_invalid, fpst); \
2906 return 0; \
2908 tmp = float##fsz##_scalbn(x, shift, fpst); \
2909 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2912 VFP_CONV_FIX(sh, d, 64, int16, )
2913 VFP_CONV_FIX(sl, d, 64, int32, )
2914 VFP_CONV_FIX(uh, d, 64, uint16, u)
2915 VFP_CONV_FIX(ul, d, 64, uint32, u)
2916 VFP_CONV_FIX(sh, s, 32, int16, )
2917 VFP_CONV_FIX(sl, s, 32, int32, )
2918 VFP_CONV_FIX(uh, s, 32, uint16, u)
2919 VFP_CONV_FIX(ul, s, 32, uint32, u)
2920 #undef VFP_CONV_FIX
2922 /* Half precision conversions. */
2923 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
2925 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2926 float32 r = float16_to_float32(make_float16(a), ieee, s);
2927 if (ieee) {
2928 return float32_maybe_silence_nan(r);
2930 return r;
2933 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
2935 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2936 float16 r = float32_to_float16(a, ieee, s);
2937 if (ieee) {
2938 r = float16_maybe_silence_nan(r);
2940 return float16_val(r);
2943 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2945 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2948 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2950 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2953 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2955 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2958 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2960 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2963 #define float32_two make_float32(0x40000000)
2964 #define float32_three make_float32(0x40400000)
2965 #define float32_one_point_five make_float32(0x3fc00000)
2967 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
2969 float_status *s = &env->vfp.standard_fp_status;
2970 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2971 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2972 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2973 float_raise(float_flag_input_denormal, s);
2975 return float32_two;
2977 return float32_sub(float32_two, float32_mul(a, b, s), s);
2980 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
2982 float_status *s = &env->vfp.standard_fp_status;
2983 float32 product;
2984 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2985 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2986 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2987 float_raise(float_flag_input_denormal, s);
2989 return float32_one_point_five;
2991 product = float32_mul(a, b, s);
2992 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
2995 /* NEON helpers. */
2997 /* Constants 256 and 512 are used in some helpers; we avoid relying on
2998 * int->float conversions at run-time. */
2999 #define float64_256 make_float64(0x4070000000000000LL)
3000 #define float64_512 make_float64(0x4080000000000000LL)
3002 /* The algorithm that must be used to calculate the estimate
3003 * is specified by the ARM ARM.
3005 static float64 recip_estimate(float64 a, CPUARMState *env)
3007 /* These calculations mustn't set any fp exception flags,
3008 * so we use a local copy of the fp_status.
3010 float_status dummy_status = env->vfp.standard_fp_status;
3011 float_status *s = &dummy_status;
3012 /* q = (int)(a * 512.0) */
3013 float64 q = float64_mul(float64_512, a, s);
3014 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3016 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3017 q = int64_to_float64(q_int, s);
3018 q = float64_add(q, float64_half, s);
3019 q = float64_div(q, float64_512, s);
3020 q = float64_div(float64_one, q, s);
3022 /* s = (int)(256.0 * r + 0.5) */
3023 q = float64_mul(q, float64_256, s);
3024 q = float64_add(q, float64_half, s);
3025 q_int = float64_to_int64_round_to_zero(q, s);
3027 /* return (double)s / 256.0 */
3028 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3031 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3033 float_status *s = &env->vfp.standard_fp_status;
3034 float64 f64;
3035 uint32_t val32 = float32_val(a);
3037 int result_exp;
3038 int a_exp = (val32 & 0x7f800000) >> 23;
3039 int sign = val32 & 0x80000000;
3041 if (float32_is_any_nan(a)) {
3042 if (float32_is_signaling_nan(a)) {
3043 float_raise(float_flag_invalid, s);
3045 return float32_default_nan;
3046 } else if (float32_is_infinity(a)) {
3047 return float32_set_sign(float32_zero, float32_is_neg(a));
3048 } else if (float32_is_zero_or_denormal(a)) {
3049 if (!float32_is_zero(a)) {
3050 float_raise(float_flag_input_denormal, s);
3052 float_raise(float_flag_divbyzero, s);
3053 return float32_set_sign(float32_infinity, float32_is_neg(a));
3054 } else if (a_exp >= 253) {
3055 float_raise(float_flag_underflow, s);
3056 return float32_set_sign(float32_zero, float32_is_neg(a));
3059 f64 = make_float64((0x3feULL << 52)
3060 | ((int64_t)(val32 & 0x7fffff) << 29));
3062 result_exp = 253 - a_exp;
3064 f64 = recip_estimate(f64, env);
3066 val32 = sign
3067 | ((result_exp & 0xff) << 23)
3068 | ((float64_val(f64) >> 29) & 0x7fffff);
3069 return make_float32(val32);
3072 /* The algorithm that must be used to calculate the estimate
3073 * is specified by the ARM ARM.
3075 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3077 /* These calculations mustn't set any fp exception flags,
3078 * so we use a local copy of the fp_status.
3080 float_status dummy_status = env->vfp.standard_fp_status;
3081 float_status *s = &dummy_status;
3082 float64 q;
3083 int64_t q_int;
3085 if (float64_lt(a, float64_half, s)) {
3086 /* range 0.25 <= a < 0.5 */
3088 /* a in units of 1/512 rounded down */
3089 /* q0 = (int)(a * 512.0); */
3090 q = float64_mul(float64_512, a, s);
3091 q_int = float64_to_int64_round_to_zero(q, s);
3093 /* reciprocal root r */
3094 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3095 q = int64_to_float64(q_int, s);
3096 q = float64_add(q, float64_half, s);
3097 q = float64_div(q, float64_512, s);
3098 q = float64_sqrt(q, s);
3099 q = float64_div(float64_one, q, s);
3100 } else {
3101 /* range 0.5 <= a < 1.0 */
3103 /* a in units of 1/256 rounded down */
3104 /* q1 = (int)(a * 256.0); */
3105 q = float64_mul(float64_256, a, s);
3106 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3108 /* reciprocal root r */
3109 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3110 q = int64_to_float64(q_int, s);
3111 q = float64_add(q, float64_half, s);
3112 q = float64_div(q, float64_256, s);
3113 q = float64_sqrt(q, s);
3114 q = float64_div(float64_one, q, s);
3116 /* r in units of 1/256 rounded to nearest */
3117 /* s = (int)(256.0 * r + 0.5); */
3119 q = float64_mul(q, float64_256,s );
3120 q = float64_add(q, float64_half, s);
3121 q_int = float64_to_int64_round_to_zero(q, s);
3123 /* return (double)s / 256.0;*/
3124 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3127 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3129 float_status *s = &env->vfp.standard_fp_status;
3130 int result_exp;
3131 float64 f64;
3132 uint32_t val;
3133 uint64_t val64;
3135 val = float32_val(a);
3137 if (float32_is_any_nan(a)) {
3138 if (float32_is_signaling_nan(a)) {
3139 float_raise(float_flag_invalid, s);
3141 return float32_default_nan;
3142 } else if (float32_is_zero_or_denormal(a)) {
3143 if (!float32_is_zero(a)) {
3144 float_raise(float_flag_input_denormal, s);
3146 float_raise(float_flag_divbyzero, s);
3147 return float32_set_sign(float32_infinity, float32_is_neg(a));
3148 } else if (float32_is_neg(a)) {
3149 float_raise(float_flag_invalid, s);
3150 return float32_default_nan;
3151 } else if (float32_is_infinity(a)) {
3152 return float32_zero;
3155 /* Normalize to a double-precision value between 0.25 and 1.0,
3156 * preserving the parity of the exponent. */
3157 if ((val & 0x800000) == 0) {
3158 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3159 | (0x3feULL << 52)
3160 | ((uint64_t)(val & 0x7fffff) << 29));
3161 } else {
3162 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3163 | (0x3fdULL << 52)
3164 | ((uint64_t)(val & 0x7fffff) << 29));
3167 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3169 f64 = recip_sqrt_estimate(f64, env);
3171 val64 = float64_val(f64);
3173 val = ((result_exp & 0xff) << 23)
3174 | ((val64 >> 29) & 0x7fffff);
3175 return make_float32(val);
3178 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3180 float64 f64;
3182 if ((a & 0x80000000) == 0) {
3183 return 0xffffffff;
3186 f64 = make_float64((0x3feULL << 52)
3187 | ((int64_t)(a & 0x7fffffff) << 21));
3189 f64 = recip_estimate (f64, env);
3191 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3194 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3196 float64 f64;
3198 if ((a & 0xc0000000) == 0) {
3199 return 0xffffffff;
3202 if (a & 0x80000000) {
3203 f64 = make_float64((0x3feULL << 52)
3204 | ((uint64_t)(a & 0x7fffffff) << 21));
3205 } else { /* bits 31-30 == '01' */
3206 f64 = make_float64((0x3fdULL << 52)
3207 | ((uint64_t)(a & 0x3fffffff) << 22));
3210 f64 = recip_sqrt_estimate(f64, env);
3212 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3215 /* VFPv4 fused multiply-accumulate */
3216 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3218 float_status *fpst = fpstp;
3219 return float32_muladd(a, b, c, 0, fpst);
3222 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3224 float_status *fpst = fpstp;
3225 return float64_muladd(a, b, c, 0, fpst);