9pfs: make pdu_marshal() and pdu_unmarshal() static functions
[qemu.git] / hw / ppc / pnv.c
blob94ffc8e1379d0101daf839c36bc223815581c7c6
1 /*
2 * QEMU PowerPC PowerNV machine model
4 * Copyright (c) 2016, IBM Corporation.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "sysemu/sysemu.h"
23 #include "sysemu/numa.h"
24 #include "sysemu/cpus.h"
25 #include "hw/hw.h"
26 #include "target/ppc/cpu.h"
27 #include "qemu/log.h"
28 #include "hw/ppc/fdt.h"
29 #include "hw/ppc/ppc.h"
30 #include "hw/ppc/pnv.h"
31 #include "hw/ppc/pnv_core.h"
32 #include "hw/loader.h"
33 #include "exec/address-spaces.h"
34 #include "qemu/cutils.h"
35 #include "qapi/visitor.h"
36 #include "monitor/monitor.h"
37 #include "hw/intc/intc.h"
38 #include "hw/ipmi/ipmi.h"
40 #include "hw/ppc/xics.h"
41 #include "hw/ppc/pnv_xscom.h"
43 #include "hw/isa/isa.h"
44 #include "hw/char/serial.h"
45 #include "hw/timer/mc146818rtc.h"
47 #include <libfdt.h>
49 #define FDT_MAX_SIZE 0x00100000
51 #define FW_FILE_NAME "skiboot.lid"
52 #define FW_LOAD_ADDR 0x0
53 #define FW_MAX_SIZE 0x00400000
55 #define KERNEL_LOAD_ADDR 0x20000000
56 #define INITRD_LOAD_ADDR 0x40000000
58 static const char *pnv_chip_core_typename(const PnvChip *o)
60 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
61 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
62 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
63 const char *core_type = object_class_get_name(object_class_by_name(s));
64 g_free(s);
65 return core_type;
69 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
70 * 4 * 4 sockets * 12 cores * 8 threads = 1536
71 * Let's make it 2^11
73 #define MAX_CPUS 2048
76 * Memory nodes are created by hostboot, one for each range of memory
77 * that has a different "affinity". In practice, it means one range
78 * per chip.
80 static void powernv_populate_memory_node(void *fdt, int chip_id, hwaddr start,
81 hwaddr size)
83 char *mem_name;
84 uint64_t mem_reg_property[2];
85 int off;
87 mem_reg_property[0] = cpu_to_be64(start);
88 mem_reg_property[1] = cpu_to_be64(size);
90 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
91 off = fdt_add_subnode(fdt, 0, mem_name);
92 g_free(mem_name);
94 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
95 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
96 sizeof(mem_reg_property))));
97 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
100 static int get_cpus_node(void *fdt)
102 int cpus_offset = fdt_path_offset(fdt, "/cpus");
104 if (cpus_offset < 0) {
105 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
106 if (cpus_offset) {
107 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
108 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
111 _FDT(cpus_offset);
112 return cpus_offset;
116 * The PowerNV cores (and threads) need to use real HW ids and not an
117 * incremental index like it has been done on other platforms. This HW
118 * id is stored in the CPU PIR, it is used to create cpu nodes in the
119 * device tree, used in XSCOM to address cores and in interrupt
120 * servers.
122 static void powernv_create_core_node(PnvChip *chip, PnvCore *pc, void *fdt)
124 CPUState *cs = CPU(DEVICE(pc->threads));
125 DeviceClass *dc = DEVICE_GET_CLASS(cs);
126 PowerPCCPU *cpu = POWERPC_CPU(cs);
127 int smt_threads = CPU_CORE(pc)->nr_threads;
128 CPUPPCState *env = &cpu->env;
129 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
130 uint32_t servers_prop[smt_threads];
131 int i;
132 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
133 0xffffffff, 0xffffffff};
134 uint32_t tbfreq = PNV_TIMEBASE_FREQ;
135 uint32_t cpufreq = 1000000000;
136 uint32_t page_sizes_prop[64];
137 size_t page_sizes_prop_size;
138 const uint8_t pa_features[] = { 24, 0,
139 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
140 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
141 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
142 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
143 int offset;
144 char *nodename;
145 int cpus_offset = get_cpus_node(fdt);
147 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
148 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
149 _FDT(offset);
150 g_free(nodename);
152 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
154 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
155 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
156 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
158 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
159 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
160 env->dcache_line_size)));
161 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
162 env->dcache_line_size)));
163 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
164 env->icache_line_size)));
165 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
166 env->icache_line_size)));
168 if (pcc->l1_dcache_size) {
169 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
170 pcc->l1_dcache_size)));
171 } else {
172 warn_report("Unknown L1 dcache size for cpu");
174 if (pcc->l1_icache_size) {
175 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
176 pcc->l1_icache_size)));
177 } else {
178 warn_report("Unknown L1 icache size for cpu");
181 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
182 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
183 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
184 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
185 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
187 if (env->spr_cb[SPR_PURR].oea_read) {
188 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
191 if (env->mmu_model & POWERPC_MMU_1TSEG) {
192 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
193 segs, sizeof(segs))));
196 /* Advertise VMX/VSX (vector extensions) if available
197 * 0 / no property == no vector extensions
198 * 1 == VMX / Altivec available
199 * 2 == VSX available */
200 if (env->insns_flags & PPC_ALTIVEC) {
201 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
203 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
206 /* Advertise DFP (Decimal Floating Point) if available
207 * 0 / no property == no DFP
208 * 1 == DFP available */
209 if (env->insns_flags2 & PPC2_DFP) {
210 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
213 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
214 sizeof(page_sizes_prop));
215 if (page_sizes_prop_size) {
216 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
217 page_sizes_prop, page_sizes_prop_size)));
220 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
221 pa_features, sizeof(pa_features))));
223 /* Build interrupt servers properties */
224 for (i = 0; i < smt_threads; i++) {
225 servers_prop[i] = cpu_to_be32(pc->pir + i);
227 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
228 servers_prop, sizeof(servers_prop))));
231 static void powernv_populate_icp(PnvChip *chip, void *fdt, uint32_t pir,
232 uint32_t nr_threads)
234 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
235 char *name;
236 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
237 uint32_t irange[2], i, rsize;
238 uint64_t *reg;
239 int offset;
241 irange[0] = cpu_to_be32(pir);
242 irange[1] = cpu_to_be32(nr_threads);
244 rsize = sizeof(uint64_t) * 2 * nr_threads;
245 reg = g_malloc(rsize);
246 for (i = 0; i < nr_threads; i++) {
247 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
248 reg[i * 2 + 1] = cpu_to_be64(0x1000);
251 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
252 offset = fdt_add_subnode(fdt, 0, name);
253 _FDT(offset);
254 g_free(name);
256 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
257 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
258 _FDT((fdt_setprop_string(fdt, offset, "device_type",
259 "PowerPC-External-Interrupt-Presentation")));
260 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
261 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
262 irange, sizeof(irange))));
263 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
264 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
265 g_free(reg);
268 static int pnv_chip_lpc_offset(PnvChip *chip, void *fdt)
270 char *name;
271 int offset;
273 name = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
274 (uint64_t) PNV_XSCOM_BASE(chip), PNV_XSCOM_LPC_BASE);
275 offset = fdt_path_offset(fdt, name);
276 g_free(name);
277 return offset;
280 static void powernv_populate_chip(PnvChip *chip, void *fdt)
282 const char *typename = pnv_chip_core_typename(chip);
283 size_t typesize = object_type_get_instance_size(typename);
284 int i;
286 pnv_xscom_populate(chip, fdt, 0);
288 /* The default LPC bus of a multichip system is on chip 0. It's
289 * recognized by the firmware (skiboot) using a "primary"
290 * property.
292 if (chip->chip_id == 0x0) {
293 int lpc_offset = pnv_chip_lpc_offset(chip, fdt);
295 _FDT((fdt_setprop(fdt, lpc_offset, "primary", NULL, 0)));
298 for (i = 0; i < chip->nr_cores; i++) {
299 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
301 powernv_create_core_node(chip, pnv_core, fdt);
303 /* Interrupt Control Presenters (ICP). One per core. */
304 powernv_populate_icp(chip, fdt, pnv_core->pir,
305 CPU_CORE(pnv_core)->nr_threads);
308 if (chip->ram_size) {
309 powernv_populate_memory_node(fdt, chip->chip_id, chip->ram_start,
310 chip->ram_size);
314 static void powernv_populate_rtc(ISADevice *d, void *fdt, int lpc_off)
316 uint32_t io_base = d->ioport_id;
317 uint32_t io_regs[] = {
318 cpu_to_be32(1),
319 cpu_to_be32(io_base),
320 cpu_to_be32(2)
322 char *name;
323 int node;
325 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
326 node = fdt_add_subnode(fdt, lpc_off, name);
327 _FDT(node);
328 g_free(name);
330 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
331 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
334 static void powernv_populate_serial(ISADevice *d, void *fdt, int lpc_off)
336 const char compatible[] = "ns16550\0pnpPNP,501";
337 uint32_t io_base = d->ioport_id;
338 uint32_t io_regs[] = {
339 cpu_to_be32(1),
340 cpu_to_be32(io_base),
341 cpu_to_be32(8)
343 char *name;
344 int node;
346 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
347 node = fdt_add_subnode(fdt, lpc_off, name);
348 _FDT(node);
349 g_free(name);
351 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
352 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
353 sizeof(compatible))));
355 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
356 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
357 _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
358 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
359 fdt_get_phandle(fdt, lpc_off))));
361 /* This is needed by Linux */
362 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
365 static void powernv_populate_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
367 const char compatible[] = "bt\0ipmi-bt";
368 uint32_t io_base;
369 uint32_t io_regs[] = {
370 cpu_to_be32(1),
371 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
372 cpu_to_be32(3)
374 uint32_t irq;
375 char *name;
376 int node;
378 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
379 io_regs[1] = cpu_to_be32(io_base);
381 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
383 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
384 node = fdt_add_subnode(fdt, lpc_off, name);
385 _FDT(node);
386 g_free(name);
388 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
389 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
390 sizeof(compatible))));
392 /* Mark it as reserved to avoid Linux trying to claim it */
393 _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
394 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
395 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
396 fdt_get_phandle(fdt, lpc_off))));
399 typedef struct ForeachPopulateArgs {
400 void *fdt;
401 int offset;
402 } ForeachPopulateArgs;
404 static int powernv_populate_isa_device(DeviceState *dev, void *opaque)
406 ForeachPopulateArgs *args = opaque;
407 ISADevice *d = ISA_DEVICE(dev);
409 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
410 powernv_populate_rtc(d, args->fdt, args->offset);
411 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
412 powernv_populate_serial(d, args->fdt, args->offset);
413 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
414 powernv_populate_ipmi_bt(d, args->fdt, args->offset);
415 } else {
416 error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
417 d->ioport_id);
420 return 0;
423 static void powernv_populate_isa(ISABus *bus, void *fdt, int lpc_offset)
425 ForeachPopulateArgs args = {
426 .fdt = fdt,
427 .offset = lpc_offset,
430 /* ISA devices are not necessarily parented to the ISA bus so we
431 * can not use object_child_foreach() */
432 qbus_walk_children(BUS(bus), powernv_populate_isa_device,
433 NULL, NULL, NULL, &args);
436 static void *powernv_create_fdt(MachineState *machine)
438 const char plat_compat[] = "qemu,powernv\0ibm,powernv";
439 PnvMachineState *pnv = POWERNV_MACHINE(machine);
440 void *fdt;
441 char *buf;
442 int off;
443 int i;
444 int lpc_offset;
446 fdt = g_malloc0(FDT_MAX_SIZE);
447 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
449 /* Root node */
450 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
451 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
452 _FDT((fdt_setprop_string(fdt, 0, "model",
453 "IBM PowerNV (emulated by qemu)")));
454 _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat,
455 sizeof(plat_compat))));
457 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
458 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
459 if (qemu_uuid_set) {
460 _FDT((fdt_property_string(fdt, "system-id", buf)));
462 g_free(buf);
464 off = fdt_add_subnode(fdt, 0, "chosen");
465 if (machine->kernel_cmdline) {
466 _FDT((fdt_setprop_string(fdt, off, "bootargs",
467 machine->kernel_cmdline)));
470 if (pnv->initrd_size) {
471 uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
472 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
474 _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
475 &start_prop, sizeof(start_prop))));
476 _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
477 &end_prop, sizeof(end_prop))));
480 /* Populate device tree for each chip */
481 for (i = 0; i < pnv->num_chips; i++) {
482 powernv_populate_chip(pnv->chips[i], fdt);
485 /* Populate ISA devices on chip 0 */
486 lpc_offset = pnv_chip_lpc_offset(pnv->chips[0], fdt);
487 powernv_populate_isa(pnv->isa_bus, fdt, lpc_offset);
489 if (pnv->bmc) {
490 pnv_bmc_populate_sensors(pnv->bmc, fdt);
493 return fdt;
496 static void pnv_powerdown_notify(Notifier *n, void *opaque)
498 PnvMachineState *pnv = POWERNV_MACHINE(qdev_get_machine());
500 if (pnv->bmc) {
501 pnv_bmc_powerdown(pnv->bmc);
505 static void ppc_powernv_reset(void)
507 MachineState *machine = MACHINE(qdev_get_machine());
508 PnvMachineState *pnv = POWERNV_MACHINE(machine);
509 void *fdt;
510 Object *obj;
512 qemu_devices_reset();
514 /* OpenPOWER systems have a BMC, which can be defined on the
515 * command line with:
517 * -device ipmi-bmc-sim,id=bmc0
519 * This is the internal simulator but it could also be an external
520 * BMC.
522 obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL);
523 if (obj) {
524 pnv->bmc = IPMI_BMC(obj);
527 fdt = powernv_create_fdt(machine);
529 /* Pack resulting tree */
530 _FDT((fdt_pack(fdt)));
532 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
535 static ISABus *pnv_isa_create(PnvChip *chip)
537 PnvLpcController *lpc = &chip->lpc;
538 ISABus *isa_bus;
539 qemu_irq *irqs;
540 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
542 /* let isa_bus_new() create its own bridge on SysBus otherwise
543 * devices speficied on the command line won't find the bus and
544 * will fail to create.
546 isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io,
547 &error_fatal);
549 irqs = pnv_lpc_isa_irq_create(lpc, pcc->chip_type, ISA_NUM_IRQS);
551 isa_bus_irqs(isa_bus, irqs);
552 return isa_bus;
555 static void ppc_powernv_init(MachineState *machine)
557 PnvMachineState *pnv = POWERNV_MACHINE(machine);
558 MemoryRegion *ram;
559 char *fw_filename;
560 long fw_size;
561 int i;
562 char *chip_typename;
564 /* allocate RAM */
565 if (machine->ram_size < (1 * G_BYTE)) {
566 warn_report("skiboot may not work with < 1GB of RAM");
569 ram = g_new(MemoryRegion, 1);
570 memory_region_allocate_system_memory(ram, NULL, "ppc_powernv.ram",
571 machine->ram_size);
572 memory_region_add_subregion(get_system_memory(), 0, ram);
574 /* load skiboot firmware */
575 if (bios_name == NULL) {
576 bios_name = FW_FILE_NAME;
579 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
580 if (!fw_filename) {
581 error_report("Could not find OPAL firmware '%s'", bios_name);
582 exit(1);
585 fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
586 if (fw_size < 0) {
587 error_report("Could not load OPAL firmware '%s'", fw_filename);
588 exit(1);
590 g_free(fw_filename);
592 /* load kernel */
593 if (machine->kernel_filename) {
594 long kernel_size;
596 kernel_size = load_image_targphys(machine->kernel_filename,
597 KERNEL_LOAD_ADDR, 0x2000000);
598 if (kernel_size < 0) {
599 error_report("Could not load kernel '%s'",
600 machine->kernel_filename);
601 exit(1);
605 /* load initrd */
606 if (machine->initrd_filename) {
607 pnv->initrd_base = INITRD_LOAD_ADDR;
608 pnv->initrd_size = load_image_targphys(machine->initrd_filename,
609 pnv->initrd_base, 0x10000000); /* 128MB max */
610 if (pnv->initrd_size < 0) {
611 error_report("Could not load initial ram disk '%s'",
612 machine->initrd_filename);
613 exit(1);
617 /* Create the processor chips */
618 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
619 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
620 i, machine->cpu_type);
621 if (!object_class_by_name(chip_typename)) {
622 error_report("invalid CPU model '%.*s' for %s machine",
623 i, machine->cpu_type, MACHINE_GET_CLASS(machine)->name);
624 exit(1);
627 pnv->chips = g_new0(PnvChip *, pnv->num_chips);
628 for (i = 0; i < pnv->num_chips; i++) {
629 char chip_name[32];
630 Object *chip = object_new(chip_typename);
632 pnv->chips[i] = PNV_CHIP(chip);
634 /* TODO: put all the memory in one node on chip 0 until we find a
635 * way to specify different ranges for each chip
637 if (i == 0) {
638 object_property_set_int(chip, machine->ram_size, "ram-size",
639 &error_fatal);
642 snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
643 object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
644 object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
645 &error_fatal);
646 object_property_set_int(chip, smp_cores, "nr-cores", &error_fatal);
647 object_property_set_bool(chip, true, "realized", &error_fatal);
649 g_free(chip_typename);
651 /* Instantiate ISA bus on chip 0 */
652 pnv->isa_bus = pnv_isa_create(pnv->chips[0]);
654 /* Create serial port */
655 serial_hds_isa_init(pnv->isa_bus, 0, MAX_SERIAL_PORTS);
657 /* Create an RTC ISA device too */
658 mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
660 /* OpenPOWER systems use a IPMI SEL Event message to notify the
661 * host to powerdown */
662 pnv->powerdown_notifier.notify = pnv_powerdown_notify;
663 qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
667 * 0:21 Reserved - Read as zeros
668 * 22:24 Chip ID
669 * 25:28 Core number
670 * 29:31 Thread ID
672 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
674 return (chip->chip_id << 7) | (core_id << 3);
678 * 0:48 Reserved - Read as zeroes
679 * 49:52 Node ID
680 * 53:55 Chip ID
681 * 56 Reserved - Read as zero
682 * 57:61 Core number
683 * 62:63 Thread ID
685 * We only care about the lower bits. uint32_t is fine for the moment.
687 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
689 return (chip->chip_id << 8) | (core_id << 2);
692 /* Allowed core identifiers on a POWER8 Processor Chip :
694 * <EX0 reserved>
695 * EX1 - Venice only
696 * EX2 - Venice only
697 * EX3 - Venice only
698 * EX4
699 * EX5
700 * EX6
701 * <EX7,8 reserved> <reserved>
702 * EX9 - Venice only
703 * EX10 - Venice only
704 * EX11 - Venice only
705 * EX12
706 * EX13
707 * EX14
708 * <EX15 reserved>
710 #define POWER8E_CORE_MASK (0x7070ull)
711 #define POWER8_CORE_MASK (0x7e7eull)
714 * POWER9 has 24 cores, ids starting at 0x20
716 #define POWER9_CORE_MASK (0xffffff00000000ull)
718 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
720 DeviceClass *dc = DEVICE_CLASS(klass);
721 PnvChipClass *k = PNV_CHIP_CLASS(klass);
723 k->chip_type = PNV_CHIP_POWER8E;
724 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
725 k->cores_mask = POWER8E_CORE_MASK;
726 k->core_pir = pnv_chip_core_pir_p8;
727 k->xscom_base = 0x003fc0000000000ull;
728 k->xscom_core_base = 0x10000000ull;
729 dc->desc = "PowerNV Chip POWER8E";
732 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
734 DeviceClass *dc = DEVICE_CLASS(klass);
735 PnvChipClass *k = PNV_CHIP_CLASS(klass);
737 k->chip_type = PNV_CHIP_POWER8;
738 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
739 k->cores_mask = POWER8_CORE_MASK;
740 k->core_pir = pnv_chip_core_pir_p8;
741 k->xscom_base = 0x003fc0000000000ull;
742 k->xscom_core_base = 0x10000000ull;
743 dc->desc = "PowerNV Chip POWER8";
746 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
748 DeviceClass *dc = DEVICE_CLASS(klass);
749 PnvChipClass *k = PNV_CHIP_CLASS(klass);
751 k->chip_type = PNV_CHIP_POWER8NVL;
752 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
753 k->cores_mask = POWER8_CORE_MASK;
754 k->core_pir = pnv_chip_core_pir_p8;
755 k->xscom_base = 0x003fc0000000000ull;
756 k->xscom_core_base = 0x10000000ull;
757 dc->desc = "PowerNV Chip POWER8NVL";
760 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
762 DeviceClass *dc = DEVICE_CLASS(klass);
763 PnvChipClass *k = PNV_CHIP_CLASS(klass);
765 k->chip_type = PNV_CHIP_POWER9;
766 k->chip_cfam_id = 0x100d104980000000ull; /* P9 Nimbus DD1.0 */
767 k->cores_mask = POWER9_CORE_MASK;
768 k->core_pir = pnv_chip_core_pir_p9;
769 k->xscom_base = 0x00603fc00000000ull;
770 k->xscom_core_base = 0x0ull;
771 dc->desc = "PowerNV Chip POWER9";
774 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
776 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
777 int cores_max;
780 * No custom mask for this chip, let's use the default one from *
781 * the chip class
783 if (!chip->cores_mask) {
784 chip->cores_mask = pcc->cores_mask;
787 /* filter alien core ids ! some are reserved */
788 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
789 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
790 chip->cores_mask);
791 return;
793 chip->cores_mask &= pcc->cores_mask;
795 /* now that we have a sane layout, let check the number of cores */
796 cores_max = ctpop64(chip->cores_mask);
797 if (chip->nr_cores > cores_max) {
798 error_setg(errp, "warning: too many cores for chip ! Limit is %d",
799 cores_max);
800 return;
804 static void pnv_chip_init(Object *obj)
806 PnvChip *chip = PNV_CHIP(obj);
807 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
809 chip->xscom_base = pcc->xscom_base;
811 object_initialize(&chip->lpc, sizeof(chip->lpc), TYPE_PNV_LPC);
812 object_property_add_child(obj, "lpc", OBJECT(&chip->lpc), NULL);
814 object_initialize(&chip->psi, sizeof(chip->psi), TYPE_PNV_PSI);
815 object_property_add_child(obj, "psi", OBJECT(&chip->psi), NULL);
816 object_property_add_const_link(OBJECT(&chip->psi), "xics",
817 OBJECT(qdev_get_machine()), &error_abort);
819 object_initialize(&chip->occ, sizeof(chip->occ), TYPE_PNV_OCC);
820 object_property_add_child(obj, "occ", OBJECT(&chip->occ), NULL);
821 object_property_add_const_link(OBJECT(&chip->occ), "psi",
822 OBJECT(&chip->psi), &error_abort);
824 /* The LPC controller needs PSI to generate interrupts */
825 object_property_add_const_link(OBJECT(&chip->lpc), "psi",
826 OBJECT(&chip->psi), &error_abort);
829 static void pnv_chip_icp_realize(PnvChip *chip, Error **errp)
831 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
832 const char *typename = pnv_chip_core_typename(chip);
833 size_t typesize = object_type_get_instance_size(typename);
834 int i, j;
835 char *name;
836 XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
838 name = g_strdup_printf("icp-%x", chip->chip_id);
839 memory_region_init(&chip->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
840 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip->icp_mmio);
841 g_free(name);
843 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
845 /* Map the ICP registers for each thread */
846 for (i = 0; i < chip->nr_cores; i++) {
847 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
848 int core_hwid = CPU_CORE(pnv_core)->core_id;
850 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
851 uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
852 PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
854 memory_region_add_subregion(&chip->icp_mmio, pir << 12, &icp->mmio);
859 static void pnv_chip_realize(DeviceState *dev, Error **errp)
861 PnvChip *chip = PNV_CHIP(dev);
862 Error *error = NULL;
863 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
864 const char *typename = pnv_chip_core_typename(chip);
865 size_t typesize = object_type_get_instance_size(typename);
866 int i, core_hwid;
868 if (!object_class_by_name(typename)) {
869 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
870 return;
873 /* XSCOM bridge */
874 pnv_xscom_realize(chip, &error);
875 if (error) {
876 error_propagate(errp, error);
877 return;
879 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
881 /* Cores */
882 pnv_chip_core_sanitize(chip, &error);
883 if (error) {
884 error_propagate(errp, error);
885 return;
888 chip->cores = g_malloc0(typesize * chip->nr_cores);
890 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
891 && (i < chip->nr_cores); core_hwid++) {
892 char core_name[32];
893 void *pnv_core = chip->cores + i * typesize;
895 if (!(chip->cores_mask & (1ull << core_hwid))) {
896 continue;
899 object_initialize(pnv_core, typesize, typename);
900 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
901 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
902 &error_fatal);
903 object_property_set_int(OBJECT(pnv_core), smp_threads, "nr-threads",
904 &error_fatal);
905 object_property_set_int(OBJECT(pnv_core), core_hwid,
906 CPU_CORE_PROP_CORE_ID, &error_fatal);
907 object_property_set_int(OBJECT(pnv_core),
908 pcc->core_pir(chip, core_hwid),
909 "pir", &error_fatal);
910 object_property_add_const_link(OBJECT(pnv_core), "xics",
911 qdev_get_machine(), &error_fatal);
912 object_property_set_bool(OBJECT(pnv_core), true, "realized",
913 &error_fatal);
914 object_unref(OBJECT(pnv_core));
916 /* Each core has an XSCOM MMIO region */
917 pnv_xscom_add_subregion(chip,
918 PNV_XSCOM_EX_CORE_BASE(pcc->xscom_core_base,
919 core_hwid),
920 &PNV_CORE(pnv_core)->xscom_regs);
921 i++;
924 /* Create LPC controller */
925 object_property_set_bool(OBJECT(&chip->lpc), true, "realized",
926 &error_fatal);
927 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip->lpc.xscom_regs);
929 /* Interrupt Management Area. This is the memory region holding
930 * all the Interrupt Control Presenter (ICP) registers */
931 pnv_chip_icp_realize(chip, &error);
932 if (error) {
933 error_propagate(errp, error);
934 return;
937 /* Processor Service Interface (PSI) Host Bridge */
938 object_property_set_int(OBJECT(&chip->psi), PNV_PSIHB_BASE(chip),
939 "bar", &error_fatal);
940 object_property_set_bool(OBJECT(&chip->psi), true, "realized", &error);
941 if (error) {
942 error_propagate(errp, error);
943 return;
945 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, &chip->psi.xscom_regs);
947 /* Create the simplified OCC model */
948 object_property_set_bool(OBJECT(&chip->occ), true, "realized", &error);
949 if (error) {
950 error_propagate(errp, error);
951 return;
953 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip->occ.xscom_regs);
956 static Property pnv_chip_properties[] = {
957 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
958 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
959 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
960 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
961 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
962 DEFINE_PROP_END_OF_LIST(),
965 static void pnv_chip_class_init(ObjectClass *klass, void *data)
967 DeviceClass *dc = DEVICE_CLASS(klass);
969 set_bit(DEVICE_CATEGORY_CPU, dc->categories);
970 dc->realize = pnv_chip_realize;
971 dc->props = pnv_chip_properties;
972 dc->desc = "PowerNV Chip";
975 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
977 PnvMachineState *pnv = POWERNV_MACHINE(xi);
978 int i;
980 for (i = 0; i < pnv->num_chips; i++) {
981 if (ics_valid_irq(&pnv->chips[i]->psi.ics, irq)) {
982 return &pnv->chips[i]->psi.ics;
985 return NULL;
988 static void pnv_ics_resend(XICSFabric *xi)
990 PnvMachineState *pnv = POWERNV_MACHINE(xi);
991 int i;
993 for (i = 0; i < pnv->num_chips; i++) {
994 ics_resend(&pnv->chips[i]->psi.ics);
998 static PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1000 CPUState *cs;
1002 CPU_FOREACH(cs) {
1003 PowerPCCPU *cpu = POWERPC_CPU(cs);
1004 CPUPPCState *env = &cpu->env;
1006 if (env->spr_cb[SPR_PIR].default_value == pir) {
1007 return cpu;
1011 return NULL;
1014 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1016 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1018 return cpu ? ICP(cpu->intc) : NULL;
1021 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1022 Monitor *mon)
1024 PnvMachineState *pnv = POWERNV_MACHINE(obj);
1025 int i;
1026 CPUState *cs;
1028 CPU_FOREACH(cs) {
1029 PowerPCCPU *cpu = POWERPC_CPU(cs);
1031 icp_pic_print_info(ICP(cpu->intc), mon);
1034 for (i = 0; i < pnv->num_chips; i++) {
1035 ics_pic_print_info(&pnv->chips[i]->psi.ics, mon);
1039 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
1040 void *opaque, Error **errp)
1042 visit_type_uint32(v, name, &POWERNV_MACHINE(obj)->num_chips, errp);
1045 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
1046 void *opaque, Error **errp)
1048 PnvMachineState *pnv = POWERNV_MACHINE(obj);
1049 uint32_t num_chips;
1050 Error *local_err = NULL;
1052 visit_type_uint32(v, name, &num_chips, &local_err);
1053 if (local_err) {
1054 error_propagate(errp, local_err);
1055 return;
1059 * TODO: should we decide on how many chips we can create based
1060 * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1062 if (!is_power_of_2(num_chips) || num_chips > 4) {
1063 error_setg(errp, "invalid number of chips: '%d'", num_chips);
1064 return;
1067 pnv->num_chips = num_chips;
1070 static void powernv_machine_initfn(Object *obj)
1072 PnvMachineState *pnv = POWERNV_MACHINE(obj);
1073 pnv->num_chips = 1;
1076 static void powernv_machine_class_props_init(ObjectClass *oc)
1078 object_class_property_add(oc, "num-chips", "uint32",
1079 pnv_get_num_chips, pnv_set_num_chips,
1080 NULL, NULL, NULL);
1081 object_class_property_set_description(oc, "num-chips",
1082 "Specifies the number of processor chips",
1083 NULL);
1086 static void powernv_machine_class_init(ObjectClass *oc, void *data)
1088 MachineClass *mc = MACHINE_CLASS(oc);
1089 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1090 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1092 mc->desc = "IBM PowerNV (Non-Virtualized)";
1093 mc->init = ppc_powernv_init;
1094 mc->reset = ppc_powernv_reset;
1095 mc->max_cpus = MAX_CPUS;
1096 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1097 mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for
1098 * storage */
1099 mc->no_parallel = 1;
1100 mc->default_boot_order = NULL;
1101 mc->default_ram_size = 1 * G_BYTE;
1102 xic->icp_get = pnv_icp_get;
1103 xic->ics_get = pnv_ics_get;
1104 xic->ics_resend = pnv_ics_resend;
1105 ispc->print_info = pnv_pic_print_info;
1107 powernv_machine_class_props_init(oc);
1110 #define DEFINE_PNV_CHIP_TYPE(type, class_initfn) \
1112 .name = type, \
1113 .class_init = class_initfn, \
1114 .parent = TYPE_PNV_CHIP, \
1117 static const TypeInfo types[] = {
1119 .name = TYPE_POWERNV_MACHINE,
1120 .parent = TYPE_MACHINE,
1121 .instance_size = sizeof(PnvMachineState),
1122 .instance_init = powernv_machine_initfn,
1123 .class_init = powernv_machine_class_init,
1124 .interfaces = (InterfaceInfo[]) {
1125 { TYPE_XICS_FABRIC },
1126 { TYPE_INTERRUPT_STATS_PROVIDER },
1127 { },
1131 .name = TYPE_PNV_CHIP,
1132 .parent = TYPE_SYS_BUS_DEVICE,
1133 .class_init = pnv_chip_class_init,
1134 .instance_init = pnv_chip_init,
1135 .instance_size = sizeof(PnvChip),
1136 .class_size = sizeof(PnvChipClass),
1137 .abstract = true,
1139 DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1140 DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1141 DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1142 DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1143 pnv_chip_power8nvl_class_init),
1146 DEFINE_TYPES(types)