9pfs: make pdu_marshal() and pdu_unmarshal() static functions
[qemu.git] / hw / ppc / spapr_pci.c
blob88797b3d36223646481e3763e6e79367b856f1f9
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "hw/hw.h"
30 #include "hw/sysbus.h"
31 #include "hw/pci/pci.h"
32 #include "hw/pci/msi.h"
33 #include "hw/pci/msix.h"
34 #include "hw/pci/pci_host.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/pci-host/spapr.h"
37 #include "exec/address-spaces.h"
38 #include "exec/ram_addr.h"
39 #include <libfdt.h>
40 #include "trace.h"
41 #include "qemu/error-report.h"
42 #include "qapi/qmp/qerror.h"
43 #include "hw/ppc/fdt.h"
44 #include "hw/pci/pci_bridge.h"
45 #include "hw/pci/pci_bus.h"
46 #include "hw/pci/pci_ids.h"
47 #include "hw/ppc/spapr_drc.h"
48 #include "sysemu/device_tree.h"
49 #include "sysemu/kvm.h"
50 #include "sysemu/hostmem.h"
51 #include "sysemu/numa.h"
53 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
54 #define RTAS_QUERY_FN 0
55 #define RTAS_CHANGE_FN 1
56 #define RTAS_RESET_FN 2
57 #define RTAS_CHANGE_MSI_FN 3
58 #define RTAS_CHANGE_MSIX_FN 4
60 /* Interrupt types to return on RTAS_CHANGE_* */
61 #define RTAS_TYPE_MSI 1
62 #define RTAS_TYPE_MSIX 2
64 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
66 sPAPRPHBState *sphb;
68 QLIST_FOREACH(sphb, &spapr->phbs, list) {
69 if (sphb->buid != buid) {
70 continue;
72 return sphb;
75 return NULL;
78 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
79 uint32_t config_addr)
81 sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
82 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
83 int bus_num = (config_addr >> 16) & 0xFF;
84 int devfn = (config_addr >> 8) & 0xFF;
86 if (!phb) {
87 return NULL;
90 return pci_find_device(phb->bus, bus_num, devfn);
93 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
95 /* This handles the encoding of extended config space addresses */
96 return ((arg >> 20) & 0xf00) | (arg & 0xff);
99 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
100 uint32_t addr, uint32_t size,
101 target_ulong rets)
103 PCIDevice *pci_dev;
104 uint32_t val;
106 if ((size != 1) && (size != 2) && (size != 4)) {
107 /* access must be 1, 2 or 4 bytes */
108 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
109 return;
112 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
113 addr = rtas_pci_cfgaddr(addr);
115 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
116 /* Access must be to a valid device, within bounds and
117 * naturally aligned */
118 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
119 return;
122 val = pci_host_config_read_common(pci_dev, addr,
123 pci_config_size(pci_dev), size);
125 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
126 rtas_st(rets, 1, val);
129 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
130 uint32_t token, uint32_t nargs,
131 target_ulong args,
132 uint32_t nret, target_ulong rets)
134 uint64_t buid;
135 uint32_t size, addr;
137 if ((nargs != 4) || (nret != 2)) {
138 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
139 return;
142 buid = rtas_ldq(args, 1);
143 size = rtas_ld(args, 3);
144 addr = rtas_ld(args, 0);
146 finish_read_pci_config(spapr, buid, addr, size, rets);
149 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
150 uint32_t token, uint32_t nargs,
151 target_ulong args,
152 uint32_t nret, target_ulong rets)
154 uint32_t size, addr;
156 if ((nargs != 2) || (nret != 2)) {
157 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
158 return;
161 size = rtas_ld(args, 1);
162 addr = rtas_ld(args, 0);
164 finish_read_pci_config(spapr, 0, addr, size, rets);
167 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
168 uint32_t addr, uint32_t size,
169 uint32_t val, target_ulong rets)
171 PCIDevice *pci_dev;
173 if ((size != 1) && (size != 2) && (size != 4)) {
174 /* access must be 1, 2 or 4 bytes */
175 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
176 return;
179 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
180 addr = rtas_pci_cfgaddr(addr);
182 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
183 /* Access must be to a valid device, within bounds and
184 * naturally aligned */
185 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
186 return;
189 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
190 val, size);
192 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
195 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
196 uint32_t token, uint32_t nargs,
197 target_ulong args,
198 uint32_t nret, target_ulong rets)
200 uint64_t buid;
201 uint32_t val, size, addr;
203 if ((nargs != 5) || (nret != 1)) {
204 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
205 return;
208 buid = rtas_ldq(args, 1);
209 val = rtas_ld(args, 4);
210 size = rtas_ld(args, 3);
211 addr = rtas_ld(args, 0);
213 finish_write_pci_config(spapr, buid, addr, size, val, rets);
216 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
217 uint32_t token, uint32_t nargs,
218 target_ulong args,
219 uint32_t nret, target_ulong rets)
221 uint32_t val, size, addr;
223 if ((nargs != 3) || (nret != 1)) {
224 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
225 return;
229 val = rtas_ld(args, 2);
230 size = rtas_ld(args, 1);
231 addr = rtas_ld(args, 0);
233 finish_write_pci_config(spapr, 0, addr, size, val, rets);
237 * Set MSI/MSIX message data.
238 * This is required for msi_notify()/msix_notify() which
239 * will write at the addresses via spapr_msi_write().
241 * If hwaddr == 0, all entries will have .data == first_irq i.e.
242 * table will be reset.
244 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
245 unsigned first_irq, unsigned req_num)
247 unsigned i;
248 MSIMessage msg = { .address = addr, .data = first_irq };
250 if (!msix) {
251 msi_set_message(pdev, msg);
252 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
253 return;
256 for (i = 0; i < req_num; ++i) {
257 msix_set_message(pdev, i, msg);
258 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
259 if (addr) {
260 ++msg.data;
265 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
266 uint32_t token, uint32_t nargs,
267 target_ulong args, uint32_t nret,
268 target_ulong rets)
270 uint32_t config_addr = rtas_ld(args, 0);
271 uint64_t buid = rtas_ldq(args, 1);
272 unsigned int func = rtas_ld(args, 3);
273 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
274 unsigned int seq_num = rtas_ld(args, 5);
275 unsigned int ret_intr_type;
276 unsigned int irq, max_irqs = 0;
277 sPAPRPHBState *phb = NULL;
278 PCIDevice *pdev = NULL;
279 spapr_pci_msi *msi;
280 int *config_addr_key;
281 Error *err = NULL;
283 switch (func) {
284 case RTAS_CHANGE_MSI_FN:
285 case RTAS_CHANGE_FN:
286 ret_intr_type = RTAS_TYPE_MSI;
287 break;
288 case RTAS_CHANGE_MSIX_FN:
289 ret_intr_type = RTAS_TYPE_MSIX;
290 break;
291 default:
292 error_report("rtas_ibm_change_msi(%u) is not implemented", func);
293 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
294 return;
297 /* Fins sPAPRPHBState */
298 phb = spapr_pci_find_phb(spapr, buid);
299 if (phb) {
300 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
302 if (!phb || !pdev) {
303 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
304 return;
307 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
309 /* Releasing MSIs */
310 if (!req_num) {
311 if (!msi) {
312 trace_spapr_pci_msi("Releasing wrong config", config_addr);
313 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
314 return;
317 spapr_irq_free(spapr, msi->first_irq, msi->num);
318 if (msi_present(pdev)) {
319 spapr_msi_setmsg(pdev, 0, false, 0, 0);
321 if (msix_present(pdev)) {
322 spapr_msi_setmsg(pdev, 0, true, 0, 0);
324 g_hash_table_remove(phb->msi, &config_addr);
326 trace_spapr_pci_msi("Released MSIs", config_addr);
327 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
328 rtas_st(rets, 1, 0);
329 return;
332 /* Enabling MSI */
334 /* Check if the device supports as many IRQs as requested */
335 if (ret_intr_type == RTAS_TYPE_MSI) {
336 max_irqs = msi_nr_vectors_allocated(pdev);
337 } else if (ret_intr_type == RTAS_TYPE_MSIX) {
338 max_irqs = pdev->msix_entries_nr;
340 if (!max_irqs) {
341 error_report("Requested interrupt type %d is not enabled for device %x",
342 ret_intr_type, config_addr);
343 rtas_st(rets, 0, -1); /* Hardware error */
344 return;
346 /* Correct the number if the guest asked for too many */
347 if (req_num > max_irqs) {
348 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
349 req_num = max_irqs;
350 irq = 0; /* to avoid misleading trace */
351 goto out;
354 /* Allocate MSIs */
355 irq = spapr_irq_alloc_block(spapr, req_num, false,
356 ret_intr_type == RTAS_TYPE_MSI, &err);
357 if (err) {
358 error_reportf_err(err, "Can't allocate MSIs for device %x: ",
359 config_addr);
360 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
361 return;
364 /* Release previous MSIs */
365 if (msi) {
366 spapr_irq_free(spapr, msi->first_irq, msi->num);
367 g_hash_table_remove(phb->msi, &config_addr);
370 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
371 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
372 irq, req_num);
374 /* Add MSI device to cache */
375 msi = g_new(spapr_pci_msi, 1);
376 msi->first_irq = irq;
377 msi->num = req_num;
378 config_addr_key = g_new(int, 1);
379 *config_addr_key = config_addr;
380 g_hash_table_insert(phb->msi, config_addr_key, msi);
382 out:
383 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
384 rtas_st(rets, 1, req_num);
385 rtas_st(rets, 2, ++seq_num);
386 if (nret > 3) {
387 rtas_st(rets, 3, ret_intr_type);
390 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
393 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
394 sPAPRMachineState *spapr,
395 uint32_t token,
396 uint32_t nargs,
397 target_ulong args,
398 uint32_t nret,
399 target_ulong rets)
401 uint32_t config_addr = rtas_ld(args, 0);
402 uint64_t buid = rtas_ldq(args, 1);
403 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
404 sPAPRPHBState *phb = NULL;
405 PCIDevice *pdev = NULL;
406 spapr_pci_msi *msi;
408 /* Find sPAPRPHBState */
409 phb = spapr_pci_find_phb(spapr, buid);
410 if (phb) {
411 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
413 if (!phb || !pdev) {
414 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
415 return;
418 /* Find device descriptor and start IRQ */
419 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
420 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
421 trace_spapr_pci_msi("Failed to return vector", config_addr);
422 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
423 return;
425 intr_src_num = msi->first_irq + ioa_intr_num;
426 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
427 intr_src_num);
429 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
430 rtas_st(rets, 1, intr_src_num);
431 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
434 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
435 sPAPRMachineState *spapr,
436 uint32_t token, uint32_t nargs,
437 target_ulong args, uint32_t nret,
438 target_ulong rets)
440 sPAPRPHBState *sphb;
441 uint32_t addr, option;
442 uint64_t buid;
443 int ret;
445 if ((nargs != 4) || (nret != 1)) {
446 goto param_error_exit;
449 buid = rtas_ldq(args, 1);
450 addr = rtas_ld(args, 0);
451 option = rtas_ld(args, 3);
453 sphb = spapr_pci_find_phb(spapr, buid);
454 if (!sphb) {
455 goto param_error_exit;
458 if (!spapr_phb_eeh_available(sphb)) {
459 goto param_error_exit;
462 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
463 rtas_st(rets, 0, ret);
464 return;
466 param_error_exit:
467 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
470 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
471 sPAPRMachineState *spapr,
472 uint32_t token, uint32_t nargs,
473 target_ulong args, uint32_t nret,
474 target_ulong rets)
476 sPAPRPHBState *sphb;
477 PCIDevice *pdev;
478 uint32_t addr, option;
479 uint64_t buid;
481 if ((nargs != 4) || (nret != 2)) {
482 goto param_error_exit;
485 buid = rtas_ldq(args, 1);
486 sphb = spapr_pci_find_phb(spapr, buid);
487 if (!sphb) {
488 goto param_error_exit;
491 if (!spapr_phb_eeh_available(sphb)) {
492 goto param_error_exit;
496 * We always have PE address of form "00BB0001". "BB"
497 * represents the bus number of PE's primary bus.
499 option = rtas_ld(args, 3);
500 switch (option) {
501 case RTAS_GET_PE_ADDR:
502 addr = rtas_ld(args, 0);
503 pdev = spapr_pci_find_dev(spapr, buid, addr);
504 if (!pdev) {
505 goto param_error_exit;
508 rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
509 break;
510 case RTAS_GET_PE_MODE:
511 rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
512 break;
513 default:
514 goto param_error_exit;
517 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
518 return;
520 param_error_exit:
521 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
524 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
525 sPAPRMachineState *spapr,
526 uint32_t token, uint32_t nargs,
527 target_ulong args, uint32_t nret,
528 target_ulong rets)
530 sPAPRPHBState *sphb;
531 uint64_t buid;
532 int state, ret;
534 if ((nargs != 3) || (nret != 4 && nret != 5)) {
535 goto param_error_exit;
538 buid = rtas_ldq(args, 1);
539 sphb = spapr_pci_find_phb(spapr, buid);
540 if (!sphb) {
541 goto param_error_exit;
544 if (!spapr_phb_eeh_available(sphb)) {
545 goto param_error_exit;
548 ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
549 rtas_st(rets, 0, ret);
550 if (ret != RTAS_OUT_SUCCESS) {
551 return;
554 rtas_st(rets, 1, state);
555 rtas_st(rets, 2, RTAS_EEH_SUPPORT);
556 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
557 if (nret >= 5) {
558 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
560 return;
562 param_error_exit:
563 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
566 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
567 sPAPRMachineState *spapr,
568 uint32_t token, uint32_t nargs,
569 target_ulong args, uint32_t nret,
570 target_ulong rets)
572 sPAPRPHBState *sphb;
573 uint32_t option;
574 uint64_t buid;
575 int ret;
577 if ((nargs != 4) || (nret != 1)) {
578 goto param_error_exit;
581 buid = rtas_ldq(args, 1);
582 option = rtas_ld(args, 3);
583 sphb = spapr_pci_find_phb(spapr, buid);
584 if (!sphb) {
585 goto param_error_exit;
588 if (!spapr_phb_eeh_available(sphb)) {
589 goto param_error_exit;
592 ret = spapr_phb_vfio_eeh_reset(sphb, option);
593 rtas_st(rets, 0, ret);
594 return;
596 param_error_exit:
597 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
600 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
601 sPAPRMachineState *spapr,
602 uint32_t token, uint32_t nargs,
603 target_ulong args, uint32_t nret,
604 target_ulong rets)
606 sPAPRPHBState *sphb;
607 uint64_t buid;
608 int ret;
610 if ((nargs != 3) || (nret != 1)) {
611 goto param_error_exit;
614 buid = rtas_ldq(args, 1);
615 sphb = spapr_pci_find_phb(spapr, buid);
616 if (!sphb) {
617 goto param_error_exit;
620 if (!spapr_phb_eeh_available(sphb)) {
621 goto param_error_exit;
624 ret = spapr_phb_vfio_eeh_configure(sphb);
625 rtas_st(rets, 0, ret);
626 return;
628 param_error_exit:
629 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
632 /* To support it later */
633 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
634 sPAPRMachineState *spapr,
635 uint32_t token, uint32_t nargs,
636 target_ulong args, uint32_t nret,
637 target_ulong rets)
639 sPAPRPHBState *sphb;
640 int option;
641 uint64_t buid;
643 if ((nargs != 8) || (nret != 1)) {
644 goto param_error_exit;
647 buid = rtas_ldq(args, 1);
648 sphb = spapr_pci_find_phb(spapr, buid);
649 if (!sphb) {
650 goto param_error_exit;
653 if (!spapr_phb_eeh_available(sphb)) {
654 goto param_error_exit;
657 option = rtas_ld(args, 7);
658 switch (option) {
659 case RTAS_SLOT_TEMP_ERR_LOG:
660 case RTAS_SLOT_PERM_ERR_LOG:
661 break;
662 default:
663 goto param_error_exit;
666 /* We don't have error log yet */
667 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
668 return;
670 param_error_exit:
671 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
674 static int pci_spapr_swizzle(int slot, int pin)
676 return (slot + pin) % PCI_NUM_PINS;
679 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
682 * Here we need to convert pci_dev + irq_num to some unique value
683 * which is less than number of IRQs on the specific bus (4). We
684 * use standard PCI swizzling, that is (slot number + pin number)
685 * % 4.
687 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
690 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
693 * Here we use the number returned by pci_spapr_map_irq to find a
694 * corresponding qemu_irq.
696 sPAPRPHBState *phb = opaque;
698 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
699 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
702 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
704 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
705 PCIINTxRoute route;
707 route.mode = PCI_INTX_ENABLED;
708 route.irq = sphb->lsi_table[pin].irq;
710 return route;
714 * MSI/MSIX memory region implementation.
715 * The handler handles both MSI and MSIX.
716 * The vector number is encoded in least bits in data.
718 static void spapr_msi_write(void *opaque, hwaddr addr,
719 uint64_t data, unsigned size)
721 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
722 uint32_t irq = data;
724 trace_spapr_pci_msi_write(addr, data, irq);
726 qemu_irq_pulse(spapr_qirq(spapr, irq));
729 static const MemoryRegionOps spapr_msi_ops = {
730 /* There is no .read as the read result is undefined by PCI spec */
731 .read = NULL,
732 .write = spapr_msi_write,
733 .endianness = DEVICE_LITTLE_ENDIAN
737 * PHB PCI device
739 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
741 sPAPRPHBState *phb = opaque;
743 return &phb->iommu_as;
746 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
748 char *path = NULL, *buf = NULL, *host = NULL;
750 /* Get the PCI VFIO host id */
751 host = object_property_get_str(OBJECT(pdev), "host", NULL);
752 if (!host) {
753 goto err_out;
756 /* Construct the path of the file that will give us the DT location */
757 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
758 g_free(host);
759 if (!g_file_get_contents(path, &buf, NULL, NULL)) {
760 goto err_out;
762 g_free(path);
764 /* Construct and read from host device tree the loc-code */
765 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
766 g_free(buf);
767 if (!g_file_get_contents(path, &buf, NULL, NULL)) {
768 goto err_out;
770 return buf;
772 err_out:
773 g_free(path);
774 return NULL;
777 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
779 char *buf;
780 const char *devtype = "qemu";
781 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
783 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
784 buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
785 if (buf) {
786 return buf;
788 devtype = "vfio";
791 * For emulated devices and VFIO-failure case, make up
792 * the loc-code.
794 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
795 devtype, pdev->name, sphb->index, busnr,
796 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
797 return buf;
800 /* Macros to operate with address in OF binding to PCI */
801 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
802 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
803 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
804 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
805 #define b_ss(x) b_x((x), 24, 2) /* the space code */
806 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
807 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
808 #define b_fff(x) b_x((x), 8, 3) /* function number */
809 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
811 /* for 'reg'/'assigned-addresses' OF properties */
812 #define RESOURCE_CELLS_SIZE 2
813 #define RESOURCE_CELLS_ADDRESS 3
815 typedef struct ResourceFields {
816 uint32_t phys_hi;
817 uint32_t phys_mid;
818 uint32_t phys_lo;
819 uint32_t size_hi;
820 uint32_t size_lo;
821 } QEMU_PACKED ResourceFields;
823 typedef struct ResourceProps {
824 ResourceFields reg[8];
825 ResourceFields assigned[7];
826 uint32_t reg_len;
827 uint32_t assigned_len;
828 } ResourceProps;
830 /* fill in the 'reg'/'assigned-resources' OF properties for
831 * a PCI device. 'reg' describes resource requirements for a
832 * device's IO/MEM regions, 'assigned-addresses' describes the
833 * actual resource assignments.
835 * the properties are arrays of ('phys-addr', 'size') pairs describing
836 * the addressable regions of the PCI device, where 'phys-addr' is a
837 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
838 * (phys.hi, phys.mid, phys.lo), and 'size' is a
839 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
841 * phys.hi = 0xYYXXXXZZ, where:
842 * 0xYY = npt000ss
843 * ||| |
844 * ||| +-- space code
845 * ||| |
846 * ||| + 00 if configuration space
847 * ||| + 01 if IO region,
848 * ||| + 10 if 32-bit MEM region
849 * ||| + 11 if 64-bit MEM region
850 * |||
851 * ||+------ for non-relocatable IO: 1 if aliased
852 * || for relocatable IO: 1 if below 64KB
853 * || for MEM: 1 if below 1MB
854 * |+------- 1 if region is prefetchable
855 * +-------- 1 if region is non-relocatable
856 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
857 * bits respectively
858 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
859 * to the region
861 * phys.mid and phys.lo correspond respectively to the hi/lo portions
862 * of the actual address of the region.
864 * how the phys-addr/size values are used differ slightly between
865 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
866 * an additional description for the config space region of the
867 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
868 * to describe the region as relocatable, with an address-mapping
869 * that corresponds directly to the PHB's address space for the
870 * resource. 'assigned-addresses' always has n=1 set with an absolute
871 * address assigned for the resource. in general, 'assigned-addresses'
872 * won't be populated, since addresses for PCI devices are generally
873 * unmapped initially and left to the guest to assign.
875 * note also that addresses defined in these properties are, at least
876 * for PAPR guests, relative to the PHBs IO/MEM windows, and
877 * correspond directly to the addresses in the BARs.
879 * in accordance with PCI Bus Binding to Open Firmware,
880 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
881 * Appendix C.
883 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
885 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
886 uint32_t dev_id = (b_bbbbbbbb(bus_num) |
887 b_ddddd(PCI_SLOT(d->devfn)) |
888 b_fff(PCI_FUNC(d->devfn)));
889 ResourceFields *reg, *assigned;
890 int i, reg_idx = 0, assigned_idx = 0;
892 /* config space region */
893 reg = &rp->reg[reg_idx++];
894 reg->phys_hi = cpu_to_be32(dev_id);
895 reg->phys_mid = 0;
896 reg->phys_lo = 0;
897 reg->size_hi = 0;
898 reg->size_lo = 0;
900 for (i = 0; i < PCI_NUM_REGIONS; i++) {
901 if (!d->io_regions[i].size) {
902 continue;
905 reg = &rp->reg[reg_idx++];
907 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
908 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
909 reg->phys_hi |= cpu_to_be32(b_ss(1));
910 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
911 reg->phys_hi |= cpu_to_be32(b_ss(3));
912 } else {
913 reg->phys_hi |= cpu_to_be32(b_ss(2));
915 reg->phys_mid = 0;
916 reg->phys_lo = 0;
917 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
918 reg->size_lo = cpu_to_be32(d->io_regions[i].size);
920 if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
921 continue;
924 assigned = &rp->assigned[assigned_idx++];
925 assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
926 assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
927 assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
928 assigned->size_hi = reg->size_hi;
929 assigned->size_lo = reg->size_lo;
932 rp->reg_len = reg_idx * sizeof(ResourceFields);
933 rp->assigned_len = assigned_idx * sizeof(ResourceFields);
936 typedef struct PCIClass PCIClass;
937 typedef struct PCISubClass PCISubClass;
938 typedef struct PCIIFace PCIIFace;
940 struct PCIIFace {
941 int iface;
942 const char *name;
945 struct PCISubClass {
946 int subclass;
947 const char *name;
948 const PCIIFace *iface;
951 struct PCIClass {
952 const char *name;
953 const PCISubClass *subc;
956 static const PCISubClass undef_subclass[] = {
957 { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
958 { 0xFF, NULL, NULL },
961 static const PCISubClass mass_subclass[] = {
962 { PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
963 { PCI_CLASS_STORAGE_IDE, "ide", NULL },
964 { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
965 { PCI_CLASS_STORAGE_IPI, "ipi", NULL },
966 { PCI_CLASS_STORAGE_RAID, "raid", NULL },
967 { PCI_CLASS_STORAGE_ATA, "ata", NULL },
968 { PCI_CLASS_STORAGE_SATA, "sata", NULL },
969 { PCI_CLASS_STORAGE_SAS, "sas", NULL },
970 { 0xFF, NULL, NULL },
973 static const PCISubClass net_subclass[] = {
974 { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
975 { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
976 { PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
977 { PCI_CLASS_NETWORK_ATM, "atm", NULL },
978 { PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
979 { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
980 { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
981 { 0xFF, NULL, NULL },
984 static const PCISubClass displ_subclass[] = {
985 { PCI_CLASS_DISPLAY_VGA, "vga", NULL },
986 { PCI_CLASS_DISPLAY_XGA, "xga", NULL },
987 { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
988 { 0xFF, NULL, NULL },
991 static const PCISubClass media_subclass[] = {
992 { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
993 { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
994 { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
995 { 0xFF, NULL, NULL },
998 static const PCISubClass mem_subclass[] = {
999 { PCI_CLASS_MEMORY_RAM, "memory", NULL },
1000 { PCI_CLASS_MEMORY_FLASH, "flash", NULL },
1001 { 0xFF, NULL, NULL },
1004 static const PCISubClass bridg_subclass[] = {
1005 { PCI_CLASS_BRIDGE_HOST, "host", NULL },
1006 { PCI_CLASS_BRIDGE_ISA, "isa", NULL },
1007 { PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
1008 { PCI_CLASS_BRIDGE_MC, "mca", NULL },
1009 { PCI_CLASS_BRIDGE_PCI, "pci", NULL },
1010 { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
1011 { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
1012 { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
1013 { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
1014 { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
1015 { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
1016 { 0xFF, NULL, NULL },
1019 static const PCISubClass comm_subclass[] = {
1020 { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
1021 { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
1022 { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
1023 { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
1024 { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
1025 { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
1026 { 0xFF, NULL, NULL, },
1029 static const PCIIFace pic_iface[] = {
1030 { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
1031 { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
1032 { 0xFF, NULL },
1035 static const PCISubClass sys_subclass[] = {
1036 { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
1037 { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
1038 { PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
1039 { PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
1040 { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
1041 { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
1042 { 0xFF, NULL, NULL },
1045 static const PCISubClass inp_subclass[] = {
1046 { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
1047 { PCI_CLASS_INPUT_PEN, "pen", NULL },
1048 { PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
1049 { PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
1050 { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
1051 { 0xFF, NULL, NULL },
1054 static const PCISubClass dock_subclass[] = {
1055 { PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
1056 { 0xFF, NULL, NULL },
1059 static const PCISubClass cpu_subclass[] = {
1060 { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
1061 { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
1062 { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
1063 { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
1064 { 0xFF, NULL, NULL },
1067 static const PCIIFace usb_iface[] = {
1068 { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
1069 { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
1070 { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
1071 { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
1072 { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
1073 { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
1074 { 0xFF, NULL },
1077 static const PCISubClass ser_subclass[] = {
1078 { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
1079 { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
1080 { PCI_CLASS_SERIAL_SSA, "ssa", NULL },
1081 { PCI_CLASS_SERIAL_USB, "usb", usb_iface },
1082 { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
1083 { PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
1084 { PCI_CLASS_SERIAL_IB, "infiniband", NULL },
1085 { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
1086 { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
1087 { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
1088 { 0xFF, NULL, NULL },
1091 static const PCISubClass wrl_subclass[] = {
1092 { PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
1093 { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
1094 { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
1095 { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
1096 { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
1097 { 0xFF, NULL, NULL },
1100 static const PCISubClass sat_subclass[] = {
1101 { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
1102 { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
1103 { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
1104 { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
1105 { 0xFF, NULL, NULL },
1108 static const PCISubClass crypt_subclass[] = {
1109 { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
1110 { PCI_CLASS_CRYPT_ENTERTAINMENT,
1111 "entertainment-encryption", NULL },
1112 { 0xFF, NULL, NULL },
1115 static const PCISubClass spc_subclass[] = {
1116 { PCI_CLASS_SP_DPIO, "dpio", NULL },
1117 { PCI_CLASS_SP_PERF, "counter", NULL },
1118 { PCI_CLASS_SP_SYNCH, "measurement", NULL },
1119 { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
1120 { 0xFF, NULL, NULL },
1123 static const PCIClass pci_classes[] = {
1124 { "legacy-device", undef_subclass },
1125 { "mass-storage", mass_subclass },
1126 { "network", net_subclass },
1127 { "display", displ_subclass, },
1128 { "multimedia-device", media_subclass },
1129 { "memory-controller", mem_subclass },
1130 { "unknown-bridge", bridg_subclass },
1131 { "communication-controller", comm_subclass},
1132 { "system-peripheral", sys_subclass },
1133 { "input-controller", inp_subclass },
1134 { "docking-station", dock_subclass },
1135 { "cpu", cpu_subclass },
1136 { "serial-bus", ser_subclass },
1137 { "wireless-controller", wrl_subclass },
1138 { "intelligent-io", NULL },
1139 { "satellite-device", sat_subclass },
1140 { "encryption", crypt_subclass },
1141 { "data-processing-controller", spc_subclass },
1144 static const char *pci_find_device_name(uint8_t class, uint8_t subclass,
1145 uint8_t iface)
1147 const PCIClass *pclass;
1148 const PCISubClass *psubclass;
1149 const PCIIFace *piface;
1150 const char *name;
1152 if (class >= ARRAY_SIZE(pci_classes)) {
1153 return "pci";
1156 pclass = pci_classes + class;
1157 name = pclass->name;
1159 if (pclass->subc == NULL) {
1160 return name;
1163 psubclass = pclass->subc;
1164 while ((psubclass->subclass & 0xff) != 0xff) {
1165 if ((psubclass->subclass & 0xff) == subclass) {
1166 name = psubclass->name;
1167 break;
1169 psubclass++;
1172 piface = psubclass->iface;
1173 if (piface == NULL) {
1174 return name;
1176 while ((piface->iface & 0xff) != 0xff) {
1177 if ((piface->iface & 0xff) == iface) {
1178 name = piface->name;
1179 break;
1181 piface++;
1184 return name;
1187 static gchar *pci_get_node_name(PCIDevice *dev)
1189 int slot = PCI_SLOT(dev->devfn);
1190 int func = PCI_FUNC(dev->devfn);
1191 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1192 const char *name;
1194 name = pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
1195 ccode & 0xff);
1197 if (func != 0) {
1198 return g_strdup_printf("%s@%x,%x", name, slot, func);
1199 } else {
1200 return g_strdup_printf("%s@%x", name, slot);
1204 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1205 PCIDevice *pdev);
1207 static void spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
1208 sPAPRPHBState *sphb)
1210 ResourceProps rp;
1211 bool is_bridge = false;
1212 int pci_status;
1213 char *buf = NULL;
1214 uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
1215 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1216 uint32_t max_msi, max_msix;
1218 if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
1219 PCI_HEADER_TYPE_BRIDGE) {
1220 is_bridge = true;
1223 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
1224 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
1225 pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
1226 _FDT(fdt_setprop_cell(fdt, offset, "device-id",
1227 pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
1228 _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
1229 pci_default_read_config(dev, PCI_REVISION_ID, 1)));
1230 _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
1231 if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
1232 _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
1233 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
1236 if (!is_bridge) {
1237 _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
1238 pci_default_read_config(dev, PCI_MIN_GNT, 1)));
1239 _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
1240 pci_default_read_config(dev, PCI_MAX_LAT, 1)));
1243 if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
1244 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
1245 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
1248 if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
1249 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
1250 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
1253 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
1254 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
1256 /* the following fdt cells are masked off the pci status register */
1257 pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1258 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1259 PCI_STATUS_DEVSEL_MASK & pci_status));
1261 if (pci_status & PCI_STATUS_FAST_BACK) {
1262 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1264 if (pci_status & PCI_STATUS_66MHZ) {
1265 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1267 if (pci_status & PCI_STATUS_UDF) {
1268 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1271 _FDT(fdt_setprop_string(fdt, offset, "name",
1272 pci_find_device_name((ccode >> 16) & 0xff,
1273 (ccode >> 8) & 0xff,
1274 ccode & 0xff)));
1276 buf = spapr_phb_get_loc_code(sphb, dev);
1277 _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", buf));
1278 g_free(buf);
1280 if (drc_index) {
1281 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1284 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1285 RESOURCE_CELLS_ADDRESS));
1286 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1287 RESOURCE_CELLS_SIZE));
1289 max_msi = msi_nr_vectors_allocated(dev);
1290 if (max_msi) {
1291 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1293 max_msix = dev->msix_entries_nr;
1294 if (max_msix) {
1295 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1298 populate_resource_props(dev, &rp);
1299 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1300 _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1301 (uint8_t *)rp.assigned, rp.assigned_len));
1303 if (sphb->pcie_ecs && pci_is_express(dev)) {
1304 _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
1308 /* create OF node for pci device and required OF DT properties */
1309 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1310 void *fdt, int node_offset)
1312 int offset;
1313 gchar *nodename;
1315 nodename = pci_get_node_name(dev);
1316 _FDT(offset = fdt_add_subnode(fdt, node_offset, nodename));
1317 g_free(nodename);
1319 spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1321 return offset;
1324 /* Callback to be called during DRC release. */
1325 void spapr_phb_remove_pci_device_cb(DeviceState *dev)
1327 /* some version guests do not wait for completion of a device
1328 * cleanup (generally done asynchronously by the kernel) before
1329 * signaling to QEMU that the device is safe, but instead sleep
1330 * for some 'safe' period of time. unfortunately on a busy host
1331 * this sleep isn't guaranteed to be long enough, resulting in
1332 * bad things like IRQ lines being left asserted during final
1333 * device removal. to deal with this we call reset just prior
1334 * to finalizing the device, which will put the device back into
1335 * an 'idle' state, as the device cleanup code expects.
1337 pci_device_reset(PCI_DEVICE(dev));
1338 object_unparent(OBJECT(dev));
1341 static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb,
1342 uint32_t busnr,
1343 int32_t devfn)
1345 return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
1346 (phb->index << 16) | (busnr << 8) | devfn);
1349 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1350 PCIDevice *pdev)
1352 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1353 return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
1356 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1357 PCIDevice *pdev)
1359 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1361 if (!drc) {
1362 return 0;
1365 return spapr_drc_index(drc);
1368 static void spapr_pci_plug(HotplugHandler *plug_handler,
1369 DeviceState *plugged_dev, Error **errp)
1371 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1372 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1373 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1374 Error *local_err = NULL;
1375 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1376 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1377 void *fdt = NULL;
1378 int fdt_start_offset, fdt_size;
1380 /* if DR is disabled we don't need to do anything in the case of
1381 * hotplug or coldplug callbacks
1383 if (!phb->dr_enabled) {
1384 /* if this is a hotplug operation initiated by the user
1385 * we need to let them know it's not enabled
1387 if (plugged_dev->hotplugged) {
1388 error_setg(&local_err, QERR_BUS_NO_HOTPLUG,
1389 object_get_typename(OBJECT(phb)));
1391 goto out;
1394 g_assert(drc);
1396 /* Following the QEMU convention used for PCIe multifunction
1397 * hotplug, we do not allow functions to be hotplugged to a
1398 * slot that already has function 0 present
1400 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1401 PCI_FUNC(pdev->devfn) != 0) {
1402 error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s,"
1403 " additional functions can no longer be exposed to guest.",
1404 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1405 goto out;
1408 fdt = create_device_tree(&fdt_size);
1409 fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1411 spapr_drc_attach(drc, DEVICE(pdev), fdt, fdt_start_offset, &local_err);
1412 if (local_err) {
1413 goto out;
1416 /* If this is function 0, signal hotplug for all the device functions.
1417 * Otherwise defer sending the hotplug event.
1419 if (!spapr_drc_hotplugged(plugged_dev)) {
1420 spapr_drc_reset(drc);
1421 } else if (PCI_FUNC(pdev->devfn) == 0) {
1422 int i;
1424 for (i = 0; i < 8; i++) {
1425 sPAPRDRConnector *func_drc;
1426 sPAPRDRConnectorClass *func_drck;
1427 sPAPRDREntitySense state;
1429 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1430 PCI_DEVFN(slotnr, i));
1431 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1432 state = func_drck->dr_entity_sense(func_drc);
1434 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1435 spapr_hotplug_req_add_by_index(func_drc);
1440 out:
1441 if (local_err) {
1442 error_propagate(errp, local_err);
1443 g_free(fdt);
1447 static void spapr_pci_unplug_request(HotplugHandler *plug_handler,
1448 DeviceState *plugged_dev, Error **errp)
1450 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1451 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1452 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1454 if (!phb->dr_enabled) {
1455 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1456 object_get_typename(OBJECT(phb)));
1457 return;
1460 g_assert(drc);
1461 g_assert(drc->dev == plugged_dev);
1463 if (!spapr_drc_unplug_requested(drc)) {
1464 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1465 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1466 sPAPRDRConnector *func_drc;
1467 sPAPRDRConnectorClass *func_drck;
1468 sPAPRDREntitySense state;
1469 int i;
1471 /* ensure any other present functions are pending unplug */
1472 if (PCI_FUNC(pdev->devfn) == 0) {
1473 for (i = 1; i < 8; i++) {
1474 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1475 PCI_DEVFN(slotnr, i));
1476 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1477 state = func_drck->dr_entity_sense(func_drc);
1478 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1479 && !spapr_drc_unplug_requested(func_drc)) {
1480 error_setg(errp,
1481 "PCI: slot %d, function %d still present. "
1482 "Must unplug all non-0 functions first.",
1483 slotnr, i);
1484 return;
1489 spapr_drc_detach(drc);
1491 /* if this isn't func 0, defer unplug event. otherwise signal removal
1492 * for all present functions
1494 if (PCI_FUNC(pdev->devfn) == 0) {
1495 for (i = 7; i >= 0; i--) {
1496 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1497 PCI_DEVFN(slotnr, i));
1498 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1499 state = func_drck->dr_entity_sense(func_drc);
1500 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1501 spapr_hotplug_req_remove_by_index(func_drc);
1508 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1510 /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user
1511 * tries to add a sPAPR PHB to a non-pseries machine.
1513 sPAPRMachineState *spapr =
1514 (sPAPRMachineState *) object_dynamic_cast(qdev_get_machine(),
1515 TYPE_SPAPR_MACHINE);
1516 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1517 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1518 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1519 char *namebuf;
1520 int i;
1521 PCIBus *bus;
1522 uint64_t msi_window_size = 4096;
1523 sPAPRTCETable *tcet;
1524 const unsigned windows_supported =
1525 sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1;
1527 if (!spapr) {
1528 error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine");
1529 return;
1532 if (sphb->index != (uint32_t)-1) {
1533 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1534 Error *local_err = NULL;
1536 smc->phb_placement(spapr, sphb->index,
1537 &sphb->buid, &sphb->io_win_addr,
1538 &sphb->mem_win_addr, &sphb->mem64_win_addr,
1539 windows_supported, sphb->dma_liobn, &local_err);
1540 if (local_err) {
1541 error_propagate(errp, local_err);
1542 return;
1544 } else {
1545 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
1546 return;
1549 if (sphb->mem64_win_size != 0) {
1550 if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1551 error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
1552 " (max 2 GiB)", sphb->mem_win_size);
1553 return;
1556 /* 64-bit window defaults to identity mapping */
1557 sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
1558 } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1560 * For compatibility with old configuration, if no 64-bit MMIO
1561 * window is specified, but the ordinary (32-bit) memory
1562 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1563 * window, with a 64-bit MMIO window following on immediately
1564 * afterwards
1566 sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
1567 sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
1568 sphb->mem64_win_pciaddr =
1569 SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
1570 sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
1573 if (spapr_pci_find_phb(spapr, sphb->buid)) {
1574 error_setg(errp, "PCI host bridges must have unique BUIDs");
1575 return;
1578 if (sphb->numa_node != -1 &&
1579 (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) {
1580 error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
1581 return;
1584 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1586 /* Initialize memory regions */
1587 namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname);
1588 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1589 g_free(namebuf);
1591 namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname);
1592 memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
1593 namebuf, &sphb->memspace,
1594 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1595 g_free(namebuf);
1596 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1597 &sphb->mem32window);
1599 if (sphb->mem64_win_size != 0) {
1600 namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname);
1601 memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
1602 namebuf, &sphb->memspace,
1603 sphb->mem64_win_pciaddr, sphb->mem64_win_size);
1604 g_free(namebuf);
1606 memory_region_add_subregion(get_system_memory(),
1607 sphb->mem64_win_addr,
1608 &sphb->mem64window);
1611 /* Initialize IO regions */
1612 namebuf = g_strdup_printf("%s.io", sphb->dtbusname);
1613 memory_region_init(&sphb->iospace, OBJECT(sphb),
1614 namebuf, SPAPR_PCI_IO_WIN_SIZE);
1615 g_free(namebuf);
1617 namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname);
1618 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1619 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1620 g_free(namebuf);
1621 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1622 &sphb->iowindow);
1624 bus = pci_register_bus(dev, NULL,
1625 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1626 &sphb->memspace, &sphb->iospace,
1627 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1628 phb->bus = bus;
1629 qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1632 * Initialize PHB address space.
1633 * By default there will be at least one subregion for default
1634 * 32bit DMA window.
1635 * Later the guest might want to create another DMA window
1636 * which will become another memory subregion.
1638 namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname);
1639 memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1640 namebuf, UINT64_MAX);
1641 g_free(namebuf);
1642 address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1643 sphb->dtbusname);
1646 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1647 * we need to allocate some memory to catch those writes coming
1648 * from msi_notify()/msix_notify().
1649 * As MSIMessage:addr is going to be the same and MSIMessage:data
1650 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1651 * be used.
1653 * For KVM we want to ensure that this memory is a full page so that
1654 * our memory slot is of page size granularity.
1656 #ifdef CONFIG_KVM
1657 if (kvm_enabled()) {
1658 msi_window_size = getpagesize();
1660 #endif
1662 memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr,
1663 "msi", msi_window_size);
1664 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1665 &sphb->msiwindow);
1667 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1669 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1671 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1673 /* Initialize the LSI table */
1674 for (i = 0; i < PCI_NUM_PINS; i++) {
1675 uint32_t irq;
1676 Error *local_err = NULL;
1678 irq = spapr_irq_alloc_block(spapr, 1, true, false, &local_err);
1679 if (local_err) {
1680 error_propagate(errp, local_err);
1681 error_prepend(errp, "can't allocate LSIs: ");
1682 return;
1685 sphb->lsi_table[i].irq = irq;
1688 /* allocate connectors for child PCI devices */
1689 if (sphb->dr_enabled) {
1690 for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1691 spapr_dr_connector_new(OBJECT(phb), TYPE_SPAPR_DRC_PCI,
1692 (sphb->index << 16) | i);
1696 /* DMA setup */
1697 if (((sphb->page_size_mask & qemu_getrampagesize()) == 0)
1698 && kvm_enabled()) {
1699 error_report("System page size 0x%lx is not enabled in page_size_mask "
1700 "(0x%"PRIx64"). Performance may be slow",
1701 qemu_getrampagesize(), sphb->page_size_mask);
1704 for (i = 0; i < windows_supported; ++i) {
1705 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
1706 if (!tcet) {
1707 error_setg(errp, "Creating window#%d failed for %s",
1708 i, sphb->dtbusname);
1709 return;
1711 memory_region_add_subregion(&sphb->iommu_root, 0,
1712 spapr_tce_get_iommu(tcet));
1715 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1718 static int spapr_phb_children_reset(Object *child, void *opaque)
1720 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1722 if (dev) {
1723 device_reset(dev);
1726 return 0;
1729 void spapr_phb_dma_reset(sPAPRPHBState *sphb)
1731 int i;
1732 sPAPRTCETable *tcet;
1734 for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
1735 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1737 if (tcet && tcet->nb_table) {
1738 spapr_tce_table_disable(tcet);
1742 /* Register default 32bit DMA window */
1743 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
1744 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
1745 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
1748 static void spapr_phb_reset(DeviceState *qdev)
1750 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
1752 spapr_phb_dma_reset(sphb);
1754 /* Reset the IOMMU state */
1755 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1757 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
1758 spapr_phb_vfio_reset(qdev);
1762 static Property spapr_phb_properties[] = {
1763 DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1764 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1765 SPAPR_PCI_MEM32_WIN_SIZE),
1766 DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState, mem64_win_size,
1767 SPAPR_PCI_MEM64_WIN_SIZE),
1768 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1769 SPAPR_PCI_IO_WIN_SIZE),
1770 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1771 true),
1772 /* Default DMA window is 0..1GB */
1773 DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
1774 DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
1775 DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr,
1776 0x800000000000000ULL),
1777 DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true),
1778 DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask,
1779 (1ULL << 12) | (1ULL << 16)),
1780 DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1),
1781 DEFINE_PROP_BOOL("pre-2.8-migration", sPAPRPHBState,
1782 pre_2_8_migration, false),
1783 DEFINE_PROP_BOOL("pcie-extended-configuration-space", sPAPRPHBState,
1784 pcie_ecs, true),
1785 DEFINE_PROP_END_OF_LIST(),
1788 static const VMStateDescription vmstate_spapr_pci_lsi = {
1789 .name = "spapr_pci/lsi",
1790 .version_id = 1,
1791 .minimum_version_id = 1,
1792 .fields = (VMStateField[]) {
1793 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL),
1795 VMSTATE_END_OF_LIST()
1799 static const VMStateDescription vmstate_spapr_pci_msi = {
1800 .name = "spapr_pci/msi",
1801 .version_id = 1,
1802 .minimum_version_id = 1,
1803 .fields = (VMStateField []) {
1804 VMSTATE_UINT32(key, spapr_pci_msi_mig),
1805 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1806 VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1807 VMSTATE_END_OF_LIST()
1811 static int spapr_pci_pre_save(void *opaque)
1813 sPAPRPHBState *sphb = opaque;
1814 GHashTableIter iter;
1815 gpointer key, value;
1816 int i;
1818 if (sphb->pre_2_8_migration) {
1819 sphb->mig_liobn = sphb->dma_liobn[0];
1820 sphb->mig_mem_win_addr = sphb->mem_win_addr;
1821 sphb->mig_mem_win_size = sphb->mem_win_size;
1822 sphb->mig_io_win_addr = sphb->io_win_addr;
1823 sphb->mig_io_win_size = sphb->io_win_size;
1825 if ((sphb->mem64_win_size != 0)
1826 && (sphb->mem64_win_addr
1827 == (sphb->mem_win_addr + sphb->mem_win_size))) {
1828 sphb->mig_mem_win_size += sphb->mem64_win_size;
1832 g_free(sphb->msi_devs);
1833 sphb->msi_devs = NULL;
1834 sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1835 if (!sphb->msi_devs_num) {
1836 return 0;
1838 sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
1840 g_hash_table_iter_init(&iter, sphb->msi);
1841 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1842 sphb->msi_devs[i].key = *(uint32_t *) key;
1843 sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1846 return 0;
1849 static int spapr_pci_post_load(void *opaque, int version_id)
1851 sPAPRPHBState *sphb = opaque;
1852 gpointer key, value;
1853 int i;
1855 for (i = 0; i < sphb->msi_devs_num; ++i) {
1856 key = g_memdup(&sphb->msi_devs[i].key,
1857 sizeof(sphb->msi_devs[i].key));
1858 value = g_memdup(&sphb->msi_devs[i].value,
1859 sizeof(sphb->msi_devs[i].value));
1860 g_hash_table_insert(sphb->msi, key, value);
1862 g_free(sphb->msi_devs);
1863 sphb->msi_devs = NULL;
1864 sphb->msi_devs_num = 0;
1866 return 0;
1869 static bool pre_2_8_migration(void *opaque, int version_id)
1871 sPAPRPHBState *sphb = opaque;
1873 return sphb->pre_2_8_migration;
1876 static const VMStateDescription vmstate_spapr_pci = {
1877 .name = "spapr_pci",
1878 .version_id = 2,
1879 .minimum_version_id = 2,
1880 .pre_save = spapr_pci_pre_save,
1881 .post_load = spapr_pci_post_load,
1882 .fields = (VMStateField[]) {
1883 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState, NULL),
1884 VMSTATE_UINT32_TEST(mig_liobn, sPAPRPHBState, pre_2_8_migration),
1885 VMSTATE_UINT64_TEST(mig_mem_win_addr, sPAPRPHBState, pre_2_8_migration),
1886 VMSTATE_UINT64_TEST(mig_mem_win_size, sPAPRPHBState, pre_2_8_migration),
1887 VMSTATE_UINT64_TEST(mig_io_win_addr, sPAPRPHBState, pre_2_8_migration),
1888 VMSTATE_UINT64_TEST(mig_io_win_size, sPAPRPHBState, pre_2_8_migration),
1889 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1890 vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1891 VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1892 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1893 vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1894 VMSTATE_END_OF_LIST()
1898 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1899 PCIBus *rootbus)
1901 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1903 return sphb->dtbusname;
1906 static void spapr_phb_class_init(ObjectClass *klass, void *data)
1908 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1909 DeviceClass *dc = DEVICE_CLASS(klass);
1910 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1912 hc->root_bus_path = spapr_phb_root_bus_path;
1913 dc->realize = spapr_phb_realize;
1914 dc->props = spapr_phb_properties;
1915 dc->reset = spapr_phb_reset;
1916 dc->vmsd = &vmstate_spapr_pci;
1917 /* Supported by TYPE_SPAPR_MACHINE */
1918 dc->user_creatable = true;
1919 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1920 hp->plug = spapr_pci_plug;
1921 hp->unplug_request = spapr_pci_unplug_request;
1924 static const TypeInfo spapr_phb_info = {
1925 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
1926 .parent = TYPE_PCI_HOST_BRIDGE,
1927 .instance_size = sizeof(sPAPRPHBState),
1928 .class_init = spapr_phb_class_init,
1929 .interfaces = (InterfaceInfo[]) {
1930 { TYPE_HOTPLUG_HANDLER },
1935 PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1937 DeviceState *dev;
1939 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1940 qdev_prop_set_uint32(dev, "index", index);
1941 qdev_init_nofail(dev);
1943 return PCI_HOST_BRIDGE(dev);
1946 typedef struct sPAPRFDT {
1947 void *fdt;
1948 int node_off;
1949 sPAPRPHBState *sphb;
1950 } sPAPRFDT;
1952 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
1953 void *opaque)
1955 PCIBus *sec_bus;
1956 sPAPRFDT *p = opaque;
1957 int offset;
1958 sPAPRFDT s_fdt;
1960 offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
1961 if (!offset) {
1962 error_report("Failed to create pci child device tree node");
1963 return;
1966 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1967 PCI_HEADER_TYPE_BRIDGE)) {
1968 return;
1971 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1972 if (!sec_bus) {
1973 return;
1976 s_fdt.fdt = p->fdt;
1977 s_fdt.node_off = offset;
1978 s_fdt.sphb = p->sphb;
1979 pci_for_each_device_reverse(sec_bus, pci_bus_num(sec_bus),
1980 spapr_populate_pci_devices_dt,
1981 &s_fdt);
1984 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
1985 void *opaque)
1987 unsigned int *bus_no = opaque;
1988 unsigned int primary = *bus_no;
1989 unsigned int subordinate = 0xff;
1990 PCIBus *sec_bus = NULL;
1992 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1993 PCI_HEADER_TYPE_BRIDGE)) {
1994 return;
1997 (*bus_no)++;
1998 pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
1999 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
2000 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2002 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2003 if (!sec_bus) {
2004 return;
2007 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
2008 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
2009 spapr_phb_pci_enumerate_bridge, bus_no);
2010 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2013 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
2015 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2016 unsigned int bus_no = 0;
2018 pci_for_each_device(bus, pci_bus_num(bus),
2019 spapr_phb_pci_enumerate_bridge,
2020 &bus_no);
2024 int spapr_populate_pci_dt(sPAPRPHBState *phb,
2025 uint32_t xics_phandle,
2026 void *fdt)
2028 int bus_off, i, j, ret;
2029 gchar *nodename;
2030 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
2031 struct {
2032 uint32_t hi;
2033 uint64_t child;
2034 uint64_t parent;
2035 uint64_t size;
2036 } QEMU_PACKED ranges[] = {
2038 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
2039 cpu_to_be64(phb->io_win_addr),
2040 cpu_to_be64(memory_region_size(&phb->iospace)),
2043 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
2044 cpu_to_be64(phb->mem_win_addr),
2045 cpu_to_be64(phb->mem_win_size),
2048 cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
2049 cpu_to_be64(phb->mem64_win_addr),
2050 cpu_to_be64(phb->mem64_win_size),
2053 const unsigned sizeof_ranges =
2054 (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
2055 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
2056 uint32_t interrupt_map_mask[] = {
2057 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
2058 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
2059 uint32_t ddw_applicable[] = {
2060 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
2061 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
2062 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
2064 uint32_t ddw_extensions[] = {
2065 cpu_to_be32(1),
2066 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
2068 uint32_t associativity[] = {cpu_to_be32(0x4),
2069 cpu_to_be32(0x0),
2070 cpu_to_be32(0x0),
2071 cpu_to_be32(0x0),
2072 cpu_to_be32(phb->numa_node)};
2073 sPAPRTCETable *tcet;
2074 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2075 sPAPRFDT s_fdt;
2077 /* Start populating the FDT */
2078 nodename = g_strdup_printf("pci@%" PRIx64, phb->buid);
2079 _FDT(bus_off = fdt_add_subnode(fdt, 0, nodename));
2080 g_free(nodename);
2082 /* Write PHB properties */
2083 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
2084 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
2085 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
2086 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
2087 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
2088 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
2089 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
2090 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
2091 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
2092 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
2093 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS_SPAPR));
2095 /* Dynamic DMA window */
2096 if (phb->ddw_enabled) {
2097 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
2098 sizeof(ddw_applicable)));
2099 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
2100 &ddw_extensions, sizeof(ddw_extensions)));
2103 /* Advertise NUMA via ibm,associativity */
2104 if (phb->numa_node != -1) {
2105 _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity,
2106 sizeof(associativity)));
2109 /* Build the interrupt-map, this must matches what is done
2110 * in pci_spapr_map_irq
2112 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
2113 &interrupt_map_mask, sizeof(interrupt_map_mask)));
2114 for (i = 0; i < PCI_SLOT_MAX; i++) {
2115 for (j = 0; j < PCI_NUM_PINS; j++) {
2116 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
2117 int lsi_num = pci_spapr_swizzle(i, j);
2119 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
2120 irqmap[1] = 0;
2121 irqmap[2] = 0;
2122 irqmap[3] = cpu_to_be32(j+1);
2123 irqmap[4] = cpu_to_be32(xics_phandle);
2124 spapr_dt_xics_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true);
2127 /* Write interrupt map */
2128 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
2129 sizeof(interrupt_map)));
2131 tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
2132 if (!tcet) {
2133 return -1;
2135 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
2136 tcet->liobn, tcet->bus_offset,
2137 tcet->nb_table << tcet->page_shift);
2139 /* Walk the bridges and program the bus numbers*/
2140 spapr_phb_pci_enumerate(phb);
2141 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
2143 /* Populate tree nodes with PCI devices attached */
2144 s_fdt.fdt = fdt;
2145 s_fdt.node_off = bus_off;
2146 s_fdt.sphb = phb;
2147 pci_for_each_device_reverse(bus, pci_bus_num(bus),
2148 spapr_populate_pci_devices_dt,
2149 &s_fdt);
2151 ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
2152 SPAPR_DR_CONNECTOR_TYPE_PCI);
2153 if (ret) {
2154 return ret;
2157 return 0;
2160 void spapr_pci_rtas_init(void)
2162 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
2163 rtas_read_pci_config);
2164 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
2165 rtas_write_pci_config);
2166 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
2167 rtas_ibm_read_pci_config);
2168 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
2169 rtas_ibm_write_pci_config);
2170 if (msi_nonbroken) {
2171 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
2172 "ibm,query-interrupt-source-number",
2173 rtas_ibm_query_interrupt_source_number);
2174 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
2175 rtas_ibm_change_msi);
2178 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
2179 "ibm,set-eeh-option",
2180 rtas_ibm_set_eeh_option);
2181 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
2182 "ibm,get-config-addr-info2",
2183 rtas_ibm_get_config_addr_info2);
2184 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
2185 "ibm,read-slot-reset-state2",
2186 rtas_ibm_read_slot_reset_state2);
2187 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
2188 "ibm,set-slot-reset",
2189 rtas_ibm_set_slot_reset);
2190 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
2191 "ibm,configure-pe",
2192 rtas_ibm_configure_pe);
2193 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
2194 "ibm,slot-error-detail",
2195 rtas_ibm_slot_error_detail);
2198 static void spapr_pci_register_types(void)
2200 type_register_static(&spapr_phb_info);
2203 type_init(spapr_pci_register_types)
2205 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
2207 bool be = *(bool *)opaque;
2209 if (object_dynamic_cast(OBJECT(dev), "VGA")
2210 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
2211 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
2212 &error_abort);
2214 return 0;
2217 void spapr_pci_switch_vga(bool big_endian)
2219 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
2220 sPAPRPHBState *sphb;
2223 * For backward compatibility with existing guests, we switch
2224 * the endianness of the VGA controller when changing the guest
2225 * interrupt mode
2227 QLIST_FOREACH(sphb, &spapr->phbs, list) {
2228 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
2229 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
2230 &big_endian);