cadence_gem: Correct indentation
[qemu.git] / hw / net / cadence_gem.c
blob8618e7acac739812282ee68cdc54f12a45b7ac4c
1 /*
2 * QEMU Cadence GEM emulation
4 * Copyright (c) 2011 Xilinx, Inc.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include <zlib.h> /* For crc32 */
28 #include "hw/net/cadence_gem.h"
29 #include "qapi/error.h"
30 #include "qemu/log.h"
31 #include "net/checksum.h"
33 #ifdef CADENCE_GEM_ERR_DEBUG
34 #define DB_PRINT(...) do { \
35 fprintf(stderr, ": %s: ", __func__); \
36 fprintf(stderr, ## __VA_ARGS__); \
37 } while (0);
38 #else
39 #define DB_PRINT(...)
40 #endif
42 #define GEM_NWCTRL (0x00000000/4) /* Network Control reg */
43 #define GEM_NWCFG (0x00000004/4) /* Network Config reg */
44 #define GEM_NWSTATUS (0x00000008/4) /* Network Status reg */
45 #define GEM_USERIO (0x0000000C/4) /* User IO reg */
46 #define GEM_DMACFG (0x00000010/4) /* DMA Control reg */
47 #define GEM_TXSTATUS (0x00000014/4) /* TX Status reg */
48 #define GEM_RXQBASE (0x00000018/4) /* RX Q Base address reg */
49 #define GEM_TXQBASE (0x0000001C/4) /* TX Q Base address reg */
50 #define GEM_RXSTATUS (0x00000020/4) /* RX Status reg */
51 #define GEM_ISR (0x00000024/4) /* Interrupt Status reg */
52 #define GEM_IER (0x00000028/4) /* Interrupt Enable reg */
53 #define GEM_IDR (0x0000002C/4) /* Interrupt Disable reg */
54 #define GEM_IMR (0x00000030/4) /* Interrupt Mask reg */
55 #define GEM_PHYMNTNC (0x00000034/4) /* Phy Maintenance reg */
56 #define GEM_RXPAUSE (0x00000038/4) /* RX Pause Time reg */
57 #define GEM_TXPAUSE (0x0000003C/4) /* TX Pause Time reg */
58 #define GEM_TXPARTIALSF (0x00000040/4) /* TX Partial Store and Forward */
59 #define GEM_RXPARTIALSF (0x00000044/4) /* RX Partial Store and Forward */
60 #define GEM_HASHLO (0x00000080/4) /* Hash Low address reg */
61 #define GEM_HASHHI (0x00000084/4) /* Hash High address reg */
62 #define GEM_SPADDR1LO (0x00000088/4) /* Specific addr 1 low reg */
63 #define GEM_SPADDR1HI (0x0000008C/4) /* Specific addr 1 high reg */
64 #define GEM_SPADDR2LO (0x00000090/4) /* Specific addr 2 low reg */
65 #define GEM_SPADDR2HI (0x00000094/4) /* Specific addr 2 high reg */
66 #define GEM_SPADDR3LO (0x00000098/4) /* Specific addr 3 low reg */
67 #define GEM_SPADDR3HI (0x0000009C/4) /* Specific addr 3 high reg */
68 #define GEM_SPADDR4LO (0x000000A0/4) /* Specific addr 4 low reg */
69 #define GEM_SPADDR4HI (0x000000A4/4) /* Specific addr 4 high reg */
70 #define GEM_TIDMATCH1 (0x000000A8/4) /* Type ID1 Match reg */
71 #define GEM_TIDMATCH2 (0x000000AC/4) /* Type ID2 Match reg */
72 #define GEM_TIDMATCH3 (0x000000B0/4) /* Type ID3 Match reg */
73 #define GEM_TIDMATCH4 (0x000000B4/4) /* Type ID4 Match reg */
74 #define GEM_WOLAN (0x000000B8/4) /* Wake on LAN reg */
75 #define GEM_IPGSTRETCH (0x000000BC/4) /* IPG Stretch reg */
76 #define GEM_SVLAN (0x000000C0/4) /* Stacked VLAN reg */
77 #define GEM_MODID (0x000000FC/4) /* Module ID reg */
78 #define GEM_OCTTXLO (0x00000100/4) /* Octects transmitted Low reg */
79 #define GEM_OCTTXHI (0x00000104/4) /* Octects transmitted High reg */
80 #define GEM_TXCNT (0x00000108/4) /* Error-free Frames transmitted */
81 #define GEM_TXBCNT (0x0000010C/4) /* Error-free Broadcast Frames */
82 #define GEM_TXMCNT (0x00000110/4) /* Error-free Multicast Frame */
83 #define GEM_TXPAUSECNT (0x00000114/4) /* Pause Frames Transmitted */
84 #define GEM_TX64CNT (0x00000118/4) /* Error-free 64 TX */
85 #define GEM_TX65CNT (0x0000011C/4) /* Error-free 65-127 TX */
86 #define GEM_TX128CNT (0x00000120/4) /* Error-free 128-255 TX */
87 #define GEM_TX256CNT (0x00000124/4) /* Error-free 256-511 */
88 #define GEM_TX512CNT (0x00000128/4) /* Error-free 512-1023 TX */
89 #define GEM_TX1024CNT (0x0000012C/4) /* Error-free 1024-1518 TX */
90 #define GEM_TX1519CNT (0x00000130/4) /* Error-free larger than 1519 TX */
91 #define GEM_TXURUNCNT (0x00000134/4) /* TX under run error counter */
92 #define GEM_SINGLECOLLCNT (0x00000138/4) /* Single Collision Frames */
93 #define GEM_MULTCOLLCNT (0x0000013C/4) /* Multiple Collision Frames */
94 #define GEM_EXCESSCOLLCNT (0x00000140/4) /* Excessive Collision Frames */
95 #define GEM_LATECOLLCNT (0x00000144/4) /* Late Collision Frames */
96 #define GEM_DEFERTXCNT (0x00000148/4) /* Deferred Transmission Frames */
97 #define GEM_CSENSECNT (0x0000014C/4) /* Carrier Sense Error Counter */
98 #define GEM_OCTRXLO (0x00000150/4) /* Octects Received register Low */
99 #define GEM_OCTRXHI (0x00000154/4) /* Octects Received register High */
100 #define GEM_RXCNT (0x00000158/4) /* Error-free Frames Received */
101 #define GEM_RXBROADCNT (0x0000015C/4) /* Error-free Broadcast Frames RX */
102 #define GEM_RXMULTICNT (0x00000160/4) /* Error-free Multicast Frames RX */
103 #define GEM_RXPAUSECNT (0x00000164/4) /* Pause Frames Received Counter */
104 #define GEM_RX64CNT (0x00000168/4) /* Error-free 64 byte Frames RX */
105 #define GEM_RX65CNT (0x0000016C/4) /* Error-free 65-127B Frames RX */
106 #define GEM_RX128CNT (0x00000170/4) /* Error-free 128-255B Frames RX */
107 #define GEM_RX256CNT (0x00000174/4) /* Error-free 256-512B Frames RX */
108 #define GEM_RX512CNT (0x00000178/4) /* Error-free 512-1023B Frames RX */
109 #define GEM_RX1024CNT (0x0000017C/4) /* Error-free 1024-1518B Frames RX */
110 #define GEM_RX1519CNT (0x00000180/4) /* Error-free 1519-max Frames RX */
111 #define GEM_RXUNDERCNT (0x00000184/4) /* Undersize Frames Received */
112 #define GEM_RXOVERCNT (0x00000188/4) /* Oversize Frames Received */
113 #define GEM_RXJABCNT (0x0000018C/4) /* Jabbers Received Counter */
114 #define GEM_RXFCSCNT (0x00000190/4) /* Frame Check seq. Error Counter */
115 #define GEM_RXLENERRCNT (0x00000194/4) /* Length Field Error Counter */
116 #define GEM_RXSYMERRCNT (0x00000198/4) /* Symbol Error Counter */
117 #define GEM_RXALIGNERRCNT (0x0000019C/4) /* Alignment Error Counter */
118 #define GEM_RXRSCERRCNT (0x000001A0/4) /* Receive Resource Error Counter */
119 #define GEM_RXORUNCNT (0x000001A4/4) /* Receive Overrun Counter */
120 #define GEM_RXIPCSERRCNT (0x000001A8/4) /* IP header Checksum Error Counter */
121 #define GEM_RXTCPCCNT (0x000001AC/4) /* TCP Checksum Error Counter */
122 #define GEM_RXUDPCCNT (0x000001B0/4) /* UDP Checksum Error Counter */
124 #define GEM_1588S (0x000001D0/4) /* 1588 Timer Seconds */
125 #define GEM_1588NS (0x000001D4/4) /* 1588 Timer Nanoseconds */
126 #define GEM_1588ADJ (0x000001D8/4) /* 1588 Timer Adjust */
127 #define GEM_1588INC (0x000001DC/4) /* 1588 Timer Increment */
128 #define GEM_PTPETXS (0x000001E0/4) /* PTP Event Frame Transmitted (s) */
129 #define GEM_PTPETXNS (0x000001E4/4) /* PTP Event Frame Transmitted (ns) */
130 #define GEM_PTPERXS (0x000001E8/4) /* PTP Event Frame Received (s) */
131 #define GEM_PTPERXNS (0x000001EC/4) /* PTP Event Frame Received (ns) */
132 #define GEM_PTPPTXS (0x000001E0/4) /* PTP Peer Frame Transmitted (s) */
133 #define GEM_PTPPTXNS (0x000001E4/4) /* PTP Peer Frame Transmitted (ns) */
134 #define GEM_PTPPRXS (0x000001E8/4) /* PTP Peer Frame Received (s) */
135 #define GEM_PTPPRXNS (0x000001EC/4) /* PTP Peer Frame Received (ns) */
137 /* Design Configuration Registers */
138 #define GEM_DESCONF (0x00000280/4)
139 #define GEM_DESCONF2 (0x00000284/4)
140 #define GEM_DESCONF3 (0x00000288/4)
141 #define GEM_DESCONF4 (0x0000028C/4)
142 #define GEM_DESCONF5 (0x00000290/4)
143 #define GEM_DESCONF6 (0x00000294/4)
144 #define GEM_DESCONF7 (0x00000298/4)
146 #define GEM_INT_Q1_STATUS (0x00000400 / 4)
147 #define GEM_INT_Q1_MASK (0x00000640 / 4)
149 #define GEM_TRANSMIT_Q1_PTR (0x00000440 / 4)
150 #define GEM_TRANSMIT_Q15_PTR (GEM_TRANSMIT_Q1_PTR + 14)
152 #define GEM_RECEIVE_Q1_PTR (0x00000480 / 4)
153 #define GEM_RECEIVE_Q15_PTR (GEM_RECEIVE_Q1_PTR + 14)
155 #define GEM_INT_Q1_ENABLE (0x00000600 / 4)
156 #define GEM_INT_Q7_ENABLE (GEM_INT_Q1_ENABLE + 6)
157 #define GEM_INT_Q8_ENABLE (0x00000660 / 4)
158 #define GEM_INT_Q15_ENABLE (GEM_INT_Q8_ENABLE + 7)
160 #define GEM_INT_Q1_DISABLE (0x00000620 / 4)
161 #define GEM_INT_Q7_DISABLE (GEM_INT_Q1_DISABLE + 6)
162 #define GEM_INT_Q8_DISABLE (0x00000680 / 4)
163 #define GEM_INT_Q15_DISABLE (GEM_INT_Q8_DISABLE + 7)
165 #define GEM_INT_Q1_MASK (0x00000640 / 4)
166 #define GEM_INT_Q7_MASK (GEM_INT_Q1_MASK + 6)
167 #define GEM_INT_Q8_MASK (0x000006A0 / 4)
168 #define GEM_INT_Q15_MASK (GEM_INT_Q8_MASK + 7)
170 #define GEM_SCREENING_TYPE1_REGISTER_0 (0x00000500 / 4)
172 #define GEM_ST1R_UDP_PORT_MATCH_ENABLE (1 << 29)
173 #define GEM_ST1R_DSTC_ENABLE (1 << 28)
174 #define GEM_ST1R_UDP_PORT_MATCH_SHIFT (12)
175 #define GEM_ST1R_UDP_PORT_MATCH_WIDTH (27 - GEM_ST1R_UDP_PORT_MATCH_SHIFT + 1)
176 #define GEM_ST1R_DSTC_MATCH_SHIFT (4)
177 #define GEM_ST1R_DSTC_MATCH_WIDTH (11 - GEM_ST1R_DSTC_MATCH_SHIFT + 1)
178 #define GEM_ST1R_QUEUE_SHIFT (0)
179 #define GEM_ST1R_QUEUE_WIDTH (3 - GEM_ST1R_QUEUE_SHIFT + 1)
181 #define GEM_SCREENING_TYPE2_REGISTER_0 (0x00000540 / 4)
183 #define GEM_ST2R_COMPARE_A_ENABLE (1 << 18)
184 #define GEM_ST2R_COMPARE_A_SHIFT (13)
185 #define GEM_ST2R_COMPARE_WIDTH (17 - GEM_ST2R_COMPARE_A_SHIFT + 1)
186 #define GEM_ST2R_ETHERTYPE_ENABLE (1 << 12)
187 #define GEM_ST2R_ETHERTYPE_INDEX_SHIFT (9)
188 #define GEM_ST2R_ETHERTYPE_INDEX_WIDTH (11 - GEM_ST2R_ETHERTYPE_INDEX_SHIFT \
189 + 1)
190 #define GEM_ST2R_QUEUE_SHIFT (0)
191 #define GEM_ST2R_QUEUE_WIDTH (3 - GEM_ST2R_QUEUE_SHIFT + 1)
193 #define GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 (0x000006e0 / 4)
194 #define GEM_TYPE2_COMPARE_0_WORD_0 (0x00000700 / 4)
196 #define GEM_T2CW1_COMPARE_OFFSET_SHIFT (7)
197 #define GEM_T2CW1_COMPARE_OFFSET_WIDTH (8 - GEM_T2CW1_COMPARE_OFFSET_SHIFT + 1)
198 #define GEM_T2CW1_OFFSET_VALUE_SHIFT (0)
199 #define GEM_T2CW1_OFFSET_VALUE_WIDTH (6 - GEM_T2CW1_OFFSET_VALUE_SHIFT + 1)
201 /*****************************************/
202 #define GEM_NWCTRL_TXSTART 0x00000200 /* Transmit Enable */
203 #define GEM_NWCTRL_TXENA 0x00000008 /* Transmit Enable */
204 #define GEM_NWCTRL_RXENA 0x00000004 /* Receive Enable */
205 #define GEM_NWCTRL_LOCALLOOP 0x00000002 /* Local Loopback */
207 #define GEM_NWCFG_STRIP_FCS 0x00020000 /* Strip FCS field */
208 #define GEM_NWCFG_LERR_DISC 0x00010000 /* Discard RX frames with len err */
209 #define GEM_NWCFG_BUFF_OFST_M 0x0000C000 /* Receive buffer offset mask */
210 #define GEM_NWCFG_BUFF_OFST_S 14 /* Receive buffer offset shift */
211 #define GEM_NWCFG_UCAST_HASH 0x00000080 /* accept unicast if hash match */
212 #define GEM_NWCFG_MCAST_HASH 0x00000040 /* accept multicast if hash match */
213 #define GEM_NWCFG_BCAST_REJ 0x00000020 /* Reject broadcast packets */
214 #define GEM_NWCFG_PROMISC 0x00000010 /* Accept all packets */
216 #define GEM_DMACFG_RBUFSZ_M 0x00FF0000 /* DMA RX Buffer Size mask */
217 #define GEM_DMACFG_RBUFSZ_S 16 /* DMA RX Buffer Size shift */
218 #define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */
219 #define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */
221 #define GEM_TXSTATUS_TXCMPL 0x00000020 /* Transmit Complete */
222 #define GEM_TXSTATUS_USED 0x00000001 /* sw owned descriptor encountered */
224 #define GEM_RXSTATUS_FRMRCVD 0x00000002 /* Frame received */
225 #define GEM_RXSTATUS_NOBUF 0x00000001 /* Buffer unavailable */
227 /* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
228 #define GEM_INT_TXCMPL 0x00000080 /* Transmit Complete */
229 #define GEM_INT_TXUSED 0x00000008
230 #define GEM_INT_RXUSED 0x00000004
231 #define GEM_INT_RXCMPL 0x00000002
233 #define GEM_PHYMNTNC_OP_R 0x20000000 /* read operation */
234 #define GEM_PHYMNTNC_OP_W 0x10000000 /* write operation */
235 #define GEM_PHYMNTNC_ADDR 0x0F800000 /* Address bits */
236 #define GEM_PHYMNTNC_ADDR_SHFT 23
237 #define GEM_PHYMNTNC_REG 0x007C0000 /* register bits */
238 #define GEM_PHYMNTNC_REG_SHIFT 18
240 /* Marvell PHY definitions */
241 #define BOARD_PHY_ADDRESS 23 /* PHY address we will emulate a device at */
243 #define PHY_REG_CONTROL 0
244 #define PHY_REG_STATUS 1
245 #define PHY_REG_PHYID1 2
246 #define PHY_REG_PHYID2 3
247 #define PHY_REG_ANEGADV 4
248 #define PHY_REG_LINKPABIL 5
249 #define PHY_REG_ANEGEXP 6
250 #define PHY_REG_NEXTP 7
251 #define PHY_REG_LINKPNEXTP 8
252 #define PHY_REG_100BTCTRL 9
253 #define PHY_REG_1000BTSTAT 10
254 #define PHY_REG_EXTSTAT 15
255 #define PHY_REG_PHYSPCFC_CTL 16
256 #define PHY_REG_PHYSPCFC_ST 17
257 #define PHY_REG_INT_EN 18
258 #define PHY_REG_INT_ST 19
259 #define PHY_REG_EXT_PHYSPCFC_CTL 20
260 #define PHY_REG_RXERR 21
261 #define PHY_REG_EACD 22
262 #define PHY_REG_LED 24
263 #define PHY_REG_LED_OVRD 25
264 #define PHY_REG_EXT_PHYSPCFC_CTL2 26
265 #define PHY_REG_EXT_PHYSPCFC_ST 27
266 #define PHY_REG_CABLE_DIAG 28
268 #define PHY_REG_CONTROL_RST 0x8000
269 #define PHY_REG_CONTROL_LOOP 0x4000
270 #define PHY_REG_CONTROL_ANEG 0x1000
272 #define PHY_REG_STATUS_LINK 0x0004
273 #define PHY_REG_STATUS_ANEGCMPL 0x0020
275 #define PHY_REG_INT_ST_ANEGCMPL 0x0800
276 #define PHY_REG_INT_ST_LINKC 0x0400
277 #define PHY_REG_INT_ST_ENERGY 0x0010
279 /***********************************************************************/
280 #define GEM_RX_REJECT (-1)
281 #define GEM_RX_PROMISCUOUS_ACCEPT (-2)
282 #define GEM_RX_BROADCAST_ACCEPT (-3)
283 #define GEM_RX_MULTICAST_HASH_ACCEPT (-4)
284 #define GEM_RX_UNICAST_HASH_ACCEPT (-5)
286 #define GEM_RX_SAR_ACCEPT 0
288 /***********************************************************************/
290 #define DESC_1_USED 0x80000000
291 #define DESC_1_LENGTH 0x00001FFF
293 #define DESC_1_TX_WRAP 0x40000000
294 #define DESC_1_TX_LAST 0x00008000
296 #define DESC_0_RX_WRAP 0x00000002
297 #define DESC_0_RX_OWNERSHIP 0x00000001
299 #define R_DESC_1_RX_SAR_SHIFT 25
300 #define R_DESC_1_RX_SAR_LENGTH 2
301 #define R_DESC_1_RX_SAR_MATCH (1 << 27)
302 #define R_DESC_1_RX_UNICAST_HASH (1 << 29)
303 #define R_DESC_1_RX_MULTICAST_HASH (1 << 30)
304 #define R_DESC_1_RX_BROADCAST (1 << 31)
306 #define DESC_1_RX_SOF 0x00004000
307 #define DESC_1_RX_EOF 0x00008000
309 static inline unsigned tx_desc_get_buffer(unsigned *desc)
311 return desc[0];
314 static inline unsigned tx_desc_get_used(unsigned *desc)
316 return (desc[1] & DESC_1_USED) ? 1 : 0;
319 static inline void tx_desc_set_used(unsigned *desc)
321 desc[1] |= DESC_1_USED;
324 static inline unsigned tx_desc_get_wrap(unsigned *desc)
326 return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
329 static inline unsigned tx_desc_get_last(unsigned *desc)
331 return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
334 static inline void tx_desc_set_last(unsigned *desc)
336 desc[1] |= DESC_1_TX_LAST;
339 static inline unsigned tx_desc_get_length(unsigned *desc)
341 return desc[1] & DESC_1_LENGTH;
344 static inline void print_gem_tx_desc(unsigned *desc, uint8_t queue)
346 DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
347 DB_PRINT("bufaddr: 0x%08x\n", *desc);
348 DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
349 DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc));
350 DB_PRINT("last: %d\n", tx_desc_get_last(desc));
351 DB_PRINT("length: %d\n", tx_desc_get_length(desc));
354 static inline unsigned rx_desc_get_buffer(unsigned *desc)
356 return desc[0] & ~0x3UL;
359 static inline unsigned rx_desc_get_wrap(unsigned *desc)
361 return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
364 static inline unsigned rx_desc_get_ownership(unsigned *desc)
366 return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
369 static inline void rx_desc_set_ownership(unsigned *desc)
371 desc[0] |= DESC_0_RX_OWNERSHIP;
374 static inline void rx_desc_set_sof(unsigned *desc)
376 desc[1] |= DESC_1_RX_SOF;
379 static inline void rx_desc_set_eof(unsigned *desc)
381 desc[1] |= DESC_1_RX_EOF;
384 static inline void rx_desc_set_length(unsigned *desc, unsigned len)
386 desc[1] &= ~DESC_1_LENGTH;
387 desc[1] |= len;
390 static inline void rx_desc_set_broadcast(unsigned *desc)
392 desc[1] |= R_DESC_1_RX_BROADCAST;
395 static inline void rx_desc_set_unicast_hash(unsigned *desc)
397 desc[1] |= R_DESC_1_RX_UNICAST_HASH;
400 static inline void rx_desc_set_multicast_hash(unsigned *desc)
402 desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
405 static inline void rx_desc_set_sar(unsigned *desc, int sar_idx)
407 desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
408 sar_idx);
409 desc[1] |= R_DESC_1_RX_SAR_MATCH;
412 /* The broadcast MAC address: 0xFFFFFFFFFFFF */
413 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
416 * gem_init_register_masks:
417 * One time initialization.
418 * Set masks to identify which register bits have magical clear properties
420 static void gem_init_register_masks(CadenceGEMState *s)
422 /* Mask of register bits which are read only */
423 memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
424 s->regs_ro[GEM_NWCTRL] = 0xFFF80000;
425 s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF;
426 s->regs_ro[GEM_DMACFG] = 0xFE00F000;
427 s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08;
428 s->regs_ro[GEM_RXQBASE] = 0x00000003;
429 s->regs_ro[GEM_TXQBASE] = 0x00000003;
430 s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0;
431 s->regs_ro[GEM_ISR] = 0xFFFFFFFF;
432 s->regs_ro[GEM_IMR] = 0xFFFFFFFF;
433 s->regs_ro[GEM_MODID] = 0xFFFFFFFF;
435 /* Mask of register bits which are clear on read */
436 memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
437 s->regs_rtc[GEM_ISR] = 0xFFFFFFFF;
439 /* Mask of register bits which are write 1 to clear */
440 memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
441 s->regs_w1c[GEM_TXSTATUS] = 0x000001F7;
442 s->regs_w1c[GEM_RXSTATUS] = 0x0000000F;
444 /* Mask of register bits which are write only */
445 memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
446 s->regs_wo[GEM_NWCTRL] = 0x00073E60;
447 s->regs_wo[GEM_IER] = 0x07FFFFFF;
448 s->regs_wo[GEM_IDR] = 0x07FFFFFF;
452 * phy_update_link:
453 * Make the emulated PHY link state match the QEMU "interface" state.
455 static void phy_update_link(CadenceGEMState *s)
457 DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
459 /* Autonegotiation status mirrors link status. */
460 if (qemu_get_queue(s->nic)->link_down) {
461 s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
462 PHY_REG_STATUS_LINK);
463 s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
464 } else {
465 s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
466 PHY_REG_STATUS_LINK);
467 s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
468 PHY_REG_INT_ST_ANEGCMPL |
469 PHY_REG_INT_ST_ENERGY);
473 static int gem_can_receive(NetClientState *nc)
475 CadenceGEMState *s;
476 int i;
478 s = qemu_get_nic_opaque(nc);
480 /* Do nothing if receive is not enabled. */
481 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) {
482 if (s->can_rx_state != 1) {
483 s->can_rx_state = 1;
484 DB_PRINT("can't receive - no enable\n");
486 return 0;
489 for (i = 0; i < s->num_priority_queues; i++) {
490 if (rx_desc_get_ownership(s->rx_desc[i]) == 1) {
491 if (s->can_rx_state != 2) {
492 s->can_rx_state = 2;
493 DB_PRINT("can't receive - busy buffer descriptor (q%d) 0x%x\n",
494 i, s->rx_desc_addr[i]);
496 return 0;
500 if (s->can_rx_state != 0) {
501 s->can_rx_state = 0;
502 DB_PRINT("can receive\n");
504 return 1;
508 * gem_update_int_status:
509 * Raise or lower interrupt based on current status.
511 static void gem_update_int_status(CadenceGEMState *s)
513 int i;
515 if ((s->num_priority_queues == 1) && s->regs[GEM_ISR]) {
516 /* No priority queues, just trigger the interrupt */
517 DB_PRINT("asserting int.\n", i);
518 qemu_set_irq(s->irq[0], 1);
519 return;
522 for (i = 0; i < s->num_priority_queues; ++i) {
523 if (s->regs[GEM_INT_Q1_STATUS + i]) {
524 DB_PRINT("asserting int. (q=%d)\n", i);
525 qemu_set_irq(s->irq[i], 1);
531 * gem_receive_updatestats:
532 * Increment receive statistics.
534 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
535 unsigned bytes)
537 uint64_t octets;
539 /* Total octets (bytes) received */
540 octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) |
541 s->regs[GEM_OCTRXHI];
542 octets += bytes;
543 s->regs[GEM_OCTRXLO] = octets >> 32;
544 s->regs[GEM_OCTRXHI] = octets;
546 /* Error-free Frames received */
547 s->regs[GEM_RXCNT]++;
549 /* Error-free Broadcast Frames counter */
550 if (!memcmp(packet, broadcast_addr, 6)) {
551 s->regs[GEM_RXBROADCNT]++;
554 /* Error-free Multicast Frames counter */
555 if (packet[0] == 0x01) {
556 s->regs[GEM_RXMULTICNT]++;
559 if (bytes <= 64) {
560 s->regs[GEM_RX64CNT]++;
561 } else if (bytes <= 127) {
562 s->regs[GEM_RX65CNT]++;
563 } else if (bytes <= 255) {
564 s->regs[GEM_RX128CNT]++;
565 } else if (bytes <= 511) {
566 s->regs[GEM_RX256CNT]++;
567 } else if (bytes <= 1023) {
568 s->regs[GEM_RX512CNT]++;
569 } else if (bytes <= 1518) {
570 s->regs[GEM_RX1024CNT]++;
571 } else {
572 s->regs[GEM_RX1519CNT]++;
577 * Get the MAC Address bit from the specified position
579 static unsigned get_bit(const uint8_t *mac, unsigned bit)
581 unsigned byte;
583 byte = mac[bit / 8];
584 byte >>= (bit & 0x7);
585 byte &= 1;
587 return byte;
591 * Calculate a GEM MAC Address hash index
593 static unsigned calc_mac_hash(const uint8_t *mac)
595 int index_bit, mac_bit;
596 unsigned hash_index;
598 hash_index = 0;
599 mac_bit = 5;
600 for (index_bit = 5; index_bit >= 0; index_bit--) {
601 hash_index |= (get_bit(mac, mac_bit) ^
602 get_bit(mac, mac_bit + 6) ^
603 get_bit(mac, mac_bit + 12) ^
604 get_bit(mac, mac_bit + 18) ^
605 get_bit(mac, mac_bit + 24) ^
606 get_bit(mac, mac_bit + 30) ^
607 get_bit(mac, mac_bit + 36) ^
608 get_bit(mac, mac_bit + 42)) << index_bit;
609 mac_bit--;
612 return hash_index;
616 * gem_mac_address_filter:
617 * Accept or reject this destination address?
618 * Returns:
619 * GEM_RX_REJECT: reject
620 * >= 0: Specific address accept (which matched SAR is returned)
621 * others for various other modes of accept:
622 * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
623 * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
625 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
627 uint8_t *gem_spaddr;
628 int i;
630 /* Promiscuous mode? */
631 if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) {
632 return GEM_RX_PROMISCUOUS_ACCEPT;
635 if (!memcmp(packet, broadcast_addr, 6)) {
636 /* Reject broadcast packets? */
637 if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) {
638 return GEM_RX_REJECT;
640 return GEM_RX_BROADCAST_ACCEPT;
643 /* Accept packets -w- hash match? */
644 if ((packet[0] == 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
645 (packet[0] != 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
646 unsigned hash_index;
648 hash_index = calc_mac_hash(packet);
649 if (hash_index < 32) {
650 if (s->regs[GEM_HASHLO] & (1<<hash_index)) {
651 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
652 GEM_RX_UNICAST_HASH_ACCEPT;
654 } else {
655 hash_index -= 32;
656 if (s->regs[GEM_HASHHI] & (1<<hash_index)) {
657 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
658 GEM_RX_UNICAST_HASH_ACCEPT;
663 /* Check all 4 specific addresses */
664 gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]);
665 for (i = 3; i >= 0; i--) {
666 if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
667 return GEM_RX_SAR_ACCEPT + i;
671 /* No address match; reject the packet */
672 return GEM_RX_REJECT;
675 /* Figure out which queue the received data should be sent to */
676 static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
677 unsigned rxbufsize)
679 uint32_t reg;
680 bool matched, mismatched;
681 int i, j;
683 for (i = 0; i < s->num_type1_screeners; i++) {
684 reg = s->regs[GEM_SCREENING_TYPE1_REGISTER_0 + i];
685 matched = false;
686 mismatched = false;
688 /* Screening is based on UDP Port */
689 if (reg & GEM_ST1R_UDP_PORT_MATCH_ENABLE) {
690 uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
691 if (udp_port == extract32(reg, GEM_ST1R_UDP_PORT_MATCH_SHIFT,
692 GEM_ST1R_UDP_PORT_MATCH_WIDTH)) {
693 matched = true;
694 } else {
695 mismatched = true;
699 /* Screening is based on DS/TC */
700 if (reg & GEM_ST1R_DSTC_ENABLE) {
701 uint8_t dscp = rxbuf_ptr[14 + 1];
702 if (dscp == extract32(reg, GEM_ST1R_DSTC_MATCH_SHIFT,
703 GEM_ST1R_DSTC_MATCH_WIDTH)) {
704 matched = true;
705 } else {
706 mismatched = true;
710 if (matched && !mismatched) {
711 return extract32(reg, GEM_ST1R_QUEUE_SHIFT, GEM_ST1R_QUEUE_WIDTH);
715 for (i = 0; i < s->num_type2_screeners; i++) {
716 reg = s->regs[GEM_SCREENING_TYPE2_REGISTER_0 + i];
717 matched = false;
718 mismatched = false;
720 if (reg & GEM_ST2R_ETHERTYPE_ENABLE) {
721 uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
722 int et_idx = extract32(reg, GEM_ST2R_ETHERTYPE_INDEX_SHIFT,
723 GEM_ST2R_ETHERTYPE_INDEX_WIDTH);
725 if (et_idx > s->num_type2_screeners) {
726 qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
727 "register index: %d\n", et_idx);
729 if (type == s->regs[GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 +
730 et_idx]) {
731 matched = true;
732 } else {
733 mismatched = true;
737 /* Compare A, B, C */
738 for (j = 0; j < 3; j++) {
739 uint32_t cr0, cr1, mask;
740 uint16_t rx_cmp;
741 int offset;
742 int cr_idx = extract32(reg, GEM_ST2R_COMPARE_A_SHIFT + j * 6,
743 GEM_ST2R_COMPARE_WIDTH);
745 if (!(reg & (GEM_ST2R_COMPARE_A_ENABLE << (j * 6)))) {
746 continue;
748 if (cr_idx > s->num_type2_screeners) {
749 qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
750 "register index: %d\n", cr_idx);
753 cr0 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
754 cr1 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2 + 1];
755 offset = extract32(cr1, GEM_T2CW1_OFFSET_VALUE_SHIFT,
756 GEM_T2CW1_OFFSET_VALUE_WIDTH);
758 switch (extract32(cr1, GEM_T2CW1_COMPARE_OFFSET_SHIFT,
759 GEM_T2CW1_COMPARE_OFFSET_WIDTH)) {
760 case 3: /* Skip UDP header */
761 qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
762 "unimplemented - assuming UDP\n");
763 offset += 8;
764 /* Fallthrough */
765 case 2: /* skip the IP header */
766 offset += 20;
767 /* Fallthrough */
768 case 1: /* Count from after the ethertype */
769 offset += 14;
770 break;
771 case 0:
772 /* Offset from start of frame */
773 break;
776 rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
777 mask = extract32(cr0, 0, 16);
779 if ((rx_cmp & mask) == (extract32(cr0, 16, 16) & mask)) {
780 matched = true;
781 } else {
782 mismatched = true;
786 if (matched && !mismatched) {
787 return extract32(reg, GEM_ST2R_QUEUE_SHIFT, GEM_ST2R_QUEUE_WIDTH);
791 /* We made it here, assume it's queue 0 */
792 return 0;
795 static void gem_get_rx_desc(CadenceGEMState *s, int q)
797 DB_PRINT("read descriptor 0x%x\n", (unsigned)s->rx_desc_addr[q]);
798 /* read current descriptor */
799 cpu_physical_memory_read(s->rx_desc_addr[0],
800 (uint8_t *)s->rx_desc[0], sizeof(s->rx_desc[0]));
802 /* Descriptor owned by software ? */
803 if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
804 DB_PRINT("descriptor 0x%x owned by sw.\n",
805 (unsigned)s->rx_desc_addr[q]);
806 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
807 s->regs[GEM_ISR] |= GEM_INT_RXUSED & ~(s->regs[GEM_IMR]);
808 /* Handle interrupt consequences */
809 gem_update_int_status(s);
814 * gem_receive:
815 * Fit a packet handed to us by QEMU into the receive descriptor ring.
817 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
819 CadenceGEMState *s;
820 unsigned rxbufsize, bytes_to_copy;
821 unsigned rxbuf_offset;
822 uint8_t rxbuf[2048];
823 uint8_t *rxbuf_ptr;
824 bool first_desc = true;
825 int maf;
826 int q = 0;
828 s = qemu_get_nic_opaque(nc);
830 /* Is this destination MAC address "for us" ? */
831 maf = gem_mac_address_filter(s, buf);
832 if (maf == GEM_RX_REJECT) {
833 return -1;
836 /* Discard packets with receive length error enabled ? */
837 if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) {
838 unsigned type_len;
840 /* Fish the ethertype / length field out of the RX packet */
841 type_len = buf[12] << 8 | buf[13];
842 /* It is a length field, not an ethertype */
843 if (type_len < 0x600) {
844 if (size < type_len) {
845 /* discard */
846 return -1;
852 * Determine configured receive buffer offset (probably 0)
854 rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
855 GEM_NWCFG_BUFF_OFST_S;
857 /* The configure size of each receive buffer. Determines how many
858 * buffers needed to hold this packet.
860 rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
861 GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
862 bytes_to_copy = size;
864 /* Hardware allows a zero value here but warns against it. To avoid QEMU
865 * indefinite loops we enforce a minimum value here
867 if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
868 rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
871 /* Pad to minimum length. Assume FCS field is stripped, logic
872 * below will increment it to the real minimum of 64 when
873 * not FCS stripping
875 if (size < 60) {
876 size = 60;
879 /* Strip of FCS field ? (usually yes) */
880 if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) {
881 rxbuf_ptr = (void *)buf;
882 } else {
883 unsigned crc_val;
885 if (size > sizeof(rxbuf) - sizeof(crc_val)) {
886 size = sizeof(rxbuf) - sizeof(crc_val);
888 bytes_to_copy = size;
889 /* The application wants the FCS field, which QEMU does not provide.
890 * We must try and calculate one.
893 memcpy(rxbuf, buf, size);
894 memset(rxbuf + size, 0, sizeof(rxbuf) - size);
895 rxbuf_ptr = rxbuf;
896 crc_val = cpu_to_le32(crc32(0, rxbuf, MAX(size, 60)));
897 memcpy(rxbuf + size, &crc_val, sizeof(crc_val));
899 bytes_to_copy += 4;
900 size += 4;
903 DB_PRINT("config bufsize: %d packet size: %ld\n", rxbufsize, size);
905 /* Find which queue we are targetting */
906 q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
908 while (bytes_to_copy) {
909 /* Do nothing if receive is not enabled. */
910 if (!gem_can_receive(nc)) {
911 assert(!first_desc);
912 return -1;
915 DB_PRINT("copy %d bytes to 0x%x\n", MIN(bytes_to_copy, rxbufsize),
916 rx_desc_get_buffer(s->rx_desc[q]));
918 /* Copy packet data to emulated DMA buffer */
919 cpu_physical_memory_write(rx_desc_get_buffer(s->rx_desc[q]) +
920 rxbuf_offset,
921 rxbuf_ptr, MIN(bytes_to_copy, rxbufsize));
922 rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
923 bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
925 /* Update the descriptor. */
926 if (first_desc) {
927 rx_desc_set_sof(s->rx_desc[q]);
928 first_desc = false;
930 if (bytes_to_copy == 0) {
931 rx_desc_set_eof(s->rx_desc[q]);
932 rx_desc_set_length(s->rx_desc[q], size);
934 rx_desc_set_ownership(s->rx_desc[q]);
936 switch (maf) {
937 case GEM_RX_PROMISCUOUS_ACCEPT:
938 break;
939 case GEM_RX_BROADCAST_ACCEPT:
940 rx_desc_set_broadcast(s->rx_desc[q]);
941 break;
942 case GEM_RX_UNICAST_HASH_ACCEPT:
943 rx_desc_set_unicast_hash(s->rx_desc[q]);
944 break;
945 case GEM_RX_MULTICAST_HASH_ACCEPT:
946 rx_desc_set_multicast_hash(s->rx_desc[q]);
947 break;
948 case GEM_RX_REJECT:
949 abort();
950 default: /* SAR */
951 rx_desc_set_sar(s->rx_desc[q], maf);
954 /* Descriptor write-back. */
955 cpu_physical_memory_write(s->rx_desc_addr[q],
956 (uint8_t *)s->rx_desc[q],
957 sizeof(s->rx_desc[q]));
959 /* Next descriptor */
960 if (rx_desc_get_wrap(s->rx_desc[q])) {
961 DB_PRINT("wrapping RX descriptor list\n");
962 s->rx_desc_addr[q] = s->regs[GEM_RXQBASE];
963 } else {
964 DB_PRINT("incrementing RX descriptor list\n");
965 s->rx_desc_addr[q] += 8;
968 gem_get_rx_desc(s, q);
971 /* Count it */
972 gem_receive_updatestats(s, buf, size);
974 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
975 s->regs[GEM_ISR] |= GEM_INT_RXCMPL & ~(s->regs[GEM_IMR]);
977 /* Handle interrupt consequences */
978 gem_update_int_status(s);
980 return size;
984 * gem_transmit_updatestats:
985 * Increment transmit statistics.
987 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
988 unsigned bytes)
990 uint64_t octets;
992 /* Total octets (bytes) transmitted */
993 octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) |
994 s->regs[GEM_OCTTXHI];
995 octets += bytes;
996 s->regs[GEM_OCTTXLO] = octets >> 32;
997 s->regs[GEM_OCTTXHI] = octets;
999 /* Error-free Frames transmitted */
1000 s->regs[GEM_TXCNT]++;
1002 /* Error-free Broadcast Frames counter */
1003 if (!memcmp(packet, broadcast_addr, 6)) {
1004 s->regs[GEM_TXBCNT]++;
1007 /* Error-free Multicast Frames counter */
1008 if (packet[0] == 0x01) {
1009 s->regs[GEM_TXMCNT]++;
1012 if (bytes <= 64) {
1013 s->regs[GEM_TX64CNT]++;
1014 } else if (bytes <= 127) {
1015 s->regs[GEM_TX65CNT]++;
1016 } else if (bytes <= 255) {
1017 s->regs[GEM_TX128CNT]++;
1018 } else if (bytes <= 511) {
1019 s->regs[GEM_TX256CNT]++;
1020 } else if (bytes <= 1023) {
1021 s->regs[GEM_TX512CNT]++;
1022 } else if (bytes <= 1518) {
1023 s->regs[GEM_TX1024CNT]++;
1024 } else {
1025 s->regs[GEM_TX1519CNT]++;
1030 * gem_transmit:
1031 * Fish packets out of the descriptor ring and feed them to QEMU
1033 static void gem_transmit(CadenceGEMState *s)
1035 unsigned desc[2];
1036 hwaddr packet_desc_addr;
1037 uint8_t tx_packet[2048];
1038 uint8_t *p;
1039 unsigned total_bytes;
1040 int q = 0;
1042 /* Do nothing if transmit is not enabled. */
1043 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1044 return;
1047 DB_PRINT("\n");
1049 /* The packet we will hand off to QEMU.
1050 * Packets scattered across multiple descriptors are gathered to this
1051 * one contiguous buffer first.
1053 p = tx_packet;
1054 total_bytes = 0;
1056 for (q = s->num_priority_queues - 1; q >= 0; q--) {
1057 /* read current descriptor */
1058 packet_desc_addr = s->tx_desc_addr[q];
1060 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1061 cpu_physical_memory_read(packet_desc_addr,
1062 (uint8_t *)desc, sizeof(desc));
1063 /* Handle all descriptors owned by hardware */
1064 while (tx_desc_get_used(desc) == 0) {
1066 /* Do nothing if transmit is not enabled. */
1067 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1068 return;
1070 print_gem_tx_desc(desc, q);
1072 /* The real hardware would eat this (and possibly crash).
1073 * For QEMU let's lend a helping hand.
1075 if ((tx_desc_get_buffer(desc) == 0) ||
1076 (tx_desc_get_length(desc) == 0)) {
1077 DB_PRINT("Invalid TX descriptor @ 0x%x\n",
1078 (unsigned)packet_desc_addr);
1079 break;
1082 if (tx_desc_get_length(desc) > sizeof(tx_packet) -
1083 (p - tx_packet)) {
1084 DB_PRINT("TX descriptor @ 0x%x too large: size 0x%x space " \
1085 "0x%x\n", (unsigned)packet_desc_addr,
1086 (unsigned)tx_desc_get_length(desc),
1087 sizeof(tx_packet) - (p - tx_packet));
1088 break;
1091 /* Gather this fragment of the packet from "dma memory" to our
1092 * contig buffer.
1094 cpu_physical_memory_read(tx_desc_get_buffer(desc), p,
1095 tx_desc_get_length(desc));
1096 p += tx_desc_get_length(desc);
1097 total_bytes += tx_desc_get_length(desc);
1099 /* Last descriptor for this packet; hand the whole thing off */
1100 if (tx_desc_get_last(desc)) {
1101 unsigned desc_first[2];
1103 /* Modify the 1st descriptor of this packet to be owned by
1104 * the processor.
1106 cpu_physical_memory_read(s->tx_desc_addr[q],
1107 (uint8_t *)desc_first,
1108 sizeof(desc_first));
1109 tx_desc_set_used(desc_first);
1110 cpu_physical_memory_write(s->tx_desc_addr[q],
1111 (uint8_t *)desc_first,
1112 sizeof(desc_first));
1113 /* Advance the hardware current descriptor past this packet */
1114 if (tx_desc_get_wrap(desc)) {
1115 s->tx_desc_addr[q] = s->regs[GEM_TXQBASE];
1116 } else {
1117 s->tx_desc_addr[q] = packet_desc_addr + 8;
1119 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
1121 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
1122 s->regs[GEM_ISR] |= GEM_INT_TXCMPL & ~(s->regs[GEM_IMR]);
1124 /* Update queue interrupt status */
1125 if (s->num_priority_queues > 1) {
1126 s->regs[GEM_INT_Q1_STATUS + q] |=
1127 GEM_INT_TXCMPL & ~(s->regs[GEM_INT_Q1_MASK + q]);
1130 /* Handle interrupt consequences */
1131 gem_update_int_status(s);
1133 /* Is checksum offload enabled? */
1134 if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
1135 net_checksum_calculate(tx_packet, total_bytes);
1138 /* Update MAC statistics */
1139 gem_transmit_updatestats(s, tx_packet, total_bytes);
1141 /* Send the packet somewhere */
1142 if (s->phy_loop || (s->regs[GEM_NWCTRL] &
1143 GEM_NWCTRL_LOCALLOOP)) {
1144 gem_receive(qemu_get_queue(s->nic), tx_packet,
1145 total_bytes);
1146 } else {
1147 qemu_send_packet(qemu_get_queue(s->nic), tx_packet,
1148 total_bytes);
1151 /* Prepare for next packet */
1152 p = tx_packet;
1153 total_bytes = 0;
1156 /* read next descriptor */
1157 if (tx_desc_get_wrap(desc)) {
1158 tx_desc_set_last(desc);
1159 packet_desc_addr = s->regs[GEM_TXQBASE];
1160 } else {
1161 packet_desc_addr += 8;
1163 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1164 cpu_physical_memory_read(packet_desc_addr,
1165 (uint8_t *)desc, sizeof(desc));
1168 if (tx_desc_get_used(desc)) {
1169 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED;
1170 s->regs[GEM_ISR] |= GEM_INT_TXUSED & ~(s->regs[GEM_IMR]);
1171 gem_update_int_status(s);
1176 static void gem_phy_reset(CadenceGEMState *s)
1178 memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
1179 s->phy_regs[PHY_REG_CONTROL] = 0x1140;
1180 s->phy_regs[PHY_REG_STATUS] = 0x7969;
1181 s->phy_regs[PHY_REG_PHYID1] = 0x0141;
1182 s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
1183 s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
1184 s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
1185 s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
1186 s->phy_regs[PHY_REG_NEXTP] = 0x2001;
1187 s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
1188 s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
1189 s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
1190 s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
1191 s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
1192 s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
1193 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
1194 s->phy_regs[PHY_REG_LED] = 0x4100;
1195 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
1196 s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
1198 phy_update_link(s);
1201 static void gem_reset(DeviceState *d)
1203 int i;
1204 CadenceGEMState *s = CADENCE_GEM(d);
1205 const uint8_t *a;
1207 DB_PRINT("\n");
1209 /* Set post reset register values */
1210 memset(&s->regs[0], 0, sizeof(s->regs));
1211 s->regs[GEM_NWCFG] = 0x00080000;
1212 s->regs[GEM_NWSTATUS] = 0x00000006;
1213 s->regs[GEM_DMACFG] = 0x00020784;
1214 s->regs[GEM_IMR] = 0x07ffffff;
1215 s->regs[GEM_TXPAUSE] = 0x0000ffff;
1216 s->regs[GEM_TXPARTIALSF] = 0x000003ff;
1217 s->regs[GEM_RXPARTIALSF] = 0x000003ff;
1218 s->regs[GEM_MODID] = 0x00020118;
1219 s->regs[GEM_DESCONF] = 0x02500111;
1220 s->regs[GEM_DESCONF2] = 0x2ab13fff;
1221 s->regs[GEM_DESCONF5] = 0x002f2145;
1222 s->regs[GEM_DESCONF6] = 0x00000200;
1224 /* Set MAC address */
1225 a = &s->conf.macaddr.a[0];
1226 s->regs[GEM_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
1227 s->regs[GEM_SPADDR1HI] = a[4] | (a[5] << 8);
1229 for (i = 0; i < 4; i++) {
1230 s->sar_active[i] = false;
1233 gem_phy_reset(s);
1235 gem_update_int_status(s);
1238 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1240 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1241 return s->phy_regs[reg_num];
1244 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1246 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1248 switch (reg_num) {
1249 case PHY_REG_CONTROL:
1250 if (val & PHY_REG_CONTROL_RST) {
1251 /* Phy reset */
1252 gem_phy_reset(s);
1253 val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1254 s->phy_loop = 0;
1256 if (val & PHY_REG_CONTROL_ANEG) {
1257 /* Complete autonegotiation immediately */
1258 val &= ~PHY_REG_CONTROL_ANEG;
1259 s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1261 if (val & PHY_REG_CONTROL_LOOP) {
1262 DB_PRINT("PHY placed in loopback\n");
1263 s->phy_loop = 1;
1264 } else {
1265 s->phy_loop = 0;
1267 break;
1269 s->phy_regs[reg_num] = val;
1273 * gem_read32:
1274 * Read a GEM register.
1276 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1278 CadenceGEMState *s;
1279 uint32_t retval;
1280 int i;
1281 s = (CadenceGEMState *)opaque;
1283 offset >>= 2;
1284 retval = s->regs[offset];
1286 DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1288 switch (offset) {
1289 case GEM_ISR:
1290 DB_PRINT("lowering irqs on ISR read\n");
1291 for (i = 0; i < s->num_priority_queues; ++i) {
1292 qemu_set_irq(s->irq[i], 0);
1294 break;
1295 case GEM_PHYMNTNC:
1296 if (retval & GEM_PHYMNTNC_OP_R) {
1297 uint32_t phy_addr, reg_num;
1299 phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1300 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1301 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1302 retval &= 0xFFFF0000;
1303 retval |= gem_phy_read(s, reg_num);
1304 } else {
1305 retval |= 0xFFFF; /* No device at this address */
1308 break;
1311 /* Squash read to clear bits */
1312 s->regs[offset] &= ~(s->regs_rtc[offset]);
1314 /* Do not provide write only bits */
1315 retval &= ~(s->regs_wo[offset]);
1317 DB_PRINT("0x%08x\n", retval);
1318 gem_update_int_status(s);
1319 return retval;
1323 * gem_write32:
1324 * Write a GEM register.
1326 static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1327 unsigned size)
1329 CadenceGEMState *s = (CadenceGEMState *)opaque;
1330 uint32_t readonly;
1331 int i;
1333 DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1334 offset >>= 2;
1336 /* Squash bits which are read only in write value */
1337 val &= ~(s->regs_ro[offset]);
1338 /* Preserve (only) bits which are read only and wtc in register */
1339 readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1341 /* Copy register write to backing store */
1342 s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1344 /* do w1c */
1345 s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1347 /* Handle register write side effects */
1348 switch (offset) {
1349 case GEM_NWCTRL:
1350 if (val & GEM_NWCTRL_RXENA) {
1351 for (i = 0; i < s->num_priority_queues; ++i) {
1352 gem_get_rx_desc(s, i);
1355 if (val & GEM_NWCTRL_TXSTART) {
1356 gem_transmit(s);
1358 if (!(val & GEM_NWCTRL_TXENA)) {
1359 /* Reset to start of Q when transmit disabled. */
1360 for (i = 0; i < s->num_priority_queues; i++) {
1361 s->tx_desc_addr[i] = s->regs[GEM_TXQBASE];
1364 if (gem_can_receive(qemu_get_queue(s->nic))) {
1365 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1367 break;
1369 case GEM_TXSTATUS:
1370 gem_update_int_status(s);
1371 break;
1372 case GEM_RXQBASE:
1373 s->rx_desc_addr[0] = val;
1374 break;
1375 case GEM_RECEIVE_Q1_PTR ... GEM_RECEIVE_Q15_PTR:
1376 s->rx_desc_addr[offset - GEM_RECEIVE_Q1_PTR + 1] = val;
1377 break;
1378 case GEM_TXQBASE:
1379 s->tx_desc_addr[0] = val;
1380 break;
1381 case GEM_TRANSMIT_Q1_PTR ... GEM_TRANSMIT_Q15_PTR:
1382 s->tx_desc_addr[offset - GEM_TRANSMIT_Q1_PTR + 1] = val;
1383 break;
1384 case GEM_RXSTATUS:
1385 gem_update_int_status(s);
1386 break;
1387 case GEM_IER:
1388 s->regs[GEM_IMR] &= ~val;
1389 gem_update_int_status(s);
1390 break;
1391 case GEM_INT_Q1_ENABLE ... GEM_INT_Q7_ENABLE:
1392 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_ENABLE] &= ~val;
1393 gem_update_int_status(s);
1394 break;
1395 case GEM_INT_Q8_ENABLE ... GEM_INT_Q15_ENABLE:
1396 s->regs[GEM_INT_Q8_MASK + offset - GEM_INT_Q8_ENABLE] &= ~val;
1397 gem_update_int_status(s);
1398 break;
1399 case GEM_IDR:
1400 s->regs[GEM_IMR] |= val;
1401 gem_update_int_status(s);
1402 break;
1403 case GEM_INT_Q1_DISABLE ... GEM_INT_Q7_DISABLE:
1404 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_DISABLE] |= val;
1405 gem_update_int_status(s);
1406 break;
1407 case GEM_INT_Q8_DISABLE ... GEM_INT_Q15_DISABLE:
1408 s->regs[GEM_INT_Q8_MASK + offset - GEM_INT_Q8_DISABLE] |= val;
1409 gem_update_int_status(s);
1410 break;
1411 case GEM_SPADDR1LO:
1412 case GEM_SPADDR2LO:
1413 case GEM_SPADDR3LO:
1414 case GEM_SPADDR4LO:
1415 s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false;
1416 break;
1417 case GEM_SPADDR1HI:
1418 case GEM_SPADDR2HI:
1419 case GEM_SPADDR3HI:
1420 case GEM_SPADDR4HI:
1421 s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true;
1422 break;
1423 case GEM_PHYMNTNC:
1424 if (val & GEM_PHYMNTNC_OP_W) {
1425 uint32_t phy_addr, reg_num;
1427 phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1428 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1429 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1430 gem_phy_write(s, reg_num, val);
1433 break;
1436 DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1439 static const MemoryRegionOps gem_ops = {
1440 .read = gem_read,
1441 .write = gem_write,
1442 .endianness = DEVICE_LITTLE_ENDIAN,
1445 static void gem_set_link(NetClientState *nc)
1447 CadenceGEMState *s = qemu_get_nic_opaque(nc);
1449 DB_PRINT("\n");
1450 phy_update_link(s);
1451 gem_update_int_status(s);
1454 static NetClientInfo net_gem_info = {
1455 .type = NET_CLIENT_DRIVER_NIC,
1456 .size = sizeof(NICState),
1457 .can_receive = gem_can_receive,
1458 .receive = gem_receive,
1459 .link_status_changed = gem_set_link,
1462 static void gem_realize(DeviceState *dev, Error **errp)
1464 CadenceGEMState *s = CADENCE_GEM(dev);
1465 int i;
1467 if (s->num_priority_queues == 0 ||
1468 s->num_priority_queues > MAX_PRIORITY_QUEUES) {
1469 error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
1470 s->num_priority_queues);
1471 return;
1472 } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
1473 error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
1474 s->num_type1_screeners);
1475 return;
1476 } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
1477 error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
1478 s->num_type2_screeners);
1479 return;
1482 for (i = 0; i < s->num_priority_queues; ++i) {
1483 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
1486 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1488 s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1489 object_get_typename(OBJECT(dev)), dev->id, s);
1492 static void gem_init(Object *obj)
1494 CadenceGEMState *s = CADENCE_GEM(obj);
1495 DeviceState *dev = DEVICE(obj);
1497 DB_PRINT("\n");
1499 gem_init_register_masks(s);
1500 memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1501 "enet", sizeof(s->regs));
1503 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1506 static const VMStateDescription vmstate_cadence_gem = {
1507 .name = "cadence_gem",
1508 .version_id = 4,
1509 .minimum_version_id = 4,
1510 .fields = (VMStateField[]) {
1511 VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1512 VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1513 VMSTATE_UINT8(phy_loop, CadenceGEMState),
1514 VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
1515 MAX_PRIORITY_QUEUES),
1516 VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
1517 MAX_PRIORITY_QUEUES),
1518 VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1519 VMSTATE_END_OF_LIST(),
1523 static Property gem_properties[] = {
1524 DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1525 DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
1526 num_priority_queues, 1),
1527 DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
1528 num_type1_screeners, 4),
1529 DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
1530 num_type2_screeners, 4),
1531 DEFINE_PROP_END_OF_LIST(),
1534 static void gem_class_init(ObjectClass *klass, void *data)
1536 DeviceClass *dc = DEVICE_CLASS(klass);
1538 dc->realize = gem_realize;
1539 dc->props = gem_properties;
1540 dc->vmsd = &vmstate_cadence_gem;
1541 dc->reset = gem_reset;
1544 static const TypeInfo gem_info = {
1545 .name = TYPE_CADENCE_GEM,
1546 .parent = TYPE_SYS_BUS_DEVICE,
1547 .instance_size = sizeof(CadenceGEMState),
1548 .instance_init = gem_init,
1549 .class_init = gem_class_init,
1552 static void gem_register_types(void)
1554 type_register_static(&gem_info);
1557 type_init(gem_register_types)