Merge remote-tracking branch 'remotes/maxreitz/tags/pull-block-2020-03-26' into staging
[qemu.git] / target / i386 / hax-all.c
blobf9c83fff2547a21257c1ec3b14de977e84db54b9
1 /*
2 * QEMU HAX support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * Copyright (c) 2011 Intel Corporation
12 * Written by:
13 * Jiang Yunhong<yunhong.jiang@intel.com>
14 * Xin Xiaohui<xiaohui.xin@intel.com>
15 * Zhang Xiantao<xiantao.zhang@intel.com>
17 * This work is licensed under the terms of the GNU GPL, version 2 or later.
18 * See the COPYING file in the top-level directory.
23 * HAX common code for both windows and darwin
26 #include "qemu/osdep.h"
27 #include "cpu.h"
28 #include "exec/address-spaces.h"
30 #include "qemu-common.h"
31 #include "hax-i386.h"
32 #include "sysemu/accel.h"
33 #include "sysemu/reset.h"
34 #include "sysemu/runstate.h"
35 #include "qemu/main-loop.h"
36 #include "hw/boards.h"
38 #define DEBUG_HAX 0
40 #define DPRINTF(fmt, ...) \
41 do { \
42 if (DEBUG_HAX) { \
43 fprintf(stdout, fmt, ## __VA_ARGS__); \
44 } \
45 } while (0)
47 /* Current version */
48 const uint32_t hax_cur_version = 0x4; /* API v4: unmapping and MMIO moves */
49 /* Minimum HAX kernel version */
50 const uint32_t hax_min_version = 0x4; /* API v4: supports unmapping */
52 static bool hax_allowed;
54 struct hax_state hax_global;
56 static void hax_vcpu_sync_state(CPUArchState *env, int modified);
57 static int hax_arch_get_registers(CPUArchState *env);
59 int hax_enabled(void)
61 return hax_allowed;
64 int valid_hax_tunnel_size(uint16_t size)
66 return size >= sizeof(struct hax_tunnel);
69 hax_fd hax_vcpu_get_fd(CPUArchState *env)
71 struct hax_vcpu_state *vcpu = env_cpu(env)->hax_vcpu;
72 if (!vcpu) {
73 return HAX_INVALID_FD;
75 return vcpu->fd;
78 static int hax_get_capability(struct hax_state *hax)
80 int ret;
81 struct hax_capabilityinfo capinfo, *cap = &capinfo;
83 ret = hax_capability(hax, cap);
84 if (ret) {
85 return ret;
88 if ((cap->wstatus & HAX_CAP_WORKSTATUS_MASK) == HAX_CAP_STATUS_NOTWORKING) {
89 if (cap->winfo & HAX_CAP_FAILREASON_VT) {
90 DPRINTF
91 ("VTX feature is not enabled, HAX driver will not work.\n");
92 } else if (cap->winfo & HAX_CAP_FAILREASON_NX) {
93 DPRINTF
94 ("NX feature is not enabled, HAX driver will not work.\n");
96 return -ENXIO;
100 if (!(cap->winfo & HAX_CAP_UG)) {
101 fprintf(stderr, "UG mode is not supported by the hardware.\n");
102 return -ENOTSUP;
105 hax->supports_64bit_ramblock = !!(cap->winfo & HAX_CAP_64BIT_RAMBLOCK);
107 if (cap->wstatus & HAX_CAP_MEMQUOTA) {
108 if (cap->mem_quota < hax->mem_quota) {
109 fprintf(stderr, "The VM memory needed exceeds the driver limit.\n");
110 return -ENOSPC;
113 return 0;
116 static int hax_version_support(struct hax_state *hax)
118 int ret;
119 struct hax_module_version version;
121 ret = hax_mod_version(hax, &version);
122 if (ret < 0) {
123 return 0;
126 if (hax_min_version > version.cur_version) {
127 fprintf(stderr, "Incompatible HAX module version %d,",
128 version.cur_version);
129 fprintf(stderr, "requires minimum version %d\n", hax_min_version);
130 return 0;
132 if (hax_cur_version < version.compat_version) {
133 fprintf(stderr, "Incompatible QEMU HAX API version %x,",
134 hax_cur_version);
135 fprintf(stderr, "requires minimum HAX API version %x\n",
136 version.compat_version);
137 return 0;
140 return 1;
143 int hax_vcpu_create(int id)
145 struct hax_vcpu_state *vcpu = NULL;
146 int ret;
148 if (!hax_global.vm) {
149 fprintf(stderr, "vcpu %x created failed, vm is null\n", id);
150 return -1;
153 if (hax_global.vm->vcpus[id]) {
154 fprintf(stderr, "vcpu %x allocated already\n", id);
155 return 0;
158 vcpu = g_new0(struct hax_vcpu_state, 1);
160 ret = hax_host_create_vcpu(hax_global.vm->fd, id);
161 if (ret) {
162 fprintf(stderr, "Failed to create vcpu %x\n", id);
163 goto error;
166 vcpu->vcpu_id = id;
167 vcpu->fd = hax_host_open_vcpu(hax_global.vm->id, id);
168 if (hax_invalid_fd(vcpu->fd)) {
169 fprintf(stderr, "Failed to open the vcpu\n");
170 ret = -ENODEV;
171 goto error;
174 hax_global.vm->vcpus[id] = vcpu;
176 ret = hax_host_setup_vcpu_channel(vcpu);
177 if (ret) {
178 fprintf(stderr, "Invalid hax tunnel size\n");
179 ret = -EINVAL;
180 goto error;
182 return 0;
184 error:
185 /* vcpu and tunnel will be closed automatically */
186 if (vcpu && !hax_invalid_fd(vcpu->fd)) {
187 hax_close_fd(vcpu->fd);
190 hax_global.vm->vcpus[id] = NULL;
191 g_free(vcpu);
192 return -1;
195 int hax_vcpu_destroy(CPUState *cpu)
197 struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
199 if (!hax_global.vm) {
200 fprintf(stderr, "vcpu %x destroy failed, vm is null\n", vcpu->vcpu_id);
201 return -1;
204 if (!vcpu) {
205 return 0;
209 * 1. The hax_tunnel is also destroyed when vcpu is destroyed
210 * 2. close fd will cause hax module vcpu be cleaned
212 hax_close_fd(vcpu->fd);
213 hax_global.vm->vcpus[vcpu->vcpu_id] = NULL;
214 g_free(vcpu);
215 return 0;
218 int hax_init_vcpu(CPUState *cpu)
220 int ret;
222 ret = hax_vcpu_create(cpu->cpu_index);
223 if (ret < 0) {
224 fprintf(stderr, "Failed to create HAX vcpu\n");
225 exit(-1);
228 cpu->hax_vcpu = hax_global.vm->vcpus[cpu->cpu_index];
229 cpu->vcpu_dirty = true;
230 qemu_register_reset(hax_reset_vcpu_state, (CPUArchState *) (cpu->env_ptr));
232 return ret;
235 struct hax_vm *hax_vm_create(struct hax_state *hax)
237 struct hax_vm *vm;
238 int vm_id = 0, ret;
240 if (hax_invalid_fd(hax->fd)) {
241 return NULL;
244 if (hax->vm) {
245 return hax->vm;
248 vm = g_new0(struct hax_vm, 1);
250 ret = hax_host_create_vm(hax, &vm_id);
251 if (ret) {
252 fprintf(stderr, "Failed to create vm %x\n", ret);
253 goto error;
255 vm->id = vm_id;
256 vm->fd = hax_host_open_vm(hax, vm_id);
257 if (hax_invalid_fd(vm->fd)) {
258 fprintf(stderr, "Failed to open vm %d\n", vm_id);
259 goto error;
262 hax->vm = vm;
263 return vm;
265 error:
266 g_free(vm);
267 hax->vm = NULL;
268 return NULL;
271 int hax_vm_destroy(struct hax_vm *vm)
273 int i;
275 for (i = 0; i < HAX_MAX_VCPU; i++)
276 if (vm->vcpus[i]) {
277 fprintf(stderr, "VCPU should be cleaned before vm clean\n");
278 return -1;
280 hax_close_fd(vm->fd);
281 g_free(vm);
282 hax_global.vm = NULL;
283 return 0;
286 static void hax_handle_interrupt(CPUState *cpu, int mask)
288 cpu->interrupt_request |= mask;
290 if (!qemu_cpu_is_self(cpu)) {
291 qemu_cpu_kick(cpu);
295 static int hax_init(ram_addr_t ram_size)
297 struct hax_state *hax = NULL;
298 struct hax_qemu_version qversion;
299 int ret;
301 hax = &hax_global;
303 memset(hax, 0, sizeof(struct hax_state));
304 hax->mem_quota = ram_size;
306 hax->fd = hax_mod_open();
307 if (hax_invalid_fd(hax->fd)) {
308 hax->fd = 0;
309 ret = -ENODEV;
310 goto error;
313 ret = hax_get_capability(hax);
315 if (ret) {
316 if (ret != -ENOSPC) {
317 ret = -EINVAL;
319 goto error;
322 if (!hax_version_support(hax)) {
323 ret = -EINVAL;
324 goto error;
327 hax->vm = hax_vm_create(hax);
328 if (!hax->vm) {
329 fprintf(stderr, "Failed to create HAX VM\n");
330 ret = -EINVAL;
331 goto error;
334 hax_memory_init();
336 qversion.cur_version = hax_cur_version;
337 qversion.min_version = hax_min_version;
338 hax_notify_qemu_version(hax->vm->fd, &qversion);
339 cpu_interrupt_handler = hax_handle_interrupt;
341 return ret;
342 error:
343 if (hax->vm) {
344 hax_vm_destroy(hax->vm);
346 if (hax->fd) {
347 hax_mod_close(hax);
350 return ret;
353 static int hax_accel_init(MachineState *ms)
355 int ret = hax_init(ms->ram_size);
357 if (ret && (ret != -ENOSPC)) {
358 fprintf(stderr, "No accelerator found.\n");
359 } else {
360 fprintf(stdout, "HAX is %s and emulator runs in %s mode.\n",
361 !ret ? "working" : "not working",
362 !ret ? "fast virt" : "emulation");
364 return ret;
367 static int hax_handle_fastmmio(CPUArchState *env, struct hax_fastmmio *hft)
369 if (hft->direction < 2) {
370 cpu_physical_memory_rw(hft->gpa, &hft->value, hft->size,
371 hft->direction);
372 } else {
374 * HAX API v4 supports transferring data between two MMIO addresses,
375 * hft->gpa and hft->gpa2 (instructions such as MOVS require this):
376 * hft->direction == 2: gpa ==> gpa2
378 uint64_t value;
379 cpu_physical_memory_read(hft->gpa, &value, hft->size);
380 cpu_physical_memory_write(hft->gpa2, &value, hft->size);
383 return 0;
386 static int hax_handle_io(CPUArchState *env, uint32_t df, uint16_t port,
387 int direction, int size, int count, void *buffer)
389 uint8_t *ptr;
390 int i;
391 MemTxAttrs attrs = { 0 };
393 if (!df) {
394 ptr = (uint8_t *) buffer;
395 } else {
396 ptr = buffer + size * count - size;
398 for (i = 0; i < count; i++) {
399 address_space_rw(&address_space_io, port, attrs,
400 ptr, size, direction == HAX_EXIT_IO_OUT);
401 if (!df) {
402 ptr += size;
403 } else {
404 ptr -= size;
408 return 0;
411 static int hax_vcpu_interrupt(CPUArchState *env)
413 CPUState *cpu = env_cpu(env);
414 struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
415 struct hax_tunnel *ht = vcpu->tunnel;
418 * Try to inject an interrupt if the guest can accept it
419 * Unlike KVM, HAX kernel check for the eflags, instead of qemu
421 if (ht->ready_for_interrupt_injection &&
422 (cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
423 int irq;
425 irq = cpu_get_pic_interrupt(env);
426 if (irq >= 0) {
427 hax_inject_interrupt(env, irq);
428 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
432 /* If we have an interrupt but the guest is not ready to receive an
433 * interrupt, request an interrupt window exit. This will
434 * cause a return to userspace as soon as the guest is ready to
435 * receive interrupts. */
436 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
437 ht->request_interrupt_window = 1;
438 } else {
439 ht->request_interrupt_window = 0;
441 return 0;
444 void hax_raise_event(CPUState *cpu)
446 struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
448 if (!vcpu) {
449 return;
451 vcpu->tunnel->user_event_pending = 1;
455 * Ask hax kernel module to run the CPU for us till:
456 * 1. Guest crash or shutdown
457 * 2. Need QEMU's emulation like guest execute MMIO instruction
458 * 3. Guest execute HLT
459 * 4. QEMU have Signal/event pending
460 * 5. An unknown VMX exit happens
462 static int hax_vcpu_hax_exec(CPUArchState *env)
464 int ret = 0;
465 CPUState *cpu = env_cpu(env);
466 X86CPU *x86_cpu = X86_CPU(cpu);
467 struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
468 struct hax_tunnel *ht = vcpu->tunnel;
470 if (!hax_enabled()) {
471 DPRINTF("Trying to vcpu execute at eip:" TARGET_FMT_lx "\n", env->eip);
472 return 0;
475 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
476 cpu->interrupt_request &= ~CPU_INTERRUPT_POLL;
477 apic_poll_irq(x86_cpu->apic_state);
480 /* After a vcpu is halted (either because it is an AP and has just been
481 * reset, or because it has executed the HLT instruction), it will not be
482 * run (hax_vcpu_run()) until it is unhalted. The next few if blocks check
483 * for events that may change the halted state of this vcpu:
484 * a) Maskable interrupt, when RFLAGS.IF is 1;
485 * Note: env->eflags may not reflect the current RFLAGS state, because
486 * it is not updated after each hax_vcpu_run(). We cannot afford
487 * to fail to recognize any unhalt-by-maskable-interrupt event
488 * (in which case the vcpu will halt forever), and yet we cannot
489 * afford the overhead of hax_vcpu_sync_state(). The current
490 * solution is to err on the side of caution and have the HLT
491 * handler (see case HAX_EXIT_HLT below) unconditionally set the
492 * IF_MASK bit in env->eflags, which, in effect, disables the
493 * RFLAGS.IF check.
494 * b) NMI;
495 * c) INIT signal;
496 * d) SIPI signal.
498 if (((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
499 (env->eflags & IF_MASK)) ||
500 (cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
501 cpu->halted = 0;
504 if (cpu->interrupt_request & CPU_INTERRUPT_INIT) {
505 DPRINTF("\nhax_vcpu_hax_exec: handling INIT for %d\n",
506 cpu->cpu_index);
507 do_cpu_init(x86_cpu);
508 hax_vcpu_sync_state(env, 1);
511 if (cpu->interrupt_request & CPU_INTERRUPT_SIPI) {
512 DPRINTF("hax_vcpu_hax_exec: handling SIPI for %d\n",
513 cpu->cpu_index);
514 hax_vcpu_sync_state(env, 0);
515 do_cpu_sipi(x86_cpu);
516 hax_vcpu_sync_state(env, 1);
519 if (cpu->halted) {
520 /* If this vcpu is halted, we must not ask HAXM to run it. Instead, we
521 * break out of hax_smp_cpu_exec() as if this vcpu had executed HLT.
522 * That way, this vcpu thread will be trapped in qemu_wait_io_event(),
523 * until the vcpu is unhalted.
525 cpu->exception_index = EXCP_HLT;
526 return 0;
529 do {
530 int hax_ret;
532 if (cpu->exit_request) {
533 ret = 1;
534 break;
537 hax_vcpu_interrupt(env);
539 qemu_mutex_unlock_iothread();
540 cpu_exec_start(cpu);
541 hax_ret = hax_vcpu_run(vcpu);
542 cpu_exec_end(cpu);
543 qemu_mutex_lock_iothread();
545 /* Simply continue the vcpu_run if system call interrupted */
546 if (hax_ret == -EINTR || hax_ret == -EAGAIN) {
547 DPRINTF("io window interrupted\n");
548 continue;
551 if (hax_ret < 0) {
552 fprintf(stderr, "vcpu run failed for vcpu %x\n", vcpu->vcpu_id);
553 abort();
555 switch (ht->_exit_status) {
556 case HAX_EXIT_IO:
557 ret = hax_handle_io(env, ht->pio._df, ht->pio._port,
558 ht->pio._direction,
559 ht->pio._size, ht->pio._count, vcpu->iobuf);
560 break;
561 case HAX_EXIT_FAST_MMIO:
562 ret = hax_handle_fastmmio(env, (struct hax_fastmmio *) vcpu->iobuf);
563 break;
564 /* Guest state changed, currently only for shutdown */
565 case HAX_EXIT_STATECHANGE:
566 fprintf(stdout, "VCPU shutdown request\n");
567 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
568 hax_vcpu_sync_state(env, 0);
569 ret = 1;
570 break;
571 case HAX_EXIT_UNKNOWN_VMEXIT:
572 fprintf(stderr, "Unknown VMX exit %x from guest\n",
573 ht->_exit_reason);
574 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
575 hax_vcpu_sync_state(env, 0);
576 cpu_dump_state(cpu, stderr, 0);
577 ret = -1;
578 break;
579 case HAX_EXIT_HLT:
580 if (!(cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
581 !(cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
582 /* hlt instruction with interrupt disabled is shutdown */
583 env->eflags |= IF_MASK;
584 cpu->halted = 1;
585 cpu->exception_index = EXCP_HLT;
586 ret = 1;
588 break;
589 /* these situations will continue to hax module */
590 case HAX_EXIT_INTERRUPT:
591 case HAX_EXIT_PAUSED:
592 break;
593 case HAX_EXIT_MMIO:
594 /* Should not happen on UG system */
595 fprintf(stderr, "HAX: unsupported MMIO emulation\n");
596 ret = -1;
597 break;
598 case HAX_EXIT_REAL:
599 /* Should not happen on UG system */
600 fprintf(stderr, "HAX: unimplemented real mode emulation\n");
601 ret = -1;
602 break;
603 default:
604 fprintf(stderr, "Unknown exit %x from HAX\n", ht->_exit_status);
605 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
606 hax_vcpu_sync_state(env, 0);
607 cpu_dump_state(cpu, stderr, 0);
608 ret = 1;
609 break;
611 } while (!ret);
613 if (cpu->exit_request) {
614 cpu->exit_request = 0;
615 cpu->exception_index = EXCP_INTERRUPT;
617 return ret < 0;
620 static void do_hax_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
622 CPUArchState *env = cpu->env_ptr;
624 hax_arch_get_registers(env);
625 cpu->vcpu_dirty = true;
628 void hax_cpu_synchronize_state(CPUState *cpu)
630 if (!cpu->vcpu_dirty) {
631 run_on_cpu(cpu, do_hax_cpu_synchronize_state, RUN_ON_CPU_NULL);
635 static void do_hax_cpu_synchronize_post_reset(CPUState *cpu,
636 run_on_cpu_data arg)
638 CPUArchState *env = cpu->env_ptr;
640 hax_vcpu_sync_state(env, 1);
641 cpu->vcpu_dirty = false;
644 void hax_cpu_synchronize_post_reset(CPUState *cpu)
646 run_on_cpu(cpu, do_hax_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
649 static void do_hax_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
651 CPUArchState *env = cpu->env_ptr;
653 hax_vcpu_sync_state(env, 1);
654 cpu->vcpu_dirty = false;
657 void hax_cpu_synchronize_post_init(CPUState *cpu)
659 run_on_cpu(cpu, do_hax_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
662 static void do_hax_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
664 cpu->vcpu_dirty = true;
667 void hax_cpu_synchronize_pre_loadvm(CPUState *cpu)
669 run_on_cpu(cpu, do_hax_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
672 int hax_smp_cpu_exec(CPUState *cpu)
674 CPUArchState *env = (CPUArchState *) (cpu->env_ptr);
675 int fatal;
676 int ret;
678 while (1) {
679 if (cpu->exception_index >= EXCP_INTERRUPT) {
680 ret = cpu->exception_index;
681 cpu->exception_index = -1;
682 break;
685 fatal = hax_vcpu_hax_exec(env);
687 if (fatal) {
688 fprintf(stderr, "Unsupported HAX vcpu return\n");
689 abort();
693 return ret;
696 static void set_v8086_seg(struct segment_desc_t *lhs, const SegmentCache *rhs)
698 memset(lhs, 0, sizeof(struct segment_desc_t));
699 lhs->selector = rhs->selector;
700 lhs->base = rhs->base;
701 lhs->limit = rhs->limit;
702 lhs->type = 3;
703 lhs->present = 1;
704 lhs->dpl = 3;
705 lhs->operand_size = 0;
706 lhs->desc = 1;
707 lhs->long_mode = 0;
708 lhs->granularity = 0;
709 lhs->available = 0;
712 static void get_seg(SegmentCache *lhs, const struct segment_desc_t *rhs)
714 lhs->selector = rhs->selector;
715 lhs->base = rhs->base;
716 lhs->limit = rhs->limit;
717 lhs->flags = (rhs->type << DESC_TYPE_SHIFT)
718 | (rhs->present * DESC_P_MASK)
719 | (rhs->dpl << DESC_DPL_SHIFT)
720 | (rhs->operand_size << DESC_B_SHIFT)
721 | (rhs->desc * DESC_S_MASK)
722 | (rhs->long_mode << DESC_L_SHIFT)
723 | (rhs->granularity * DESC_G_MASK) | (rhs->available * DESC_AVL_MASK);
726 static void set_seg(struct segment_desc_t *lhs, const SegmentCache *rhs)
728 unsigned flags = rhs->flags;
730 memset(lhs, 0, sizeof(struct segment_desc_t));
731 lhs->selector = rhs->selector;
732 lhs->base = rhs->base;
733 lhs->limit = rhs->limit;
734 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
735 lhs->present = (flags & DESC_P_MASK) != 0;
736 lhs->dpl = rhs->selector & 3;
737 lhs->operand_size = (flags >> DESC_B_SHIFT) & 1;
738 lhs->desc = (flags & DESC_S_MASK) != 0;
739 lhs->long_mode = (flags >> DESC_L_SHIFT) & 1;
740 lhs->granularity = (flags & DESC_G_MASK) != 0;
741 lhs->available = (flags & DESC_AVL_MASK) != 0;
744 static void hax_getput_reg(uint64_t *hax_reg, target_ulong *qemu_reg, int set)
746 target_ulong reg = *hax_reg;
748 if (set) {
749 *hax_reg = *qemu_reg;
750 } else {
751 *qemu_reg = reg;
755 /* The sregs has been synced with HAX kernel already before this call */
756 static int hax_get_segments(CPUArchState *env, struct vcpu_state_t *sregs)
758 get_seg(&env->segs[R_CS], &sregs->_cs);
759 get_seg(&env->segs[R_DS], &sregs->_ds);
760 get_seg(&env->segs[R_ES], &sregs->_es);
761 get_seg(&env->segs[R_FS], &sregs->_fs);
762 get_seg(&env->segs[R_GS], &sregs->_gs);
763 get_seg(&env->segs[R_SS], &sregs->_ss);
765 get_seg(&env->tr, &sregs->_tr);
766 get_seg(&env->ldt, &sregs->_ldt);
767 env->idt.limit = sregs->_idt.limit;
768 env->idt.base = sregs->_idt.base;
769 env->gdt.limit = sregs->_gdt.limit;
770 env->gdt.base = sregs->_gdt.base;
771 return 0;
774 static int hax_set_segments(CPUArchState *env, struct vcpu_state_t *sregs)
776 if ((env->eflags & VM_MASK)) {
777 set_v8086_seg(&sregs->_cs, &env->segs[R_CS]);
778 set_v8086_seg(&sregs->_ds, &env->segs[R_DS]);
779 set_v8086_seg(&sregs->_es, &env->segs[R_ES]);
780 set_v8086_seg(&sregs->_fs, &env->segs[R_FS]);
781 set_v8086_seg(&sregs->_gs, &env->segs[R_GS]);
782 set_v8086_seg(&sregs->_ss, &env->segs[R_SS]);
783 } else {
784 set_seg(&sregs->_cs, &env->segs[R_CS]);
785 set_seg(&sregs->_ds, &env->segs[R_DS]);
786 set_seg(&sregs->_es, &env->segs[R_ES]);
787 set_seg(&sregs->_fs, &env->segs[R_FS]);
788 set_seg(&sregs->_gs, &env->segs[R_GS]);
789 set_seg(&sregs->_ss, &env->segs[R_SS]);
791 if (env->cr[0] & CR0_PE_MASK) {
792 /* force ss cpl to cs cpl */
793 sregs->_ss.selector = (sregs->_ss.selector & ~3) |
794 (sregs->_cs.selector & 3);
795 sregs->_ss.dpl = sregs->_ss.selector & 3;
799 set_seg(&sregs->_tr, &env->tr);
800 set_seg(&sregs->_ldt, &env->ldt);
801 sregs->_idt.limit = env->idt.limit;
802 sregs->_idt.base = env->idt.base;
803 sregs->_gdt.limit = env->gdt.limit;
804 sregs->_gdt.base = env->gdt.base;
805 return 0;
808 static int hax_sync_vcpu_register(CPUArchState *env, int set)
810 struct vcpu_state_t regs;
811 int ret;
812 memset(&regs, 0, sizeof(struct vcpu_state_t));
814 if (!set) {
815 ret = hax_sync_vcpu_state(env, &regs, 0);
816 if (ret < 0) {
817 return -1;
821 /* generic register */
822 hax_getput_reg(&regs._rax, &env->regs[R_EAX], set);
823 hax_getput_reg(&regs._rbx, &env->regs[R_EBX], set);
824 hax_getput_reg(&regs._rcx, &env->regs[R_ECX], set);
825 hax_getput_reg(&regs._rdx, &env->regs[R_EDX], set);
826 hax_getput_reg(&regs._rsi, &env->regs[R_ESI], set);
827 hax_getput_reg(&regs._rdi, &env->regs[R_EDI], set);
828 hax_getput_reg(&regs._rsp, &env->regs[R_ESP], set);
829 hax_getput_reg(&regs._rbp, &env->regs[R_EBP], set);
830 #ifdef TARGET_X86_64
831 hax_getput_reg(&regs._r8, &env->regs[8], set);
832 hax_getput_reg(&regs._r9, &env->regs[9], set);
833 hax_getput_reg(&regs._r10, &env->regs[10], set);
834 hax_getput_reg(&regs._r11, &env->regs[11], set);
835 hax_getput_reg(&regs._r12, &env->regs[12], set);
836 hax_getput_reg(&regs._r13, &env->regs[13], set);
837 hax_getput_reg(&regs._r14, &env->regs[14], set);
838 hax_getput_reg(&regs._r15, &env->regs[15], set);
839 #endif
840 hax_getput_reg(&regs._rflags, &env->eflags, set);
841 hax_getput_reg(&regs._rip, &env->eip, set);
843 if (set) {
844 regs._cr0 = env->cr[0];
845 regs._cr2 = env->cr[2];
846 regs._cr3 = env->cr[3];
847 regs._cr4 = env->cr[4];
848 hax_set_segments(env, &regs);
849 } else {
850 env->cr[0] = regs._cr0;
851 env->cr[2] = regs._cr2;
852 env->cr[3] = regs._cr3;
853 env->cr[4] = regs._cr4;
854 hax_get_segments(env, &regs);
857 if (set) {
858 ret = hax_sync_vcpu_state(env, &regs, 1);
859 if (ret < 0) {
860 return -1;
863 return 0;
866 static void hax_msr_entry_set(struct vmx_msr *item, uint32_t index,
867 uint64_t value)
869 item->entry = index;
870 item->value = value;
873 static int hax_get_msrs(CPUArchState *env)
875 struct hax_msr_data md;
876 struct vmx_msr *msrs = md.entries;
877 int ret, i, n;
879 n = 0;
880 msrs[n++].entry = MSR_IA32_SYSENTER_CS;
881 msrs[n++].entry = MSR_IA32_SYSENTER_ESP;
882 msrs[n++].entry = MSR_IA32_SYSENTER_EIP;
883 msrs[n++].entry = MSR_IA32_TSC;
884 #ifdef TARGET_X86_64
885 msrs[n++].entry = MSR_EFER;
886 msrs[n++].entry = MSR_STAR;
887 msrs[n++].entry = MSR_LSTAR;
888 msrs[n++].entry = MSR_CSTAR;
889 msrs[n++].entry = MSR_FMASK;
890 msrs[n++].entry = MSR_KERNELGSBASE;
891 #endif
892 md.nr_msr = n;
893 ret = hax_sync_msr(env, &md, 0);
894 if (ret < 0) {
895 return ret;
898 for (i = 0; i < md.done; i++) {
899 switch (msrs[i].entry) {
900 case MSR_IA32_SYSENTER_CS:
901 env->sysenter_cs = msrs[i].value;
902 break;
903 case MSR_IA32_SYSENTER_ESP:
904 env->sysenter_esp = msrs[i].value;
905 break;
906 case MSR_IA32_SYSENTER_EIP:
907 env->sysenter_eip = msrs[i].value;
908 break;
909 case MSR_IA32_TSC:
910 env->tsc = msrs[i].value;
911 break;
912 #ifdef TARGET_X86_64
913 case MSR_EFER:
914 env->efer = msrs[i].value;
915 break;
916 case MSR_STAR:
917 env->star = msrs[i].value;
918 break;
919 case MSR_LSTAR:
920 env->lstar = msrs[i].value;
921 break;
922 case MSR_CSTAR:
923 env->cstar = msrs[i].value;
924 break;
925 case MSR_FMASK:
926 env->fmask = msrs[i].value;
927 break;
928 case MSR_KERNELGSBASE:
929 env->kernelgsbase = msrs[i].value;
930 break;
931 #endif
935 return 0;
938 static int hax_set_msrs(CPUArchState *env)
940 struct hax_msr_data md;
941 struct vmx_msr *msrs;
942 msrs = md.entries;
943 int n = 0;
945 memset(&md, 0, sizeof(struct hax_msr_data));
946 hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
947 hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
948 hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
949 hax_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
950 #ifdef TARGET_X86_64
951 hax_msr_entry_set(&msrs[n++], MSR_EFER, env->efer);
952 hax_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
953 hax_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
954 hax_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
955 hax_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
956 hax_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
957 #endif
958 md.nr_msr = n;
959 md.done = 0;
961 return hax_sync_msr(env, &md, 1);
964 static int hax_get_fpu(CPUArchState *env)
966 struct fx_layout fpu;
967 int i, ret;
969 ret = hax_sync_fpu(env, &fpu, 0);
970 if (ret < 0) {
971 return ret;
974 env->fpstt = (fpu.fsw >> 11) & 7;
975 env->fpus = fpu.fsw;
976 env->fpuc = fpu.fcw;
977 for (i = 0; i < 8; ++i) {
978 env->fptags[i] = !((fpu.ftw >> i) & 1);
980 memcpy(env->fpregs, fpu.st_mm, sizeof(env->fpregs));
982 for (i = 0; i < 8; i++) {
983 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.mmx_1[i][0]);
984 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.mmx_1[i][8]);
985 if (CPU_NB_REGS > 8) {
986 env->xmm_regs[i + 8].ZMM_Q(0) = ldq_p(&fpu.mmx_2[i][0]);
987 env->xmm_regs[i + 8].ZMM_Q(1) = ldq_p(&fpu.mmx_2[i][8]);
990 env->mxcsr = fpu.mxcsr;
992 return 0;
995 static int hax_set_fpu(CPUArchState *env)
997 struct fx_layout fpu;
998 int i;
1000 memset(&fpu, 0, sizeof(fpu));
1001 fpu.fsw = env->fpus & ~(7 << 11);
1002 fpu.fsw |= (env->fpstt & 7) << 11;
1003 fpu.fcw = env->fpuc;
1005 for (i = 0; i < 8; ++i) {
1006 fpu.ftw |= (!env->fptags[i]) << i;
1009 memcpy(fpu.st_mm, env->fpregs, sizeof(env->fpregs));
1010 for (i = 0; i < 8; i++) {
1011 stq_p(&fpu.mmx_1[i][0], env->xmm_regs[i].ZMM_Q(0));
1012 stq_p(&fpu.mmx_1[i][8], env->xmm_regs[i].ZMM_Q(1));
1013 if (CPU_NB_REGS > 8) {
1014 stq_p(&fpu.mmx_2[i][0], env->xmm_regs[i + 8].ZMM_Q(0));
1015 stq_p(&fpu.mmx_2[i][8], env->xmm_regs[i + 8].ZMM_Q(1));
1019 fpu.mxcsr = env->mxcsr;
1021 return hax_sync_fpu(env, &fpu, 1);
1024 static int hax_arch_get_registers(CPUArchState *env)
1026 int ret;
1028 ret = hax_sync_vcpu_register(env, 0);
1029 if (ret < 0) {
1030 return ret;
1033 ret = hax_get_fpu(env);
1034 if (ret < 0) {
1035 return ret;
1038 ret = hax_get_msrs(env);
1039 if (ret < 0) {
1040 return ret;
1043 x86_update_hflags(env);
1044 return 0;
1047 static int hax_arch_set_registers(CPUArchState *env)
1049 int ret;
1050 ret = hax_sync_vcpu_register(env, 1);
1052 if (ret < 0) {
1053 fprintf(stderr, "Failed to sync vcpu reg\n");
1054 return ret;
1056 ret = hax_set_fpu(env);
1057 if (ret < 0) {
1058 fprintf(stderr, "FPU failed\n");
1059 return ret;
1061 ret = hax_set_msrs(env);
1062 if (ret < 0) {
1063 fprintf(stderr, "MSR failed\n");
1064 return ret;
1067 return 0;
1070 static void hax_vcpu_sync_state(CPUArchState *env, int modified)
1072 if (hax_enabled()) {
1073 if (modified) {
1074 hax_arch_set_registers(env);
1075 } else {
1076 hax_arch_get_registers(env);
1082 * much simpler than kvm, at least in first stage because:
1083 * We don't need consider the device pass-through, we don't need
1084 * consider the framebuffer, and we may even remove the bios at all
1086 int hax_sync_vcpus(void)
1088 if (hax_enabled()) {
1089 CPUState *cpu;
1091 cpu = first_cpu;
1092 if (!cpu) {
1093 return 0;
1096 for (; cpu != NULL; cpu = CPU_NEXT(cpu)) {
1097 int ret;
1099 ret = hax_arch_set_registers(cpu->env_ptr);
1100 if (ret < 0) {
1101 return ret;
1106 return 0;
1109 void hax_reset_vcpu_state(void *opaque)
1111 CPUState *cpu;
1112 for (cpu = first_cpu; cpu != NULL; cpu = CPU_NEXT(cpu)) {
1113 cpu->hax_vcpu->tunnel->user_event_pending = 0;
1114 cpu->hax_vcpu->tunnel->ready_for_interrupt_injection = 0;
1118 static void hax_accel_class_init(ObjectClass *oc, void *data)
1120 AccelClass *ac = ACCEL_CLASS(oc);
1121 ac->name = "HAX";
1122 ac->init_machine = hax_accel_init;
1123 ac->allowed = &hax_allowed;
1126 static const TypeInfo hax_accel_type = {
1127 .name = ACCEL_CLASS_NAME("hax"),
1128 .parent = TYPE_ACCEL,
1129 .class_init = hax_accel_class_init,
1132 static void hax_type_init(void)
1134 type_register_static(&hax_accel_type);
1137 type_init(hax_type_init);