4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/event_notifier.h"
38 /* This check must be after config-host.h is included */
40 #include <sys/eventfd.h>
43 #ifdef CONFIG_VALGRIND_H
44 #include <valgrind/memcheck.h>
47 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
48 #define PAGE_SIZE TARGET_PAGE_SIZE
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #define DPRINTF(fmt, ...) \
60 #define KVM_MSI_HASHTAB_SIZE 256
62 typedef struct KVMSlot
65 ram_addr_t memory_size
;
71 typedef struct kvm_dirty_log KVMDirtyLog
;
79 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
80 bool coalesced_flush_in_progress
;
81 int broken_set_mem_region
;
84 int robust_singlestep
;
86 #ifdef KVM_CAP_SET_GUEST_DEBUG
87 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
93 /* The man page (and posix) say ioctl numbers are signed int, but
94 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
95 * unsigned, and treating them as signed here can break things */
96 unsigned irq_set_ioctl
;
97 #ifdef KVM_CAP_IRQ_ROUTING
98 struct kvm_irq_routing
*irq_routes
;
99 int nr_allocated_irq_routes
;
100 uint32_t *used_gsi_bitmap
;
101 unsigned int gsi_count
;
102 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
108 bool kvm_kernel_irqchip
;
109 bool kvm_async_interrupts_allowed
;
110 bool kvm_halt_in_kernel_allowed
;
111 bool kvm_irqfds_allowed
;
112 bool kvm_msi_via_irqfd_allowed
;
113 bool kvm_gsi_routing_allowed
;
114 bool kvm_gsi_direct_mapping
;
116 bool kvm_readonly_mem_allowed
;
118 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
119 KVM_CAP_INFO(USER_MEMORY
),
120 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
124 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
128 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
129 if (s
->slots
[i
].memory_size
== 0) {
134 fprintf(stderr
, "%s: no free slot available\n", __func__
);
138 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
144 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
145 KVMSlot
*mem
= &s
->slots
[i
];
147 if (start_addr
== mem
->start_addr
&&
148 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
157 * Find overlapping slot with lowest start address
159 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
163 KVMSlot
*found
= NULL
;
166 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
167 KVMSlot
*mem
= &s
->slots
[i
];
169 if (mem
->memory_size
== 0 ||
170 (found
&& found
->start_addr
< mem
->start_addr
)) {
174 if (end_addr
> mem
->start_addr
&&
175 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
183 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
188 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
189 KVMSlot
*mem
= &s
->slots
[i
];
191 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
192 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
200 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
202 struct kvm_userspace_memory_region mem
;
204 mem
.slot
= slot
->slot
;
205 mem
.guest_phys_addr
= slot
->start_addr
;
206 mem
.userspace_addr
= (unsigned long)slot
->ram
;
207 mem
.flags
= slot
->flags
;
208 if (s
->migration_log
) {
209 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
212 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
213 /* Set the slot size to 0 before setting the slot to the desired
214 * value. This is needed based on KVM commit 75d61fbc. */
216 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
218 mem
.memory_size
= slot
->memory_size
;
219 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
222 static void kvm_reset_vcpu(void *opaque
)
224 CPUState
*cpu
= opaque
;
226 kvm_arch_reset_vcpu(cpu
);
229 int kvm_init_vcpu(CPUState
*cpu
)
231 KVMState
*s
= kvm_state
;
235 DPRINTF("kvm_init_vcpu\n");
237 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
239 DPRINTF("kvm_create_vcpu failed\n");
245 cpu
->kvm_vcpu_dirty
= true;
247 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
250 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
254 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
256 if (cpu
->kvm_run
== MAP_FAILED
) {
258 DPRINTF("mmap'ing vcpu state failed\n");
262 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
263 s
->coalesced_mmio_ring
=
264 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
267 ret
= kvm_arch_init_vcpu(cpu
);
269 qemu_register_reset(kvm_reset_vcpu
, cpu
);
270 kvm_arch_reset_vcpu(cpu
);
277 * dirty pages logging control
280 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
, bool readonly
)
283 flags
= log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
284 if (readonly
&& kvm_readonly_mem_allowed
) {
285 flags
|= KVM_MEM_READONLY
;
290 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
292 KVMState
*s
= kvm_state
;
293 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
296 old_flags
= mem
->flags
;
298 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
, false);
301 /* If nothing changed effectively, no need to issue ioctl */
302 if (s
->migration_log
) {
303 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
306 if (flags
== old_flags
) {
310 return kvm_set_user_memory_region(s
, mem
);
313 static int kvm_dirty_pages_log_change(hwaddr phys_addr
,
314 ram_addr_t size
, bool log_dirty
)
316 KVMState
*s
= kvm_state
;
317 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
320 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
321 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
322 (hwaddr
)(phys_addr
+ size
- 1));
325 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
328 static void kvm_log_start(MemoryListener
*listener
,
329 MemoryRegionSection
*section
)
333 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
334 int128_get64(section
->size
), true);
340 static void kvm_log_stop(MemoryListener
*listener
,
341 MemoryRegionSection
*section
)
345 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
346 int128_get64(section
->size
), false);
352 static int kvm_set_migration_log(int enable
)
354 KVMState
*s
= kvm_state
;
358 s
->migration_log
= enable
;
360 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
363 if (!mem
->memory_size
) {
366 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
369 err
= kvm_set_user_memory_region(s
, mem
);
377 /* get kvm's dirty pages bitmap and update qemu's */
378 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
379 unsigned long *bitmap
)
382 unsigned long page_number
, c
;
384 unsigned int pages
= int128_get64(section
->size
) / getpagesize();
385 unsigned int len
= (pages
+ HOST_LONG_BITS
- 1) / HOST_LONG_BITS
;
386 unsigned long hpratio
= getpagesize() / TARGET_PAGE_SIZE
;
389 * bitmap-traveling is faster than memory-traveling (for addr...)
390 * especially when most of the memory is not dirty.
392 for (i
= 0; i
< len
; i
++) {
393 if (bitmap
[i
] != 0) {
394 c
= leul_to_cpu(bitmap
[i
]);
398 page_number
= (i
* HOST_LONG_BITS
+ j
) * hpratio
;
399 addr1
= page_number
* TARGET_PAGE_SIZE
;
400 addr
= section
->offset_within_region
+ addr1
;
401 memory_region_set_dirty(section
->mr
, addr
,
402 TARGET_PAGE_SIZE
* hpratio
);
409 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
412 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
413 * This function updates qemu's dirty bitmap using
414 * memory_region_set_dirty(). This means all bits are set
417 * @start_add: start of logged region.
418 * @end_addr: end of logged region.
420 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
422 KVMState
*s
= kvm_state
;
423 unsigned long size
, allocated_size
= 0;
427 hwaddr start_addr
= section
->offset_within_address_space
;
428 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
430 d
.dirty_bitmap
= NULL
;
431 while (start_addr
< end_addr
) {
432 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
437 /* XXX bad kernel interface alert
438 * For dirty bitmap, kernel allocates array of size aligned to
439 * bits-per-long. But for case when the kernel is 64bits and
440 * the userspace is 32bits, userspace can't align to the same
441 * bits-per-long, since sizeof(long) is different between kernel
442 * and user space. This way, userspace will provide buffer which
443 * may be 4 bytes less than the kernel will use, resulting in
444 * userspace memory corruption (which is not detectable by valgrind
445 * too, in most cases).
446 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
447 * a hope that sizeof(long) wont become >8 any time soon.
449 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
450 /*HOST_LONG_BITS*/ 64) / 8;
451 if (!d
.dirty_bitmap
) {
452 d
.dirty_bitmap
= g_malloc(size
);
453 } else if (size
> allocated_size
) {
454 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
456 allocated_size
= size
;
457 memset(d
.dirty_bitmap
, 0, allocated_size
);
461 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
462 DPRINTF("ioctl failed %d\n", errno
);
467 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
468 start_addr
= mem
->start_addr
+ mem
->memory_size
;
470 g_free(d
.dirty_bitmap
);
475 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
476 MemoryRegionSection
*secion
,
477 hwaddr start
, hwaddr size
)
479 KVMState
*s
= kvm_state
;
481 if (s
->coalesced_mmio
) {
482 struct kvm_coalesced_mmio_zone zone
;
488 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
492 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
493 MemoryRegionSection
*secion
,
494 hwaddr start
, hwaddr size
)
496 KVMState
*s
= kvm_state
;
498 if (s
->coalesced_mmio
) {
499 struct kvm_coalesced_mmio_zone zone
;
505 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
509 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
513 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
521 static int kvm_set_ioeventfd_mmio(int fd
, uint32_t addr
, uint32_t val
,
522 bool assign
, uint32_t size
, bool datamatch
)
525 struct kvm_ioeventfd iofd
;
527 iofd
.datamatch
= datamatch
? val
: 0;
533 if (!kvm_enabled()) {
538 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
541 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
544 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
553 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
554 bool assign
, uint32_t size
, bool datamatch
)
556 struct kvm_ioeventfd kick
= {
557 .datamatch
= datamatch
? val
: 0,
559 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
564 if (!kvm_enabled()) {
568 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
571 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
573 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
581 static int kvm_check_many_ioeventfds(void)
583 /* Userspace can use ioeventfd for io notification. This requires a host
584 * that supports eventfd(2) and an I/O thread; since eventfd does not
585 * support SIGIO it cannot interrupt the vcpu.
587 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
588 * can avoid creating too many ioeventfds.
590 #if defined(CONFIG_EVENTFD)
593 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
594 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
595 if (ioeventfds
[i
] < 0) {
598 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
600 close(ioeventfds
[i
]);
605 /* Decide whether many devices are supported or not */
606 ret
= i
== ARRAY_SIZE(ioeventfds
);
609 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
610 close(ioeventfds
[i
]);
618 static const KVMCapabilityInfo
*
619 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
622 if (!kvm_check_extension(s
, list
->value
)) {
630 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
632 KVMState
*s
= kvm_state
;
635 MemoryRegion
*mr
= section
->mr
;
636 bool log_dirty
= memory_region_is_logging(mr
);
637 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
638 bool readonly_flag
= mr
->readonly
|| memory_region_is_romd(mr
);
639 hwaddr start_addr
= section
->offset_within_address_space
;
640 ram_addr_t size
= int128_get64(section
->size
);
644 /* kvm works in page size chunks, but the function may be called
645 with sub-page size and unaligned start address. */
646 delta
= TARGET_PAGE_ALIGN(size
) - size
;
652 size
&= TARGET_PAGE_MASK
;
653 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
657 if (!memory_region_is_ram(mr
)) {
658 if (writeable
|| !kvm_readonly_mem_allowed
) {
660 } else if (!mr
->romd_mode
) {
661 /* If the memory device is not in romd_mode, then we actually want
662 * to remove the kvm memory slot so all accesses will trap. */
667 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
670 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
675 if (add
&& start_addr
>= mem
->start_addr
&&
676 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
677 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
678 /* The new slot fits into the existing one and comes with
679 * identical parameters - update flags and done. */
680 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
686 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
687 kvm_physical_sync_dirty_bitmap(section
);
690 /* unregister the overlapping slot */
691 mem
->memory_size
= 0;
692 err
= kvm_set_user_memory_region(s
, mem
);
694 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
695 __func__
, strerror(-err
));
699 /* Workaround for older KVM versions: we can't join slots, even not by
700 * unregistering the previous ones and then registering the larger
701 * slot. We have to maintain the existing fragmentation. Sigh.
703 * This workaround assumes that the new slot starts at the same
704 * address as the first existing one. If not or if some overlapping
705 * slot comes around later, we will fail (not seen in practice so far)
706 * - and actually require a recent KVM version. */
707 if (s
->broken_set_mem_region
&&
708 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
709 mem
= kvm_alloc_slot(s
);
710 mem
->memory_size
= old
.memory_size
;
711 mem
->start_addr
= old
.start_addr
;
713 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
715 err
= kvm_set_user_memory_region(s
, mem
);
717 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
722 start_addr
+= old
.memory_size
;
723 ram
+= old
.memory_size
;
724 size
-= old
.memory_size
;
728 /* register prefix slot */
729 if (old
.start_addr
< start_addr
) {
730 mem
= kvm_alloc_slot(s
);
731 mem
->memory_size
= start_addr
- old
.start_addr
;
732 mem
->start_addr
= old
.start_addr
;
734 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
736 err
= kvm_set_user_memory_region(s
, mem
);
738 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
739 __func__
, strerror(-err
));
741 fprintf(stderr
, "%s: This is probably because your kernel's " \
742 "PAGE_SIZE is too big. Please try to use 4k " \
743 "PAGE_SIZE!\n", __func__
);
749 /* register suffix slot */
750 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
751 ram_addr_t size_delta
;
753 mem
= kvm_alloc_slot(s
);
754 mem
->start_addr
= start_addr
+ size
;
755 size_delta
= mem
->start_addr
- old
.start_addr
;
756 mem
->memory_size
= old
.memory_size
- size_delta
;
757 mem
->ram
= old
.ram
+ size_delta
;
758 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
760 err
= kvm_set_user_memory_region(s
, mem
);
762 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
763 __func__
, strerror(-err
));
769 /* in case the KVM bug workaround already "consumed" the new slot */
776 mem
= kvm_alloc_slot(s
);
777 mem
->memory_size
= size
;
778 mem
->start_addr
= start_addr
;
780 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
782 err
= kvm_set_user_memory_region(s
, mem
);
784 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
790 static void kvm_region_add(MemoryListener
*listener
,
791 MemoryRegionSection
*section
)
793 memory_region_ref(section
->mr
);
794 kvm_set_phys_mem(section
, true);
797 static void kvm_region_del(MemoryListener
*listener
,
798 MemoryRegionSection
*section
)
800 kvm_set_phys_mem(section
, false);
801 memory_region_unref(section
->mr
);
804 static void kvm_log_sync(MemoryListener
*listener
,
805 MemoryRegionSection
*section
)
809 r
= kvm_physical_sync_dirty_bitmap(section
);
815 static void kvm_log_global_start(struct MemoryListener
*listener
)
819 r
= kvm_set_migration_log(1);
823 static void kvm_log_global_stop(struct MemoryListener
*listener
)
827 r
= kvm_set_migration_log(0);
831 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
832 MemoryRegionSection
*section
,
833 bool match_data
, uint64_t data
,
836 int fd
= event_notifier_get_fd(e
);
839 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
840 data
, true, int128_get64(section
->size
),
843 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
844 __func__
, strerror(-r
));
849 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
850 MemoryRegionSection
*section
,
851 bool match_data
, uint64_t data
,
854 int fd
= event_notifier_get_fd(e
);
857 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
858 data
, false, int128_get64(section
->size
),
865 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
866 MemoryRegionSection
*section
,
867 bool match_data
, uint64_t data
,
870 int fd
= event_notifier_get_fd(e
);
873 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
874 data
, true, int128_get64(section
->size
),
877 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
878 __func__
, strerror(-r
));
883 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
884 MemoryRegionSection
*section
,
885 bool match_data
, uint64_t data
,
889 int fd
= event_notifier_get_fd(e
);
892 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
893 data
, false, int128_get64(section
->size
),
900 static MemoryListener kvm_memory_listener
= {
901 .region_add
= kvm_region_add
,
902 .region_del
= kvm_region_del
,
903 .log_start
= kvm_log_start
,
904 .log_stop
= kvm_log_stop
,
905 .log_sync
= kvm_log_sync
,
906 .log_global_start
= kvm_log_global_start
,
907 .log_global_stop
= kvm_log_global_stop
,
908 .eventfd_add
= kvm_mem_ioeventfd_add
,
909 .eventfd_del
= kvm_mem_ioeventfd_del
,
910 .coalesced_mmio_add
= kvm_coalesce_mmio_region
,
911 .coalesced_mmio_del
= kvm_uncoalesce_mmio_region
,
915 static MemoryListener kvm_io_listener
= {
916 .eventfd_add
= kvm_io_ioeventfd_add
,
917 .eventfd_del
= kvm_io_ioeventfd_del
,
921 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
923 cpu
->interrupt_request
|= mask
;
925 if (!qemu_cpu_is_self(cpu
)) {
930 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
932 struct kvm_irq_level event
;
935 assert(kvm_async_interrupts_enabled());
939 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
941 perror("kvm_set_irq");
945 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
948 #ifdef KVM_CAP_IRQ_ROUTING
949 typedef struct KVMMSIRoute
{
950 struct kvm_irq_routing_entry kroute
;
951 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
954 static void set_gsi(KVMState
*s
, unsigned int gsi
)
956 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
959 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
961 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
964 void kvm_init_irq_routing(KVMState
*s
)
968 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
);
970 unsigned int gsi_bits
, i
;
972 /* Round up so we can search ints using ffs */
973 gsi_bits
= ALIGN(gsi_count
, 32);
974 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
975 s
->gsi_count
= gsi_count
;
977 /* Mark any over-allocated bits as already in use */
978 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
983 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
984 s
->nr_allocated_irq_routes
= 0;
986 if (!s
->direct_msi
) {
987 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
988 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
992 kvm_arch_init_irq_routing(s
);
995 void kvm_irqchip_commit_routes(KVMState
*s
)
999 s
->irq_routes
->flags
= 0;
1000 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
1004 static void kvm_add_routing_entry(KVMState
*s
,
1005 struct kvm_irq_routing_entry
*entry
)
1007 struct kvm_irq_routing_entry
*new;
1010 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1011 n
= s
->nr_allocated_irq_routes
* 2;
1015 size
= sizeof(struct kvm_irq_routing
);
1016 size
+= n
* sizeof(*new);
1017 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1018 s
->nr_allocated_irq_routes
= n
;
1020 n
= s
->irq_routes
->nr
++;
1021 new = &s
->irq_routes
->entries
[n
];
1025 set_gsi(s
, entry
->gsi
);
1028 static int kvm_update_routing_entry(KVMState
*s
,
1029 struct kvm_irq_routing_entry
*new_entry
)
1031 struct kvm_irq_routing_entry
*entry
;
1034 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1035 entry
= &s
->irq_routes
->entries
[n
];
1036 if (entry
->gsi
!= new_entry
->gsi
) {
1040 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1044 *entry
= *new_entry
;
1046 kvm_irqchip_commit_routes(s
);
1054 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1056 struct kvm_irq_routing_entry e
= {};
1058 assert(pin
< s
->gsi_count
);
1061 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1063 e
.u
.irqchip
.irqchip
= irqchip
;
1064 e
.u
.irqchip
.pin
= pin
;
1065 kvm_add_routing_entry(s
, &e
);
1068 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1070 struct kvm_irq_routing_entry
*e
;
1073 if (kvm_gsi_direct_mapping()) {
1077 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1078 e
= &s
->irq_routes
->entries
[i
];
1079 if (e
->gsi
== virq
) {
1080 s
->irq_routes
->nr
--;
1081 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1087 static unsigned int kvm_hash_msi(uint32_t data
)
1089 /* This is optimized for IA32 MSI layout. However, no other arch shall
1090 * repeat the mistake of not providing a direct MSI injection API. */
1094 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1096 KVMMSIRoute
*route
, *next
;
1099 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1100 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1101 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1102 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1108 static int kvm_irqchip_get_virq(KVMState
*s
)
1110 uint32_t *word
= s
->used_gsi_bitmap
;
1111 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1116 /* Return the lowest unused GSI in the bitmap */
1117 for (i
= 0; i
< max_words
; i
++) {
1118 bit
= ffs(~word
[i
]);
1123 return bit
- 1 + i
* 32;
1125 if (!s
->direct_msi
&& retry
) {
1127 kvm_flush_dynamic_msi_routes(s
);
1134 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1136 unsigned int hash
= kvm_hash_msi(msg
.data
);
1139 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1140 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1141 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1142 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1149 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1154 if (s
->direct_msi
) {
1155 msi
.address_lo
= (uint32_t)msg
.address
;
1156 msi
.address_hi
= msg
.address
>> 32;
1157 msi
.data
= le32_to_cpu(msg
.data
);
1159 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1161 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1164 route
= kvm_lookup_msi_route(s
, msg
);
1168 virq
= kvm_irqchip_get_virq(s
);
1173 route
= g_malloc0(sizeof(KVMMSIRoute
));
1174 route
->kroute
.gsi
= virq
;
1175 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1176 route
->kroute
.flags
= 0;
1177 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1178 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1179 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1181 kvm_add_routing_entry(s
, &route
->kroute
);
1182 kvm_irqchip_commit_routes(s
);
1184 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1188 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1190 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1193 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1195 struct kvm_irq_routing_entry kroute
= {};
1198 if (kvm_gsi_direct_mapping()) {
1199 return msg
.data
& 0xffff;
1202 if (!kvm_gsi_routing_enabled()) {
1206 virq
= kvm_irqchip_get_virq(s
);
1212 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1214 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1215 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1216 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1218 kvm_add_routing_entry(s
, &kroute
);
1219 kvm_irqchip_commit_routes(s
);
1224 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1226 struct kvm_irq_routing_entry kroute
= {};
1228 if (kvm_gsi_direct_mapping()) {
1232 if (!kvm_irqchip_in_kernel()) {
1237 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1239 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1240 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1241 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1243 return kvm_update_routing_entry(s
, &kroute
);
1246 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1249 struct kvm_irqfd irqfd
= {
1252 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1256 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1257 irqfd
.resamplefd
= rfd
;
1260 if (!kvm_irqfds_enabled()) {
1264 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1267 #else /* !KVM_CAP_IRQ_ROUTING */
1269 void kvm_init_irq_routing(KVMState
*s
)
1273 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1277 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1282 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1287 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1292 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1296 #endif /* !KVM_CAP_IRQ_ROUTING */
1298 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1299 EventNotifier
*rn
, int virq
)
1301 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1302 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1305 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1307 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1311 static int kvm_irqchip_create(KVMState
*s
)
1315 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1316 !kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1320 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1322 fprintf(stderr
, "Create kernel irqchip failed\n");
1326 kvm_kernel_irqchip
= true;
1327 /* If we have an in-kernel IRQ chip then we must have asynchronous
1328 * interrupt delivery (though the reverse is not necessarily true)
1330 kvm_async_interrupts_allowed
= true;
1331 kvm_halt_in_kernel_allowed
= true;
1333 kvm_init_irq_routing(s
);
1338 /* Find number of supported CPUs using the recommended
1339 * procedure from the kernel API documentation to cope with
1340 * older kernels that may be missing capabilities.
1342 static int kvm_recommended_vcpus(KVMState
*s
)
1344 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1345 return (ret
) ? ret
: 4;
1348 static int kvm_max_vcpus(KVMState
*s
)
1350 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1351 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1356 static const char upgrade_note
[] =
1357 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1358 "(see http://sourceforge.net/projects/kvm).\n";
1363 { "SMP", smp_cpus
},
1364 { "hotpluggable", max_cpus
},
1367 int soft_vcpus_limit
, hard_vcpus_limit
;
1369 const KVMCapabilityInfo
*missing_cap
;
1373 s
= g_malloc0(sizeof(KVMState
));
1376 * On systems where the kernel can support different base page
1377 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1378 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1379 * page size for the system though.
1381 assert(TARGET_PAGE_SIZE
<= getpagesize());
1383 #ifdef KVM_CAP_SET_GUEST_DEBUG
1384 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1386 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
1387 s
->slots
[i
].slot
= i
;
1390 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1392 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1397 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1398 if (ret
< KVM_API_VERSION
) {
1402 fprintf(stderr
, "kvm version too old\n");
1406 if (ret
> KVM_API_VERSION
) {
1408 fprintf(stderr
, "kvm version not supported\n");
1412 /* check the vcpu limits */
1413 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1414 hard_vcpus_limit
= kvm_max_vcpus(s
);
1417 if (nc
->num
> soft_vcpus_limit
) {
1419 "Warning: Number of %s cpus requested (%d) exceeds "
1420 "the recommended cpus supported by KVM (%d)\n",
1421 nc
->name
, nc
->num
, soft_vcpus_limit
);
1423 if (nc
->num
> hard_vcpus_limit
) {
1425 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1426 "the maximum cpus supported by KVM (%d)\n",
1427 nc
->name
, nc
->num
, hard_vcpus_limit
);
1434 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
1437 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
1438 "your host kernel command line\n");
1444 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1447 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1451 fprintf(stderr
, "kvm does not support %s\n%s",
1452 missing_cap
->name
, upgrade_note
);
1456 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1458 s
->broken_set_mem_region
= 1;
1459 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1461 s
->broken_set_mem_region
= 0;
1464 #ifdef KVM_CAP_VCPU_EVENTS
1465 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1468 s
->robust_singlestep
=
1469 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1471 #ifdef KVM_CAP_DEBUGREGS
1472 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1475 #ifdef KVM_CAP_XSAVE
1476 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1480 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1483 #ifdef KVM_CAP_PIT_STATE2
1484 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1487 #ifdef KVM_CAP_IRQ_ROUTING
1488 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1491 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1493 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1494 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1495 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1498 #ifdef KVM_CAP_READONLY_MEM
1499 kvm_readonly_mem_allowed
=
1500 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1503 ret
= kvm_arch_init(s
);
1508 ret
= kvm_irqchip_create(s
);
1514 memory_listener_register(&kvm_memory_listener
, &address_space_memory
);
1515 memory_listener_register(&kvm_io_listener
, &address_space_io
);
1517 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1519 cpu_interrupt_handler
= kvm_handle_interrupt
;
1535 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
1539 uint8_t *ptr
= data
;
1541 for (i
= 0; i
< count
; i
++) {
1542 address_space_rw(&address_space_io
, port
, ptr
, size
,
1543 direction
== KVM_EXIT_IO_OUT
);
1548 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1550 fprintf(stderr
, "KVM internal error.");
1551 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1554 fprintf(stderr
, " Suberror: %d\n", run
->internal
.suberror
);
1555 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1556 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1557 i
, (uint64_t)run
->internal
.data
[i
]);
1560 fprintf(stderr
, "\n");
1562 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1563 fprintf(stderr
, "emulation failure\n");
1564 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1565 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1566 return EXCP_INTERRUPT
;
1569 /* FIXME: Should trigger a qmp message to let management know
1570 * something went wrong.
1575 void kvm_flush_coalesced_mmio_buffer(void)
1577 KVMState
*s
= kvm_state
;
1579 if (s
->coalesced_flush_in_progress
) {
1583 s
->coalesced_flush_in_progress
= true;
1585 if (s
->coalesced_mmio_ring
) {
1586 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1587 while (ring
->first
!= ring
->last
) {
1588 struct kvm_coalesced_mmio
*ent
;
1590 ent
= &ring
->coalesced_mmio
[ring
->first
];
1592 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1594 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1598 s
->coalesced_flush_in_progress
= false;
1601 static void do_kvm_cpu_synchronize_state(void *arg
)
1603 CPUState
*cpu
= arg
;
1605 if (!cpu
->kvm_vcpu_dirty
) {
1606 kvm_arch_get_registers(cpu
);
1607 cpu
->kvm_vcpu_dirty
= true;
1611 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1613 if (!cpu
->kvm_vcpu_dirty
) {
1614 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1618 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1620 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1621 cpu
->kvm_vcpu_dirty
= false;
1624 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1626 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1627 cpu
->kvm_vcpu_dirty
= false;
1630 int kvm_cpu_exec(CPUState
*cpu
)
1632 struct kvm_run
*run
= cpu
->kvm_run
;
1635 DPRINTF("kvm_cpu_exec()\n");
1637 if (kvm_arch_process_async_events(cpu
)) {
1638 cpu
->exit_request
= 0;
1643 if (cpu
->kvm_vcpu_dirty
) {
1644 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1645 cpu
->kvm_vcpu_dirty
= false;
1648 kvm_arch_pre_run(cpu
, run
);
1649 if (cpu
->exit_request
) {
1650 DPRINTF("interrupt exit requested\n");
1652 * KVM requires us to reenter the kernel after IO exits to complete
1653 * instruction emulation. This self-signal will ensure that we
1656 qemu_cpu_kick_self();
1658 qemu_mutex_unlock_iothread();
1660 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1662 qemu_mutex_lock_iothread();
1663 kvm_arch_post_run(cpu
, run
);
1666 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1667 DPRINTF("io window exit\n");
1668 ret
= EXCP_INTERRUPT
;
1671 fprintf(stderr
, "error: kvm run failed %s\n",
1672 strerror(-run_ret
));
1676 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1677 switch (run
->exit_reason
) {
1679 DPRINTF("handle_io\n");
1680 kvm_handle_io(run
->io
.port
,
1681 (uint8_t *)run
+ run
->io
.data_offset
,
1688 DPRINTF("handle_mmio\n");
1689 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1692 run
->mmio
.is_write
);
1695 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1696 DPRINTF("irq_window_open\n");
1697 ret
= EXCP_INTERRUPT
;
1699 case KVM_EXIT_SHUTDOWN
:
1700 DPRINTF("shutdown\n");
1701 qemu_system_reset_request();
1702 ret
= EXCP_INTERRUPT
;
1704 case KVM_EXIT_UNKNOWN
:
1705 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1706 (uint64_t)run
->hw
.hardware_exit_reason
);
1709 case KVM_EXIT_INTERNAL_ERROR
:
1710 ret
= kvm_handle_internal_error(cpu
, run
);
1713 DPRINTF("kvm_arch_handle_exit\n");
1714 ret
= kvm_arch_handle_exit(cpu
, run
);
1720 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1721 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1724 cpu
->exit_request
= 0;
1728 int kvm_ioctl(KVMState
*s
, int type
, ...)
1735 arg
= va_arg(ap
, void *);
1738 trace_kvm_ioctl(type
, arg
);
1739 ret
= ioctl(s
->fd
, type
, arg
);
1746 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1753 arg
= va_arg(ap
, void *);
1756 trace_kvm_vm_ioctl(type
, arg
);
1757 ret
= ioctl(s
->vmfd
, type
, arg
);
1764 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1771 arg
= va_arg(ap
, void *);
1774 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1775 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1782 int kvm_has_sync_mmu(void)
1784 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1787 int kvm_has_vcpu_events(void)
1789 return kvm_state
->vcpu_events
;
1792 int kvm_has_robust_singlestep(void)
1794 return kvm_state
->robust_singlestep
;
1797 int kvm_has_debugregs(void)
1799 return kvm_state
->debugregs
;
1802 int kvm_has_xsave(void)
1804 return kvm_state
->xsave
;
1807 int kvm_has_xcrs(void)
1809 return kvm_state
->xcrs
;
1812 int kvm_has_pit_state2(void)
1814 return kvm_state
->pit_state2
;
1817 int kvm_has_many_ioeventfds(void)
1819 if (!kvm_enabled()) {
1822 return kvm_state
->many_ioeventfds
;
1825 int kvm_has_gsi_routing(void)
1827 #ifdef KVM_CAP_IRQ_ROUTING
1828 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
1834 int kvm_has_intx_set_mask(void)
1836 return kvm_state
->intx_set_mask
;
1839 void kvm_setup_guest_memory(void *start
, size_t size
)
1841 #ifdef CONFIG_VALGRIND_H
1842 VALGRIND_MAKE_MEM_DEFINED(start
, size
);
1844 if (!kvm_has_sync_mmu()) {
1845 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1848 perror("qemu_madvise");
1850 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1856 #ifdef KVM_CAP_SET_GUEST_DEBUG
1857 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
1860 struct kvm_sw_breakpoint
*bp
;
1862 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1870 int kvm_sw_breakpoints_active(CPUState
*cpu
)
1872 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
1875 struct kvm_set_guest_debug_data
{
1876 struct kvm_guest_debug dbg
;
1881 static void kvm_invoke_set_guest_debug(void *data
)
1883 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1885 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
1889 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
1891 struct kvm_set_guest_debug_data data
;
1893 data
.dbg
.control
= reinject_trap
;
1895 if (cpu
->singlestep_enabled
) {
1896 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1898 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
1901 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
1905 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
1906 target_ulong len
, int type
)
1908 struct kvm_sw_breakpoint
*bp
;
1911 if (type
== GDB_BREAKPOINT_SW
) {
1912 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
1918 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
1925 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
1931 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1933 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1940 err
= kvm_update_guest_debug(cpu
, 0);
1948 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
1949 target_ulong len
, int type
)
1951 struct kvm_sw_breakpoint
*bp
;
1954 if (type
== GDB_BREAKPOINT_SW
) {
1955 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
1960 if (bp
->use_count
> 1) {
1965 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
1970 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1973 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1980 err
= kvm_update_guest_debug(cpu
, 0);
1988 void kvm_remove_all_breakpoints(CPUState
*cpu
)
1990 struct kvm_sw_breakpoint
*bp
, *next
;
1991 KVMState
*s
= cpu
->kvm_state
;
1993 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1994 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
1995 /* Try harder to find a CPU that currently sees the breakpoint. */
1997 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) == 0) {
2002 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2005 kvm_arch_remove_all_hw_breakpoints();
2008 kvm_update_guest_debug(cpu
, 0);
2012 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2014 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2019 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2020 target_ulong len
, int type
)
2025 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2026 target_ulong len
, int type
)
2031 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2034 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2036 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2038 struct kvm_signal_mask
*sigmask
;
2042 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2045 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2048 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2049 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2054 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2056 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2059 int kvm_on_sigbus(int code
, void *addr
)
2061 return kvm_arch_on_sigbus(code
, addr
);