4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
30 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
31 #define PAGE_SIZE TARGET_PAGE_SIZE
36 #define dprintf(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #define dprintf(fmt, ...) \
43 typedef struct KVMSlot
45 target_phys_addr_t start_addr
;
46 ram_addr_t memory_size
;
47 ram_addr_t phys_offset
;
52 typedef struct kvm_dirty_log KVMDirtyLog
;
62 #ifdef KVM_CAP_COALESCED_MMIO
63 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
65 int broken_set_mem_region
;
68 #ifdef KVM_CAP_SET_GUEST_DEBUG
69 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
71 int irqchip_in_kernel
;
75 static KVMState
*kvm_state
;
77 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
81 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
82 /* KVM private memory slots */
85 if (s
->slots
[i
].memory_size
== 0)
89 fprintf(stderr
, "%s: no free slot available\n", __func__
);
93 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
94 target_phys_addr_t start_addr
,
95 target_phys_addr_t end_addr
)
99 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
100 KVMSlot
*mem
= &s
->slots
[i
];
102 if (start_addr
== mem
->start_addr
&&
103 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
112 * Find overlapping slot with lowest start address
114 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
115 target_phys_addr_t start_addr
,
116 target_phys_addr_t end_addr
)
118 KVMSlot
*found
= NULL
;
121 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
122 KVMSlot
*mem
= &s
->slots
[i
];
124 if (mem
->memory_size
== 0 ||
125 (found
&& found
->start_addr
< mem
->start_addr
)) {
129 if (end_addr
> mem
->start_addr
&&
130 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
138 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
140 struct kvm_userspace_memory_region mem
;
142 mem
.slot
= slot
->slot
;
143 mem
.guest_phys_addr
= slot
->start_addr
;
144 mem
.memory_size
= slot
->memory_size
;
145 mem
.userspace_addr
= (unsigned long)qemu_get_ram_ptr(slot
->phys_offset
);
146 mem
.flags
= slot
->flags
;
147 if (s
->migration_log
) {
148 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
150 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
153 static void kvm_reset_vcpu(void *opaque
)
155 CPUState
*env
= opaque
;
157 kvm_arch_reset_vcpu(env
);
158 if (kvm_arch_put_registers(env
)) {
159 fprintf(stderr
, "Fatal: kvm vcpu reset failed\n");
164 int kvm_irqchip_in_kernel(void)
166 return kvm_state
->irqchip_in_kernel
;
169 int kvm_pit_in_kernel(void)
171 return kvm_state
->pit_in_kernel
;
175 int kvm_init_vcpu(CPUState
*env
)
177 KVMState
*s
= kvm_state
;
181 dprintf("kvm_init_vcpu\n");
183 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
185 dprintf("kvm_create_vcpu failed\n");
192 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
194 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
198 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
200 if (env
->kvm_run
== MAP_FAILED
) {
202 dprintf("mmap'ing vcpu state failed\n");
206 #ifdef KVM_CAP_COALESCED_MMIO
207 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
)
208 s
->coalesced_mmio_ring
= (void *) env
->kvm_run
+
209 s
->coalesced_mmio
* PAGE_SIZE
;
212 ret
= kvm_arch_init_vcpu(env
);
214 qemu_register_reset(kvm_reset_vcpu
, env
);
215 kvm_arch_reset_vcpu(env
);
216 ret
= kvm_arch_put_registers(env
);
223 * dirty pages logging control
225 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
226 ram_addr_t size
, int flags
, int mask
)
228 KVMState
*s
= kvm_state
;
229 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
233 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
234 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
235 (target_phys_addr_t
)(phys_addr
+ size
- 1));
239 old_flags
= mem
->flags
;
241 flags
= (mem
->flags
& ~mask
) | flags
;
244 /* If nothing changed effectively, no need to issue ioctl */
245 if (s
->migration_log
) {
246 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
248 if (flags
== old_flags
) {
252 return kvm_set_user_memory_region(s
, mem
);
255 int kvm_log_start(target_phys_addr_t phys_addr
, ram_addr_t size
)
257 return kvm_dirty_pages_log_change(phys_addr
, size
,
258 KVM_MEM_LOG_DIRTY_PAGES
,
259 KVM_MEM_LOG_DIRTY_PAGES
);
262 int kvm_log_stop(target_phys_addr_t phys_addr
, ram_addr_t size
)
264 return kvm_dirty_pages_log_change(phys_addr
, size
,
266 KVM_MEM_LOG_DIRTY_PAGES
);
269 static int kvm_set_migration_log(int enable
)
271 KVMState
*s
= kvm_state
;
275 s
->migration_log
= enable
;
277 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
280 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
283 err
= kvm_set_user_memory_region(s
, mem
);
291 static int test_le_bit(unsigned long nr
, unsigned char *addr
)
293 return (addr
[nr
>> 3] >> (nr
& 7)) & 1;
297 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
298 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
299 * This means all bits are set to dirty.
301 * @start_add: start of logged region.
302 * @end_addr: end of logged region.
304 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
305 target_phys_addr_t end_addr
)
307 KVMState
*s
= kvm_state
;
308 unsigned long size
, allocated_size
= 0;
309 target_phys_addr_t phys_addr
;
315 d
.dirty_bitmap
= NULL
;
316 while (start_addr
< end_addr
) {
317 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
322 size
= ((mem
->memory_size
>> TARGET_PAGE_BITS
) + 7) / 8;
323 if (!d
.dirty_bitmap
) {
324 d
.dirty_bitmap
= qemu_malloc(size
);
325 } else if (size
> allocated_size
) {
326 d
.dirty_bitmap
= qemu_realloc(d
.dirty_bitmap
, size
);
328 allocated_size
= size
;
329 memset(d
.dirty_bitmap
, 0, allocated_size
);
333 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
334 dprintf("ioctl failed %d\n", errno
);
339 for (phys_addr
= mem
->start_addr
, addr
= mem
->phys_offset
;
340 phys_addr
< mem
->start_addr
+ mem
->memory_size
;
341 phys_addr
+= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
342 unsigned char *bitmap
= (unsigned char *)d
.dirty_bitmap
;
343 unsigned nr
= (phys_addr
- mem
->start_addr
) >> TARGET_PAGE_BITS
;
345 if (test_le_bit(nr
, bitmap
)) {
346 cpu_physical_memory_set_dirty(addr
);
349 start_addr
= phys_addr
;
351 qemu_free(d
.dirty_bitmap
);
356 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
359 #ifdef KVM_CAP_COALESCED_MMIO
360 KVMState
*s
= kvm_state
;
362 if (s
->coalesced_mmio
) {
363 struct kvm_coalesced_mmio_zone zone
;
368 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
375 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
378 #ifdef KVM_CAP_COALESCED_MMIO
379 KVMState
*s
= kvm_state
;
381 if (s
->coalesced_mmio
) {
382 struct kvm_coalesced_mmio_zone zone
;
387 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
394 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
398 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
406 static void kvm_set_phys_mem(target_phys_addr_t start_addr
,
408 ram_addr_t phys_offset
)
410 KVMState
*s
= kvm_state
;
411 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
415 if (start_addr
& ~TARGET_PAGE_MASK
) {
416 if (flags
>= IO_MEM_UNASSIGNED
) {
417 if (!kvm_lookup_overlapping_slot(s
, start_addr
,
418 start_addr
+ size
)) {
421 fprintf(stderr
, "Unaligned split of a KVM memory slot\n");
423 fprintf(stderr
, "Only page-aligned memory slots supported\n");
428 /* KVM does not support read-only slots */
429 phys_offset
&= ~IO_MEM_ROM
;
432 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
437 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
438 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
439 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
440 /* The new slot fits into the existing one and comes with
441 * identical parameters - nothing to be done. */
447 /* unregister the overlapping slot */
448 mem
->memory_size
= 0;
449 err
= kvm_set_user_memory_region(s
, mem
);
451 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
452 __func__
, strerror(-err
));
456 /* Workaround for older KVM versions: we can't join slots, even not by
457 * unregistering the previous ones and then registering the larger
458 * slot. We have to maintain the existing fragmentation. Sigh.
460 * This workaround assumes that the new slot starts at the same
461 * address as the first existing one. If not or if some overlapping
462 * slot comes around later, we will fail (not seen in practice so far)
463 * - and actually require a recent KVM version. */
464 if (s
->broken_set_mem_region
&&
465 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
466 flags
< IO_MEM_UNASSIGNED
) {
467 mem
= kvm_alloc_slot(s
);
468 mem
->memory_size
= old
.memory_size
;
469 mem
->start_addr
= old
.start_addr
;
470 mem
->phys_offset
= old
.phys_offset
;
473 err
= kvm_set_user_memory_region(s
, mem
);
475 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
480 start_addr
+= old
.memory_size
;
481 phys_offset
+= old
.memory_size
;
482 size
-= old
.memory_size
;
486 /* register prefix slot */
487 if (old
.start_addr
< start_addr
) {
488 mem
= kvm_alloc_slot(s
);
489 mem
->memory_size
= start_addr
- old
.start_addr
;
490 mem
->start_addr
= old
.start_addr
;
491 mem
->phys_offset
= old
.phys_offset
;
494 err
= kvm_set_user_memory_region(s
, mem
);
496 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
497 __func__
, strerror(-err
));
502 /* register suffix slot */
503 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
504 ram_addr_t size_delta
;
506 mem
= kvm_alloc_slot(s
);
507 mem
->start_addr
= start_addr
+ size
;
508 size_delta
= mem
->start_addr
- old
.start_addr
;
509 mem
->memory_size
= old
.memory_size
- size_delta
;
510 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
513 err
= kvm_set_user_memory_region(s
, mem
);
515 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
516 __func__
, strerror(-err
));
522 /* in case the KVM bug workaround already "consumed" the new slot */
526 /* KVM does not need to know about this memory */
527 if (flags
>= IO_MEM_UNASSIGNED
)
530 mem
= kvm_alloc_slot(s
);
531 mem
->memory_size
= size
;
532 mem
->start_addr
= start_addr
;
533 mem
->phys_offset
= phys_offset
;
536 err
= kvm_set_user_memory_region(s
, mem
);
538 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
544 static void kvm_client_set_memory(struct CPUPhysMemoryClient
*client
,
545 target_phys_addr_t start_addr
,
547 ram_addr_t phys_offset
)
549 kvm_set_phys_mem(start_addr
, size
, phys_offset
);
552 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient
*client
,
553 target_phys_addr_t start_addr
,
554 target_phys_addr_t end_addr
)
556 return kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
559 static int kvm_client_migration_log(struct CPUPhysMemoryClient
*client
,
562 return kvm_set_migration_log(enable
);
565 static CPUPhysMemoryClient kvm_cpu_phys_memory_client
= {
566 .set_memory
= kvm_client_set_memory
,
567 .sync_dirty_bitmap
= kvm_client_sync_dirty_bitmap
,
568 .migration_log
= kvm_client_migration_log
,
571 int kvm_init(int smp_cpus
)
573 static const char upgrade_note
[] =
574 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
575 "(see http://sourceforge.net/projects/kvm).\n";
581 fprintf(stderr
, "No SMP KVM support, use '-smp 1'\n");
585 s
= qemu_mallocz(sizeof(KVMState
));
587 #ifdef KVM_CAP_SET_GUEST_DEBUG
588 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
590 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++)
591 s
->slots
[i
].slot
= i
;
594 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
596 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
601 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
602 if (ret
< KVM_API_VERSION
) {
605 fprintf(stderr
, "kvm version too old\n");
609 if (ret
> KVM_API_VERSION
) {
611 fprintf(stderr
, "kvm version not supported\n");
615 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
619 /* initially, KVM allocated its own memory and we had to jump through
620 * hooks to make phys_ram_base point to this. Modern versions of KVM
621 * just use a user allocated buffer so we can use regular pages
622 * unmodified. Make sure we have a sufficiently modern version of KVM.
624 if (!kvm_check_extension(s
, KVM_CAP_USER_MEMORY
)) {
626 fprintf(stderr
, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
631 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
632 * destroyed properly. Since we rely on this capability, refuse to work
633 * with any kernel without this capability. */
634 if (!kvm_check_extension(s
, KVM_CAP_DESTROY_MEMORY_REGION_WORKS
)) {
638 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
643 s
->coalesced_mmio
= 0;
644 #ifdef KVM_CAP_COALESCED_MMIO
645 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
646 s
->coalesced_mmio_ring
= NULL
;
649 s
->broken_set_mem_region
= 1;
650 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
651 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
653 s
->broken_set_mem_region
= 0;
658 #ifdef KVM_CAP_VCPU_EVENTS
659 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
662 ret
= kvm_arch_init(s
, smp_cpus
);
667 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client
);
683 static int kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
689 for (i
= 0; i
< count
; i
++) {
690 if (direction
== KVM_EXIT_IO_IN
) {
693 stb_p(ptr
, cpu_inb(port
));
696 stw_p(ptr
, cpu_inw(port
));
699 stl_p(ptr
, cpu_inl(port
));
705 cpu_outb(port
, ldub_p(ptr
));
708 cpu_outw(port
, lduw_p(ptr
));
711 cpu_outl(port
, ldl_p(ptr
));
722 void kvm_flush_coalesced_mmio_buffer(void)
724 #ifdef KVM_CAP_COALESCED_MMIO
725 KVMState
*s
= kvm_state
;
726 if (s
->coalesced_mmio_ring
) {
727 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
728 while (ring
->first
!= ring
->last
) {
729 struct kvm_coalesced_mmio
*ent
;
731 ent
= &ring
->coalesced_mmio
[ring
->first
];
733 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
735 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
741 void kvm_cpu_synchronize_state(CPUState
*env
)
743 if (!env
->kvm_vcpu_dirty
) {
744 kvm_arch_get_registers(env
);
745 env
->kvm_vcpu_dirty
= 1;
749 int kvm_cpu_exec(CPUState
*env
)
751 struct kvm_run
*run
= env
->kvm_run
;
754 dprintf("kvm_cpu_exec()\n");
757 #ifndef CONFIG_IOTHREAD
758 if (env
->exit_request
) {
759 dprintf("interrupt exit requested\n");
765 if (env
->kvm_vcpu_dirty
) {
766 kvm_arch_put_registers(env
);
767 env
->kvm_vcpu_dirty
= 0;
770 kvm_arch_pre_run(env
, run
);
771 qemu_mutex_unlock_iothread();
772 ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
773 qemu_mutex_lock_iothread();
774 kvm_arch_post_run(env
, run
);
776 if (ret
== -EINTR
|| ret
== -EAGAIN
) {
778 dprintf("io window exit\n");
784 dprintf("kvm run failed %s\n", strerror(-ret
));
788 kvm_flush_coalesced_mmio_buffer();
790 ret
= 0; /* exit loop */
791 switch (run
->exit_reason
) {
793 dprintf("handle_io\n");
794 ret
= kvm_handle_io(run
->io
.port
,
795 (uint8_t *)run
+ run
->io
.data_offset
,
801 dprintf("handle_mmio\n");
802 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
808 case KVM_EXIT_IRQ_WINDOW_OPEN
:
809 dprintf("irq_window_open\n");
811 case KVM_EXIT_SHUTDOWN
:
812 dprintf("shutdown\n");
813 qemu_system_reset_request();
816 case KVM_EXIT_UNKNOWN
:
817 dprintf("kvm_exit_unknown\n");
819 case KVM_EXIT_FAIL_ENTRY
:
820 dprintf("kvm_exit_fail_entry\n");
822 case KVM_EXIT_EXCEPTION
:
823 dprintf("kvm_exit_exception\n");
826 dprintf("kvm_exit_debug\n");
827 #ifdef KVM_CAP_SET_GUEST_DEBUG
828 if (kvm_arch_debug(&run
->debug
.arch
)) {
829 gdb_set_stop_cpu(env
);
831 env
->exception_index
= EXCP_DEBUG
;
834 /* re-enter, this exception was guest-internal */
836 #endif /* KVM_CAP_SET_GUEST_DEBUG */
839 dprintf("kvm_arch_handle_exit\n");
840 ret
= kvm_arch_handle_exit(env
, run
);
845 if (env
->exit_request
) {
846 env
->exit_request
= 0;
847 env
->exception_index
= EXCP_INTERRUPT
;
853 int kvm_ioctl(KVMState
*s
, int type
, ...)
860 arg
= va_arg(ap
, void *);
863 ret
= ioctl(s
->fd
, type
, arg
);
870 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
877 arg
= va_arg(ap
, void *);
880 ret
= ioctl(s
->vmfd
, type
, arg
);
887 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
894 arg
= va_arg(ap
, void *);
897 ret
= ioctl(env
->kvm_fd
, type
, arg
);
904 int kvm_has_sync_mmu(void)
906 #ifdef KVM_CAP_SYNC_MMU
907 KVMState
*s
= kvm_state
;
909 return kvm_check_extension(s
, KVM_CAP_SYNC_MMU
);
915 int kvm_has_vcpu_events(void)
917 return kvm_state
->vcpu_events
;
920 void kvm_setup_guest_memory(void *start
, size_t size
)
922 if (!kvm_has_sync_mmu()) {
924 int ret
= madvise(start
, size
, MADV_DONTFORK
);
932 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
938 #ifdef KVM_CAP_SET_GUEST_DEBUG
939 static void on_vcpu(CPUState
*env
, void (*func
)(void *data
), void *data
)
941 #ifdef CONFIG_IOTHREAD
942 if (env
!= cpu_single_env
) {
949 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
952 struct kvm_sw_breakpoint
*bp
;
954 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
961 int kvm_sw_breakpoints_active(CPUState
*env
)
963 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
966 struct kvm_set_guest_debug_data
{
967 struct kvm_guest_debug dbg
;
972 static void kvm_invoke_set_guest_debug(void *data
)
974 struct kvm_set_guest_debug_data
*dbg_data
= data
;
975 CPUState
*env
= dbg_data
->env
;
977 if (env
->kvm_vcpu_dirty
) {
978 kvm_arch_put_registers(env
);
979 env
->kvm_vcpu_dirty
= 0;
981 dbg_data
->err
= kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
984 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
986 struct kvm_set_guest_debug_data data
;
988 data
.dbg
.control
= 0;
989 if (env
->singlestep_enabled
)
990 data
.dbg
.control
= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
992 kvm_arch_update_guest_debug(env
, &data
.dbg
);
993 data
.dbg
.control
|= reinject_trap
;
996 on_vcpu(env
, kvm_invoke_set_guest_debug
, &data
);
1000 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1001 target_ulong len
, int type
)
1003 struct kvm_sw_breakpoint
*bp
;
1007 if (type
== GDB_BREAKPOINT_SW
) {
1008 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1014 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
1020 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
1026 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
1029 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1034 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1035 err
= kvm_update_guest_debug(env
, 0);
1042 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1043 target_ulong len
, int type
)
1045 struct kvm_sw_breakpoint
*bp
;
1049 if (type
== GDB_BREAKPOINT_SW
) {
1050 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1054 if (bp
->use_count
> 1) {
1059 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1063 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1066 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1071 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1072 err
= kvm_update_guest_debug(env
, 0);
1079 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1081 struct kvm_sw_breakpoint
*bp
, *next
;
1082 KVMState
*s
= current_env
->kvm_state
;
1085 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1086 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1087 /* Try harder to find a CPU that currently sees the breakpoint. */
1088 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1089 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
1094 kvm_arch_remove_all_hw_breakpoints();
1096 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1097 kvm_update_guest_debug(env
, 0);
1100 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1102 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1107 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1108 target_ulong len
, int type
)
1113 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1114 target_ulong len
, int type
)
1119 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1122 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1124 int kvm_set_signal_mask(CPUState
*env
, const sigset_t
*sigset
)
1126 struct kvm_signal_mask
*sigmask
;
1130 return kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, NULL
);
1132 sigmask
= qemu_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
1135 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
1136 r
= kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, sigmask
);