4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include "standard-headers/asm-x86/kvm_para.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/hw_accel.h"
26 #include "sysemu/kvm_int.h"
27 #include "sysemu/reset.h"
28 #include "sysemu/runstate.h"
31 #include "hyperv-proto.h"
33 #include "exec/gdbstub.h"
34 #include "qemu/host-utils.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #include "hw/i386/x86.h"
39 #include "hw/i386/apic.h"
40 #include "hw/i386/apic_internal.h"
41 #include "hw/i386/apic-msidef.h"
42 #include "hw/i386/intel_iommu.h"
43 #include "hw/i386/x86-iommu.h"
44 #include "hw/i386/e820_memory_layout.h"
46 #include "hw/pci/pci.h"
47 #include "hw/pci/msi.h"
48 #include "hw/pci/msix.h"
49 #include "migration/blocker.h"
50 #include "exec/memattrs.h"
56 #define DPRINTF(fmt, ...) \
57 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
59 #define DPRINTF(fmt, ...) \
63 #define MSR_KVM_WALL_CLOCK 0x11
64 #define MSR_KVM_SYSTEM_TIME 0x12
66 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
67 * 255 kvm_msr_entry structs */
68 #define MSR_BUF_SIZE 4096
70 static void kvm_init_msrs(X86CPU
*cpu
);
72 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
73 KVM_CAP_INFO(SET_TSS_ADDR
),
74 KVM_CAP_INFO(EXT_CPUID
),
75 KVM_CAP_INFO(MP_STATE
),
79 static bool has_msr_star
;
80 static bool has_msr_hsave_pa
;
81 static bool has_msr_tsc_aux
;
82 static bool has_msr_tsc_adjust
;
83 static bool has_msr_tsc_deadline
;
84 static bool has_msr_feature_control
;
85 static bool has_msr_misc_enable
;
86 static bool has_msr_smbase
;
87 static bool has_msr_bndcfgs
;
88 static int lm_capable_kernel
;
89 static bool has_msr_hv_hypercall
;
90 static bool has_msr_hv_crash
;
91 static bool has_msr_hv_reset
;
92 static bool has_msr_hv_vpindex
;
93 static bool hv_vpindex_settable
;
94 static bool has_msr_hv_runtime
;
95 static bool has_msr_hv_synic
;
96 static bool has_msr_hv_stimer
;
97 static bool has_msr_hv_frequencies
;
98 static bool has_msr_hv_reenlightenment
;
99 static bool has_msr_xss
;
100 static bool has_msr_umwait
;
101 static bool has_msr_spec_ctrl
;
102 static bool has_msr_tsx_ctrl
;
103 static bool has_msr_virt_ssbd
;
104 static bool has_msr_smi_count
;
105 static bool has_msr_arch_capabs
;
106 static bool has_msr_core_capabs
;
107 static bool has_msr_vmx_vmfunc
;
108 static bool has_msr_ucode_rev
;
110 static uint32_t has_architectural_pmu_version
;
111 static uint32_t num_architectural_pmu_gp_counters
;
112 static uint32_t num_architectural_pmu_fixed_counters
;
114 static int has_xsave
;
116 static int has_pit_state2
;
117 static int has_exception_payload
;
119 static bool has_msr_mcg_ext_ctl
;
121 static struct kvm_cpuid2
*cpuid_cache
;
122 static struct kvm_msr_list
*kvm_feature_msrs
;
124 int kvm_has_pit_state2(void)
126 return has_pit_state2
;
129 bool kvm_has_smm(void)
131 return kvm_check_extension(kvm_state
, KVM_CAP_X86_SMM
);
134 bool kvm_has_adjust_clock_stable(void)
136 int ret
= kvm_check_extension(kvm_state
, KVM_CAP_ADJUST_CLOCK
);
138 return (ret
== KVM_CLOCK_TSC_STABLE
);
141 bool kvm_has_exception_payload(void)
143 return has_exception_payload
;
146 bool kvm_allows_irq0_override(void)
148 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
151 static bool kvm_x2apic_api_set_flags(uint64_t flags
)
153 KVMState
*s
= KVM_STATE(current_accel());
155 return !kvm_vm_enable_cap(s
, KVM_CAP_X2APIC_API
, 0, flags
);
158 #define MEMORIZE(fn, _result) \
160 static bool _memorized; \
169 static bool has_x2apic_api
;
171 bool kvm_has_x2apic_api(void)
173 return has_x2apic_api
;
176 bool kvm_enable_x2apic(void)
179 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS
|
180 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK
),
184 bool kvm_hv_vpindex_settable(void)
186 return hv_vpindex_settable
;
189 static int kvm_get_tsc(CPUState
*cs
)
191 X86CPU
*cpu
= X86_CPU(cs
);
192 CPUX86State
*env
= &cpu
->env
;
194 struct kvm_msrs info
;
195 struct kvm_msr_entry entries
[1];
199 if (env
->tsc_valid
) {
203 memset(&msr_data
, 0, sizeof(msr_data
));
204 msr_data
.info
.nmsrs
= 1;
205 msr_data
.entries
[0].index
= MSR_IA32_TSC
;
206 env
->tsc_valid
= !runstate_is_running();
208 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
214 env
->tsc
= msr_data
.entries
[0].data
;
218 static inline void do_kvm_synchronize_tsc(CPUState
*cpu
, run_on_cpu_data arg
)
223 void kvm_synchronize_all_tsc(void)
229 run_on_cpu(cpu
, do_kvm_synchronize_tsc
, RUN_ON_CPU_NULL
);
234 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
236 struct kvm_cpuid2
*cpuid
;
239 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
240 cpuid
= g_malloc0(size
);
242 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
243 if (r
== 0 && cpuid
->nent
>= max
) {
251 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
259 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
262 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
264 struct kvm_cpuid2
*cpuid
;
267 if (cpuid_cache
!= NULL
) {
270 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
277 static const struct kvm_para_features
{
280 } para_features
[] = {
281 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
282 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
283 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
284 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
287 static int get_para_features(KVMState
*s
)
291 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
292 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
293 features
|= (1 << para_features
[i
].feature
);
300 static bool host_tsx_blacklisted(void)
302 int family
, model
, stepping
;\
303 char vendor
[CPUID_VENDOR_SZ
+ 1];
305 host_vendor_fms(vendor
, &family
, &model
, &stepping
);
307 /* Check if we are running on a Haswell host known to have broken TSX */
308 return !strcmp(vendor
, CPUID_VENDOR_INTEL
) &&
310 ((model
== 63 && stepping
< 4) ||
311 model
== 60 || model
== 69 || model
== 70);
314 /* Returns the value for a specific register on the cpuid entry
316 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
336 /* Find matching entry for function/index on kvm_cpuid2 struct
338 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
343 for (i
= 0; i
< cpuid
->nent
; ++i
) {
344 if (cpuid
->entries
[i
].function
== function
&&
345 cpuid
->entries
[i
].index
== index
) {
346 return &cpuid
->entries
[i
];
353 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
354 uint32_t index
, int reg
)
356 struct kvm_cpuid2
*cpuid
;
358 uint32_t cpuid_1_edx
;
361 cpuid
= get_supported_cpuid(s
);
363 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
366 ret
= cpuid_entry_get_reg(entry
, reg
);
369 /* Fixups for the data returned by KVM, below */
371 if (function
== 1 && reg
== R_EDX
) {
372 /* KVM before 2.6.30 misreports the following features */
373 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
374 } else if (function
== 1 && reg
== R_ECX
) {
375 /* We can set the hypervisor flag, even if KVM does not return it on
376 * GET_SUPPORTED_CPUID
378 ret
|= CPUID_EXT_HYPERVISOR
;
379 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
380 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
381 * and the irqchip is in the kernel.
383 if (kvm_irqchip_in_kernel() &&
384 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
385 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
388 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
389 * without the in-kernel irqchip
391 if (!kvm_irqchip_in_kernel()) {
392 ret
&= ~CPUID_EXT_X2APIC
;
396 int disable_exits
= kvm_check_extension(s
,
397 KVM_CAP_X86_DISABLE_EXITS
);
399 if (disable_exits
& KVM_X86_DISABLE_EXITS_MWAIT
) {
400 ret
|= CPUID_EXT_MONITOR
;
403 } else if (function
== 6 && reg
== R_EAX
) {
404 ret
|= CPUID_6_EAX_ARAT
; /* safe to allow because of emulated APIC */
405 } else if (function
== 7 && index
== 0 && reg
== R_EBX
) {
406 if (host_tsx_blacklisted()) {
407 ret
&= ~(CPUID_7_0_EBX_RTM
| CPUID_7_0_EBX_HLE
);
409 } else if (function
== 7 && index
== 0 && reg
== R_ECX
) {
411 ret
|= CPUID_7_0_ECX_WAITPKG
;
413 ret
&= ~CPUID_7_0_ECX_WAITPKG
;
415 } else if (function
== 7 && index
== 0 && reg
== R_EDX
) {
417 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
418 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
419 * returned by KVM_GET_MSR_INDEX_LIST.
421 if (!has_msr_arch_capabs
) {
422 ret
&= ~CPUID_7_0_EDX_ARCH_CAPABILITIES
;
424 } else if (function
== 0x80000001 && reg
== R_ECX
) {
426 * It's safe to enable TOPOEXT even if it's not returned by
427 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
428 * us to keep CPU models including TOPOEXT runnable on older kernels.
430 ret
|= CPUID_EXT3_TOPOEXT
;
431 } else if (function
== 0x80000001 && reg
== R_EDX
) {
432 /* On Intel, kvm returns cpuid according to the Intel spec,
433 * so add missing bits according to the AMD spec:
435 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
436 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
437 } else if (function
== KVM_CPUID_FEATURES
&& reg
== R_EAX
) {
438 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
439 * be enabled without the in-kernel irqchip
441 if (!kvm_irqchip_in_kernel()) {
442 ret
&= ~(1U << KVM_FEATURE_PV_UNHALT
);
444 } else if (function
== KVM_CPUID_FEATURES
&& reg
== R_EDX
) {
445 ret
|= 1U << KVM_HINTS_REALTIME
;
449 /* fallback for older kernels */
450 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
451 ret
= get_para_features(s
);
457 uint64_t kvm_arch_get_supported_msr_feature(KVMState
*s
, uint32_t index
)
460 struct kvm_msrs info
;
461 struct kvm_msr_entry entries
[1];
464 uint32_t ret
, can_be_one
, must_be_one
;
466 if (kvm_feature_msrs
== NULL
) { /* Host doesn't support feature MSRs */
470 /* Check if requested MSR is supported feature MSR */
472 for (i
= 0; i
< kvm_feature_msrs
->nmsrs
; i
++)
473 if (kvm_feature_msrs
->indices
[i
] == index
) {
476 if (i
== kvm_feature_msrs
->nmsrs
) {
477 return 0; /* if the feature MSR is not supported, simply return 0 */
480 msr_data
.info
.nmsrs
= 1;
481 msr_data
.entries
[0].index
= index
;
483 ret
= kvm_ioctl(s
, KVM_GET_MSRS
, &msr_data
);
485 error_report("KVM get MSR (index=0x%x) feature failed, %s",
486 index
, strerror(-ret
));
490 value
= msr_data
.entries
[0].data
;
492 case MSR_IA32_VMX_PROCBASED_CTLS2
:
493 /* KVM forgot to add these bits for some time, do this ourselves. */
494 if (kvm_arch_get_supported_cpuid(s
, 0xD, 1, R_ECX
) & CPUID_XSAVE_XSAVES
) {
495 value
|= (uint64_t)VMX_SECONDARY_EXEC_XSAVES
<< 32;
497 if (kvm_arch_get_supported_cpuid(s
, 1, 0, R_ECX
) & CPUID_EXT_RDRAND
) {
498 value
|= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING
<< 32;
500 if (kvm_arch_get_supported_cpuid(s
, 7, 0, R_EBX
) & CPUID_7_0_EBX_INVPCID
) {
501 value
|= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID
<< 32;
503 if (kvm_arch_get_supported_cpuid(s
, 7, 0, R_EBX
) & CPUID_7_0_EBX_RDSEED
) {
504 value
|= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING
<< 32;
506 if (kvm_arch_get_supported_cpuid(s
, 0x80000001, 0, R_EDX
) & CPUID_EXT2_RDTSCP
) {
507 value
|= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP
<< 32;
510 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
511 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
512 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
513 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
515 * Return true for bits that can be one, but do not have to be one.
516 * The SDM tells us which bits could have a "must be one" setting,
517 * so we can do the opposite transformation in make_vmx_msr_value.
519 must_be_one
= (uint32_t)value
;
520 can_be_one
= (uint32_t)(value
>> 32);
521 return can_be_one
& ~must_be_one
;
529 typedef struct HWPoisonPage
{
531 QLIST_ENTRY(HWPoisonPage
) list
;
534 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
535 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
537 static void kvm_unpoison_all(void *param
)
539 HWPoisonPage
*page
, *next_page
;
541 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
542 QLIST_REMOVE(page
, list
);
543 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
548 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
552 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
553 if (page
->ram_addr
== ram_addr
) {
557 page
= g_new(HWPoisonPage
, 1);
558 page
->ram_addr
= ram_addr
;
559 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
562 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
567 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
570 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
575 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
577 CPUState
*cs
= CPU(cpu
);
578 CPUX86State
*env
= &cpu
->env
;
579 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
580 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
581 uint64_t mcg_status
= MCG_STATUS_MCIP
;
584 if (code
== BUS_MCEERR_AR
) {
585 status
|= MCI_STATUS_AR
| 0x134;
586 mcg_status
|= MCG_STATUS_EIPV
;
589 mcg_status
|= MCG_STATUS_RIPV
;
592 flags
= cpu_x86_support_mca_broadcast(env
) ? MCE_INJECT_BROADCAST
: 0;
593 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
594 * guest kernel back into env->mcg_ext_ctl.
596 cpu_synchronize_state(cs
);
597 if (env
->mcg_ext_ctl
& MCG_EXT_CTL_LMCE_EN
) {
598 mcg_status
|= MCG_STATUS_LMCE
;
602 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
603 (MCM_ADDR_PHYS
<< 6) | 0xc, flags
);
606 static void hardware_memory_error(void *host_addr
)
608 error_report("QEMU got Hardware memory error at addr %p", host_addr
);
612 void kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
614 X86CPU
*cpu
= X86_CPU(c
);
615 CPUX86State
*env
= &cpu
->env
;
619 /* If we get an action required MCE, it has been injected by KVM
620 * while the VM was running. An action optional MCE instead should
621 * be coming from the main thread, which qemu_init_sigbus identifies
622 * as the "early kill" thread.
624 assert(code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
);
626 if ((env
->mcg_cap
& MCG_SER_P
) && addr
) {
627 ram_addr
= qemu_ram_addr_from_host(addr
);
628 if (ram_addr
!= RAM_ADDR_INVALID
&&
629 kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
630 kvm_hwpoison_page_add(ram_addr
);
631 kvm_mce_inject(cpu
, paddr
, code
);
634 * Use different logging severity based on error type.
635 * If there is additional MCE reporting on the hypervisor, QEMU VA
636 * could be another source to identify the PA and MCE details.
638 if (code
== BUS_MCEERR_AR
) {
639 error_report("Guest MCE Memory Error at QEMU addr %p and "
640 "GUEST addr 0x%" HWADDR_PRIx
" of type %s injected",
641 addr
, paddr
, "BUS_MCEERR_AR");
643 warn_report("Guest MCE Memory Error at QEMU addr %p and "
644 "GUEST addr 0x%" HWADDR_PRIx
" of type %s injected",
645 addr
, paddr
, "BUS_MCEERR_AO");
651 if (code
== BUS_MCEERR_AO
) {
652 warn_report("Hardware memory error at addr %p of type %s "
653 "for memory used by QEMU itself instead of guest system!",
654 addr
, "BUS_MCEERR_AO");
658 if (code
== BUS_MCEERR_AR
) {
659 hardware_memory_error(addr
);
662 /* Hope we are lucky for AO MCE */
665 static void kvm_reset_exception(CPUX86State
*env
)
667 env
->exception_nr
= -1;
668 env
->exception_pending
= 0;
669 env
->exception_injected
= 0;
670 env
->exception_has_payload
= false;
671 env
->exception_payload
= 0;
674 static void kvm_queue_exception(CPUX86State
*env
,
675 int32_t exception_nr
,
676 uint8_t exception_has_payload
,
677 uint64_t exception_payload
)
679 assert(env
->exception_nr
== -1);
680 assert(!env
->exception_pending
);
681 assert(!env
->exception_injected
);
682 assert(!env
->exception_has_payload
);
684 env
->exception_nr
= exception_nr
;
686 if (has_exception_payload
) {
687 env
->exception_pending
= 1;
689 env
->exception_has_payload
= exception_has_payload
;
690 env
->exception_payload
= exception_payload
;
692 env
->exception_injected
= 1;
694 if (exception_nr
== EXCP01_DB
) {
695 assert(exception_has_payload
);
696 env
->dr
[6] = exception_payload
;
697 } else if (exception_nr
== EXCP0E_PAGE
) {
698 assert(exception_has_payload
);
699 env
->cr
[2] = exception_payload
;
701 assert(!exception_has_payload
);
706 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
708 CPUX86State
*env
= &cpu
->env
;
710 if (!kvm_has_vcpu_events() && env
->exception_nr
== EXCP12_MCHK
) {
711 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
712 struct kvm_x86_mce mce
;
714 kvm_reset_exception(env
);
717 * There must be at least one bank in use if an MCE is pending.
718 * Find it and use its values for the event injection.
720 for (bank
= 0; bank
< bank_num
; bank
++) {
721 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
725 assert(bank
< bank_num
);
728 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
729 mce
.mcg_status
= env
->mcg_status
;
730 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
731 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
733 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
738 static void cpu_update_state(void *opaque
, int running
, RunState state
)
740 CPUX86State
*env
= opaque
;
743 env
->tsc_valid
= false;
747 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
749 X86CPU
*cpu
= X86_CPU(cs
);
753 #ifndef KVM_CPUID_SIGNATURE_NEXT
754 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
757 static bool hyperv_enabled(X86CPU
*cpu
)
759 CPUState
*cs
= CPU(cpu
);
760 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
761 ((cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
) ||
762 cpu
->hyperv_features
|| cpu
->hyperv_passthrough
);
765 static int kvm_arch_set_tsc_khz(CPUState
*cs
)
767 X86CPU
*cpu
= X86_CPU(cs
);
768 CPUX86State
*env
= &cpu
->env
;
775 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
) ?
776 kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
) :
779 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
780 * TSC frequency doesn't match the one we want.
782 int cur_freq
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
783 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
785 if (cur_freq
<= 0 || cur_freq
!= env
->tsc_khz
) {
786 warn_report("TSC frequency mismatch between "
787 "VM (%" PRId64
" kHz) and host (%d kHz), "
788 "and TSC scaling unavailable",
789 env
->tsc_khz
, cur_freq
);
797 static bool tsc_is_stable_and_known(CPUX86State
*env
)
802 return (env
->features
[FEAT_8000_0007_EDX
] & CPUID_APM_INVTSC
)
803 || env
->user_tsc_khz
;
812 uint64_t dependencies
;
813 } kvm_hyperv_properties
[] = {
814 [HYPERV_FEAT_RELAXED
] = {
815 .desc
= "relaxed timing (hv-relaxed)",
817 {.fw
= FEAT_HYPERV_EAX
,
818 .bits
= HV_HYPERCALL_AVAILABLE
},
819 {.fw
= FEAT_HV_RECOMM_EAX
,
820 .bits
= HV_RELAXED_TIMING_RECOMMENDED
}
823 [HYPERV_FEAT_VAPIC
] = {
824 .desc
= "virtual APIC (hv-vapic)",
826 {.fw
= FEAT_HYPERV_EAX
,
827 .bits
= HV_HYPERCALL_AVAILABLE
| HV_APIC_ACCESS_AVAILABLE
},
828 {.fw
= FEAT_HV_RECOMM_EAX
,
829 .bits
= HV_APIC_ACCESS_RECOMMENDED
}
832 [HYPERV_FEAT_TIME
] = {
833 .desc
= "clocksources (hv-time)",
835 {.fw
= FEAT_HYPERV_EAX
,
836 .bits
= HV_HYPERCALL_AVAILABLE
| HV_TIME_REF_COUNT_AVAILABLE
|
837 HV_REFERENCE_TSC_AVAILABLE
}
840 [HYPERV_FEAT_CRASH
] = {
841 .desc
= "crash MSRs (hv-crash)",
843 {.fw
= FEAT_HYPERV_EDX
,
844 .bits
= HV_GUEST_CRASH_MSR_AVAILABLE
}
847 [HYPERV_FEAT_RESET
] = {
848 .desc
= "reset MSR (hv-reset)",
850 {.fw
= FEAT_HYPERV_EAX
,
851 .bits
= HV_RESET_AVAILABLE
}
854 [HYPERV_FEAT_VPINDEX
] = {
855 .desc
= "VP_INDEX MSR (hv-vpindex)",
857 {.fw
= FEAT_HYPERV_EAX
,
858 .bits
= HV_VP_INDEX_AVAILABLE
}
861 [HYPERV_FEAT_RUNTIME
] = {
862 .desc
= "VP_RUNTIME MSR (hv-runtime)",
864 {.fw
= FEAT_HYPERV_EAX
,
865 .bits
= HV_VP_RUNTIME_AVAILABLE
}
868 [HYPERV_FEAT_SYNIC
] = {
869 .desc
= "synthetic interrupt controller (hv-synic)",
871 {.fw
= FEAT_HYPERV_EAX
,
872 .bits
= HV_SYNIC_AVAILABLE
}
875 [HYPERV_FEAT_STIMER
] = {
876 .desc
= "synthetic timers (hv-stimer)",
878 {.fw
= FEAT_HYPERV_EAX
,
879 .bits
= HV_SYNTIMERS_AVAILABLE
}
881 .dependencies
= BIT(HYPERV_FEAT_SYNIC
) | BIT(HYPERV_FEAT_TIME
)
883 [HYPERV_FEAT_FREQUENCIES
] = {
884 .desc
= "frequency MSRs (hv-frequencies)",
886 {.fw
= FEAT_HYPERV_EAX
,
887 .bits
= HV_ACCESS_FREQUENCY_MSRS
},
888 {.fw
= FEAT_HYPERV_EDX
,
889 .bits
= HV_FREQUENCY_MSRS_AVAILABLE
}
892 [HYPERV_FEAT_REENLIGHTENMENT
] = {
893 .desc
= "reenlightenment MSRs (hv-reenlightenment)",
895 {.fw
= FEAT_HYPERV_EAX
,
896 .bits
= HV_ACCESS_REENLIGHTENMENTS_CONTROL
}
899 [HYPERV_FEAT_TLBFLUSH
] = {
900 .desc
= "paravirtualized TLB flush (hv-tlbflush)",
902 {.fw
= FEAT_HV_RECOMM_EAX
,
903 .bits
= HV_REMOTE_TLB_FLUSH_RECOMMENDED
|
904 HV_EX_PROCESSOR_MASKS_RECOMMENDED
}
906 .dependencies
= BIT(HYPERV_FEAT_VPINDEX
)
908 [HYPERV_FEAT_EVMCS
] = {
909 .desc
= "enlightened VMCS (hv-evmcs)",
911 {.fw
= FEAT_HV_RECOMM_EAX
,
912 .bits
= HV_ENLIGHTENED_VMCS_RECOMMENDED
}
914 .dependencies
= BIT(HYPERV_FEAT_VAPIC
)
916 [HYPERV_FEAT_IPI
] = {
917 .desc
= "paravirtualized IPI (hv-ipi)",
919 {.fw
= FEAT_HV_RECOMM_EAX
,
920 .bits
= HV_CLUSTER_IPI_RECOMMENDED
|
921 HV_EX_PROCESSOR_MASKS_RECOMMENDED
}
923 .dependencies
= BIT(HYPERV_FEAT_VPINDEX
)
925 [HYPERV_FEAT_STIMER_DIRECT
] = {
926 .desc
= "direct mode synthetic timers (hv-stimer-direct)",
928 {.fw
= FEAT_HYPERV_EDX
,
929 .bits
= HV_STIMER_DIRECT_MODE_AVAILABLE
}
931 .dependencies
= BIT(HYPERV_FEAT_STIMER
)
935 static struct kvm_cpuid2
*try_get_hv_cpuid(CPUState
*cs
, int max
)
937 struct kvm_cpuid2
*cpuid
;
940 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
941 cpuid
= g_malloc0(size
);
944 r
= kvm_vcpu_ioctl(cs
, KVM_GET_SUPPORTED_HV_CPUID
, cpuid
);
945 if (r
== 0 && cpuid
->nent
>= max
) {
953 fprintf(stderr
, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
962 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
965 static struct kvm_cpuid2
*get_supported_hv_cpuid(CPUState
*cs
)
967 struct kvm_cpuid2
*cpuid
;
968 int max
= 7; /* 0x40000000..0x40000005, 0x4000000A */
971 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
972 * -E2BIG, however, it doesn't report back the right size. Keep increasing
973 * it and re-trying until we succeed.
975 while ((cpuid
= try_get_hv_cpuid(cs
, max
)) == NULL
) {
982 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
983 * leaves from KVM_CAP_HYPERV* and present MSRs data.
985 static struct kvm_cpuid2
*get_supported_hv_cpuid_legacy(CPUState
*cs
)
987 X86CPU
*cpu
= X86_CPU(cs
);
988 struct kvm_cpuid2
*cpuid
;
989 struct kvm_cpuid_entry2
*entry_feat
, *entry_recomm
;
991 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
992 cpuid
= g_malloc0(sizeof(*cpuid
) + 2 * sizeof(*cpuid
->entries
));
995 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
996 entry_feat
= &cpuid
->entries
[0];
997 entry_feat
->function
= HV_CPUID_FEATURES
;
999 entry_recomm
= &cpuid
->entries
[1];
1000 entry_recomm
->function
= HV_CPUID_ENLIGHTMENT_INFO
;
1001 entry_recomm
->ebx
= cpu
->hyperv_spinlock_attempts
;
1003 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0) {
1004 entry_feat
->eax
|= HV_HYPERCALL_AVAILABLE
;
1005 entry_feat
->eax
|= HV_APIC_ACCESS_AVAILABLE
;
1006 entry_feat
->edx
|= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE
;
1007 entry_recomm
->eax
|= HV_RELAXED_TIMING_RECOMMENDED
;
1008 entry_recomm
->eax
|= HV_APIC_ACCESS_RECOMMENDED
;
1011 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) > 0) {
1012 entry_feat
->eax
|= HV_TIME_REF_COUNT_AVAILABLE
;
1013 entry_feat
->eax
|= HV_REFERENCE_TSC_AVAILABLE
;
1016 if (has_msr_hv_frequencies
) {
1017 entry_feat
->eax
|= HV_ACCESS_FREQUENCY_MSRS
;
1018 entry_feat
->edx
|= HV_FREQUENCY_MSRS_AVAILABLE
;
1021 if (has_msr_hv_crash
) {
1022 entry_feat
->edx
|= HV_GUEST_CRASH_MSR_AVAILABLE
;
1025 if (has_msr_hv_reenlightenment
) {
1026 entry_feat
->eax
|= HV_ACCESS_REENLIGHTENMENTS_CONTROL
;
1029 if (has_msr_hv_reset
) {
1030 entry_feat
->eax
|= HV_RESET_AVAILABLE
;
1033 if (has_msr_hv_vpindex
) {
1034 entry_feat
->eax
|= HV_VP_INDEX_AVAILABLE
;
1037 if (has_msr_hv_runtime
) {
1038 entry_feat
->eax
|= HV_VP_RUNTIME_AVAILABLE
;
1041 if (has_msr_hv_synic
) {
1042 unsigned int cap
= cpu
->hyperv_synic_kvm_only
?
1043 KVM_CAP_HYPERV_SYNIC
: KVM_CAP_HYPERV_SYNIC2
;
1045 if (kvm_check_extension(cs
->kvm_state
, cap
) > 0) {
1046 entry_feat
->eax
|= HV_SYNIC_AVAILABLE
;
1050 if (has_msr_hv_stimer
) {
1051 entry_feat
->eax
|= HV_SYNTIMERS_AVAILABLE
;
1054 if (kvm_check_extension(cs
->kvm_state
,
1055 KVM_CAP_HYPERV_TLBFLUSH
) > 0) {
1056 entry_recomm
->eax
|= HV_REMOTE_TLB_FLUSH_RECOMMENDED
;
1057 entry_recomm
->eax
|= HV_EX_PROCESSOR_MASKS_RECOMMENDED
;
1060 if (kvm_check_extension(cs
->kvm_state
,
1061 KVM_CAP_HYPERV_ENLIGHTENED_VMCS
) > 0) {
1062 entry_recomm
->eax
|= HV_ENLIGHTENED_VMCS_RECOMMENDED
;
1065 if (kvm_check_extension(cs
->kvm_state
,
1066 KVM_CAP_HYPERV_SEND_IPI
) > 0) {
1067 entry_recomm
->eax
|= HV_CLUSTER_IPI_RECOMMENDED
;
1068 entry_recomm
->eax
|= HV_EX_PROCESSOR_MASKS_RECOMMENDED
;
1074 static int hv_cpuid_get_fw(struct kvm_cpuid2
*cpuid
, int fw
, uint32_t *r
)
1076 struct kvm_cpuid_entry2
*entry
;
1081 case FEAT_HYPERV_EAX
:
1083 func
= HV_CPUID_FEATURES
;
1085 case FEAT_HYPERV_EDX
:
1087 func
= HV_CPUID_FEATURES
;
1089 case FEAT_HV_RECOMM_EAX
:
1091 func
= HV_CPUID_ENLIGHTMENT_INFO
;
1097 entry
= cpuid_find_entry(cpuid
, func
, 0);
1116 static int hv_cpuid_check_and_set(CPUState
*cs
, struct kvm_cpuid2
*cpuid
,
1119 X86CPU
*cpu
= X86_CPU(cs
);
1120 CPUX86State
*env
= &cpu
->env
;
1121 uint32_t r
, fw
, bits
;
1125 if (!hyperv_feat_enabled(cpu
, feature
) && !cpu
->hyperv_passthrough
) {
1129 deps
= kvm_hyperv_properties
[feature
].dependencies
;
1131 dep_feat
= ctz64(deps
);
1132 if (!(hyperv_feat_enabled(cpu
, dep_feat
))) {
1134 "Hyper-V %s requires Hyper-V %s\n",
1135 kvm_hyperv_properties
[feature
].desc
,
1136 kvm_hyperv_properties
[dep_feat
].desc
);
1139 deps
&= ~(1ull << dep_feat
);
1142 for (i
= 0; i
< ARRAY_SIZE(kvm_hyperv_properties
[feature
].flags
); i
++) {
1143 fw
= kvm_hyperv_properties
[feature
].flags
[i
].fw
;
1144 bits
= kvm_hyperv_properties
[feature
].flags
[i
].bits
;
1150 if (hv_cpuid_get_fw(cpuid
, fw
, &r
) || (r
& bits
) != bits
) {
1151 if (hyperv_feat_enabled(cpu
, feature
)) {
1153 "Hyper-V %s is not supported by kernel\n",
1154 kvm_hyperv_properties
[feature
].desc
);
1161 env
->features
[fw
] |= bits
;
1164 if (cpu
->hyperv_passthrough
) {
1165 cpu
->hyperv_features
|= BIT(feature
);
1172 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1173 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1174 * extentions are enabled.
1176 static int hyperv_handle_properties(CPUState
*cs
,
1177 struct kvm_cpuid_entry2
*cpuid_ent
)
1179 X86CPU
*cpu
= X86_CPU(cs
);
1180 CPUX86State
*env
= &cpu
->env
;
1181 struct kvm_cpuid2
*cpuid
;
1182 struct kvm_cpuid_entry2
*c
;
1183 uint32_t signature
[3];
1184 uint32_t cpuid_i
= 0;
1187 if (!hyperv_enabled(cpu
))
1190 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_EVMCS
) ||
1191 cpu
->hyperv_passthrough
) {
1192 uint16_t evmcs_version
;
1194 r
= kvm_vcpu_enable_cap(cs
, KVM_CAP_HYPERV_ENLIGHTENED_VMCS
, 0,
1195 (uintptr_t)&evmcs_version
);
1197 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_EVMCS
) && r
) {
1198 fprintf(stderr
, "Hyper-V %s is not supported by kernel\n",
1199 kvm_hyperv_properties
[HYPERV_FEAT_EVMCS
].desc
);
1204 env
->features
[FEAT_HV_RECOMM_EAX
] |=
1205 HV_ENLIGHTENED_VMCS_RECOMMENDED
;
1206 env
->features
[FEAT_HV_NESTED_EAX
] = evmcs_version
;
1210 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_CPUID
) > 0) {
1211 cpuid
= get_supported_hv_cpuid(cs
);
1213 cpuid
= get_supported_hv_cpuid_legacy(cs
);
1216 if (cpu
->hyperv_passthrough
) {
1217 memcpy(cpuid_ent
, &cpuid
->entries
[0],
1218 cpuid
->nent
* sizeof(cpuid
->entries
[0]));
1220 c
= cpuid_find_entry(cpuid
, HV_CPUID_FEATURES
, 0);
1222 env
->features
[FEAT_HYPERV_EAX
] = c
->eax
;
1223 env
->features
[FEAT_HYPERV_EBX
] = c
->ebx
;
1224 env
->features
[FEAT_HYPERV_EDX
] = c
->eax
;
1226 c
= cpuid_find_entry(cpuid
, HV_CPUID_ENLIGHTMENT_INFO
, 0);
1228 env
->features
[FEAT_HV_RECOMM_EAX
] = c
->eax
;
1230 /* hv-spinlocks may have been overriden */
1231 if (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
) {
1232 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
1235 c
= cpuid_find_entry(cpuid
, HV_CPUID_NESTED_FEATURES
, 0);
1237 env
->features
[FEAT_HV_NESTED_EAX
] = c
->eax
;
1241 if (cpu
->hyperv_no_nonarch_cs
== ON_OFF_AUTO_ON
) {
1242 env
->features
[FEAT_HV_RECOMM_EAX
] |= HV_NO_NONARCH_CORESHARING
;
1243 } else if (cpu
->hyperv_no_nonarch_cs
== ON_OFF_AUTO_AUTO
) {
1244 c
= cpuid_find_entry(cpuid
, HV_CPUID_ENLIGHTMENT_INFO
, 0);
1246 env
->features
[FEAT_HV_RECOMM_EAX
] |=
1247 c
->eax
& HV_NO_NONARCH_CORESHARING
;
1252 r
= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_RELAXED
);
1253 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_VAPIC
);
1254 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_TIME
);
1255 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_CRASH
);
1256 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_RESET
);
1257 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_VPINDEX
);
1258 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_RUNTIME
);
1259 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_SYNIC
);
1260 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_STIMER
);
1261 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_FREQUENCIES
);
1262 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_REENLIGHTENMENT
);
1263 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_TLBFLUSH
);
1264 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_EVMCS
);
1265 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_IPI
);
1266 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_STIMER_DIRECT
);
1268 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1269 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_SYNIC
) &&
1270 !cpu
->hyperv_synic_kvm_only
&&
1271 !hyperv_feat_enabled(cpu
, HYPERV_FEAT_VPINDEX
)) {
1272 fprintf(stderr
, "Hyper-V %s requires Hyper-V %s\n",
1273 kvm_hyperv_properties
[HYPERV_FEAT_SYNIC
].desc
,
1274 kvm_hyperv_properties
[HYPERV_FEAT_VPINDEX
].desc
);
1278 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1279 env
->features
[FEAT_HYPERV_EDX
] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE
;
1286 if (cpu
->hyperv_passthrough
) {
1287 /* We already copied all feature words from KVM as is */
1292 c
= &cpuid_ent
[cpuid_i
++];
1293 c
->function
= HV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
1294 if (!cpu
->hyperv_vendor_id
) {
1295 memcpy(signature
, "Microsoft Hv", 12);
1297 size_t len
= strlen(cpu
->hyperv_vendor_id
);
1300 error_report("hv-vendor-id truncated to 12 characters");
1303 memset(signature
, 0, 12);
1304 memcpy(signature
, cpu
->hyperv_vendor_id
, len
);
1306 c
->eax
= hyperv_feat_enabled(cpu
, HYPERV_FEAT_EVMCS
) ?
1307 HV_CPUID_NESTED_FEATURES
: HV_CPUID_IMPLEMENT_LIMITS
;
1308 c
->ebx
= signature
[0];
1309 c
->ecx
= signature
[1];
1310 c
->edx
= signature
[2];
1312 c
= &cpuid_ent
[cpuid_i
++];
1313 c
->function
= HV_CPUID_INTERFACE
;
1314 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
1315 c
->eax
= signature
[0];
1320 c
= &cpuid_ent
[cpuid_i
++];
1321 c
->function
= HV_CPUID_VERSION
;
1322 c
->eax
= 0x00001bbc;
1323 c
->ebx
= 0x00060001;
1325 c
= &cpuid_ent
[cpuid_i
++];
1326 c
->function
= HV_CPUID_FEATURES
;
1327 c
->eax
= env
->features
[FEAT_HYPERV_EAX
];
1328 c
->ebx
= env
->features
[FEAT_HYPERV_EBX
];
1329 c
->edx
= env
->features
[FEAT_HYPERV_EDX
];
1331 c
= &cpuid_ent
[cpuid_i
++];
1332 c
->function
= HV_CPUID_ENLIGHTMENT_INFO
;
1333 c
->eax
= env
->features
[FEAT_HV_RECOMM_EAX
];
1334 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
1336 c
= &cpuid_ent
[cpuid_i
++];
1337 c
->function
= HV_CPUID_IMPLEMENT_LIMITS
;
1338 c
->eax
= cpu
->hv_max_vps
;
1341 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_EVMCS
)) {
1344 /* Create zeroed 0x40000006..0x40000009 leaves */
1345 for (function
= HV_CPUID_IMPLEMENT_LIMITS
+ 1;
1346 function
< HV_CPUID_NESTED_FEATURES
; function
++) {
1347 c
= &cpuid_ent
[cpuid_i
++];
1348 c
->function
= function
;
1351 c
= &cpuid_ent
[cpuid_i
++];
1352 c
->function
= HV_CPUID_NESTED_FEATURES
;
1353 c
->eax
= env
->features
[FEAT_HV_NESTED_EAX
];
1363 static Error
*hv_passthrough_mig_blocker
;
1364 static Error
*hv_no_nonarch_cs_mig_blocker
;
1366 static int hyperv_init_vcpu(X86CPU
*cpu
)
1368 CPUState
*cs
= CPU(cpu
);
1369 Error
*local_err
= NULL
;
1372 if (cpu
->hyperv_passthrough
&& hv_passthrough_mig_blocker
== NULL
) {
1373 error_setg(&hv_passthrough_mig_blocker
,
1374 "'hv-passthrough' CPU flag prevents migration, use explicit"
1375 " set of hv-* flags instead");
1376 ret
= migrate_add_blocker(hv_passthrough_mig_blocker
, &local_err
);
1378 error_report_err(local_err
);
1379 error_free(hv_passthrough_mig_blocker
);
1384 if (cpu
->hyperv_no_nonarch_cs
== ON_OFF_AUTO_AUTO
&&
1385 hv_no_nonarch_cs_mig_blocker
== NULL
) {
1386 error_setg(&hv_no_nonarch_cs_mig_blocker
,
1387 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1388 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1389 " make sure SMT is disabled and/or that vCPUs are properly"
1391 ret
= migrate_add_blocker(hv_no_nonarch_cs_mig_blocker
, &local_err
);
1393 error_report_err(local_err
);
1394 error_free(hv_no_nonarch_cs_mig_blocker
);
1399 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_VPINDEX
) && !hv_vpindex_settable
) {
1401 * the kernel doesn't support setting vp_index; assert that its value
1405 struct kvm_msrs info
;
1406 struct kvm_msr_entry entries
[1];
1409 .entries
[0].index
= HV_X64_MSR_VP_INDEX
,
1412 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MSRS
, &msr_data
);
1418 if (msr_data
.entries
[0].data
!= hyperv_vp_index(CPU(cpu
))) {
1419 error_report("kernel's vp_index != QEMU's vp_index");
1424 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_SYNIC
)) {
1425 uint32_t synic_cap
= cpu
->hyperv_synic_kvm_only
?
1426 KVM_CAP_HYPERV_SYNIC
: KVM_CAP_HYPERV_SYNIC2
;
1427 ret
= kvm_vcpu_enable_cap(cs
, synic_cap
, 0);
1429 error_report("failed to turn on HyperV SynIC in KVM: %s",
1434 if (!cpu
->hyperv_synic_kvm_only
) {
1435 ret
= hyperv_x86_synic_add(cpu
);
1437 error_report("failed to create HyperV SynIC: %s",
1447 static Error
*invtsc_mig_blocker
;
1449 #define KVM_MAX_CPUID_ENTRIES 100
1451 int kvm_arch_init_vcpu(CPUState
*cs
)
1454 struct kvm_cpuid2 cpuid
;
1455 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
1458 * The kernel defines these structs with padding fields so there
1459 * should be no extra padding in our cpuid_data struct.
1461 QEMU_BUILD_BUG_ON(sizeof(cpuid_data
) !=
1462 sizeof(struct kvm_cpuid2
) +
1463 sizeof(struct kvm_cpuid_entry2
) * KVM_MAX_CPUID_ENTRIES
);
1465 X86CPU
*cpu
= X86_CPU(cs
);
1466 CPUX86State
*env
= &cpu
->env
;
1467 uint32_t limit
, i
, j
, cpuid_i
;
1469 struct kvm_cpuid_entry2
*c
;
1470 uint32_t signature
[3];
1471 int kvm_base
= KVM_CPUID_SIGNATURE
;
1472 int max_nested_state_len
;
1474 Error
*local_err
= NULL
;
1476 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
1480 r
= kvm_arch_set_tsc_khz(cs
);
1485 /* vcpu's TSC frequency is either specified by user, or following
1486 * the value used by KVM if the former is not present. In the
1487 * latter case, we query it from KVM and record in env->tsc_khz,
1488 * so that vcpu's TSC frequency can be migrated later via this field.
1490 if (!env
->tsc_khz
) {
1491 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
1492 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
1499 /* Paravirtualization CPUIDs */
1500 r
= hyperv_handle_properties(cs
, cpuid_data
.entries
);
1505 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
1506 has_msr_hv_hypercall
= true;
1509 if (cpu
->expose_kvm
) {
1510 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
1511 c
= &cpuid_data
.entries
[cpuid_i
++];
1512 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
1513 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
1514 c
->ebx
= signature
[0];
1515 c
->ecx
= signature
[1];
1516 c
->edx
= signature
[2];
1518 c
= &cpuid_data
.entries
[cpuid_i
++];
1519 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
1520 c
->eax
= env
->features
[FEAT_KVM
];
1521 c
->edx
= env
->features
[FEAT_KVM_HINTS
];
1524 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
1526 for (i
= 0; i
<= limit
; i
++) {
1527 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1528 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
1531 c
= &cpuid_data
.entries
[cpuid_i
++];
1535 /* Keep reading function 2 till all the input is received */
1539 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
1540 KVM_CPUID_FLAG_STATE_READ_NEXT
;
1541 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1542 times
= c
->eax
& 0xff;
1544 for (j
= 1; j
< times
; ++j
) {
1545 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1546 fprintf(stderr
, "cpuid_data is full, no space for "
1547 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
1550 c
= &cpuid_data
.entries
[cpuid_i
++];
1552 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1553 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1558 if (env
->nr_dies
< 2) {
1564 for (j
= 0; ; j
++) {
1565 if (i
== 0xd && j
== 64) {
1569 if (i
== 0x1f && j
== 64) {
1574 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1576 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1578 if (i
== 4 && c
->eax
== 0) {
1581 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
1584 if (i
== 0x1f && !(c
->ecx
& 0xff00)) {
1587 if (i
== 0xd && c
->eax
== 0) {
1590 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1591 fprintf(stderr
, "cpuid_data is full, no space for "
1592 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
1595 c
= &cpuid_data
.entries
[cpuid_i
++];
1604 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1605 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1608 for (j
= 1; j
<= times
; ++j
) {
1609 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1610 fprintf(stderr
, "cpuid_data is full, no space for "
1611 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
1614 c
= &cpuid_data
.entries
[cpuid_i
++];
1617 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1618 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1625 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1626 if (!c
->eax
&& !c
->ebx
&& !c
->ecx
&& !c
->edx
) {
1628 * KVM already returns all zeroes if a CPUID entry is missing,
1629 * so we can omit it and avoid hitting KVM's 80-entry limit.
1637 if (limit
>= 0x0a) {
1640 cpu_x86_cpuid(env
, 0x0a, 0, &eax
, &unused
, &unused
, &edx
);
1642 has_architectural_pmu_version
= eax
& 0xff;
1643 if (has_architectural_pmu_version
> 0) {
1644 num_architectural_pmu_gp_counters
= (eax
& 0xff00) >> 8;
1646 /* Shouldn't be more than 32, since that's the number of bits
1647 * available in EBX to tell us _which_ counters are available.
1650 if (num_architectural_pmu_gp_counters
> MAX_GP_COUNTERS
) {
1651 num_architectural_pmu_gp_counters
= MAX_GP_COUNTERS
;
1654 if (has_architectural_pmu_version
> 1) {
1655 num_architectural_pmu_fixed_counters
= edx
& 0x1f;
1657 if (num_architectural_pmu_fixed_counters
> MAX_FIXED_COUNTERS
) {
1658 num_architectural_pmu_fixed_counters
= MAX_FIXED_COUNTERS
;
1664 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
1666 for (i
= 0x80000000; i
<= limit
; i
++) {
1667 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1668 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
1671 c
= &cpuid_data
.entries
[cpuid_i
++];
1675 /* Query for all AMD cache information leaves */
1676 for (j
= 0; ; j
++) {
1678 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1680 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1685 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1686 fprintf(stderr
, "cpuid_data is full, no space for "
1687 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
1690 c
= &cpuid_data
.entries
[cpuid_i
++];
1696 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1697 if (!c
->eax
&& !c
->ebx
&& !c
->ecx
&& !c
->edx
) {
1699 * KVM already returns all zeroes if a CPUID entry is missing,
1700 * so we can omit it and avoid hitting KVM's 80-entry limit.
1708 /* Call Centaur's CPUID instructions they are supported. */
1709 if (env
->cpuid_xlevel2
> 0) {
1710 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
1712 for (i
= 0xC0000000; i
<= limit
; i
++) {
1713 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1714 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
1717 c
= &cpuid_data
.entries
[cpuid_i
++];
1721 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1725 cpuid_data
.cpuid
.nent
= cpuid_i
;
1727 if (((env
->cpuid_version
>> 8)&0xF) >= 6
1728 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
1729 (CPUID_MCE
| CPUID_MCA
)
1730 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
1731 uint64_t mcg_cap
, unsupported_caps
;
1735 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
1737 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
1741 if (banks
< (env
->mcg_cap
& MCG_CAP_BANKS_MASK
)) {
1742 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1743 (int)(env
->mcg_cap
& MCG_CAP_BANKS_MASK
), banks
);
1747 unsupported_caps
= env
->mcg_cap
& ~(mcg_cap
| MCG_CAP_BANKS_MASK
);
1748 if (unsupported_caps
) {
1749 if (unsupported_caps
& MCG_LMCE_P
) {
1750 error_report("kvm: LMCE not supported");
1753 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64
,
1757 env
->mcg_cap
&= mcg_cap
| MCG_CAP_BANKS_MASK
;
1758 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &env
->mcg_cap
);
1760 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
1765 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
1767 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
1769 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
1770 !!(c
->ecx
& CPUID_EXT_SMX
);
1773 if (env
->mcg_cap
& MCG_LMCE_P
) {
1774 has_msr_mcg_ext_ctl
= has_msr_feature_control
= true;
1777 if (!env
->user_tsc_khz
) {
1778 if ((env
->features
[FEAT_8000_0007_EDX
] & CPUID_APM_INVTSC
) &&
1779 invtsc_mig_blocker
== NULL
) {
1780 error_setg(&invtsc_mig_blocker
,
1781 "State blocked by non-migratable CPU device"
1783 r
= migrate_add_blocker(invtsc_mig_blocker
, &local_err
);
1785 error_report_err(local_err
);
1786 error_free(invtsc_mig_blocker
);
1792 if (cpu
->vmware_cpuid_freq
1793 /* Guests depend on 0x40000000 to detect this feature, so only expose
1794 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1796 && kvm_base
== KVM_CPUID_SIGNATURE
1797 /* TSC clock must be stable and known for this feature. */
1798 && tsc_is_stable_and_known(env
)) {
1800 c
= &cpuid_data
.entries
[cpuid_i
++];
1801 c
->function
= KVM_CPUID_SIGNATURE
| 0x10;
1802 c
->eax
= env
->tsc_khz
;
1803 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1804 * APIC_BUS_CYCLE_NS */
1806 c
->ecx
= c
->edx
= 0;
1808 c
= cpuid_find_entry(&cpuid_data
.cpuid
, kvm_base
, 0);
1809 c
->eax
= MAX(c
->eax
, KVM_CPUID_SIGNATURE
| 0x10);
1812 cpuid_data
.cpuid
.nent
= cpuid_i
;
1814 cpuid_data
.cpuid
.padding
= 0;
1815 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
1821 env
->xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
1822 memset(env
->xsave_buf
, 0, sizeof(struct kvm_xsave
));
1825 max_nested_state_len
= kvm_max_nested_state_length();
1826 if (max_nested_state_len
> 0) {
1827 assert(max_nested_state_len
>= offsetof(struct kvm_nested_state
, data
));
1829 if (cpu_has_vmx(env
)) {
1830 struct kvm_vmx_nested_state_hdr
*vmx_hdr
;
1832 env
->nested_state
= g_malloc0(max_nested_state_len
);
1833 env
->nested_state
->size
= max_nested_state_len
;
1834 env
->nested_state
->format
= KVM_STATE_NESTED_FORMAT_VMX
;
1836 vmx_hdr
= &env
->nested_state
->hdr
.vmx
;
1837 vmx_hdr
->vmxon_pa
= -1ull;
1838 vmx_hdr
->vmcs12_pa
= -1ull;
1842 cpu
->kvm_msr_buf
= g_malloc0(MSR_BUF_SIZE
);
1844 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_RDTSCP
)) {
1845 has_msr_tsc_aux
= false;
1850 r
= hyperv_init_vcpu(cpu
);
1858 migrate_del_blocker(invtsc_mig_blocker
);
1863 int kvm_arch_destroy_vcpu(CPUState
*cs
)
1865 X86CPU
*cpu
= X86_CPU(cs
);
1866 CPUX86State
*env
= &cpu
->env
;
1868 if (cpu
->kvm_msr_buf
) {
1869 g_free(cpu
->kvm_msr_buf
);
1870 cpu
->kvm_msr_buf
= NULL
;
1873 if (env
->nested_state
) {
1874 g_free(env
->nested_state
);
1875 env
->nested_state
= NULL
;
1881 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
1883 CPUX86State
*env
= &cpu
->env
;
1886 if (kvm_irqchip_in_kernel()) {
1887 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
1888 KVM_MP_STATE_UNINITIALIZED
;
1890 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
1893 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_SYNIC
)) {
1895 for (i
= 0; i
< ARRAY_SIZE(env
->msr_hv_synic_sint
); i
++) {
1896 env
->msr_hv_synic_sint
[i
] = HV_SINT_MASKED
;
1899 hyperv_x86_synic_reset(cpu
);
1901 /* enabled by default */
1902 env
->poll_control_msr
= 1;
1905 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
1907 CPUX86State
*env
= &cpu
->env
;
1909 /* APs get directly into wait-for-SIPI state. */
1910 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
1911 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
1915 static int kvm_get_supported_feature_msrs(KVMState
*s
)
1919 if (kvm_feature_msrs
!= NULL
) {
1923 if (!kvm_check_extension(s
, KVM_CAP_GET_MSR_FEATURES
)) {
1927 struct kvm_msr_list msr_list
;
1930 ret
= kvm_ioctl(s
, KVM_GET_MSR_FEATURE_INDEX_LIST
, &msr_list
);
1931 if (ret
< 0 && ret
!= -E2BIG
) {
1932 error_report("Fetch KVM feature MSR list failed: %s",
1937 assert(msr_list
.nmsrs
> 0);
1938 kvm_feature_msrs
= (struct kvm_msr_list
*) \
1939 g_malloc0(sizeof(msr_list
) +
1940 msr_list
.nmsrs
* sizeof(msr_list
.indices
[0]));
1942 kvm_feature_msrs
->nmsrs
= msr_list
.nmsrs
;
1943 ret
= kvm_ioctl(s
, KVM_GET_MSR_FEATURE_INDEX_LIST
, kvm_feature_msrs
);
1946 error_report("Fetch KVM feature MSR list failed: %s",
1948 g_free(kvm_feature_msrs
);
1949 kvm_feature_msrs
= NULL
;
1956 static int kvm_get_supported_msrs(KVMState
*s
)
1959 struct kvm_msr_list msr_list
, *kvm_msr_list
;
1962 * Obtain MSR list from KVM. These are the MSRs that we must
1966 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
1967 if (ret
< 0 && ret
!= -E2BIG
) {
1971 * Old kernel modules had a bug and could write beyond the provided
1972 * memory. Allocate at least a safe amount of 1K.
1974 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
1976 sizeof(msr_list
.indices
[0])));
1978 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
1979 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
1983 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
1984 switch (kvm_msr_list
->indices
[i
]) {
1986 has_msr_star
= true;
1988 case MSR_VM_HSAVE_PA
:
1989 has_msr_hsave_pa
= true;
1992 has_msr_tsc_aux
= true;
1994 case MSR_TSC_ADJUST
:
1995 has_msr_tsc_adjust
= true;
1997 case MSR_IA32_TSCDEADLINE
:
1998 has_msr_tsc_deadline
= true;
2000 case MSR_IA32_SMBASE
:
2001 has_msr_smbase
= true;
2004 has_msr_smi_count
= true;
2006 case MSR_IA32_MISC_ENABLE
:
2007 has_msr_misc_enable
= true;
2009 case MSR_IA32_BNDCFGS
:
2010 has_msr_bndcfgs
= true;
2015 case MSR_IA32_UMWAIT_CONTROL
:
2016 has_msr_umwait
= true;
2018 case HV_X64_MSR_CRASH_CTL
:
2019 has_msr_hv_crash
= true;
2021 case HV_X64_MSR_RESET
:
2022 has_msr_hv_reset
= true;
2024 case HV_X64_MSR_VP_INDEX
:
2025 has_msr_hv_vpindex
= true;
2027 case HV_X64_MSR_VP_RUNTIME
:
2028 has_msr_hv_runtime
= true;
2030 case HV_X64_MSR_SCONTROL
:
2031 has_msr_hv_synic
= true;
2033 case HV_X64_MSR_STIMER0_CONFIG
:
2034 has_msr_hv_stimer
= true;
2036 case HV_X64_MSR_TSC_FREQUENCY
:
2037 has_msr_hv_frequencies
= true;
2039 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
2040 has_msr_hv_reenlightenment
= true;
2042 case MSR_IA32_SPEC_CTRL
:
2043 has_msr_spec_ctrl
= true;
2045 case MSR_IA32_TSX_CTRL
:
2046 has_msr_tsx_ctrl
= true;
2049 has_msr_virt_ssbd
= true;
2051 case MSR_IA32_ARCH_CAPABILITIES
:
2052 has_msr_arch_capabs
= true;
2054 case MSR_IA32_CORE_CAPABILITY
:
2055 has_msr_core_capabs
= true;
2057 case MSR_IA32_VMX_VMFUNC
:
2058 has_msr_vmx_vmfunc
= true;
2060 case MSR_IA32_UCODE_REV
:
2061 has_msr_ucode_rev
= true;
2067 g_free(kvm_msr_list
);
2072 static Notifier smram_machine_done
;
2073 static KVMMemoryListener smram_listener
;
2074 static AddressSpace smram_address_space
;
2075 static MemoryRegion smram_as_root
;
2076 static MemoryRegion smram_as_mem
;
2078 static void register_smram_listener(Notifier
*n
, void *unused
)
2080 MemoryRegion
*smram
=
2081 (MemoryRegion
*) object_resolve_path("/machine/smram", NULL
);
2083 /* Outer container... */
2084 memory_region_init(&smram_as_root
, OBJECT(kvm_state
), "mem-container-smram", ~0ull);
2085 memory_region_set_enabled(&smram_as_root
, true);
2087 /* ... with two regions inside: normal system memory with low
2090 memory_region_init_alias(&smram_as_mem
, OBJECT(kvm_state
), "mem-smram",
2091 get_system_memory(), 0, ~0ull);
2092 memory_region_add_subregion_overlap(&smram_as_root
, 0, &smram_as_mem
, 0);
2093 memory_region_set_enabled(&smram_as_mem
, true);
2096 /* ... SMRAM with higher priority */
2097 memory_region_add_subregion_overlap(&smram_as_root
, 0, smram
, 10);
2098 memory_region_set_enabled(smram
, true);
2101 address_space_init(&smram_address_space
, &smram_as_root
, "KVM-SMRAM");
2102 kvm_memory_listener_register(kvm_state
, &smram_listener
,
2103 &smram_address_space
, 1);
2106 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
2108 uint64_t identity_base
= 0xfffbc000;
2109 uint64_t shadow_mem
;
2111 struct utsname utsname
;
2113 has_xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
2114 has_xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
2115 has_pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
2117 hv_vpindex_settable
= kvm_check_extension(s
, KVM_CAP_HYPERV_VP_INDEX
);
2119 has_exception_payload
= kvm_check_extension(s
, KVM_CAP_EXCEPTION_PAYLOAD
);
2120 if (has_exception_payload
) {
2121 ret
= kvm_vm_enable_cap(s
, KVM_CAP_EXCEPTION_PAYLOAD
, 0, true);
2123 error_report("kvm: Failed to enable exception payload cap: %s",
2129 ret
= kvm_get_supported_msrs(s
);
2134 kvm_get_supported_feature_msrs(s
);
2137 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
2140 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2141 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2142 * Since these must be part of guest physical memory, we need to allocate
2143 * them, both by setting their start addresses in the kernel and by
2144 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2146 * Older KVM versions may not support setting the identity map base. In
2147 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2150 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
2151 /* Allows up to 16M BIOSes. */
2152 identity_base
= 0xfeffc000;
2154 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
2160 /* Set TSS base one page after EPT identity map. */
2161 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
2166 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2167 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
2169 fprintf(stderr
, "e820_add_entry() table is full\n");
2172 qemu_register_reset(kvm_unpoison_all
, NULL
);
2174 shadow_mem
= object_property_get_int(OBJECT(s
), "kvm-shadow-mem", &error_abort
);
2175 if (shadow_mem
!= -1) {
2177 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
2183 if (kvm_check_extension(s
, KVM_CAP_X86_SMM
) &&
2184 object_dynamic_cast(OBJECT(ms
), TYPE_X86_MACHINE
) &&
2185 x86_machine_is_smm_enabled(X86_MACHINE(ms
))) {
2186 smram_machine_done
.notify
= register_smram_listener
;
2187 qemu_add_machine_init_done_notifier(&smram_machine_done
);
2190 if (enable_cpu_pm
) {
2191 int disable_exits
= kvm_check_extension(s
, KVM_CAP_X86_DISABLE_EXITS
);
2194 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2195 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2196 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2198 if (disable_exits
) {
2199 disable_exits
&= (KVM_X86_DISABLE_EXITS_MWAIT
|
2200 KVM_X86_DISABLE_EXITS_HLT
|
2201 KVM_X86_DISABLE_EXITS_PAUSE
|
2202 KVM_X86_DISABLE_EXITS_CSTATE
);
2205 ret
= kvm_vm_enable_cap(s
, KVM_CAP_X86_DISABLE_EXITS
, 0,
2208 error_report("kvm: guest stopping CPU not supported: %s",
2216 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
2218 lhs
->selector
= rhs
->selector
;
2219 lhs
->base
= rhs
->base
;
2220 lhs
->limit
= rhs
->limit
;
2232 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
2234 unsigned flags
= rhs
->flags
;
2235 lhs
->selector
= rhs
->selector
;
2236 lhs
->base
= rhs
->base
;
2237 lhs
->limit
= rhs
->limit
;
2238 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
2239 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
2240 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
2241 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
2242 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
2243 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
2244 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
2245 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
2246 lhs
->unusable
= !lhs
->present
;
2250 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
2252 lhs
->selector
= rhs
->selector
;
2253 lhs
->base
= rhs
->base
;
2254 lhs
->limit
= rhs
->limit
;
2255 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
2256 ((rhs
->present
&& !rhs
->unusable
) * DESC_P_MASK
) |
2257 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
2258 (rhs
->db
<< DESC_B_SHIFT
) |
2259 (rhs
->s
* DESC_S_MASK
) |
2260 (rhs
->l
<< DESC_L_SHIFT
) |
2261 (rhs
->g
* DESC_G_MASK
) |
2262 (rhs
->avl
* DESC_AVL_MASK
);
2265 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
2268 *kvm_reg
= *qemu_reg
;
2270 *qemu_reg
= *kvm_reg
;
2274 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
2276 CPUX86State
*env
= &cpu
->env
;
2277 struct kvm_regs regs
;
2281 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
2287 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
2288 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
2289 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
2290 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
2291 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
2292 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
2293 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
2294 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
2295 #ifdef TARGET_X86_64
2296 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
2297 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
2298 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
2299 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
2300 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
2301 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
2302 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
2303 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
2306 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
2307 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
2310 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
2316 static int kvm_put_fpu(X86CPU
*cpu
)
2318 CPUX86State
*env
= &cpu
->env
;
2322 memset(&fpu
, 0, sizeof fpu
);
2323 fpu
.fsw
= env
->fpus
& ~(7 << 11);
2324 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
2325 fpu
.fcw
= env
->fpuc
;
2326 fpu
.last_opcode
= env
->fpop
;
2327 fpu
.last_ip
= env
->fpip
;
2328 fpu
.last_dp
= env
->fpdp
;
2329 for (i
= 0; i
< 8; ++i
) {
2330 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
2332 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
2333 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
2334 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].ZMM_Q(0));
2335 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].ZMM_Q(1));
2337 fpu
.mxcsr
= env
->mxcsr
;
2339 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
2342 #define XSAVE_FCW_FSW 0
2343 #define XSAVE_FTW_FOP 1
2344 #define XSAVE_CWD_RIP 2
2345 #define XSAVE_CWD_RDP 4
2346 #define XSAVE_MXCSR 6
2347 #define XSAVE_ST_SPACE 8
2348 #define XSAVE_XMM_SPACE 40
2349 #define XSAVE_XSTATE_BV 128
2350 #define XSAVE_YMMH_SPACE 144
2351 #define XSAVE_BNDREGS 240
2352 #define XSAVE_BNDCSR 256
2353 #define XSAVE_OPMASK 272
2354 #define XSAVE_ZMM_Hi256 288
2355 #define XSAVE_Hi16_ZMM 416
2356 #define XSAVE_PKRU 672
2358 #define XSAVE_BYTE_OFFSET(word_offset) \
2359 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
2361 #define ASSERT_OFFSET(word_offset, field) \
2362 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2363 offsetof(X86XSaveArea, field))
2365 ASSERT_OFFSET(XSAVE_FCW_FSW
, legacy
.fcw
);
2366 ASSERT_OFFSET(XSAVE_FTW_FOP
, legacy
.ftw
);
2367 ASSERT_OFFSET(XSAVE_CWD_RIP
, legacy
.fpip
);
2368 ASSERT_OFFSET(XSAVE_CWD_RDP
, legacy
.fpdp
);
2369 ASSERT_OFFSET(XSAVE_MXCSR
, legacy
.mxcsr
);
2370 ASSERT_OFFSET(XSAVE_ST_SPACE
, legacy
.fpregs
);
2371 ASSERT_OFFSET(XSAVE_XMM_SPACE
, legacy
.xmm_regs
);
2372 ASSERT_OFFSET(XSAVE_XSTATE_BV
, header
.xstate_bv
);
2373 ASSERT_OFFSET(XSAVE_YMMH_SPACE
, avx_state
);
2374 ASSERT_OFFSET(XSAVE_BNDREGS
, bndreg_state
);
2375 ASSERT_OFFSET(XSAVE_BNDCSR
, bndcsr_state
);
2376 ASSERT_OFFSET(XSAVE_OPMASK
, opmask_state
);
2377 ASSERT_OFFSET(XSAVE_ZMM_Hi256
, zmm_hi256_state
);
2378 ASSERT_OFFSET(XSAVE_Hi16_ZMM
, hi16_zmm_state
);
2379 ASSERT_OFFSET(XSAVE_PKRU
, pkru_state
);
2381 static int kvm_put_xsave(X86CPU
*cpu
)
2383 CPUX86State
*env
= &cpu
->env
;
2384 X86XSaveArea
*xsave
= env
->xsave_buf
;
2387 return kvm_put_fpu(cpu
);
2389 x86_cpu_xsave_all_areas(cpu
, xsave
);
2391 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
2394 static int kvm_put_xcrs(X86CPU
*cpu
)
2396 CPUX86State
*env
= &cpu
->env
;
2397 struct kvm_xcrs xcrs
= {};
2405 xcrs
.xcrs
[0].xcr
= 0;
2406 xcrs
.xcrs
[0].value
= env
->xcr0
;
2407 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
2410 static int kvm_put_sregs(X86CPU
*cpu
)
2412 CPUX86State
*env
= &cpu
->env
;
2413 struct kvm_sregs sregs
;
2415 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
2416 if (env
->interrupt_injected
>= 0) {
2417 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
2418 (uint64_t)1 << (env
->interrupt_injected
% 64);
2421 if ((env
->eflags
& VM_MASK
)) {
2422 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
2423 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
2424 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
2425 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
2426 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
2427 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
2429 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
2430 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
2431 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
2432 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
2433 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
2434 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
2437 set_seg(&sregs
.tr
, &env
->tr
);
2438 set_seg(&sregs
.ldt
, &env
->ldt
);
2440 sregs
.idt
.limit
= env
->idt
.limit
;
2441 sregs
.idt
.base
= env
->idt
.base
;
2442 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
2443 sregs
.gdt
.limit
= env
->gdt
.limit
;
2444 sregs
.gdt
.base
= env
->gdt
.base
;
2445 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
2447 sregs
.cr0
= env
->cr
[0];
2448 sregs
.cr2
= env
->cr
[2];
2449 sregs
.cr3
= env
->cr
[3];
2450 sregs
.cr4
= env
->cr
[4];
2452 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
2453 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
2455 sregs
.efer
= env
->efer
;
2457 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
2460 static void kvm_msr_buf_reset(X86CPU
*cpu
)
2462 memset(cpu
->kvm_msr_buf
, 0, MSR_BUF_SIZE
);
2465 static void kvm_msr_entry_add(X86CPU
*cpu
, uint32_t index
, uint64_t value
)
2467 struct kvm_msrs
*msrs
= cpu
->kvm_msr_buf
;
2468 void *limit
= ((void *)msrs
) + MSR_BUF_SIZE
;
2469 struct kvm_msr_entry
*entry
= &msrs
->entries
[msrs
->nmsrs
];
2471 assert((void *)(entry
+ 1) <= limit
);
2473 entry
->index
= index
;
2474 entry
->reserved
= 0;
2475 entry
->data
= value
;
2479 static int kvm_put_one_msr(X86CPU
*cpu
, int index
, uint64_t value
)
2481 kvm_msr_buf_reset(cpu
);
2482 kvm_msr_entry_add(cpu
, index
, value
);
2484 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
2487 void kvm_put_apicbase(X86CPU
*cpu
, uint64_t value
)
2491 ret
= kvm_put_one_msr(cpu
, MSR_IA32_APICBASE
, value
);
2495 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
2497 CPUX86State
*env
= &cpu
->env
;
2500 if (!has_msr_tsc_deadline
) {
2504 ret
= kvm_put_one_msr(cpu
, MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
2514 * Provide a separate write service for the feature control MSR in order to
2515 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2516 * before writing any other state because forcibly leaving nested mode
2517 * invalidates the VCPU state.
2519 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
2523 if (!has_msr_feature_control
) {
2527 ret
= kvm_put_one_msr(cpu
, MSR_IA32_FEATURE_CONTROL
,
2528 cpu
->env
.msr_ia32_feature_control
);
2537 static uint64_t make_vmx_msr_value(uint32_t index
, uint32_t features
)
2539 uint32_t default1
, can_be_one
, can_be_zero
;
2540 uint32_t must_be_one
;
2543 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
2544 default1
= 0x00000016;
2546 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
2547 default1
= 0x0401e172;
2549 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
2550 default1
= 0x000011ff;
2552 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
2553 default1
= 0x00036dff;
2555 case MSR_IA32_VMX_PROCBASED_CTLS2
:
2562 /* If a feature bit is set, the control can be either set or clear.
2563 * Otherwise the value is limited to either 0 or 1 by default1.
2565 can_be_one
= features
| default1
;
2566 can_be_zero
= features
| ~default1
;
2567 must_be_one
= ~can_be_zero
;
2570 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2571 * Bit 32:63 -> 1 if the control bit can be one.
2573 return must_be_one
| (((uint64_t)can_be_one
) << 32);
2576 #define VMCS12_MAX_FIELD_INDEX (0x17)
2578 static void kvm_msr_entry_add_vmx(X86CPU
*cpu
, FeatureWordArray f
)
2580 uint64_t kvm_vmx_basic
=
2581 kvm_arch_get_supported_msr_feature(kvm_state
,
2582 MSR_IA32_VMX_BASIC
);
2584 if (!kvm_vmx_basic
) {
2585 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2586 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2591 uint64_t kvm_vmx_misc
=
2592 kvm_arch_get_supported_msr_feature(kvm_state
,
2594 uint64_t kvm_vmx_ept_vpid
=
2595 kvm_arch_get_supported_msr_feature(kvm_state
,
2596 MSR_IA32_VMX_EPT_VPID_CAP
);
2599 * If the guest is 64-bit, a value of 1 is allowed for the host address
2600 * space size vmexit control.
2602 uint64_t fixed_vmx_exit
= f
[FEAT_8000_0001_EDX
] & CPUID_EXT2_LM
2603 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE
<< 32 : 0;
2606 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
2607 * not change them for backwards compatibility.
2609 uint64_t fixed_vmx_basic
= kvm_vmx_basic
&
2610 (MSR_VMX_BASIC_VMCS_REVISION_MASK
|
2611 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK
|
2612 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK
);
2615 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
2616 * change in the future but are always zero for now, clear them to be
2617 * future proof. Bits 32-63 in theory could change, though KVM does
2618 * not support dual-monitor treatment and probably never will; mask
2621 uint64_t fixed_vmx_misc
= kvm_vmx_misc
&
2622 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK
|
2623 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK
);
2626 * EPT memory types should not change either, so we do not bother
2627 * adding features for them.
2629 uint64_t fixed_vmx_ept_mask
=
2630 (f
[FEAT_VMX_SECONDARY_CTLS
] & VMX_SECONDARY_EXEC_ENABLE_EPT
?
2631 MSR_VMX_EPT_UC
| MSR_VMX_EPT_WB
: 0);
2632 uint64_t fixed_vmx_ept_vpid
= kvm_vmx_ept_vpid
& fixed_vmx_ept_mask
;
2634 kvm_msr_entry_add(cpu
, MSR_IA32_VMX_TRUE_PROCBASED_CTLS
,
2635 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS
,
2636 f
[FEAT_VMX_PROCBASED_CTLS
]));
2637 kvm_msr_entry_add(cpu
, MSR_IA32_VMX_TRUE_PINBASED_CTLS
,
2638 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS
,
2639 f
[FEAT_VMX_PINBASED_CTLS
]));
2640 kvm_msr_entry_add(cpu
, MSR_IA32_VMX_TRUE_EXIT_CTLS
,
2641 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS
,
2642 f
[FEAT_VMX_EXIT_CTLS
]) | fixed_vmx_exit
);
2643 kvm_msr_entry_add(cpu
, MSR_IA32_VMX_TRUE_ENTRY_CTLS
,
2644 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS
,
2645 f
[FEAT_VMX_ENTRY_CTLS
]));
2646 kvm_msr_entry_add(cpu
, MSR_IA32_VMX_PROCBASED_CTLS2
,
2647 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2
,
2648 f
[FEAT_VMX_SECONDARY_CTLS
]));
2649 kvm_msr_entry_add(cpu
, MSR_IA32_VMX_EPT_VPID_CAP
,
2650 f
[FEAT_VMX_EPT_VPID_CAPS
] | fixed_vmx_ept_vpid
);
2651 kvm_msr_entry_add(cpu
, MSR_IA32_VMX_BASIC
,
2652 f
[FEAT_VMX_BASIC
] | fixed_vmx_basic
);
2653 kvm_msr_entry_add(cpu
, MSR_IA32_VMX_MISC
,
2654 f
[FEAT_VMX_MISC
] | fixed_vmx_misc
);
2655 if (has_msr_vmx_vmfunc
) {
2656 kvm_msr_entry_add(cpu
, MSR_IA32_VMX_VMFUNC
, f
[FEAT_VMX_VMFUNC
]);
2660 * Just to be safe, write these with constant values. The CRn_FIXED1
2661 * MSRs are generated by KVM based on the vCPU's CPUID.
2663 kvm_msr_entry_add(cpu
, MSR_IA32_VMX_CR0_FIXED0
,
2664 CR0_PE_MASK
| CR0_PG_MASK
| CR0_NE_MASK
);
2665 kvm_msr_entry_add(cpu
, MSR_IA32_VMX_CR4_FIXED0
,
2667 kvm_msr_entry_add(cpu
, MSR_IA32_VMX_VMCS_ENUM
,
2668 VMCS12_MAX_FIELD_INDEX
<< 1);
2671 static int kvm_buf_set_msrs(X86CPU
*cpu
)
2673 int ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
2678 if (ret
< cpu
->kvm_msr_buf
->nmsrs
) {
2679 struct kvm_msr_entry
*e
= &cpu
->kvm_msr_buf
->entries
[ret
];
2680 error_report("error: failed to set MSR 0x%" PRIx32
" to 0x%" PRIx64
,
2681 (uint32_t)e
->index
, (uint64_t)e
->data
);
2684 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
2688 static void kvm_init_msrs(X86CPU
*cpu
)
2690 CPUX86State
*env
= &cpu
->env
;
2692 kvm_msr_buf_reset(cpu
);
2693 if (has_msr_arch_capabs
) {
2694 kvm_msr_entry_add(cpu
, MSR_IA32_ARCH_CAPABILITIES
,
2695 env
->features
[FEAT_ARCH_CAPABILITIES
]);
2698 if (has_msr_core_capabs
) {
2699 kvm_msr_entry_add(cpu
, MSR_IA32_CORE_CAPABILITY
,
2700 env
->features
[FEAT_CORE_CAPABILITY
]);
2703 if (has_msr_ucode_rev
) {
2704 kvm_msr_entry_add(cpu
, MSR_IA32_UCODE_REV
, cpu
->ucode_rev
);
2708 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2709 * all kernels with MSR features should have them.
2711 if (kvm_feature_msrs
&& cpu_has_vmx(env
)) {
2712 kvm_msr_entry_add_vmx(cpu
, env
->features
);
2715 assert(kvm_buf_set_msrs(cpu
) == 0);
2718 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
2720 CPUX86State
*env
= &cpu
->env
;
2723 kvm_msr_buf_reset(cpu
);
2725 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
2726 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
2727 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
2728 kvm_msr_entry_add(cpu
, MSR_PAT
, env
->pat
);
2730 kvm_msr_entry_add(cpu
, MSR_STAR
, env
->star
);
2732 if (has_msr_hsave_pa
) {
2733 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, env
->vm_hsave
);
2735 if (has_msr_tsc_aux
) {
2736 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, env
->tsc_aux
);
2738 if (has_msr_tsc_adjust
) {
2739 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, env
->tsc_adjust
);
2741 if (has_msr_misc_enable
) {
2742 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
,
2743 env
->msr_ia32_misc_enable
);
2745 if (has_msr_smbase
) {
2746 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, env
->smbase
);
2748 if (has_msr_smi_count
) {
2749 kvm_msr_entry_add(cpu
, MSR_SMI_COUNT
, env
->msr_smi_count
);
2751 if (has_msr_bndcfgs
) {
2752 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
2755 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, env
->xss
);
2757 if (has_msr_umwait
) {
2758 kvm_msr_entry_add(cpu
, MSR_IA32_UMWAIT_CONTROL
, env
->umwait
);
2760 if (has_msr_spec_ctrl
) {
2761 kvm_msr_entry_add(cpu
, MSR_IA32_SPEC_CTRL
, env
->spec_ctrl
);
2763 if (has_msr_tsx_ctrl
) {
2764 kvm_msr_entry_add(cpu
, MSR_IA32_TSX_CTRL
, env
->tsx_ctrl
);
2766 if (has_msr_virt_ssbd
) {
2767 kvm_msr_entry_add(cpu
, MSR_VIRT_SSBD
, env
->virt_ssbd
);
2770 #ifdef TARGET_X86_64
2771 if (lm_capable_kernel
) {
2772 kvm_msr_entry_add(cpu
, MSR_CSTAR
, env
->cstar
);
2773 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, env
->kernelgsbase
);
2774 kvm_msr_entry_add(cpu
, MSR_FMASK
, env
->fmask
);
2775 kvm_msr_entry_add(cpu
, MSR_LSTAR
, env
->lstar
);
2780 * The following MSRs have side effects on the guest or are too heavy
2781 * for normal writeback. Limit them to reset or full state updates.
2783 if (level
>= KVM_PUT_RESET_STATE
) {
2784 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, env
->tsc
);
2785 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, env
->system_time_msr
);
2786 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
2787 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_ASYNC_PF
)) {
2788 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, env
->async_pf_en_msr
);
2790 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_PV_EOI
)) {
2791 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, env
->pv_eoi_en_msr
);
2793 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_STEAL_TIME
)) {
2794 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, env
->steal_time_msr
);
2797 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_POLL_CONTROL
)) {
2798 kvm_msr_entry_add(cpu
, MSR_KVM_POLL_CONTROL
, env
->poll_control_msr
);
2801 if (has_architectural_pmu_version
> 0) {
2802 if (has_architectural_pmu_version
> 1) {
2803 /* Stop the counter. */
2804 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
2805 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
2808 /* Set the counter values. */
2809 for (i
= 0; i
< num_architectural_pmu_fixed_counters
; i
++) {
2810 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
,
2811 env
->msr_fixed_counters
[i
]);
2813 for (i
= 0; i
< num_architectural_pmu_gp_counters
; i
++) {
2814 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
,
2815 env
->msr_gp_counters
[i
]);
2816 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
,
2817 env
->msr_gp_evtsel
[i
]);
2819 if (has_architectural_pmu_version
> 1) {
2820 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
,
2821 env
->msr_global_status
);
2822 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
2823 env
->msr_global_ovf_ctrl
);
2825 /* Now start the PMU. */
2826 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
,
2827 env
->msr_fixed_ctr_ctrl
);
2828 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
,
2829 env
->msr_global_ctrl
);
2833 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2834 * only sync them to KVM on the first cpu
2836 if (current_cpu
== first_cpu
) {
2837 if (has_msr_hv_hypercall
) {
2838 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
,
2839 env
->msr_hv_guest_os_id
);
2840 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
,
2841 env
->msr_hv_hypercall
);
2843 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_TIME
)) {
2844 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
,
2847 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_REENLIGHTENMENT
)) {
2848 kvm_msr_entry_add(cpu
, HV_X64_MSR_REENLIGHTENMENT_CONTROL
,
2849 env
->msr_hv_reenlightenment_control
);
2850 kvm_msr_entry_add(cpu
, HV_X64_MSR_TSC_EMULATION_CONTROL
,
2851 env
->msr_hv_tsc_emulation_control
);
2852 kvm_msr_entry_add(cpu
, HV_X64_MSR_TSC_EMULATION_STATUS
,
2853 env
->msr_hv_tsc_emulation_status
);
2856 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_VAPIC
)) {
2857 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
,
2860 if (has_msr_hv_crash
) {
2863 for (j
= 0; j
< HV_CRASH_PARAMS
; j
++)
2864 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
,
2865 env
->msr_hv_crash_params
[j
]);
2867 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_CTL
, HV_CRASH_CTL_NOTIFY
);
2869 if (has_msr_hv_runtime
) {
2870 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, env
->msr_hv_runtime
);
2872 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_VPINDEX
)
2873 && hv_vpindex_settable
) {
2874 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_INDEX
,
2875 hyperv_vp_index(CPU(cpu
)));
2877 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_SYNIC
)) {
2880 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
, HV_SYNIC_VERSION
);
2882 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
,
2883 env
->msr_hv_synic_control
);
2884 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
,
2885 env
->msr_hv_synic_evt_page
);
2886 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
,
2887 env
->msr_hv_synic_msg_page
);
2889 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_synic_sint
); j
++) {
2890 kvm_msr_entry_add(cpu
, HV_X64_MSR_SINT0
+ j
,
2891 env
->msr_hv_synic_sint
[j
]);
2894 if (has_msr_hv_stimer
) {
2897 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_config
); j
++) {
2898 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_CONFIG
+ j
* 2,
2899 env
->msr_hv_stimer_config
[j
]);
2902 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_count
); j
++) {
2903 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_COUNT
+ j
* 2,
2904 env
->msr_hv_stimer_count
[j
]);
2907 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
2908 uint64_t phys_mask
= MAKE_64BIT_MASK(0, cpu
->phys_bits
);
2910 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, env
->mtrr_deftype
);
2911 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
2912 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
2913 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
2914 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
2915 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
2916 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
2917 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
2918 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
2919 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
2920 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
2921 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
2922 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
2923 /* The CPU GPs if we write to a bit above the physical limit of
2924 * the host CPU (and KVM emulates that)
2926 uint64_t mask
= env
->mtrr_var
[i
].mask
;
2929 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
),
2930 env
->mtrr_var
[i
].base
);
2931 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), mask
);
2934 if (env
->features
[FEAT_7_0_EBX
] & CPUID_7_0_EBX_INTEL_PT
) {
2935 int addr_num
= kvm_arch_get_supported_cpuid(kvm_state
,
2936 0x14, 1, R_EAX
) & 0x7;
2938 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_CTL
,
2939 env
->msr_rtit_ctrl
);
2940 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_STATUS
,
2941 env
->msr_rtit_status
);
2942 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_OUTPUT_BASE
,
2943 env
->msr_rtit_output_base
);
2944 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_OUTPUT_MASK
,
2945 env
->msr_rtit_output_mask
);
2946 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_CR3_MATCH
,
2947 env
->msr_rtit_cr3_match
);
2948 for (i
= 0; i
< addr_num
; i
++) {
2949 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_ADDR0_A
+ i
,
2950 env
->msr_rtit_addrs
[i
]);
2954 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2955 * kvm_put_msr_feature_control. */
2961 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, env
->mcg_status
);
2962 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, env
->mcg_ctl
);
2963 if (has_msr_mcg_ext_ctl
) {
2964 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, env
->mcg_ext_ctl
);
2966 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
2967 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
2971 return kvm_buf_set_msrs(cpu
);
2975 static int kvm_get_fpu(X86CPU
*cpu
)
2977 CPUX86State
*env
= &cpu
->env
;
2981 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
2986 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
2987 env
->fpus
= fpu
.fsw
;
2988 env
->fpuc
= fpu
.fcw
;
2989 env
->fpop
= fpu
.last_opcode
;
2990 env
->fpip
= fpu
.last_ip
;
2991 env
->fpdp
= fpu
.last_dp
;
2992 for (i
= 0; i
< 8; ++i
) {
2993 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
2995 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
2996 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
2997 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
2998 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
3000 env
->mxcsr
= fpu
.mxcsr
;
3005 static int kvm_get_xsave(X86CPU
*cpu
)
3007 CPUX86State
*env
= &cpu
->env
;
3008 X86XSaveArea
*xsave
= env
->xsave_buf
;
3012 return kvm_get_fpu(cpu
);
3015 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
3019 x86_cpu_xrstor_all_areas(cpu
, xsave
);
3024 static int kvm_get_xcrs(X86CPU
*cpu
)
3026 CPUX86State
*env
= &cpu
->env
;
3028 struct kvm_xcrs xcrs
;
3034 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
3039 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
3040 /* Only support xcr0 now */
3041 if (xcrs
.xcrs
[i
].xcr
== 0) {
3042 env
->xcr0
= xcrs
.xcrs
[i
].value
;
3049 static int kvm_get_sregs(X86CPU
*cpu
)
3051 CPUX86State
*env
= &cpu
->env
;
3052 struct kvm_sregs sregs
;
3055 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
3060 /* There can only be one pending IRQ set in the bitmap at a time, so try
3061 to find it and save its number instead (-1 for none). */
3062 env
->interrupt_injected
= -1;
3063 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
3064 if (sregs
.interrupt_bitmap
[i
]) {
3065 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
3066 env
->interrupt_injected
= i
* 64 + bit
;
3071 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
3072 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
3073 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
3074 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
3075 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
3076 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
3078 get_seg(&env
->tr
, &sregs
.tr
);
3079 get_seg(&env
->ldt
, &sregs
.ldt
);
3081 env
->idt
.limit
= sregs
.idt
.limit
;
3082 env
->idt
.base
= sregs
.idt
.base
;
3083 env
->gdt
.limit
= sregs
.gdt
.limit
;
3084 env
->gdt
.base
= sregs
.gdt
.base
;
3086 env
->cr
[0] = sregs
.cr0
;
3087 env
->cr
[2] = sregs
.cr2
;
3088 env
->cr
[3] = sregs
.cr3
;
3089 env
->cr
[4] = sregs
.cr4
;
3091 env
->efer
= sregs
.efer
;
3093 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3094 x86_update_hflags(env
);
3099 static int kvm_get_msrs(X86CPU
*cpu
)
3101 CPUX86State
*env
= &cpu
->env
;
3102 struct kvm_msr_entry
*msrs
= cpu
->kvm_msr_buf
->entries
;
3104 uint64_t mtrr_top_bits
;
3106 kvm_msr_buf_reset(cpu
);
3108 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, 0);
3109 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, 0);
3110 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, 0);
3111 kvm_msr_entry_add(cpu
, MSR_PAT
, 0);
3113 kvm_msr_entry_add(cpu
, MSR_STAR
, 0);
3115 if (has_msr_hsave_pa
) {
3116 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, 0);
3118 if (has_msr_tsc_aux
) {
3119 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, 0);
3121 if (has_msr_tsc_adjust
) {
3122 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, 0);
3124 if (has_msr_tsc_deadline
) {
3125 kvm_msr_entry_add(cpu
, MSR_IA32_TSCDEADLINE
, 0);
3127 if (has_msr_misc_enable
) {
3128 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
, 0);
3130 if (has_msr_smbase
) {
3131 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, 0);
3133 if (has_msr_smi_count
) {
3134 kvm_msr_entry_add(cpu
, MSR_SMI_COUNT
, 0);
3136 if (has_msr_feature_control
) {
3137 kvm_msr_entry_add(cpu
, MSR_IA32_FEATURE_CONTROL
, 0);
3139 if (has_msr_bndcfgs
) {
3140 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, 0);
3143 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, 0);
3145 if (has_msr_umwait
) {
3146 kvm_msr_entry_add(cpu
, MSR_IA32_UMWAIT_CONTROL
, 0);
3148 if (has_msr_spec_ctrl
) {
3149 kvm_msr_entry_add(cpu
, MSR_IA32_SPEC_CTRL
, 0);
3151 if (has_msr_tsx_ctrl
) {
3152 kvm_msr_entry_add(cpu
, MSR_IA32_TSX_CTRL
, 0);
3154 if (has_msr_virt_ssbd
) {
3155 kvm_msr_entry_add(cpu
, MSR_VIRT_SSBD
, 0);
3157 if (!env
->tsc_valid
) {
3158 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, 0);
3159 env
->tsc_valid
= !runstate_is_running();
3162 #ifdef TARGET_X86_64
3163 if (lm_capable_kernel
) {
3164 kvm_msr_entry_add(cpu
, MSR_CSTAR
, 0);
3165 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, 0);
3166 kvm_msr_entry_add(cpu
, MSR_FMASK
, 0);
3167 kvm_msr_entry_add(cpu
, MSR_LSTAR
, 0);
3170 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, 0);
3171 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, 0);
3172 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_ASYNC_PF
)) {
3173 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, 0);
3175 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_PV_EOI
)) {
3176 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, 0);
3178 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_STEAL_TIME
)) {
3179 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, 0);
3181 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_POLL_CONTROL
)) {
3182 kvm_msr_entry_add(cpu
, MSR_KVM_POLL_CONTROL
, 1);
3184 if (has_architectural_pmu_version
> 0) {
3185 if (has_architectural_pmu_version
> 1) {
3186 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
3187 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
3188 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
, 0);
3189 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
, 0);
3191 for (i
= 0; i
< num_architectural_pmu_fixed_counters
; i
++) {
3192 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
, 0);
3194 for (i
= 0; i
< num_architectural_pmu_gp_counters
; i
++) {
3195 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
, 0);
3196 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
, 0);
3201 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, 0);
3202 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, 0);
3203 if (has_msr_mcg_ext_ctl
) {
3204 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, 0);
3206 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
3207 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, 0);
3211 if (has_msr_hv_hypercall
) {
3212 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
, 0);
3213 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
, 0);
3215 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_VAPIC
)) {
3216 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
, 0);
3218 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_TIME
)) {
3219 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, 0);
3221 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_REENLIGHTENMENT
)) {
3222 kvm_msr_entry_add(cpu
, HV_X64_MSR_REENLIGHTENMENT_CONTROL
, 0);
3223 kvm_msr_entry_add(cpu
, HV_X64_MSR_TSC_EMULATION_CONTROL
, 0);
3224 kvm_msr_entry_add(cpu
, HV_X64_MSR_TSC_EMULATION_STATUS
, 0);
3226 if (has_msr_hv_crash
) {
3229 for (j
= 0; j
< HV_CRASH_PARAMS
; j
++) {
3230 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
, 0);
3233 if (has_msr_hv_runtime
) {
3234 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, 0);
3236 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_SYNIC
)) {
3239 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
, 0);
3240 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
, 0);
3241 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
, 0);
3242 for (msr
= HV_X64_MSR_SINT0
; msr
<= HV_X64_MSR_SINT15
; msr
++) {
3243 kvm_msr_entry_add(cpu
, msr
, 0);
3246 if (has_msr_hv_stimer
) {
3249 for (msr
= HV_X64_MSR_STIMER0_CONFIG
; msr
<= HV_X64_MSR_STIMER3_COUNT
;
3251 kvm_msr_entry_add(cpu
, msr
, 0);
3254 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
3255 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, 0);
3256 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, 0);
3257 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, 0);
3258 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, 0);
3259 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, 0);
3260 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, 0);
3261 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, 0);
3262 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, 0);
3263 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, 0);
3264 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, 0);
3265 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, 0);
3266 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, 0);
3267 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
3268 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
), 0);
3269 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), 0);
3273 if (env
->features
[FEAT_7_0_EBX
] & CPUID_7_0_EBX_INTEL_PT
) {
3275 kvm_arch_get_supported_cpuid(kvm_state
, 0x14, 1, R_EAX
) & 0x7;
3277 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_CTL
, 0);
3278 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_STATUS
, 0);
3279 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_OUTPUT_BASE
, 0);
3280 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_OUTPUT_MASK
, 0);
3281 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_CR3_MATCH
, 0);
3282 for (i
= 0; i
< addr_num
; i
++) {
3283 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_ADDR0_A
+ i
, 0);
3287 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, cpu
->kvm_msr_buf
);
3292 if (ret
< cpu
->kvm_msr_buf
->nmsrs
) {
3293 struct kvm_msr_entry
*e
= &cpu
->kvm_msr_buf
->entries
[ret
];
3294 error_report("error: failed to get MSR 0x%" PRIx32
,
3295 (uint32_t)e
->index
);
3298 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
3300 * MTRR masks: Each mask consists of 5 parts
3301 * a 10..0: must be zero
3303 * c n-1.12: actual mask bits
3304 * d 51..n: reserved must be zero
3305 * e 63.52: reserved must be zero
3307 * 'n' is the number of physical bits supported by the CPU and is
3308 * apparently always <= 52. We know our 'n' but don't know what
3309 * the destinations 'n' is; it might be smaller, in which case
3310 * it masks (c) on loading. It might be larger, in which case
3311 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3312 * we're migrating to.
3315 if (cpu
->fill_mtrr_mask
) {
3316 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS
> 52);
3317 assert(cpu
->phys_bits
<= TARGET_PHYS_ADDR_SPACE_BITS
);
3318 mtrr_top_bits
= MAKE_64BIT_MASK(cpu
->phys_bits
, 52 - cpu
->phys_bits
);
3323 for (i
= 0; i
< ret
; i
++) {
3324 uint32_t index
= msrs
[i
].index
;
3326 case MSR_IA32_SYSENTER_CS
:
3327 env
->sysenter_cs
= msrs
[i
].data
;
3329 case MSR_IA32_SYSENTER_ESP
:
3330 env
->sysenter_esp
= msrs
[i
].data
;
3332 case MSR_IA32_SYSENTER_EIP
:
3333 env
->sysenter_eip
= msrs
[i
].data
;
3336 env
->pat
= msrs
[i
].data
;
3339 env
->star
= msrs
[i
].data
;
3341 #ifdef TARGET_X86_64
3343 env
->cstar
= msrs
[i
].data
;
3345 case MSR_KERNELGSBASE
:
3346 env
->kernelgsbase
= msrs
[i
].data
;
3349 env
->fmask
= msrs
[i
].data
;
3352 env
->lstar
= msrs
[i
].data
;
3356 env
->tsc
= msrs
[i
].data
;
3359 env
->tsc_aux
= msrs
[i
].data
;
3361 case MSR_TSC_ADJUST
:
3362 env
->tsc_adjust
= msrs
[i
].data
;
3364 case MSR_IA32_TSCDEADLINE
:
3365 env
->tsc_deadline
= msrs
[i
].data
;
3367 case MSR_VM_HSAVE_PA
:
3368 env
->vm_hsave
= msrs
[i
].data
;
3370 case MSR_KVM_SYSTEM_TIME
:
3371 env
->system_time_msr
= msrs
[i
].data
;
3373 case MSR_KVM_WALL_CLOCK
:
3374 env
->wall_clock_msr
= msrs
[i
].data
;
3376 case MSR_MCG_STATUS
:
3377 env
->mcg_status
= msrs
[i
].data
;
3380 env
->mcg_ctl
= msrs
[i
].data
;
3382 case MSR_MCG_EXT_CTL
:
3383 env
->mcg_ext_ctl
= msrs
[i
].data
;
3385 case MSR_IA32_MISC_ENABLE
:
3386 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
3388 case MSR_IA32_SMBASE
:
3389 env
->smbase
= msrs
[i
].data
;
3392 env
->msr_smi_count
= msrs
[i
].data
;
3394 case MSR_IA32_FEATURE_CONTROL
:
3395 env
->msr_ia32_feature_control
= msrs
[i
].data
;
3397 case MSR_IA32_BNDCFGS
:
3398 env
->msr_bndcfgs
= msrs
[i
].data
;
3401 env
->xss
= msrs
[i
].data
;
3403 case MSR_IA32_UMWAIT_CONTROL
:
3404 env
->umwait
= msrs
[i
].data
;
3407 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
3408 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
3409 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
3412 case MSR_KVM_ASYNC_PF_EN
:
3413 env
->async_pf_en_msr
= msrs
[i
].data
;
3415 case MSR_KVM_PV_EOI_EN
:
3416 env
->pv_eoi_en_msr
= msrs
[i
].data
;
3418 case MSR_KVM_STEAL_TIME
:
3419 env
->steal_time_msr
= msrs
[i
].data
;
3421 case MSR_KVM_POLL_CONTROL
: {
3422 env
->poll_control_msr
= msrs
[i
].data
;
3425 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
3426 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
3428 case MSR_CORE_PERF_GLOBAL_CTRL
:
3429 env
->msr_global_ctrl
= msrs
[i
].data
;
3431 case MSR_CORE_PERF_GLOBAL_STATUS
:
3432 env
->msr_global_status
= msrs
[i
].data
;
3434 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
3435 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
3437 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
3438 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
3440 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
3441 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
3443 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
3444 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
3446 case HV_X64_MSR_HYPERCALL
:
3447 env
->msr_hv_hypercall
= msrs
[i
].data
;
3449 case HV_X64_MSR_GUEST_OS_ID
:
3450 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
3452 case HV_X64_MSR_APIC_ASSIST_PAGE
:
3453 env
->msr_hv_vapic
= msrs
[i
].data
;
3455 case HV_X64_MSR_REFERENCE_TSC
:
3456 env
->msr_hv_tsc
= msrs
[i
].data
;
3458 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
3459 env
->msr_hv_crash_params
[index
- HV_X64_MSR_CRASH_P0
] = msrs
[i
].data
;
3461 case HV_X64_MSR_VP_RUNTIME
:
3462 env
->msr_hv_runtime
= msrs
[i
].data
;
3464 case HV_X64_MSR_SCONTROL
:
3465 env
->msr_hv_synic_control
= msrs
[i
].data
;
3467 case HV_X64_MSR_SIEFP
:
3468 env
->msr_hv_synic_evt_page
= msrs
[i
].data
;
3470 case HV_X64_MSR_SIMP
:
3471 env
->msr_hv_synic_msg_page
= msrs
[i
].data
;
3473 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
3474 env
->msr_hv_synic_sint
[index
- HV_X64_MSR_SINT0
] = msrs
[i
].data
;
3476 case HV_X64_MSR_STIMER0_CONFIG
:
3477 case HV_X64_MSR_STIMER1_CONFIG
:
3478 case HV_X64_MSR_STIMER2_CONFIG
:
3479 case HV_X64_MSR_STIMER3_CONFIG
:
3480 env
->msr_hv_stimer_config
[(index
- HV_X64_MSR_STIMER0_CONFIG
)/2] =
3483 case HV_X64_MSR_STIMER0_COUNT
:
3484 case HV_X64_MSR_STIMER1_COUNT
:
3485 case HV_X64_MSR_STIMER2_COUNT
:
3486 case HV_X64_MSR_STIMER3_COUNT
:
3487 env
->msr_hv_stimer_count
[(index
- HV_X64_MSR_STIMER0_COUNT
)/2] =
3490 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
3491 env
->msr_hv_reenlightenment_control
= msrs
[i
].data
;
3493 case HV_X64_MSR_TSC_EMULATION_CONTROL
:
3494 env
->msr_hv_tsc_emulation_control
= msrs
[i
].data
;
3496 case HV_X64_MSR_TSC_EMULATION_STATUS
:
3497 env
->msr_hv_tsc_emulation_status
= msrs
[i
].data
;
3499 case MSR_MTRRdefType
:
3500 env
->mtrr_deftype
= msrs
[i
].data
;
3502 case MSR_MTRRfix64K_00000
:
3503 env
->mtrr_fixed
[0] = msrs
[i
].data
;
3505 case MSR_MTRRfix16K_80000
:
3506 env
->mtrr_fixed
[1] = msrs
[i
].data
;
3508 case MSR_MTRRfix16K_A0000
:
3509 env
->mtrr_fixed
[2] = msrs
[i
].data
;
3511 case MSR_MTRRfix4K_C0000
:
3512 env
->mtrr_fixed
[3] = msrs
[i
].data
;
3514 case MSR_MTRRfix4K_C8000
:
3515 env
->mtrr_fixed
[4] = msrs
[i
].data
;
3517 case MSR_MTRRfix4K_D0000
:
3518 env
->mtrr_fixed
[5] = msrs
[i
].data
;
3520 case MSR_MTRRfix4K_D8000
:
3521 env
->mtrr_fixed
[6] = msrs
[i
].data
;
3523 case MSR_MTRRfix4K_E0000
:
3524 env
->mtrr_fixed
[7] = msrs
[i
].data
;
3526 case MSR_MTRRfix4K_E8000
:
3527 env
->mtrr_fixed
[8] = msrs
[i
].data
;
3529 case MSR_MTRRfix4K_F0000
:
3530 env
->mtrr_fixed
[9] = msrs
[i
].data
;
3532 case MSR_MTRRfix4K_F8000
:
3533 env
->mtrr_fixed
[10] = msrs
[i
].data
;
3535 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
3537 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
|
3540 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
3543 case MSR_IA32_SPEC_CTRL
:
3544 env
->spec_ctrl
= msrs
[i
].data
;
3546 case MSR_IA32_TSX_CTRL
:
3547 env
->tsx_ctrl
= msrs
[i
].data
;
3550 env
->virt_ssbd
= msrs
[i
].data
;
3552 case MSR_IA32_RTIT_CTL
:
3553 env
->msr_rtit_ctrl
= msrs
[i
].data
;
3555 case MSR_IA32_RTIT_STATUS
:
3556 env
->msr_rtit_status
= msrs
[i
].data
;
3558 case MSR_IA32_RTIT_OUTPUT_BASE
:
3559 env
->msr_rtit_output_base
= msrs
[i
].data
;
3561 case MSR_IA32_RTIT_OUTPUT_MASK
:
3562 env
->msr_rtit_output_mask
= msrs
[i
].data
;
3564 case MSR_IA32_RTIT_CR3_MATCH
:
3565 env
->msr_rtit_cr3_match
= msrs
[i
].data
;
3567 case MSR_IA32_RTIT_ADDR0_A
... MSR_IA32_RTIT_ADDR3_B
:
3568 env
->msr_rtit_addrs
[index
- MSR_IA32_RTIT_ADDR0_A
] = msrs
[i
].data
;
3576 static int kvm_put_mp_state(X86CPU
*cpu
)
3578 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
3580 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
3583 static int kvm_get_mp_state(X86CPU
*cpu
)
3585 CPUState
*cs
= CPU(cpu
);
3586 CPUX86State
*env
= &cpu
->env
;
3587 struct kvm_mp_state mp_state
;
3590 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
3594 env
->mp_state
= mp_state
.mp_state
;
3595 if (kvm_irqchip_in_kernel()) {
3596 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
3601 static int kvm_get_apic(X86CPU
*cpu
)
3603 DeviceState
*apic
= cpu
->apic_state
;
3604 struct kvm_lapic_state kapic
;
3607 if (apic
&& kvm_irqchip_in_kernel()) {
3608 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
3613 kvm_get_apic_state(apic
, &kapic
);
3618 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
3620 CPUState
*cs
= CPU(cpu
);
3621 CPUX86State
*env
= &cpu
->env
;
3622 struct kvm_vcpu_events events
= {};
3624 if (!kvm_has_vcpu_events()) {
3630 if (has_exception_payload
) {
3631 events
.flags
|= KVM_VCPUEVENT_VALID_PAYLOAD
;
3632 events
.exception
.pending
= env
->exception_pending
;
3633 events
.exception_has_payload
= env
->exception_has_payload
;
3634 events
.exception_payload
= env
->exception_payload
;
3636 events
.exception
.nr
= env
->exception_nr
;
3637 events
.exception
.injected
= env
->exception_injected
;
3638 events
.exception
.has_error_code
= env
->has_error_code
;
3639 events
.exception
.error_code
= env
->error_code
;
3641 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
3642 events
.interrupt
.nr
= env
->interrupt_injected
;
3643 events
.interrupt
.soft
= env
->soft_interrupt
;
3645 events
.nmi
.injected
= env
->nmi_injected
;
3646 events
.nmi
.pending
= env
->nmi_pending
;
3647 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
3649 events
.sipi_vector
= env
->sipi_vector
;
3651 if (has_msr_smbase
) {
3652 events
.smi
.smm
= !!(env
->hflags
& HF_SMM_MASK
);
3653 events
.smi
.smm_inside_nmi
= !!(env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
);
3654 if (kvm_irqchip_in_kernel()) {
3655 /* As soon as these are moved to the kernel, remove them
3656 * from cs->interrupt_request.
3658 events
.smi
.pending
= cs
->interrupt_request
& CPU_INTERRUPT_SMI
;
3659 events
.smi
.latched_init
= cs
->interrupt_request
& CPU_INTERRUPT_INIT
;
3660 cs
->interrupt_request
&= ~(CPU_INTERRUPT_INIT
| CPU_INTERRUPT_SMI
);
3662 /* Keep these in cs->interrupt_request. */
3663 events
.smi
.pending
= 0;
3664 events
.smi
.latched_init
= 0;
3666 /* Stop SMI delivery on old machine types to avoid a reboot
3667 * on an inward migration of an old VM.
3669 if (!cpu
->kvm_no_smi_migration
) {
3670 events
.flags
|= KVM_VCPUEVENT_VALID_SMM
;
3674 if (level
>= KVM_PUT_RESET_STATE
) {
3675 events
.flags
|= KVM_VCPUEVENT_VALID_NMI_PENDING
;
3676 if (env
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
3677 events
.flags
|= KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
3681 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
3684 static int kvm_get_vcpu_events(X86CPU
*cpu
)
3686 CPUX86State
*env
= &cpu
->env
;
3687 struct kvm_vcpu_events events
;
3690 if (!kvm_has_vcpu_events()) {
3694 memset(&events
, 0, sizeof(events
));
3695 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
3700 if (events
.flags
& KVM_VCPUEVENT_VALID_PAYLOAD
) {
3701 env
->exception_pending
= events
.exception
.pending
;
3702 env
->exception_has_payload
= events
.exception_has_payload
;
3703 env
->exception_payload
= events
.exception_payload
;
3705 env
->exception_pending
= 0;
3706 env
->exception_has_payload
= false;
3708 env
->exception_injected
= events
.exception
.injected
;
3710 (env
->exception_pending
|| env
->exception_injected
) ?
3711 events
.exception
.nr
: -1;
3712 env
->has_error_code
= events
.exception
.has_error_code
;
3713 env
->error_code
= events
.exception
.error_code
;
3715 env
->interrupt_injected
=
3716 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
3717 env
->soft_interrupt
= events
.interrupt
.soft
;
3719 env
->nmi_injected
= events
.nmi
.injected
;
3720 env
->nmi_pending
= events
.nmi
.pending
;
3721 if (events
.nmi
.masked
) {
3722 env
->hflags2
|= HF2_NMI_MASK
;
3724 env
->hflags2
&= ~HF2_NMI_MASK
;
3727 if (events
.flags
& KVM_VCPUEVENT_VALID_SMM
) {
3728 if (events
.smi
.smm
) {
3729 env
->hflags
|= HF_SMM_MASK
;
3731 env
->hflags
&= ~HF_SMM_MASK
;
3733 if (events
.smi
.pending
) {
3734 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
3736 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
3738 if (events
.smi
.smm_inside_nmi
) {
3739 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
3741 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
3743 if (events
.smi
.latched_init
) {
3744 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
3746 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
3750 env
->sipi_vector
= events
.sipi_vector
;
3755 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
3757 CPUState
*cs
= CPU(cpu
);
3758 CPUX86State
*env
= &cpu
->env
;
3760 unsigned long reinject_trap
= 0;
3762 if (!kvm_has_vcpu_events()) {
3763 if (env
->exception_nr
== EXCP01_DB
) {
3764 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
3765 } else if (env
->exception_injected
== EXCP03_INT3
) {
3766 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
3768 kvm_reset_exception(env
);
3772 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3773 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3774 * by updating the debug state once again if single-stepping is on.
3775 * Another reason to call kvm_update_guest_debug here is a pending debug
3776 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3777 * reinject them via SET_GUEST_DEBUG.
3779 if (reinject_trap
||
3780 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
3781 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
3786 static int kvm_put_debugregs(X86CPU
*cpu
)
3788 CPUX86State
*env
= &cpu
->env
;
3789 struct kvm_debugregs dbgregs
;
3792 if (!kvm_has_debugregs()) {
3796 memset(&dbgregs
, 0, sizeof(dbgregs
));
3797 for (i
= 0; i
< 4; i
++) {
3798 dbgregs
.db
[i
] = env
->dr
[i
];
3800 dbgregs
.dr6
= env
->dr
[6];
3801 dbgregs
.dr7
= env
->dr
[7];
3804 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
3807 static int kvm_get_debugregs(X86CPU
*cpu
)
3809 CPUX86State
*env
= &cpu
->env
;
3810 struct kvm_debugregs dbgregs
;
3813 if (!kvm_has_debugregs()) {
3817 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
3821 for (i
= 0; i
< 4; i
++) {
3822 env
->dr
[i
] = dbgregs
.db
[i
];
3824 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
3825 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
3830 static int kvm_put_nested_state(X86CPU
*cpu
)
3832 CPUX86State
*env
= &cpu
->env
;
3833 int max_nested_state_len
= kvm_max_nested_state_length();
3835 if (!env
->nested_state
) {
3839 assert(env
->nested_state
->size
<= max_nested_state_len
);
3840 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_NESTED_STATE
, env
->nested_state
);
3843 static int kvm_get_nested_state(X86CPU
*cpu
)
3845 CPUX86State
*env
= &cpu
->env
;
3846 int max_nested_state_len
= kvm_max_nested_state_length();
3849 if (!env
->nested_state
) {
3854 * It is possible that migration restored a smaller size into
3855 * nested_state->hdr.size than what our kernel support.
3856 * We preserve migration origin nested_state->hdr.size for
3857 * call to KVM_SET_NESTED_STATE but wish that our next call
3858 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3860 env
->nested_state
->size
= max_nested_state_len
;
3862 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_NESTED_STATE
, env
->nested_state
);
3867 if (env
->nested_state
->flags
& KVM_STATE_NESTED_GUEST_MODE
) {
3868 env
->hflags
|= HF_GUEST_MASK
;
3870 env
->hflags
&= ~HF_GUEST_MASK
;
3876 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
3878 X86CPU
*x86_cpu
= X86_CPU(cpu
);
3881 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
3883 if (level
>= KVM_PUT_RESET_STATE
) {
3884 ret
= kvm_put_nested_state(x86_cpu
);
3889 ret
= kvm_put_msr_feature_control(x86_cpu
);
3895 if (level
== KVM_PUT_FULL_STATE
) {
3896 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3897 * because TSC frequency mismatch shouldn't abort migration,
3898 * unless the user explicitly asked for a more strict TSC
3899 * setting (e.g. using an explicit "tsc-freq" option).
3901 kvm_arch_set_tsc_khz(cpu
);
3904 ret
= kvm_getput_regs(x86_cpu
, 1);
3908 ret
= kvm_put_xsave(x86_cpu
);
3912 ret
= kvm_put_xcrs(x86_cpu
);
3916 ret
= kvm_put_sregs(x86_cpu
);
3920 /* must be before kvm_put_msrs */
3921 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
3925 ret
= kvm_put_msrs(x86_cpu
, level
);
3929 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
3933 if (level
>= KVM_PUT_RESET_STATE
) {
3934 ret
= kvm_put_mp_state(x86_cpu
);
3940 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
3944 ret
= kvm_put_debugregs(x86_cpu
);
3949 ret
= kvm_guest_debug_workarounds(x86_cpu
);
3956 int kvm_arch_get_registers(CPUState
*cs
)
3958 X86CPU
*cpu
= X86_CPU(cs
);
3961 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
3963 ret
= kvm_get_vcpu_events(cpu
);
3968 * KVM_GET_MPSTATE can modify CS and RIP, call it before
3969 * KVM_GET_REGS and KVM_GET_SREGS.
3971 ret
= kvm_get_mp_state(cpu
);
3975 ret
= kvm_getput_regs(cpu
, 0);
3979 ret
= kvm_get_xsave(cpu
);
3983 ret
= kvm_get_xcrs(cpu
);
3987 ret
= kvm_get_sregs(cpu
);
3991 ret
= kvm_get_msrs(cpu
);
3995 ret
= kvm_get_apic(cpu
);
3999 ret
= kvm_get_debugregs(cpu
);
4003 ret
= kvm_get_nested_state(cpu
);
4009 cpu_sync_bndcs_hflags(&cpu
->env
);
4013 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
4015 X86CPU
*x86_cpu
= X86_CPU(cpu
);
4016 CPUX86State
*env
= &x86_cpu
->env
;
4020 if (cpu
->interrupt_request
& (CPU_INTERRUPT_NMI
| CPU_INTERRUPT_SMI
)) {
4021 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
4022 qemu_mutex_lock_iothread();
4023 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
4024 qemu_mutex_unlock_iothread();
4025 DPRINTF("injected NMI\n");
4026 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
4028 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
4032 if (cpu
->interrupt_request
& CPU_INTERRUPT_SMI
) {
4033 qemu_mutex_lock_iothread();
4034 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
4035 qemu_mutex_unlock_iothread();
4036 DPRINTF("injected SMI\n");
4037 ret
= kvm_vcpu_ioctl(cpu
, KVM_SMI
);
4039 fprintf(stderr
, "KVM: injection failed, SMI lost (%s)\n",
4045 if (!kvm_pic_in_kernel()) {
4046 qemu_mutex_lock_iothread();
4049 /* Force the VCPU out of its inner loop to process any INIT requests
4050 * or (for userspace APIC, but it is cheap to combine the checks here)
4051 * pending TPR access reports.
4053 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
4054 if ((cpu
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
4055 !(env
->hflags
& HF_SMM_MASK
)) {
4056 cpu
->exit_request
= 1;
4058 if (cpu
->interrupt_request
& CPU_INTERRUPT_TPR
) {
4059 cpu
->exit_request
= 1;
4063 if (!kvm_pic_in_kernel()) {
4064 /* Try to inject an interrupt if the guest can accept it */
4065 if (run
->ready_for_interrupt_injection
&&
4066 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
4067 (env
->eflags
& IF_MASK
)) {
4070 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
4071 irq
= cpu_get_pic_interrupt(env
);
4073 struct kvm_interrupt intr
;
4076 DPRINTF("injected interrupt %d\n", irq
);
4077 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
4080 "KVM: injection failed, interrupt lost (%s)\n",
4086 /* If we have an interrupt but the guest is not ready to receive an
4087 * interrupt, request an interrupt window exit. This will
4088 * cause a return to userspace as soon as the guest is ready to
4089 * receive interrupts. */
4090 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
4091 run
->request_interrupt_window
= 1;
4093 run
->request_interrupt_window
= 0;
4096 DPRINTF("setting tpr\n");
4097 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
4099 qemu_mutex_unlock_iothread();
4103 MemTxAttrs
kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
4105 X86CPU
*x86_cpu
= X86_CPU(cpu
);
4106 CPUX86State
*env
= &x86_cpu
->env
;
4108 if (run
->flags
& KVM_RUN_X86_SMM
) {
4109 env
->hflags
|= HF_SMM_MASK
;
4111 env
->hflags
&= ~HF_SMM_MASK
;
4114 env
->eflags
|= IF_MASK
;
4116 env
->eflags
&= ~IF_MASK
;
4119 /* We need to protect the apic state against concurrent accesses from
4120 * different threads in case the userspace irqchip is used. */
4121 if (!kvm_irqchip_in_kernel()) {
4122 qemu_mutex_lock_iothread();
4124 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
4125 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
4126 if (!kvm_irqchip_in_kernel()) {
4127 qemu_mutex_unlock_iothread();
4129 return cpu_get_mem_attrs(env
);
4132 int kvm_arch_process_async_events(CPUState
*cs
)
4134 X86CPU
*cpu
= X86_CPU(cs
);
4135 CPUX86State
*env
= &cpu
->env
;
4137 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
4138 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4139 assert(env
->mcg_cap
);
4141 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
4143 kvm_cpu_synchronize_state(cs
);
4145 if (env
->exception_nr
== EXCP08_DBLE
) {
4146 /* this means triple fault */
4147 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
4148 cs
->exit_request
= 1;
4151 kvm_queue_exception(env
, EXCP12_MCHK
, 0, 0);
4152 env
->has_error_code
= 0;
4155 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
4156 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
4160 if ((cs
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
4161 !(env
->hflags
& HF_SMM_MASK
)) {
4162 kvm_cpu_synchronize_state(cs
);
4166 if (kvm_irqchip_in_kernel()) {
4170 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
4171 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
4172 apic_poll_irq(cpu
->apic_state
);
4174 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
4175 (env
->eflags
& IF_MASK
)) ||
4176 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
4179 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
4180 kvm_cpu_synchronize_state(cs
);
4183 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
4184 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
4185 kvm_cpu_synchronize_state(cs
);
4186 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
4187 env
->tpr_access_type
);
4193 static int kvm_handle_halt(X86CPU
*cpu
)
4195 CPUState
*cs
= CPU(cpu
);
4196 CPUX86State
*env
= &cpu
->env
;
4198 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
4199 (env
->eflags
& IF_MASK
)) &&
4200 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
4208 static int kvm_handle_tpr_access(X86CPU
*cpu
)
4210 CPUState
*cs
= CPU(cpu
);
4211 struct kvm_run
*run
= cs
->kvm_run
;
4213 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
4214 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
4219 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
4221 static const uint8_t int3
= 0xcc;
4223 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
4224 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
4230 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
4234 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
4235 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
4247 static int nb_hw_breakpoint
;
4249 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
4253 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
4254 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
4255 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
4262 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
4263 target_ulong len
, int type
)
4266 case GDB_BREAKPOINT_HW
:
4269 case GDB_WATCHPOINT_WRITE
:
4270 case GDB_WATCHPOINT_ACCESS
:
4277 if (addr
& (len
- 1)) {
4289 if (nb_hw_breakpoint
== 4) {
4292 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
4295 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
4296 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
4297 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
4303 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
4304 target_ulong len
, int type
)
4308 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
4313 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
4318 void kvm_arch_remove_all_hw_breakpoints(void)
4320 nb_hw_breakpoint
= 0;
4323 static CPUWatchpoint hw_watchpoint
;
4325 static int kvm_handle_debug(X86CPU
*cpu
,
4326 struct kvm_debug_exit_arch
*arch_info
)
4328 CPUState
*cs
= CPU(cpu
);
4329 CPUX86State
*env
= &cpu
->env
;
4333 if (arch_info
->exception
== EXCP01_DB
) {
4334 if (arch_info
->dr6
& DR6_BS
) {
4335 if (cs
->singlestep_enabled
) {
4339 for (n
= 0; n
< 4; n
++) {
4340 if (arch_info
->dr6
& (1 << n
)) {
4341 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
4347 cs
->watchpoint_hit
= &hw_watchpoint
;
4348 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
4349 hw_watchpoint
.flags
= BP_MEM_WRITE
;
4353 cs
->watchpoint_hit
= &hw_watchpoint
;
4354 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
4355 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
4361 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
4365 cpu_synchronize_state(cs
);
4366 assert(env
->exception_nr
== -1);
4369 kvm_queue_exception(env
, arch_info
->exception
,
4370 arch_info
->exception
== EXCP01_DB
,
4372 env
->has_error_code
= 0;
4378 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
4380 const uint8_t type_code
[] = {
4381 [GDB_BREAKPOINT_HW
] = 0x0,
4382 [GDB_WATCHPOINT_WRITE
] = 0x1,
4383 [GDB_WATCHPOINT_ACCESS
] = 0x3
4385 const uint8_t len_code
[] = {
4386 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4390 if (kvm_sw_breakpoints_active(cpu
)) {
4391 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
4393 if (nb_hw_breakpoint
> 0) {
4394 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
4395 dbg
->arch
.debugreg
[7] = 0x0600;
4396 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
4397 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
4398 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
4399 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
4400 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
4405 static bool host_supports_vmx(void)
4407 uint32_t ecx
, unused
;
4409 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
4410 return ecx
& CPUID_EXT_VMX
;
4413 #define VMX_INVALID_GUEST_STATE 0x80000021
4415 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
4417 X86CPU
*cpu
= X86_CPU(cs
);
4421 switch (run
->exit_reason
) {
4423 DPRINTF("handle_hlt\n");
4424 qemu_mutex_lock_iothread();
4425 ret
= kvm_handle_halt(cpu
);
4426 qemu_mutex_unlock_iothread();
4428 case KVM_EXIT_SET_TPR
:
4431 case KVM_EXIT_TPR_ACCESS
:
4432 qemu_mutex_lock_iothread();
4433 ret
= kvm_handle_tpr_access(cpu
);
4434 qemu_mutex_unlock_iothread();
4436 case KVM_EXIT_FAIL_ENTRY
:
4437 code
= run
->fail_entry
.hardware_entry_failure_reason
;
4438 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
4440 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
4442 "\nIf you're running a guest on an Intel machine without "
4443 "unrestricted mode\n"
4444 "support, the failure can be most likely due to the guest "
4445 "entering an invalid\n"
4446 "state for Intel VT. For example, the guest maybe running "
4447 "in big real mode\n"
4448 "which is not supported on less recent Intel processors."
4453 case KVM_EXIT_EXCEPTION
:
4454 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
4455 run
->ex
.exception
, run
->ex
.error_code
);
4458 case KVM_EXIT_DEBUG
:
4459 DPRINTF("kvm_exit_debug\n");
4460 qemu_mutex_lock_iothread();
4461 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
4462 qemu_mutex_unlock_iothread();
4464 case KVM_EXIT_HYPERV
:
4465 ret
= kvm_hv_handle_exit(cpu
, &run
->hyperv
);
4467 case KVM_EXIT_IOAPIC_EOI
:
4468 ioapic_eoi_broadcast(run
->eoi
.vector
);
4472 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
4480 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
4482 X86CPU
*cpu
= X86_CPU(cs
);
4483 CPUX86State
*env
= &cpu
->env
;
4485 kvm_cpu_synchronize_state(cs
);
4486 return !(env
->cr
[0] & CR0_PE_MASK
) ||
4487 ((env
->segs
[R_CS
].selector
& 3) != 3);
4490 void kvm_arch_init_irq_routing(KVMState
*s
)
4492 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
4493 /* If kernel can't do irq routing, interrupt source
4494 * override 0->2 cannot be set up as required by HPET.
4495 * So we have to disable it.
4499 /* We know at this point that we're using the in-kernel
4500 * irqchip, so we can use irqfds, and on x86 we know
4501 * we can use msi via irqfd and GSI routing.
4503 kvm_msi_via_irqfd_allowed
= true;
4504 kvm_gsi_routing_allowed
= true;
4506 if (kvm_irqchip_is_split()) {
4509 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4510 MSI routes for signaling interrupts to the local apics. */
4511 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
4512 if (kvm_irqchip_add_msi_route(s
, 0, NULL
) < 0) {
4513 error_report("Could not enable split IRQ mode.");
4520 int kvm_arch_irqchip_create(KVMState
*s
)
4523 if (kvm_kernel_irqchip_split()) {
4524 ret
= kvm_vm_enable_cap(s
, KVM_CAP_SPLIT_IRQCHIP
, 0, 24);
4526 error_report("Could not enable split irqchip mode: %s",
4530 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4531 kvm_split_irqchip
= true;
4539 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
4540 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
4542 X86IOMMUState
*iommu
= x86_iommu_get_default();
4546 MSIMessage src
, dst
;
4547 X86IOMMUClass
*class = X86_IOMMU_GET_CLASS(iommu
);
4549 if (!class->int_remap
) {
4553 src
.address
= route
->u
.msi
.address_hi
;
4554 src
.address
<<= VTD_MSI_ADDR_HI_SHIFT
;
4555 src
.address
|= route
->u
.msi
.address_lo
;
4556 src
.data
= route
->u
.msi
.data
;
4558 ret
= class->int_remap(iommu
, &src
, &dst
, dev
? \
4559 pci_requester_id(dev
) : \
4560 X86_IOMMU_SID_INVALID
);
4562 trace_kvm_x86_fixup_msi_error(route
->gsi
);
4566 route
->u
.msi
.address_hi
= dst
.address
>> VTD_MSI_ADDR_HI_SHIFT
;
4567 route
->u
.msi
.address_lo
= dst
.address
& VTD_MSI_ADDR_LO_MASK
;
4568 route
->u
.msi
.data
= dst
.data
;
4574 typedef struct MSIRouteEntry MSIRouteEntry
;
4576 struct MSIRouteEntry
{
4577 PCIDevice
*dev
; /* Device pointer */
4578 int vector
; /* MSI/MSIX vector index */
4579 int virq
; /* Virtual IRQ index */
4580 QLIST_ENTRY(MSIRouteEntry
) list
;
4583 /* List of used GSI routes */
4584 static QLIST_HEAD(, MSIRouteEntry
) msi_route_list
= \
4585 QLIST_HEAD_INITIALIZER(msi_route_list
);
4587 static void kvm_update_msi_routes_all(void *private, bool global
,
4588 uint32_t index
, uint32_t mask
)
4590 int cnt
= 0, vector
;
4591 MSIRouteEntry
*entry
;
4595 /* TODO: explicit route update */
4596 QLIST_FOREACH(entry
, &msi_route_list
, list
) {
4598 vector
= entry
->vector
;
4600 if (msix_enabled(dev
) && !msix_is_masked(dev
, vector
)) {
4601 msg
= msix_get_message(dev
, vector
);
4602 } else if (msi_enabled(dev
) && !msi_is_masked(dev
, vector
)) {
4603 msg
= msi_get_message(dev
, vector
);
4606 * Either MSI/MSIX is disabled for the device, or the
4607 * specific message was masked out. Skip this one.
4611 kvm_irqchip_update_msi_route(kvm_state
, entry
->virq
, msg
, dev
);
4613 kvm_irqchip_commit_routes(kvm_state
);
4614 trace_kvm_x86_update_msi_routes(cnt
);
4617 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
4618 int vector
, PCIDevice
*dev
)
4620 static bool notify_list_inited
= false;
4621 MSIRouteEntry
*entry
;
4624 /* These are (possibly) IOAPIC routes only used for split
4625 * kernel irqchip mode, while what we are housekeeping are
4626 * PCI devices only. */
4630 entry
= g_new0(MSIRouteEntry
, 1);
4632 entry
->vector
= vector
;
4633 entry
->virq
= route
->gsi
;
4634 QLIST_INSERT_HEAD(&msi_route_list
, entry
, list
);
4636 trace_kvm_x86_add_msi_route(route
->gsi
);
4638 if (!notify_list_inited
) {
4639 /* For the first time we do add route, add ourselves into
4640 * IOMMU's IEC notify list if needed. */
4641 X86IOMMUState
*iommu
= x86_iommu_get_default();
4643 x86_iommu_iec_register_notifier(iommu
,
4644 kvm_update_msi_routes_all
,
4647 notify_list_inited
= true;
4652 int kvm_arch_release_virq_post(int virq
)
4654 MSIRouteEntry
*entry
, *next
;
4655 QLIST_FOREACH_SAFE(entry
, &msi_route_list
, list
, next
) {
4656 if (entry
->virq
== virq
) {
4657 trace_kvm_x86_remove_msi_route(virq
);
4658 QLIST_REMOVE(entry
, list
);
4666 int kvm_arch_msi_data_to_gsi(uint32_t data
)