4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qapi/error.h"
24 #include "qapi/visitor.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
36 #include "disas/capstone.h"
37 #include "fpu/softfloat.h"
39 static void arm_cpu_set_pc(CPUState
*cs
, vaddr value
)
41 ARMCPU
*cpu
= ARM_CPU(cs
);
42 CPUARMState
*env
= &cpu
->env
;
48 env
->regs
[15] = value
& ~1;
49 env
->thumb
= value
& 1;
53 static void arm_cpu_synchronize_from_tb(CPUState
*cs
, TranslationBlock
*tb
)
55 ARMCPU
*cpu
= ARM_CPU(cs
);
56 CPUARMState
*env
= &cpu
->env
;
59 * It's OK to look at env for the current mode here, because it's
60 * never possible for an AArch64 TB to chain to an AArch32 TB.
65 env
->regs
[15] = tb
->pc
;
69 static bool arm_cpu_has_work(CPUState
*cs
)
71 ARMCPU
*cpu
= ARM_CPU(cs
);
73 return (cpu
->power_state
!= PSCI_OFF
)
74 && cs
->interrupt_request
&
75 (CPU_INTERRUPT_FIQ
| CPU_INTERRUPT_HARD
76 | CPU_INTERRUPT_VFIQ
| CPU_INTERRUPT_VIRQ
77 | CPU_INTERRUPT_EXITTB
);
80 void arm_register_pre_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
83 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
86 entry
->opaque
= opaque
;
88 QLIST_INSERT_HEAD(&cpu
->pre_el_change_hooks
, entry
, node
);
91 void arm_register_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
94 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
97 entry
->opaque
= opaque
;
99 QLIST_INSERT_HEAD(&cpu
->el_change_hooks
, entry
, node
);
102 static void cp_reg_reset(gpointer key
, gpointer value
, gpointer opaque
)
104 /* Reset a single ARMCPRegInfo register */
105 ARMCPRegInfo
*ri
= value
;
106 ARMCPU
*cpu
= opaque
;
108 if (ri
->type
& (ARM_CP_SPECIAL
| ARM_CP_ALIAS
)) {
113 ri
->resetfn(&cpu
->env
, ri
);
117 /* A zero offset is never possible as it would be regs[0]
118 * so we use it to indicate that reset is being handled elsewhere.
119 * This is basically only used for fields in non-core coprocessors
120 * (like the pxa2xx ones).
122 if (!ri
->fieldoffset
) {
126 if (cpreg_field_is_64bit(ri
)) {
127 CPREG_FIELD64(&cpu
->env
, ri
) = ri
->resetvalue
;
129 CPREG_FIELD32(&cpu
->env
, ri
) = ri
->resetvalue
;
133 static void cp_reg_check_reset(gpointer key
, gpointer value
, gpointer opaque
)
135 /* Purely an assertion check: we've already done reset once,
136 * so now check that running the reset for the cpreg doesn't
137 * change its value. This traps bugs where two different cpregs
138 * both try to reset the same state field but to different values.
140 ARMCPRegInfo
*ri
= value
;
141 ARMCPU
*cpu
= opaque
;
142 uint64_t oldvalue
, newvalue
;
144 if (ri
->type
& (ARM_CP_SPECIAL
| ARM_CP_ALIAS
| ARM_CP_NO_RAW
)) {
148 oldvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
149 cp_reg_reset(key
, value
, opaque
);
150 newvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
151 assert(oldvalue
== newvalue
);
154 /* CPUClass::reset() */
155 static void arm_cpu_reset(CPUState
*s
)
157 ARMCPU
*cpu
= ARM_CPU(s
);
158 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(cpu
);
159 CPUARMState
*env
= &cpu
->env
;
161 acc
->parent_reset(s
);
163 memset(env
, 0, offsetof(CPUARMState
, end_reset_fields
));
165 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_reset
, cpu
);
166 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_check_reset
, cpu
);
168 env
->vfp
.xregs
[ARM_VFP_FPSID
] = cpu
->reset_fpsid
;
169 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = cpu
->isar
.mvfr0
;
170 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = cpu
->isar
.mvfr1
;
171 env
->vfp
.xregs
[ARM_VFP_MVFR2
] = cpu
->isar
.mvfr2
;
173 cpu
->power_state
= cpu
->start_powered_off
? PSCI_OFF
: PSCI_ON
;
174 s
->halted
= cpu
->start_powered_off
;
176 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
177 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
180 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
181 /* 64 bit CPUs always start in 64 bit mode */
183 #if defined(CONFIG_USER_ONLY)
184 env
->pstate
= PSTATE_MODE_EL0t
;
185 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
186 env
->cp15
.sctlr_el
[1] |= SCTLR_UCT
| SCTLR_UCI
| SCTLR_DZE
;
187 /* Enable all PAC keys. */
188 env
->cp15
.sctlr_el
[1] |= (SCTLR_EnIA
| SCTLR_EnIB
|
189 SCTLR_EnDA
| SCTLR_EnDB
);
190 /* Enable all PAC instructions */
191 env
->cp15
.hcr_el2
|= HCR_API
;
192 env
->cp15
.scr_el3
|= SCR_API
;
193 /* and to the FP/Neon instructions */
194 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 20, 2, 3);
195 /* and to the SVE instructions */
196 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 16, 2, 3);
197 env
->cp15
.cptr_el
[3] |= CPTR_EZ
;
198 /* with maximum vector length */
199 env
->vfp
.zcr_el
[1] = cpu
->sve_max_vq
- 1;
200 env
->vfp
.zcr_el
[2] = env
->vfp
.zcr_el
[1];
201 env
->vfp
.zcr_el
[3] = env
->vfp
.zcr_el
[1];
203 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
204 * turning on both here will produce smaller code and otherwise
205 * make no difference to the user-level emulation.
207 env
->cp15
.tcr_el
[1].raw_tcr
= (3ULL << 37);
209 /* Reset into the highest available EL */
210 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
211 env
->pstate
= PSTATE_MODE_EL3h
;
212 } else if (arm_feature(env
, ARM_FEATURE_EL2
)) {
213 env
->pstate
= PSTATE_MODE_EL2h
;
215 env
->pstate
= PSTATE_MODE_EL1h
;
217 env
->pc
= cpu
->rvbar
;
220 #if defined(CONFIG_USER_ONLY)
221 /* Userspace expects access to cp10 and cp11 for FP/Neon */
222 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 20, 4, 0xf);
226 #if defined(CONFIG_USER_ONLY)
227 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
228 /* For user mode we must enable access to coprocessors */
229 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
230 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
231 env
->cp15
.c15_cpar
= 3;
232 } else if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
233 env
->cp15
.c15_cpar
= 1;
238 * If the highest available EL is EL2, AArch32 will start in Hyp
239 * mode; otherwise it starts in SVC. Note that if we start in
240 * AArch64 then these values in the uncached_cpsr will be ignored.
242 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
243 !arm_feature(env
, ARM_FEATURE_EL3
)) {
244 env
->uncached_cpsr
= ARM_CPU_MODE_HYP
;
246 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
;
248 env
->daif
= PSTATE_D
| PSTATE_A
| PSTATE_I
| PSTATE_F
;
250 if (arm_feature(env
, ARM_FEATURE_M
)) {
251 uint32_t initial_msp
; /* Loaded from 0x0 */
252 uint32_t initial_pc
; /* Loaded from 0x4 */
256 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
257 env
->v7m
.secure
= true;
259 /* This bit resets to 0 if security is supported, but 1 if
260 * it is not. The bit is not present in v7M, but we set it
261 * here so we can avoid having to make checks on it conditional
262 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
264 env
->v7m
.aircr
= R_V7M_AIRCR_BFHFNMINS_MASK
;
267 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
268 * that it resets to 1, so QEMU always does that rather than making
269 * it dependent on CPU model. In v8M it is RES1.
271 env
->v7m
.ccr
[M_REG_NS
] = R_V7M_CCR_STKALIGN_MASK
;
272 env
->v7m
.ccr
[M_REG_S
] = R_V7M_CCR_STKALIGN_MASK
;
273 if (arm_feature(env
, ARM_FEATURE_V8
)) {
274 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
275 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
276 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
278 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
279 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
280 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
283 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
284 env
->v7m
.fpccr
[M_REG_NS
] = R_V7M_FPCCR_ASPEN_MASK
;
285 env
->v7m
.fpccr
[M_REG_S
] = R_V7M_FPCCR_ASPEN_MASK
|
286 R_V7M_FPCCR_LSPEN_MASK
| R_V7M_FPCCR_S_MASK
;
288 /* Unlike A/R profile, M profile defines the reset LR value */
289 env
->regs
[14] = 0xffffffff;
291 env
->v7m
.vecbase
[M_REG_S
] = cpu
->init_svtor
& 0xffffff80;
293 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
294 vecbase
= env
->v7m
.vecbase
[env
->v7m
.secure
];
295 rom
= rom_ptr(vecbase
, 8);
297 /* Address zero is covered by ROM which hasn't yet been
298 * copied into physical memory.
300 initial_msp
= ldl_p(rom
);
301 initial_pc
= ldl_p(rom
+ 4);
303 /* Address zero not covered by a ROM blob, or the ROM blob
304 * is in non-modifiable memory and this is a second reset after
305 * it got copied into memory. In the latter case, rom_ptr
306 * will return a NULL pointer and we should use ldl_phys instead.
308 initial_msp
= ldl_phys(s
->as
, vecbase
);
309 initial_pc
= ldl_phys(s
->as
, vecbase
+ 4);
312 env
->regs
[13] = initial_msp
& 0xFFFFFFFC;
313 env
->regs
[15] = initial_pc
& ~1;
314 env
->thumb
= initial_pc
& 1;
317 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
318 * executing as AArch32 then check if highvecs are enabled and
319 * adjust the PC accordingly.
321 if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
322 env
->regs
[15] = 0xFFFF0000;
325 /* M profile requires that reset clears the exclusive monitor;
326 * A profile does not, but clearing it makes more sense than having it
327 * set with an exclusive access on address zero.
329 arm_clear_exclusive(env
);
331 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
334 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
335 if (cpu
->pmsav7_dregion
> 0) {
336 if (arm_feature(env
, ARM_FEATURE_V8
)) {
337 memset(env
->pmsav8
.rbar
[M_REG_NS
], 0,
338 sizeof(*env
->pmsav8
.rbar
[M_REG_NS
])
339 * cpu
->pmsav7_dregion
);
340 memset(env
->pmsav8
.rlar
[M_REG_NS
], 0,
341 sizeof(*env
->pmsav8
.rlar
[M_REG_NS
])
342 * cpu
->pmsav7_dregion
);
343 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
344 memset(env
->pmsav8
.rbar
[M_REG_S
], 0,
345 sizeof(*env
->pmsav8
.rbar
[M_REG_S
])
346 * cpu
->pmsav7_dregion
);
347 memset(env
->pmsav8
.rlar
[M_REG_S
], 0,
348 sizeof(*env
->pmsav8
.rlar
[M_REG_S
])
349 * cpu
->pmsav7_dregion
);
351 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
352 memset(env
->pmsav7
.drbar
, 0,
353 sizeof(*env
->pmsav7
.drbar
) * cpu
->pmsav7_dregion
);
354 memset(env
->pmsav7
.drsr
, 0,
355 sizeof(*env
->pmsav7
.drsr
) * cpu
->pmsav7_dregion
);
356 memset(env
->pmsav7
.dracr
, 0,
357 sizeof(*env
->pmsav7
.dracr
) * cpu
->pmsav7_dregion
);
360 env
->pmsav7
.rnr
[M_REG_NS
] = 0;
361 env
->pmsav7
.rnr
[M_REG_S
] = 0;
362 env
->pmsav8
.mair0
[M_REG_NS
] = 0;
363 env
->pmsav8
.mair0
[M_REG_S
] = 0;
364 env
->pmsav8
.mair1
[M_REG_NS
] = 0;
365 env
->pmsav8
.mair1
[M_REG_S
] = 0;
368 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
369 if (cpu
->sau_sregion
> 0) {
370 memset(env
->sau
.rbar
, 0, sizeof(*env
->sau
.rbar
) * cpu
->sau_sregion
);
371 memset(env
->sau
.rlar
, 0, sizeof(*env
->sau
.rlar
) * cpu
->sau_sregion
);
374 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
375 * the Cortex-M33 does.
380 set_flush_to_zero(1, &env
->vfp
.standard_fp_status
);
381 set_flush_inputs_to_zero(1, &env
->vfp
.standard_fp_status
);
382 set_default_nan_mode(1, &env
->vfp
.standard_fp_status
);
383 set_float_detect_tininess(float_tininess_before_rounding
,
384 &env
->vfp
.fp_status
);
385 set_float_detect_tininess(float_tininess_before_rounding
,
386 &env
->vfp
.standard_fp_status
);
387 set_float_detect_tininess(float_tininess_before_rounding
,
388 &env
->vfp
.fp_status_f16
);
389 #ifndef CONFIG_USER_ONLY
391 kvm_arm_reset_vcpu(cpu
);
395 hw_breakpoint_update_all(cpu
);
396 hw_watchpoint_update_all(cpu
);
399 bool arm_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
401 CPUClass
*cc
= CPU_GET_CLASS(cs
);
402 CPUARMState
*env
= cs
->env_ptr
;
403 uint32_t cur_el
= arm_current_el(env
);
404 bool secure
= arm_is_secure(env
);
409 if (interrupt_request
& CPU_INTERRUPT_FIQ
) {
411 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
412 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
413 cs
->exception_index
= excp_idx
;
414 env
->exception
.target_el
= target_el
;
415 cc
->do_interrupt(cs
);
419 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
421 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
422 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
423 cs
->exception_index
= excp_idx
;
424 env
->exception
.target_el
= target_el
;
425 cc
->do_interrupt(cs
);
429 if (interrupt_request
& CPU_INTERRUPT_VIRQ
) {
430 excp_idx
= EXCP_VIRQ
;
432 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
433 cs
->exception_index
= excp_idx
;
434 env
->exception
.target_el
= target_el
;
435 cc
->do_interrupt(cs
);
439 if (interrupt_request
& CPU_INTERRUPT_VFIQ
) {
440 excp_idx
= EXCP_VFIQ
;
442 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
443 cs
->exception_index
= excp_idx
;
444 env
->exception
.target_el
= target_el
;
445 cc
->do_interrupt(cs
);
453 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
454 static bool arm_v7m_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
456 CPUClass
*cc
= CPU_GET_CLASS(cs
);
457 ARMCPU
*cpu
= ARM_CPU(cs
);
458 CPUARMState
*env
= &cpu
->env
;
461 /* ARMv7-M interrupt masking works differently than -A or -R.
462 * There is no FIQ/IRQ distinction. Instead of I and F bits
463 * masking FIQ and IRQ interrupts, an exception is taken only
464 * if it is higher priority than the current execution priority
465 * (which depends on state like BASEPRI, FAULTMASK and the
466 * currently active exception).
468 if (interrupt_request
& CPU_INTERRUPT_HARD
469 && (armv7m_nvic_can_take_pending_exception(env
->nvic
))) {
470 cs
->exception_index
= EXCP_IRQ
;
471 cc
->do_interrupt(cs
);
478 void arm_cpu_update_virq(ARMCPU
*cpu
)
481 * Update the interrupt level for VIRQ, which is the logical OR of
482 * the HCR_EL2.VI bit and the input line level from the GIC.
484 CPUARMState
*env
= &cpu
->env
;
485 CPUState
*cs
= CPU(cpu
);
487 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VI
) ||
488 (env
->irq_line_state
& CPU_INTERRUPT_VIRQ
);
490 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VIRQ
) != 0)) {
492 cpu_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
494 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
499 void arm_cpu_update_vfiq(ARMCPU
*cpu
)
502 * Update the interrupt level for VFIQ, which is the logical OR of
503 * the HCR_EL2.VF bit and the input line level from the GIC.
505 CPUARMState
*env
= &cpu
->env
;
506 CPUState
*cs
= CPU(cpu
);
508 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VF
) ||
509 (env
->irq_line_state
& CPU_INTERRUPT_VFIQ
);
511 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VFIQ
) != 0)) {
513 cpu_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
515 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
520 #ifndef CONFIG_USER_ONLY
521 static void arm_cpu_set_irq(void *opaque
, int irq
, int level
)
523 ARMCPU
*cpu
= opaque
;
524 CPUARMState
*env
= &cpu
->env
;
525 CPUState
*cs
= CPU(cpu
);
526 static const int mask
[] = {
527 [ARM_CPU_IRQ
] = CPU_INTERRUPT_HARD
,
528 [ARM_CPU_FIQ
] = CPU_INTERRUPT_FIQ
,
529 [ARM_CPU_VIRQ
] = CPU_INTERRUPT_VIRQ
,
530 [ARM_CPU_VFIQ
] = CPU_INTERRUPT_VFIQ
534 env
->irq_line_state
|= mask
[irq
];
536 env
->irq_line_state
&= ~mask
[irq
];
541 assert(arm_feature(env
, ARM_FEATURE_EL2
));
542 arm_cpu_update_virq(cpu
);
545 assert(arm_feature(env
, ARM_FEATURE_EL2
));
546 arm_cpu_update_vfiq(cpu
);
551 cpu_interrupt(cs
, mask
[irq
]);
553 cpu_reset_interrupt(cs
, mask
[irq
]);
557 g_assert_not_reached();
561 static void arm_cpu_kvm_set_irq(void *opaque
, int irq
, int level
)
564 ARMCPU
*cpu
= opaque
;
565 CPUARMState
*env
= &cpu
->env
;
566 CPUState
*cs
= CPU(cpu
);
567 int kvm_irq
= KVM_ARM_IRQ_TYPE_CPU
<< KVM_ARM_IRQ_TYPE_SHIFT
;
568 uint32_t linestate_bit
;
572 kvm_irq
|= KVM_ARM_IRQ_CPU_IRQ
;
573 linestate_bit
= CPU_INTERRUPT_HARD
;
576 kvm_irq
|= KVM_ARM_IRQ_CPU_FIQ
;
577 linestate_bit
= CPU_INTERRUPT_FIQ
;
580 g_assert_not_reached();
584 env
->irq_line_state
|= linestate_bit
;
586 env
->irq_line_state
&= ~linestate_bit
;
589 kvm_irq
|= cs
->cpu_index
<< KVM_ARM_IRQ_VCPU_SHIFT
;
590 kvm_set_irq(kvm_state
, kvm_irq
, level
? 1 : 0);
594 static bool arm_cpu_virtio_is_big_endian(CPUState
*cs
)
596 ARMCPU
*cpu
= ARM_CPU(cs
);
597 CPUARMState
*env
= &cpu
->env
;
599 cpu_synchronize_state(cs
);
600 return arm_cpu_data_is_big_endian(env
);
605 static inline void set_feature(CPUARMState
*env
, int feature
)
607 env
->features
|= 1ULL << feature
;
610 static inline void unset_feature(CPUARMState
*env
, int feature
)
612 env
->features
&= ~(1ULL << feature
);
616 print_insn_thumb1(bfd_vma pc
, disassemble_info
*info
)
618 return print_insn_arm(pc
| 1, info
);
621 static void arm_disas_set_info(CPUState
*cpu
, disassemble_info
*info
)
623 ARMCPU
*ac
= ARM_CPU(cpu
);
624 CPUARMState
*env
= &ac
->env
;
628 /* We might not be compiled with the A64 disassembler
629 * because it needs a C++ compiler. Leave print_insn
630 * unset in this case to use the caller default behaviour.
632 #if defined(CONFIG_ARM_A64_DIS)
633 info
->print_insn
= print_insn_arm_a64
;
635 info
->cap_arch
= CS_ARCH_ARM64
;
636 info
->cap_insn_unit
= 4;
637 info
->cap_insn_split
= 4;
641 info
->print_insn
= print_insn_thumb1
;
642 info
->cap_insn_unit
= 2;
643 info
->cap_insn_split
= 4;
644 cap_mode
= CS_MODE_THUMB
;
646 info
->print_insn
= print_insn_arm
;
647 info
->cap_insn_unit
= 4;
648 info
->cap_insn_split
= 4;
649 cap_mode
= CS_MODE_ARM
;
651 if (arm_feature(env
, ARM_FEATURE_V8
)) {
652 cap_mode
|= CS_MODE_V8
;
654 if (arm_feature(env
, ARM_FEATURE_M
)) {
655 cap_mode
|= CS_MODE_MCLASS
;
657 info
->cap_arch
= CS_ARCH_ARM
;
658 info
->cap_mode
= cap_mode
;
661 sctlr_b
= arm_sctlr_b(env
);
662 if (bswap_code(sctlr_b
)) {
663 #ifdef TARGET_WORDS_BIGENDIAN
664 info
->endian
= BFD_ENDIAN_LITTLE
;
666 info
->endian
= BFD_ENDIAN_BIG
;
669 info
->flags
&= ~INSN_ARM_BE32
;
670 #ifndef CONFIG_USER_ONLY
672 info
->flags
|= INSN_ARM_BE32
;
677 uint64_t arm_cpu_mp_affinity(int idx
, uint8_t clustersz
)
679 uint32_t Aff1
= idx
/ clustersz
;
680 uint32_t Aff0
= idx
% clustersz
;
681 return (Aff1
<< ARM_AFF1_SHIFT
) | Aff0
;
684 static void cpreg_hashtable_data_destroy(gpointer data
)
687 * Destroy function for cpu->cp_regs hashtable data entries.
688 * We must free the name string because it was g_strdup()ed in
689 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
690 * from r->name because we know we definitely allocated it.
692 ARMCPRegInfo
*r
= data
;
694 g_free((void *)r
->name
);
698 static void arm_cpu_initfn(Object
*obj
)
700 ARMCPU
*cpu
= ARM_CPU(obj
);
702 cpu_set_cpustate_pointers(cpu
);
703 cpu
->cp_regs
= g_hash_table_new_full(g_int_hash
, g_int_equal
,
704 g_free
, cpreg_hashtable_data_destroy
);
706 QLIST_INIT(&cpu
->pre_el_change_hooks
);
707 QLIST_INIT(&cpu
->el_change_hooks
);
709 #ifndef CONFIG_USER_ONLY
710 /* Our inbound IRQ and FIQ lines */
712 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
713 * the same interface as non-KVM CPUs.
715 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_kvm_set_irq
, 4);
717 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_set_irq
, 4);
720 qdev_init_gpio_out(DEVICE(cpu
), cpu
->gt_timer_outputs
,
721 ARRAY_SIZE(cpu
->gt_timer_outputs
));
723 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->gicv3_maintenance_interrupt
,
724 "gicv3-maintenance-interrupt", 1);
725 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->pmu_interrupt
,
729 /* DTB consumers generally don't in fact care what the 'compatible'
730 * string is, so always provide some string and trust that a hypothetical
731 * picky DTB consumer will also provide a helpful error message.
733 cpu
->dtb_compatible
= "qemu,unknown";
734 cpu
->psci_version
= 1; /* By default assume PSCI v0.1 */
735 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_NONE
;
738 cpu
->psci_version
= 2; /* TCG implements PSCI 0.2 */
742 static Property arm_cpu_reset_cbar_property
=
743 DEFINE_PROP_UINT64("reset-cbar", ARMCPU
, reset_cbar
, 0);
745 static Property arm_cpu_reset_hivecs_property
=
746 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU
, reset_hivecs
, false);
748 static Property arm_cpu_rvbar_property
=
749 DEFINE_PROP_UINT64("rvbar", ARMCPU
, rvbar
, 0);
751 static Property arm_cpu_has_el2_property
=
752 DEFINE_PROP_BOOL("has_el2", ARMCPU
, has_el2
, true);
754 static Property arm_cpu_has_el3_property
=
755 DEFINE_PROP_BOOL("has_el3", ARMCPU
, has_el3
, true);
757 static Property arm_cpu_cfgend_property
=
758 DEFINE_PROP_BOOL("cfgend", ARMCPU
, cfgend
, false);
760 /* use property name "pmu" to match other archs and virt tools */
761 static Property arm_cpu_has_pmu_property
=
762 DEFINE_PROP_BOOL("pmu", ARMCPU
, has_pmu
, true);
764 static Property arm_cpu_has_mpu_property
=
765 DEFINE_PROP_BOOL("has-mpu", ARMCPU
, has_mpu
, true);
767 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
768 * because the CPU initfn will have already set cpu->pmsav7_dregion to
769 * the right value for that particular CPU type, and we don't want
770 * to override that with an incorrect constant value.
772 static Property arm_cpu_pmsav7_dregion_property
=
773 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU
,
775 qdev_prop_uint32
, uint32_t);
777 static void arm_get_init_svtor(Object
*obj
, Visitor
*v
, const char *name
,
778 void *opaque
, Error
**errp
)
780 ARMCPU
*cpu
= ARM_CPU(obj
);
782 visit_type_uint32(v
, name
, &cpu
->init_svtor
, errp
);
785 static void arm_set_init_svtor(Object
*obj
, Visitor
*v
, const char *name
,
786 void *opaque
, Error
**errp
)
788 ARMCPU
*cpu
= ARM_CPU(obj
);
790 visit_type_uint32(v
, name
, &cpu
->init_svtor
, errp
);
793 void arm_cpu_post_init(Object
*obj
)
795 ARMCPU
*cpu
= ARM_CPU(obj
);
797 /* M profile implies PMSA. We have to do this here rather than
798 * in realize with the other feature-implication checks because
799 * we look at the PMSA bit to see if we should add some properties.
801 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
802 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
805 if (arm_feature(&cpu
->env
, ARM_FEATURE_CBAR
) ||
806 arm_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
)) {
807 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_cbar_property
,
811 if (!arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
812 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_hivecs_property
,
816 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
817 qdev_property_add_static(DEVICE(obj
), &arm_cpu_rvbar_property
,
821 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
)) {
822 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
823 * prevent "has_el3" from existing on CPUs which cannot support EL3.
825 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el3_property
,
828 #ifndef CONFIG_USER_ONLY
829 object_property_add_link(obj
, "secure-memory",
831 (Object
**)&cpu
->secure_memory
,
832 qdev_prop_allow_set_link_before_realize
,
833 OBJ_PROP_LINK_STRONG
,
838 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
)) {
839 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el2_property
,
843 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMU
)) {
844 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_pmu_property
,
848 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMSA
)) {
849 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_mpu_property
,
851 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
852 qdev_property_add_static(DEVICE(obj
),
853 &arm_cpu_pmsav7_dregion_property
,
858 if (arm_feature(&cpu
->env
, ARM_FEATURE_M_SECURITY
)) {
859 object_property_add_link(obj
, "idau", TYPE_IDAU_INTERFACE
, &cpu
->idau
,
860 qdev_prop_allow_set_link_before_realize
,
861 OBJ_PROP_LINK_STRONG
,
864 * M profile: initial value of the Secure VTOR. We can't just use
865 * a simple DEFINE_PROP_UINT32 for this because we want to permit
866 * the property to be set after realize.
868 object_property_add(obj
, "init-svtor", "uint32",
869 arm_get_init_svtor
, arm_set_init_svtor
,
870 NULL
, NULL
, &error_abort
);
873 qdev_property_add_static(DEVICE(obj
), &arm_cpu_cfgend_property
,
877 static void arm_cpu_finalizefn(Object
*obj
)
879 ARMCPU
*cpu
= ARM_CPU(obj
);
880 ARMELChangeHook
*hook
, *next
;
882 g_hash_table_destroy(cpu
->cp_regs
);
884 QLIST_FOREACH_SAFE(hook
, &cpu
->pre_el_change_hooks
, node
, next
) {
885 QLIST_REMOVE(hook
, node
);
888 QLIST_FOREACH_SAFE(hook
, &cpu
->el_change_hooks
, node
, next
) {
889 QLIST_REMOVE(hook
, node
);
892 #ifndef CONFIG_USER_ONLY
893 if (cpu
->pmu_timer
) {
894 timer_del(cpu
->pmu_timer
);
895 timer_deinit(cpu
->pmu_timer
);
896 timer_free(cpu
->pmu_timer
);
901 static void arm_cpu_realizefn(DeviceState
*dev
, Error
**errp
)
903 CPUState
*cs
= CPU(dev
);
904 ARMCPU
*cpu
= ARM_CPU(dev
);
905 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(dev
);
906 CPUARMState
*env
= &cpu
->env
;
908 Error
*local_err
= NULL
;
909 bool no_aa32
= false;
911 /* If we needed to query the host kernel for the CPU features
912 * then it's possible that might have failed in the initfn, but
913 * this is the first point where we can report it.
915 if (cpu
->host_cpu_probe_failed
) {
916 if (!kvm_enabled()) {
917 error_setg(errp
, "The 'host' CPU type can only be used with KVM");
919 error_setg(errp
, "Failed to retrieve host CPU features");
924 #ifndef CONFIG_USER_ONLY
925 /* The NVIC and M-profile CPU are two halves of a single piece of
926 * hardware; trying to use one without the other is a command line
927 * error and will result in segfaults if not caught here.
929 if (arm_feature(env
, ARM_FEATURE_M
)) {
931 error_setg(errp
, "This board cannot be used with Cortex-M CPUs");
936 error_setg(errp
, "This board can only be used with Cortex-M CPUs");
941 cpu
->gt_timer
[GTIMER_PHYS
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
942 arm_gt_ptimer_cb
, cpu
);
943 cpu
->gt_timer
[GTIMER_VIRT
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
944 arm_gt_vtimer_cb
, cpu
);
945 cpu
->gt_timer
[GTIMER_HYP
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
946 arm_gt_htimer_cb
, cpu
);
947 cpu
->gt_timer
[GTIMER_SEC
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
948 arm_gt_stimer_cb
, cpu
);
951 cpu_exec_realizefn(cs
, &local_err
);
952 if (local_err
!= NULL
) {
953 error_propagate(errp
, local_err
);
957 /* Some features automatically imply others: */
958 if (arm_feature(env
, ARM_FEATURE_V8
)) {
959 if (arm_feature(env
, ARM_FEATURE_M
)) {
960 set_feature(env
, ARM_FEATURE_V7
);
962 set_feature(env
, ARM_FEATURE_V7VE
);
967 * There exist AArch64 cpus without AArch32 support. When KVM
968 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
969 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
971 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
972 no_aa32
= !cpu_isar_feature(aa64_aa32
, cpu
);
975 if (arm_feature(env
, ARM_FEATURE_V7VE
)) {
976 /* v7 Virtualization Extensions. In real hardware this implies
977 * EL2 and also the presence of the Security Extensions.
978 * For QEMU, for backwards-compatibility we implement some
979 * CPUs or CPU configs which have no actual EL2 or EL3 but do
980 * include the various other features that V7VE implies.
981 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
982 * Security Extensions is ARM_FEATURE_EL3.
984 assert(no_aa32
|| cpu_isar_feature(arm_div
, cpu
));
985 set_feature(env
, ARM_FEATURE_LPAE
);
986 set_feature(env
, ARM_FEATURE_V7
);
988 if (arm_feature(env
, ARM_FEATURE_V7
)) {
989 set_feature(env
, ARM_FEATURE_VAPA
);
990 set_feature(env
, ARM_FEATURE_THUMB2
);
991 set_feature(env
, ARM_FEATURE_MPIDR
);
992 if (!arm_feature(env
, ARM_FEATURE_M
)) {
993 set_feature(env
, ARM_FEATURE_V6K
);
995 set_feature(env
, ARM_FEATURE_V6
);
998 /* Always define VBAR for V7 CPUs even if it doesn't exist in
999 * non-EL3 configs. This is needed by some legacy boards.
1001 set_feature(env
, ARM_FEATURE_VBAR
);
1003 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
1004 set_feature(env
, ARM_FEATURE_V6
);
1005 set_feature(env
, ARM_FEATURE_MVFR
);
1007 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1008 set_feature(env
, ARM_FEATURE_V5
);
1009 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1010 assert(no_aa32
|| cpu_isar_feature(jazelle
, cpu
));
1011 set_feature(env
, ARM_FEATURE_AUXCR
);
1014 if (arm_feature(env
, ARM_FEATURE_V5
)) {
1015 set_feature(env
, ARM_FEATURE_V4T
);
1017 if (arm_feature(env
, ARM_FEATURE_VFP4
)) {
1018 set_feature(env
, ARM_FEATURE_VFP3
);
1020 if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
1021 set_feature(env
, ARM_FEATURE_VFP
);
1023 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1024 set_feature(env
, ARM_FEATURE_V7MP
);
1025 set_feature(env
, ARM_FEATURE_PXN
);
1027 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
1028 set_feature(env
, ARM_FEATURE_CBAR
);
1030 if (arm_feature(env
, ARM_FEATURE_THUMB2
) &&
1031 !arm_feature(env
, ARM_FEATURE_M
)) {
1032 set_feature(env
, ARM_FEATURE_THUMB_DSP
);
1036 * We rely on no XScale CPU having VFP so we can use the same bits in the
1037 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1039 assert(!(arm_feature(env
, ARM_FEATURE_VFP
) &&
1040 arm_feature(env
, ARM_FEATURE_XSCALE
)));
1042 if (arm_feature(env
, ARM_FEATURE_V7
) &&
1043 !arm_feature(env
, ARM_FEATURE_M
) &&
1044 !arm_feature(env
, ARM_FEATURE_PMSA
)) {
1045 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1050 /* For CPUs which might have tiny 1K pages, or which have an
1051 * MPU and might have small region sizes, stick with 1K pages.
1055 if (!set_preferred_target_page_bits(pagebits
)) {
1056 /* This can only ever happen for hotplugging a CPU, or if
1057 * the board code incorrectly creates a CPU which it has
1058 * promised via minimum_page_size that it will not.
1060 error_setg(errp
, "This CPU requires a smaller page size than the "
1065 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1066 * We don't support setting cluster ID ([16..23]) (known as Aff2
1067 * in later ARM ARM versions), or any of the higher affinity level fields,
1068 * so these bits always RAZ.
1070 if (cpu
->mp_affinity
== ARM64_AFFINITY_INVALID
) {
1071 cpu
->mp_affinity
= arm_cpu_mp_affinity(cs
->cpu_index
,
1072 ARM_DEFAULT_CPUS_PER_CLUSTER
);
1075 if (cpu
->reset_hivecs
) {
1076 cpu
->reset_sctlr
|= (1 << 13);
1080 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
1081 cpu
->reset_sctlr
|= SCTLR_EE
;
1083 cpu
->reset_sctlr
|= SCTLR_B
;
1087 if (!cpu
->has_el3
) {
1088 /* If the has_el3 CPU property is disabled then we need to disable the
1091 unset_feature(env
, ARM_FEATURE_EL3
);
1093 /* Disable the security extension feature bits in the processor feature
1094 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1096 cpu
->id_pfr1
&= ~0xf0;
1097 cpu
->isar
.id_aa64pfr0
&= ~0xf000;
1100 if (!cpu
->has_el2
) {
1101 unset_feature(env
, ARM_FEATURE_EL2
);
1104 if (!cpu
->has_pmu
) {
1105 unset_feature(env
, ARM_FEATURE_PMU
);
1107 if (arm_feature(env
, ARM_FEATURE_PMU
)) {
1110 if (!kvm_enabled()) {
1111 arm_register_pre_el_change_hook(cpu
, &pmu_pre_el_change
, 0);
1112 arm_register_el_change_hook(cpu
, &pmu_post_el_change
, 0);
1115 #ifndef CONFIG_USER_ONLY
1116 cpu
->pmu_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, arm_pmu_timer_cb
,
1120 cpu
->id_aa64dfr0
&= ~0xf00;
1121 cpu
->id_dfr0
&= ~(0xf << 24);
1126 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
1127 /* Disable the hypervisor feature bits in the processor feature
1128 * registers if we don't have EL2. These are id_pfr1[15:12] and
1129 * id_aa64pfr0_el1[11:8].
1131 cpu
->isar
.id_aa64pfr0
&= ~0xf00;
1132 cpu
->id_pfr1
&= ~0xf000;
1135 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1136 * to false or by setting pmsav7-dregion to 0.
1138 if (!cpu
->has_mpu
) {
1139 cpu
->pmsav7_dregion
= 0;
1141 if (cpu
->pmsav7_dregion
== 0) {
1142 cpu
->has_mpu
= false;
1145 if (arm_feature(env
, ARM_FEATURE_PMSA
) &&
1146 arm_feature(env
, ARM_FEATURE_V7
)) {
1147 uint32_t nr
= cpu
->pmsav7_dregion
;
1150 error_setg(errp
, "PMSAv7 MPU #regions invalid %" PRIu32
, nr
);
1155 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1157 env
->pmsav8
.rbar
[M_REG_NS
] = g_new0(uint32_t, nr
);
1158 env
->pmsav8
.rlar
[M_REG_NS
] = g_new0(uint32_t, nr
);
1159 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1160 env
->pmsav8
.rbar
[M_REG_S
] = g_new0(uint32_t, nr
);
1161 env
->pmsav8
.rlar
[M_REG_S
] = g_new0(uint32_t, nr
);
1164 env
->pmsav7
.drbar
= g_new0(uint32_t, nr
);
1165 env
->pmsav7
.drsr
= g_new0(uint32_t, nr
);
1166 env
->pmsav7
.dracr
= g_new0(uint32_t, nr
);
1171 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1172 uint32_t nr
= cpu
->sau_sregion
;
1175 error_setg(errp
, "v8M SAU #regions invalid %" PRIu32
, nr
);
1180 env
->sau
.rbar
= g_new0(uint32_t, nr
);
1181 env
->sau
.rlar
= g_new0(uint32_t, nr
);
1185 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1186 set_feature(env
, ARM_FEATURE_VBAR
);
1189 register_cp_regs_for_features(cpu
);
1190 arm_cpu_register_gdb_regs_for_features(cpu
);
1192 init_cpreg_list(cpu
);
1194 #ifndef CONFIG_USER_ONLY
1195 if (cpu
->has_el3
|| arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1198 if (!cpu
->secure_memory
) {
1199 cpu
->secure_memory
= cs
->memory
;
1201 cpu_address_space_init(cs
, ARMASIdx_S
, "cpu-secure-memory",
1202 cpu
->secure_memory
);
1206 cpu_address_space_init(cs
, ARMASIdx_NS
, "cpu-memory", cs
->memory
);
1208 /* No core_count specified, default to smp_cpus. */
1209 if (cpu
->core_count
== -1) {
1210 cpu
->core_count
= smp_cpus
;
1217 acc
->parent_realize(dev
, errp
);
1220 static ObjectClass
*arm_cpu_class_by_name(const char *cpu_model
)
1225 const char *cpunamestr
;
1227 cpuname
= g_strsplit(cpu_model
, ",", 1);
1228 cpunamestr
= cpuname
[0];
1229 #ifdef CONFIG_USER_ONLY
1230 /* For backwards compatibility usermode emulation allows "-cpu any",
1231 * which has the same semantics as "-cpu max".
1233 if (!strcmp(cpunamestr
, "any")) {
1237 typename
= g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr
);
1238 oc
= object_class_by_name(typename
);
1239 g_strfreev(cpuname
);
1241 if (!oc
|| !object_class_dynamic_cast(oc
, TYPE_ARM_CPU
) ||
1242 object_class_is_abstract(oc
)) {
1248 /* CPU models. These are not needed for the AArch64 linux-user build. */
1249 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1251 static void arm926_initfn(Object
*obj
)
1253 ARMCPU
*cpu
= ARM_CPU(obj
);
1255 cpu
->dtb_compatible
= "arm,arm926";
1256 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1257 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1258 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1259 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_TEST_CLEAN
);
1260 cpu
->midr
= 0x41069265;
1261 cpu
->reset_fpsid
= 0x41011090;
1262 cpu
->ctr
= 0x1dd20d2;
1263 cpu
->reset_sctlr
= 0x00090078;
1266 * ARMv5 does not have the ID_ISAR registers, but we can still
1267 * set the field to indicate Jazelle support within QEMU.
1269 cpu
->isar
.id_isar1
= FIELD_DP32(cpu
->isar
.id_isar1
, ID_ISAR1
, JAZELLE
, 1);
1272 static void arm946_initfn(Object
*obj
)
1274 ARMCPU
*cpu
= ARM_CPU(obj
);
1276 cpu
->dtb_compatible
= "arm,arm946";
1277 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1278 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
1279 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1280 cpu
->midr
= 0x41059461;
1281 cpu
->ctr
= 0x0f004006;
1282 cpu
->reset_sctlr
= 0x00000078;
1285 static void arm1026_initfn(Object
*obj
)
1287 ARMCPU
*cpu
= ARM_CPU(obj
);
1289 cpu
->dtb_compatible
= "arm,arm1026";
1290 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1291 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1292 set_feature(&cpu
->env
, ARM_FEATURE_AUXCR
);
1293 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1294 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_TEST_CLEAN
);
1295 cpu
->midr
= 0x4106a262;
1296 cpu
->reset_fpsid
= 0x410110a0;
1297 cpu
->ctr
= 0x1dd20d2;
1298 cpu
->reset_sctlr
= 0x00090078;
1299 cpu
->reset_auxcr
= 1;
1302 * ARMv5 does not have the ID_ISAR registers, but we can still
1303 * set the field to indicate Jazelle support within QEMU.
1305 cpu
->isar
.id_isar1
= FIELD_DP32(cpu
->isar
.id_isar1
, ID_ISAR1
, JAZELLE
, 1);
1308 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1309 ARMCPRegInfo ifar
= {
1310 .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
1312 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifar_ns
),
1315 define_one_arm_cp_reg(cpu
, &ifar
);
1319 static void arm1136_r2_initfn(Object
*obj
)
1321 ARMCPU
*cpu
= ARM_CPU(obj
);
1322 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1323 * older core than plain "arm1136". In particular this does not
1324 * have the v6K features.
1325 * These ID register values are correct for 1136 but may be wrong
1326 * for 1136_r2 (in particular r0p2 does not actually implement most
1327 * of the ID registers).
1330 cpu
->dtb_compatible
= "arm,arm1136";
1331 set_feature(&cpu
->env
, ARM_FEATURE_V6
);
1332 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1333 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1334 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_DIRTY_REG
);
1335 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_BLOCK_OPS
);
1336 cpu
->midr
= 0x4107b362;
1337 cpu
->reset_fpsid
= 0x410120b4;
1338 cpu
->isar
.mvfr0
= 0x11111111;
1339 cpu
->isar
.mvfr1
= 0x00000000;
1340 cpu
->ctr
= 0x1dd20d2;
1341 cpu
->reset_sctlr
= 0x00050078;
1342 cpu
->id_pfr0
= 0x111;
1346 cpu
->id_mmfr0
= 0x01130003;
1347 cpu
->id_mmfr1
= 0x10030302;
1348 cpu
->id_mmfr2
= 0x01222110;
1349 cpu
->isar
.id_isar0
= 0x00140011;
1350 cpu
->isar
.id_isar1
= 0x12002111;
1351 cpu
->isar
.id_isar2
= 0x11231111;
1352 cpu
->isar
.id_isar3
= 0x01102131;
1353 cpu
->isar
.id_isar4
= 0x141;
1354 cpu
->reset_auxcr
= 7;
1357 static void arm1136_initfn(Object
*obj
)
1359 ARMCPU
*cpu
= ARM_CPU(obj
);
1361 cpu
->dtb_compatible
= "arm,arm1136";
1362 set_feature(&cpu
->env
, ARM_FEATURE_V6K
);
1363 set_feature(&cpu
->env
, ARM_FEATURE_V6
);
1364 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1365 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1366 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_DIRTY_REG
);
1367 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_BLOCK_OPS
);
1368 cpu
->midr
= 0x4117b363;
1369 cpu
->reset_fpsid
= 0x410120b4;
1370 cpu
->isar
.mvfr0
= 0x11111111;
1371 cpu
->isar
.mvfr1
= 0x00000000;
1372 cpu
->ctr
= 0x1dd20d2;
1373 cpu
->reset_sctlr
= 0x00050078;
1374 cpu
->id_pfr0
= 0x111;
1378 cpu
->id_mmfr0
= 0x01130003;
1379 cpu
->id_mmfr1
= 0x10030302;
1380 cpu
->id_mmfr2
= 0x01222110;
1381 cpu
->isar
.id_isar0
= 0x00140011;
1382 cpu
->isar
.id_isar1
= 0x12002111;
1383 cpu
->isar
.id_isar2
= 0x11231111;
1384 cpu
->isar
.id_isar3
= 0x01102131;
1385 cpu
->isar
.id_isar4
= 0x141;
1386 cpu
->reset_auxcr
= 7;
1389 static void arm1176_initfn(Object
*obj
)
1391 ARMCPU
*cpu
= ARM_CPU(obj
);
1393 cpu
->dtb_compatible
= "arm,arm1176";
1394 set_feature(&cpu
->env
, ARM_FEATURE_V6K
);
1395 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1396 set_feature(&cpu
->env
, ARM_FEATURE_VAPA
);
1397 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1398 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_DIRTY_REG
);
1399 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_BLOCK_OPS
);
1400 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1401 cpu
->midr
= 0x410fb767;
1402 cpu
->reset_fpsid
= 0x410120b5;
1403 cpu
->isar
.mvfr0
= 0x11111111;
1404 cpu
->isar
.mvfr1
= 0x00000000;
1405 cpu
->ctr
= 0x1dd20d2;
1406 cpu
->reset_sctlr
= 0x00050078;
1407 cpu
->id_pfr0
= 0x111;
1408 cpu
->id_pfr1
= 0x11;
1409 cpu
->id_dfr0
= 0x33;
1411 cpu
->id_mmfr0
= 0x01130003;
1412 cpu
->id_mmfr1
= 0x10030302;
1413 cpu
->id_mmfr2
= 0x01222100;
1414 cpu
->isar
.id_isar0
= 0x0140011;
1415 cpu
->isar
.id_isar1
= 0x12002111;
1416 cpu
->isar
.id_isar2
= 0x11231121;
1417 cpu
->isar
.id_isar3
= 0x01102131;
1418 cpu
->isar
.id_isar4
= 0x01141;
1419 cpu
->reset_auxcr
= 7;
1422 static void arm11mpcore_initfn(Object
*obj
)
1424 ARMCPU
*cpu
= ARM_CPU(obj
);
1426 cpu
->dtb_compatible
= "arm,arm11mpcore";
1427 set_feature(&cpu
->env
, ARM_FEATURE_V6K
);
1428 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1429 set_feature(&cpu
->env
, ARM_FEATURE_VAPA
);
1430 set_feature(&cpu
->env
, ARM_FEATURE_MPIDR
);
1431 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1432 cpu
->midr
= 0x410fb022;
1433 cpu
->reset_fpsid
= 0x410120b4;
1434 cpu
->isar
.mvfr0
= 0x11111111;
1435 cpu
->isar
.mvfr1
= 0x00000000;
1436 cpu
->ctr
= 0x1d192992; /* 32K icache 32K dcache */
1437 cpu
->id_pfr0
= 0x111;
1441 cpu
->id_mmfr0
= 0x01100103;
1442 cpu
->id_mmfr1
= 0x10020302;
1443 cpu
->id_mmfr2
= 0x01222000;
1444 cpu
->isar
.id_isar0
= 0x00100011;
1445 cpu
->isar
.id_isar1
= 0x12002111;
1446 cpu
->isar
.id_isar2
= 0x11221011;
1447 cpu
->isar
.id_isar3
= 0x01102131;
1448 cpu
->isar
.id_isar4
= 0x141;
1449 cpu
->reset_auxcr
= 1;
1452 static void cortex_m0_initfn(Object
*obj
)
1454 ARMCPU
*cpu
= ARM_CPU(obj
);
1455 set_feature(&cpu
->env
, ARM_FEATURE_V6
);
1456 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1458 cpu
->midr
= 0x410cc200;
1461 static void cortex_m3_initfn(Object
*obj
)
1463 ARMCPU
*cpu
= ARM_CPU(obj
);
1464 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1465 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1466 set_feature(&cpu
->env
, ARM_FEATURE_M_MAIN
);
1467 cpu
->midr
= 0x410fc231;
1468 cpu
->pmsav7_dregion
= 8;
1469 cpu
->id_pfr0
= 0x00000030;
1470 cpu
->id_pfr1
= 0x00000200;
1471 cpu
->id_dfr0
= 0x00100000;
1472 cpu
->id_afr0
= 0x00000000;
1473 cpu
->id_mmfr0
= 0x00000030;
1474 cpu
->id_mmfr1
= 0x00000000;
1475 cpu
->id_mmfr2
= 0x00000000;
1476 cpu
->id_mmfr3
= 0x00000000;
1477 cpu
->isar
.id_isar0
= 0x01141110;
1478 cpu
->isar
.id_isar1
= 0x02111000;
1479 cpu
->isar
.id_isar2
= 0x21112231;
1480 cpu
->isar
.id_isar3
= 0x01111110;
1481 cpu
->isar
.id_isar4
= 0x01310102;
1482 cpu
->isar
.id_isar5
= 0x00000000;
1483 cpu
->isar
.id_isar6
= 0x00000000;
1486 static void cortex_m4_initfn(Object
*obj
)
1488 ARMCPU
*cpu
= ARM_CPU(obj
);
1490 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1491 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1492 set_feature(&cpu
->env
, ARM_FEATURE_M_MAIN
);
1493 set_feature(&cpu
->env
, ARM_FEATURE_THUMB_DSP
);
1494 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
1495 cpu
->midr
= 0x410fc240; /* r0p0 */
1496 cpu
->pmsav7_dregion
= 8;
1497 cpu
->isar
.mvfr0
= 0x10110021;
1498 cpu
->isar
.mvfr1
= 0x11000011;
1499 cpu
->isar
.mvfr2
= 0x00000000;
1500 cpu
->id_pfr0
= 0x00000030;
1501 cpu
->id_pfr1
= 0x00000200;
1502 cpu
->id_dfr0
= 0x00100000;
1503 cpu
->id_afr0
= 0x00000000;
1504 cpu
->id_mmfr0
= 0x00000030;
1505 cpu
->id_mmfr1
= 0x00000000;
1506 cpu
->id_mmfr2
= 0x00000000;
1507 cpu
->id_mmfr3
= 0x00000000;
1508 cpu
->isar
.id_isar0
= 0x01141110;
1509 cpu
->isar
.id_isar1
= 0x02111000;
1510 cpu
->isar
.id_isar2
= 0x21112231;
1511 cpu
->isar
.id_isar3
= 0x01111110;
1512 cpu
->isar
.id_isar4
= 0x01310102;
1513 cpu
->isar
.id_isar5
= 0x00000000;
1514 cpu
->isar
.id_isar6
= 0x00000000;
1517 static void cortex_m33_initfn(Object
*obj
)
1519 ARMCPU
*cpu
= ARM_CPU(obj
);
1521 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
1522 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1523 set_feature(&cpu
->env
, ARM_FEATURE_M_MAIN
);
1524 set_feature(&cpu
->env
, ARM_FEATURE_M_SECURITY
);
1525 set_feature(&cpu
->env
, ARM_FEATURE_THUMB_DSP
);
1526 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
1527 cpu
->midr
= 0x410fd213; /* r0p3 */
1528 cpu
->pmsav7_dregion
= 16;
1529 cpu
->sau_sregion
= 8;
1530 cpu
->isar
.mvfr0
= 0x10110021;
1531 cpu
->isar
.mvfr1
= 0x11000011;
1532 cpu
->isar
.mvfr2
= 0x00000040;
1533 cpu
->id_pfr0
= 0x00000030;
1534 cpu
->id_pfr1
= 0x00000210;
1535 cpu
->id_dfr0
= 0x00200000;
1536 cpu
->id_afr0
= 0x00000000;
1537 cpu
->id_mmfr0
= 0x00101F40;
1538 cpu
->id_mmfr1
= 0x00000000;
1539 cpu
->id_mmfr2
= 0x01000000;
1540 cpu
->id_mmfr3
= 0x00000000;
1541 cpu
->isar
.id_isar0
= 0x01101110;
1542 cpu
->isar
.id_isar1
= 0x02212000;
1543 cpu
->isar
.id_isar2
= 0x20232232;
1544 cpu
->isar
.id_isar3
= 0x01111131;
1545 cpu
->isar
.id_isar4
= 0x01310132;
1546 cpu
->isar
.id_isar5
= 0x00000000;
1547 cpu
->isar
.id_isar6
= 0x00000000;
1548 cpu
->clidr
= 0x00000000;
1549 cpu
->ctr
= 0x8000c000;
1552 static void arm_v7m_class_init(ObjectClass
*oc
, void *data
)
1554 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
1555 CPUClass
*cc
= CPU_CLASS(oc
);
1558 #ifndef CONFIG_USER_ONLY
1559 cc
->do_interrupt
= arm_v7m_cpu_do_interrupt
;
1562 cc
->cpu_exec_interrupt
= arm_v7m_cpu_exec_interrupt
;
1565 static const ARMCPRegInfo cortexr5_cp_reginfo
[] = {
1566 /* Dummy the TCM region regs for the moment */
1567 { .name
= "ATCM", .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
1568 .access
= PL1_RW
, .type
= ARM_CP_CONST
},
1569 { .name
= "BTCM", .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
1570 .access
= PL1_RW
, .type
= ARM_CP_CONST
},
1571 { .name
= "DCACHE_INVAL", .cp
= 15, .opc1
= 0, .crn
= 15, .crm
= 5,
1572 .opc2
= 0, .access
= PL1_W
, .type
= ARM_CP_NOP
},
1576 static void cortex_r5_initfn(Object
*obj
)
1578 ARMCPU
*cpu
= ARM_CPU(obj
);
1580 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1581 set_feature(&cpu
->env
, ARM_FEATURE_V7MP
);
1582 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
1583 cpu
->midr
= 0x411fc153; /* r1p3 */
1584 cpu
->id_pfr0
= 0x0131;
1585 cpu
->id_pfr1
= 0x001;
1586 cpu
->id_dfr0
= 0x010400;
1588 cpu
->id_mmfr0
= 0x0210030;
1589 cpu
->id_mmfr1
= 0x00000000;
1590 cpu
->id_mmfr2
= 0x01200000;
1591 cpu
->id_mmfr3
= 0x0211;
1592 cpu
->isar
.id_isar0
= 0x02101111;
1593 cpu
->isar
.id_isar1
= 0x13112111;
1594 cpu
->isar
.id_isar2
= 0x21232141;
1595 cpu
->isar
.id_isar3
= 0x01112131;
1596 cpu
->isar
.id_isar4
= 0x0010142;
1597 cpu
->isar
.id_isar5
= 0x0;
1598 cpu
->isar
.id_isar6
= 0x0;
1599 cpu
->mp_is_up
= true;
1600 cpu
->pmsav7_dregion
= 16;
1601 define_arm_cp_regs(cpu
, cortexr5_cp_reginfo
);
1604 static void cortex_r5f_initfn(Object
*obj
)
1606 ARMCPU
*cpu
= ARM_CPU(obj
);
1608 cortex_r5_initfn(obj
);
1609 set_feature(&cpu
->env
, ARM_FEATURE_VFP3
);
1612 static const ARMCPRegInfo cortexa8_cp_reginfo
[] = {
1613 { .name
= "L2LOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 0,
1614 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1615 { .name
= "L2AUXCR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 2,
1616 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1620 static void cortex_a8_initfn(Object
*obj
)
1622 ARMCPU
*cpu
= ARM_CPU(obj
);
1624 cpu
->dtb_compatible
= "arm,cortex-a8";
1625 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1626 set_feature(&cpu
->env
, ARM_FEATURE_VFP3
);
1627 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1628 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1629 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1630 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1631 cpu
->midr
= 0x410fc080;
1632 cpu
->reset_fpsid
= 0x410330c0;
1633 cpu
->isar
.mvfr0
= 0x11110222;
1634 cpu
->isar
.mvfr1
= 0x00011111;
1635 cpu
->ctr
= 0x82048004;
1636 cpu
->reset_sctlr
= 0x00c50078;
1637 cpu
->id_pfr0
= 0x1031;
1638 cpu
->id_pfr1
= 0x11;
1639 cpu
->id_dfr0
= 0x400;
1641 cpu
->id_mmfr0
= 0x31100003;
1642 cpu
->id_mmfr1
= 0x20000000;
1643 cpu
->id_mmfr2
= 0x01202000;
1644 cpu
->id_mmfr3
= 0x11;
1645 cpu
->isar
.id_isar0
= 0x00101111;
1646 cpu
->isar
.id_isar1
= 0x12112111;
1647 cpu
->isar
.id_isar2
= 0x21232031;
1648 cpu
->isar
.id_isar3
= 0x11112131;
1649 cpu
->isar
.id_isar4
= 0x00111142;
1650 cpu
->dbgdidr
= 0x15141000;
1651 cpu
->clidr
= (1 << 27) | (2 << 24) | 3;
1652 cpu
->ccsidr
[0] = 0xe007e01a; /* 16k L1 dcache. */
1653 cpu
->ccsidr
[1] = 0x2007e01a; /* 16k L1 icache. */
1654 cpu
->ccsidr
[2] = 0xf0000000; /* No L2 icache. */
1655 cpu
->reset_auxcr
= 2;
1656 define_arm_cp_regs(cpu
, cortexa8_cp_reginfo
);
1659 static const ARMCPRegInfo cortexa9_cp_reginfo
[] = {
1660 /* power_control should be set to maximum latency. Again,
1661 * default to 0 and set by private hook
1663 { .name
= "A9_PWRCTL", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1664 .access
= PL1_RW
, .resetvalue
= 0,
1665 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_power_control
) },
1666 { .name
= "A9_DIAG", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 1,
1667 .access
= PL1_RW
, .resetvalue
= 0,
1668 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_diagnostic
) },
1669 { .name
= "A9_PWRDIAG", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 2,
1670 .access
= PL1_RW
, .resetvalue
= 0,
1671 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_power_diagnostic
) },
1672 { .name
= "NEONBUSY", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1673 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1674 /* TLB lockdown control */
1675 { .name
= "TLB_LOCKR", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 5, .opc2
= 2,
1676 .access
= PL1_W
, .resetvalue
= 0, .type
= ARM_CP_NOP
},
1677 { .name
= "TLB_LOCKW", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 5, .opc2
= 4,
1678 .access
= PL1_W
, .resetvalue
= 0, .type
= ARM_CP_NOP
},
1679 { .name
= "TLB_VA", .cp
= 15, .crn
= 15, .crm
= 5, .opc1
= 5, .opc2
= 2,
1680 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1681 { .name
= "TLB_PA", .cp
= 15, .crn
= 15, .crm
= 6, .opc1
= 5, .opc2
= 2,
1682 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1683 { .name
= "TLB_ATTR", .cp
= 15, .crn
= 15, .crm
= 7, .opc1
= 5, .opc2
= 2,
1684 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1688 static void cortex_a9_initfn(Object
*obj
)
1690 ARMCPU
*cpu
= ARM_CPU(obj
);
1692 cpu
->dtb_compatible
= "arm,cortex-a9";
1693 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1694 set_feature(&cpu
->env
, ARM_FEATURE_VFP3
);
1695 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1696 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1697 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1698 /* Note that A9 supports the MP extensions even for
1699 * A9UP and single-core A9MP (which are both different
1700 * and valid configurations; we don't model A9UP).
1702 set_feature(&cpu
->env
, ARM_FEATURE_V7MP
);
1703 set_feature(&cpu
->env
, ARM_FEATURE_CBAR
);
1704 cpu
->midr
= 0x410fc090;
1705 cpu
->reset_fpsid
= 0x41033090;
1706 cpu
->isar
.mvfr0
= 0x11110222;
1707 cpu
->isar
.mvfr1
= 0x01111111;
1708 cpu
->ctr
= 0x80038003;
1709 cpu
->reset_sctlr
= 0x00c50078;
1710 cpu
->id_pfr0
= 0x1031;
1711 cpu
->id_pfr1
= 0x11;
1712 cpu
->id_dfr0
= 0x000;
1714 cpu
->id_mmfr0
= 0x00100103;
1715 cpu
->id_mmfr1
= 0x20000000;
1716 cpu
->id_mmfr2
= 0x01230000;
1717 cpu
->id_mmfr3
= 0x00002111;
1718 cpu
->isar
.id_isar0
= 0x00101111;
1719 cpu
->isar
.id_isar1
= 0x13112111;
1720 cpu
->isar
.id_isar2
= 0x21232041;
1721 cpu
->isar
.id_isar3
= 0x11112131;
1722 cpu
->isar
.id_isar4
= 0x00111142;
1723 cpu
->dbgdidr
= 0x35141000;
1724 cpu
->clidr
= (1 << 27) | (1 << 24) | 3;
1725 cpu
->ccsidr
[0] = 0xe00fe019; /* 16k L1 dcache. */
1726 cpu
->ccsidr
[1] = 0x200fe019; /* 16k L1 icache. */
1727 define_arm_cp_regs(cpu
, cortexa9_cp_reginfo
);
1730 #ifndef CONFIG_USER_ONLY
1731 static uint64_t a15_l2ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1733 /* Linux wants the number of processors from here.
1734 * Might as well set the interrupt-controller bit too.
1736 return ((smp_cpus
- 1) << 24) | (1 << 23);
1740 static const ARMCPRegInfo cortexa15_cp_reginfo
[] = {
1741 #ifndef CONFIG_USER_ONLY
1742 { .name
= "L2CTLR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 2,
1743 .access
= PL1_RW
, .resetvalue
= 0, .readfn
= a15_l2ctlr_read
,
1744 .writefn
= arm_cp_write_ignore
, },
1746 { .name
= "L2ECTLR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 3,
1747 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1751 static void cortex_a7_initfn(Object
*obj
)
1753 ARMCPU
*cpu
= ARM_CPU(obj
);
1755 cpu
->dtb_compatible
= "arm,cortex-a7";
1756 set_feature(&cpu
->env
, ARM_FEATURE_V7VE
);
1757 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
1758 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1759 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1760 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
1761 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1762 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
1763 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
1764 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1765 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
1766 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A7
;
1767 cpu
->midr
= 0x410fc075;
1768 cpu
->reset_fpsid
= 0x41023075;
1769 cpu
->isar
.mvfr0
= 0x10110222;
1770 cpu
->isar
.mvfr1
= 0x11111111;
1771 cpu
->ctr
= 0x84448003;
1772 cpu
->reset_sctlr
= 0x00c50078;
1773 cpu
->id_pfr0
= 0x00001131;
1774 cpu
->id_pfr1
= 0x00011011;
1775 cpu
->id_dfr0
= 0x02010555;
1776 cpu
->id_afr0
= 0x00000000;
1777 cpu
->id_mmfr0
= 0x10101105;
1778 cpu
->id_mmfr1
= 0x40000000;
1779 cpu
->id_mmfr2
= 0x01240000;
1780 cpu
->id_mmfr3
= 0x02102211;
1781 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1782 * table 4-41 gives 0x02101110, which includes the arm div insns.
1784 cpu
->isar
.id_isar0
= 0x02101110;
1785 cpu
->isar
.id_isar1
= 0x13112111;
1786 cpu
->isar
.id_isar2
= 0x21232041;
1787 cpu
->isar
.id_isar3
= 0x11112131;
1788 cpu
->isar
.id_isar4
= 0x10011142;
1789 cpu
->dbgdidr
= 0x3515f005;
1790 cpu
->clidr
= 0x0a200023;
1791 cpu
->ccsidr
[0] = 0x701fe00a; /* 32K L1 dcache */
1792 cpu
->ccsidr
[1] = 0x201fe00a; /* 32K L1 icache */
1793 cpu
->ccsidr
[2] = 0x711fe07a; /* 4096K L2 unified cache */
1794 define_arm_cp_regs(cpu
, cortexa15_cp_reginfo
); /* Same as A15 */
1797 static void cortex_a15_initfn(Object
*obj
)
1799 ARMCPU
*cpu
= ARM_CPU(obj
);
1801 cpu
->dtb_compatible
= "arm,cortex-a15";
1802 set_feature(&cpu
->env
, ARM_FEATURE_V7VE
);
1803 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
1804 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1805 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1806 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
1807 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1808 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
1809 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
1810 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1811 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
1812 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A15
;
1813 cpu
->midr
= 0x412fc0f1;
1814 cpu
->reset_fpsid
= 0x410430f0;
1815 cpu
->isar
.mvfr0
= 0x10110222;
1816 cpu
->isar
.mvfr1
= 0x11111111;
1817 cpu
->ctr
= 0x8444c004;
1818 cpu
->reset_sctlr
= 0x00c50078;
1819 cpu
->id_pfr0
= 0x00001131;
1820 cpu
->id_pfr1
= 0x00011011;
1821 cpu
->id_dfr0
= 0x02010555;
1822 cpu
->id_afr0
= 0x00000000;
1823 cpu
->id_mmfr0
= 0x10201105;
1824 cpu
->id_mmfr1
= 0x20000000;
1825 cpu
->id_mmfr2
= 0x01240000;
1826 cpu
->id_mmfr3
= 0x02102211;
1827 cpu
->isar
.id_isar0
= 0x02101110;
1828 cpu
->isar
.id_isar1
= 0x13112111;
1829 cpu
->isar
.id_isar2
= 0x21232041;
1830 cpu
->isar
.id_isar3
= 0x11112131;
1831 cpu
->isar
.id_isar4
= 0x10011142;
1832 cpu
->dbgdidr
= 0x3515f021;
1833 cpu
->clidr
= 0x0a200023;
1834 cpu
->ccsidr
[0] = 0x701fe00a; /* 32K L1 dcache */
1835 cpu
->ccsidr
[1] = 0x201fe00a; /* 32K L1 icache */
1836 cpu
->ccsidr
[2] = 0x711fe07a; /* 4096K L2 unified cache */
1837 define_arm_cp_regs(cpu
, cortexa15_cp_reginfo
);
1840 static void ti925t_initfn(Object
*obj
)
1842 ARMCPU
*cpu
= ARM_CPU(obj
);
1843 set_feature(&cpu
->env
, ARM_FEATURE_V4T
);
1844 set_feature(&cpu
->env
, ARM_FEATURE_OMAPCP
);
1845 cpu
->midr
= ARM_CPUID_TI925T
;
1846 cpu
->ctr
= 0x5109149;
1847 cpu
->reset_sctlr
= 0x00000070;
1850 static void sa1100_initfn(Object
*obj
)
1852 ARMCPU
*cpu
= ARM_CPU(obj
);
1854 cpu
->dtb_compatible
= "intel,sa1100";
1855 set_feature(&cpu
->env
, ARM_FEATURE_STRONGARM
);
1856 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1857 cpu
->midr
= 0x4401A11B;
1858 cpu
->reset_sctlr
= 0x00000070;
1861 static void sa1110_initfn(Object
*obj
)
1863 ARMCPU
*cpu
= ARM_CPU(obj
);
1864 set_feature(&cpu
->env
, ARM_FEATURE_STRONGARM
);
1865 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1866 cpu
->midr
= 0x6901B119;
1867 cpu
->reset_sctlr
= 0x00000070;
1870 static void pxa250_initfn(Object
*obj
)
1872 ARMCPU
*cpu
= ARM_CPU(obj
);
1874 cpu
->dtb_compatible
= "marvell,xscale";
1875 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1876 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1877 cpu
->midr
= 0x69052100;
1878 cpu
->ctr
= 0xd172172;
1879 cpu
->reset_sctlr
= 0x00000078;
1882 static void pxa255_initfn(Object
*obj
)
1884 ARMCPU
*cpu
= ARM_CPU(obj
);
1886 cpu
->dtb_compatible
= "marvell,xscale";
1887 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1888 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1889 cpu
->midr
= 0x69052d00;
1890 cpu
->ctr
= 0xd172172;
1891 cpu
->reset_sctlr
= 0x00000078;
1894 static void pxa260_initfn(Object
*obj
)
1896 ARMCPU
*cpu
= ARM_CPU(obj
);
1898 cpu
->dtb_compatible
= "marvell,xscale";
1899 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1900 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1901 cpu
->midr
= 0x69052903;
1902 cpu
->ctr
= 0xd172172;
1903 cpu
->reset_sctlr
= 0x00000078;
1906 static void pxa261_initfn(Object
*obj
)
1908 ARMCPU
*cpu
= ARM_CPU(obj
);
1910 cpu
->dtb_compatible
= "marvell,xscale";
1911 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1912 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1913 cpu
->midr
= 0x69052d05;
1914 cpu
->ctr
= 0xd172172;
1915 cpu
->reset_sctlr
= 0x00000078;
1918 static void pxa262_initfn(Object
*obj
)
1920 ARMCPU
*cpu
= ARM_CPU(obj
);
1922 cpu
->dtb_compatible
= "marvell,xscale";
1923 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1924 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1925 cpu
->midr
= 0x69052d06;
1926 cpu
->ctr
= 0xd172172;
1927 cpu
->reset_sctlr
= 0x00000078;
1930 static void pxa270a0_initfn(Object
*obj
)
1932 ARMCPU
*cpu
= ARM_CPU(obj
);
1934 cpu
->dtb_compatible
= "marvell,xscale";
1935 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1936 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1937 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1938 cpu
->midr
= 0x69054110;
1939 cpu
->ctr
= 0xd172172;
1940 cpu
->reset_sctlr
= 0x00000078;
1943 static void pxa270a1_initfn(Object
*obj
)
1945 ARMCPU
*cpu
= ARM_CPU(obj
);
1947 cpu
->dtb_compatible
= "marvell,xscale";
1948 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1949 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1950 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1951 cpu
->midr
= 0x69054111;
1952 cpu
->ctr
= 0xd172172;
1953 cpu
->reset_sctlr
= 0x00000078;
1956 static void pxa270b0_initfn(Object
*obj
)
1958 ARMCPU
*cpu
= ARM_CPU(obj
);
1960 cpu
->dtb_compatible
= "marvell,xscale";
1961 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1962 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1963 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1964 cpu
->midr
= 0x69054112;
1965 cpu
->ctr
= 0xd172172;
1966 cpu
->reset_sctlr
= 0x00000078;
1969 static void pxa270b1_initfn(Object
*obj
)
1971 ARMCPU
*cpu
= ARM_CPU(obj
);
1973 cpu
->dtb_compatible
= "marvell,xscale";
1974 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1975 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1976 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1977 cpu
->midr
= 0x69054113;
1978 cpu
->ctr
= 0xd172172;
1979 cpu
->reset_sctlr
= 0x00000078;
1982 static void pxa270c0_initfn(Object
*obj
)
1984 ARMCPU
*cpu
= ARM_CPU(obj
);
1986 cpu
->dtb_compatible
= "marvell,xscale";
1987 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1988 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1989 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1990 cpu
->midr
= 0x69054114;
1991 cpu
->ctr
= 0xd172172;
1992 cpu
->reset_sctlr
= 0x00000078;
1995 static void pxa270c5_initfn(Object
*obj
)
1997 ARMCPU
*cpu
= ARM_CPU(obj
);
1999 cpu
->dtb_compatible
= "marvell,xscale";
2000 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
2001 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
2002 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
2003 cpu
->midr
= 0x69054117;
2004 cpu
->ctr
= 0xd172172;
2005 cpu
->reset_sctlr
= 0x00000078;
2008 #ifndef TARGET_AARCH64
2009 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2010 * otherwise, a CPU with as many features enabled as our emulation supports.
2011 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2012 * this only needs to handle 32 bits.
2014 static void arm_max_initfn(Object
*obj
)
2016 ARMCPU
*cpu
= ARM_CPU(obj
);
2018 if (kvm_enabled()) {
2019 kvm_arm_set_cpu_features_from_host(cpu
);
2021 cortex_a15_initfn(obj
);
2022 #ifdef CONFIG_USER_ONLY
2023 /* We don't set these in system emulation mode for the moment,
2024 * since we don't correctly set (all of) the ID registers to
2027 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
2031 t
= cpu
->isar
.id_isar5
;
2032 t
= FIELD_DP32(t
, ID_ISAR5
, AES
, 2);
2033 t
= FIELD_DP32(t
, ID_ISAR5
, SHA1
, 1);
2034 t
= FIELD_DP32(t
, ID_ISAR5
, SHA2
, 1);
2035 t
= FIELD_DP32(t
, ID_ISAR5
, CRC32
, 1);
2036 t
= FIELD_DP32(t
, ID_ISAR5
, RDM
, 1);
2037 t
= FIELD_DP32(t
, ID_ISAR5
, VCMA
, 1);
2038 cpu
->isar
.id_isar5
= t
;
2040 t
= cpu
->isar
.id_isar6
;
2041 t
= FIELD_DP32(t
, ID_ISAR6
, JSCVT
, 1);
2042 t
= FIELD_DP32(t
, ID_ISAR6
, DP
, 1);
2043 t
= FIELD_DP32(t
, ID_ISAR6
, FHM
, 1);
2044 t
= FIELD_DP32(t
, ID_ISAR6
, SB
, 1);
2045 t
= FIELD_DP32(t
, ID_ISAR6
, SPECRES
, 1);
2046 cpu
->isar
.id_isar6
= t
;
2048 t
= cpu
->isar
.mvfr2
;
2049 t
= FIELD_DP32(t
, MVFR2
, SIMDMISC
, 3); /* SIMD MaxNum */
2050 t
= FIELD_DP32(t
, MVFR2
, FPMISC
, 4); /* FP MaxNum */
2051 cpu
->isar
.mvfr2
= t
;
2054 t
= FIELD_DP32(t
, ID_MMFR4
, HPDS
, 1); /* AA32HPD */
2062 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2066 void (*initfn
)(Object
*obj
);
2067 void (*class_init
)(ObjectClass
*oc
, void *data
);
2070 static const ARMCPUInfo arm_cpus
[] = {
2071 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2072 { .name
= "arm926", .initfn
= arm926_initfn
},
2073 { .name
= "arm946", .initfn
= arm946_initfn
},
2074 { .name
= "arm1026", .initfn
= arm1026_initfn
},
2075 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2076 * older core than plain "arm1136". In particular this does not
2077 * have the v6K features.
2079 { .name
= "arm1136-r2", .initfn
= arm1136_r2_initfn
},
2080 { .name
= "arm1136", .initfn
= arm1136_initfn
},
2081 { .name
= "arm1176", .initfn
= arm1176_initfn
},
2082 { .name
= "arm11mpcore", .initfn
= arm11mpcore_initfn
},
2083 { .name
= "cortex-m0", .initfn
= cortex_m0_initfn
,
2084 .class_init
= arm_v7m_class_init
},
2085 { .name
= "cortex-m3", .initfn
= cortex_m3_initfn
,
2086 .class_init
= arm_v7m_class_init
},
2087 { .name
= "cortex-m4", .initfn
= cortex_m4_initfn
,
2088 .class_init
= arm_v7m_class_init
},
2089 { .name
= "cortex-m33", .initfn
= cortex_m33_initfn
,
2090 .class_init
= arm_v7m_class_init
},
2091 { .name
= "cortex-r5", .initfn
= cortex_r5_initfn
},
2092 { .name
= "cortex-r5f", .initfn
= cortex_r5f_initfn
},
2093 { .name
= "cortex-a7", .initfn
= cortex_a7_initfn
},
2094 { .name
= "cortex-a8", .initfn
= cortex_a8_initfn
},
2095 { .name
= "cortex-a9", .initfn
= cortex_a9_initfn
},
2096 { .name
= "cortex-a15", .initfn
= cortex_a15_initfn
},
2097 { .name
= "ti925t", .initfn
= ti925t_initfn
},
2098 { .name
= "sa1100", .initfn
= sa1100_initfn
},
2099 { .name
= "sa1110", .initfn
= sa1110_initfn
},
2100 { .name
= "pxa250", .initfn
= pxa250_initfn
},
2101 { .name
= "pxa255", .initfn
= pxa255_initfn
},
2102 { .name
= "pxa260", .initfn
= pxa260_initfn
},
2103 { .name
= "pxa261", .initfn
= pxa261_initfn
},
2104 { .name
= "pxa262", .initfn
= pxa262_initfn
},
2105 /* "pxa270" is an alias for "pxa270-a0" */
2106 { .name
= "pxa270", .initfn
= pxa270a0_initfn
},
2107 { .name
= "pxa270-a0", .initfn
= pxa270a0_initfn
},
2108 { .name
= "pxa270-a1", .initfn
= pxa270a1_initfn
},
2109 { .name
= "pxa270-b0", .initfn
= pxa270b0_initfn
},
2110 { .name
= "pxa270-b1", .initfn
= pxa270b1_initfn
},
2111 { .name
= "pxa270-c0", .initfn
= pxa270c0_initfn
},
2112 { .name
= "pxa270-c5", .initfn
= pxa270c5_initfn
},
2113 #ifndef TARGET_AARCH64
2114 { .name
= "max", .initfn
= arm_max_initfn
},
2116 #ifdef CONFIG_USER_ONLY
2117 { .name
= "any", .initfn
= arm_max_initfn
},
2123 static Property arm_cpu_properties
[] = {
2124 DEFINE_PROP_BOOL("start-powered-off", ARMCPU
, start_powered_off
, false),
2125 DEFINE_PROP_UINT32("psci-conduit", ARMCPU
, psci_conduit
, 0),
2126 DEFINE_PROP_UINT32("midr", ARMCPU
, midr
, 0),
2127 DEFINE_PROP_UINT64("mp-affinity", ARMCPU
,
2128 mp_affinity
, ARM64_AFFINITY_INVALID
),
2129 DEFINE_PROP_INT32("node-id", ARMCPU
, node_id
, CPU_UNSET_NUMA_NODE_ID
),
2130 DEFINE_PROP_INT32("core-count", ARMCPU
, core_count
, -1),
2131 DEFINE_PROP_END_OF_LIST()
2134 static gchar
*arm_gdb_arch_name(CPUState
*cs
)
2136 ARMCPU
*cpu
= ARM_CPU(cs
);
2137 CPUARMState
*env
= &cpu
->env
;
2139 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
2140 return g_strdup("iwmmxt");
2142 return g_strdup("arm");
2145 static void arm_cpu_class_init(ObjectClass
*oc
, void *data
)
2147 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2148 CPUClass
*cc
= CPU_CLASS(acc
);
2149 DeviceClass
*dc
= DEVICE_CLASS(oc
);
2151 device_class_set_parent_realize(dc
, arm_cpu_realizefn
,
2152 &acc
->parent_realize
);
2153 dc
->props
= arm_cpu_properties
;
2155 acc
->parent_reset
= cc
->reset
;
2156 cc
->reset
= arm_cpu_reset
;
2158 cc
->class_by_name
= arm_cpu_class_by_name
;
2159 cc
->has_work
= arm_cpu_has_work
;
2160 cc
->cpu_exec_interrupt
= arm_cpu_exec_interrupt
;
2161 cc
->dump_state
= arm_cpu_dump_state
;
2162 cc
->set_pc
= arm_cpu_set_pc
;
2163 cc
->synchronize_from_tb
= arm_cpu_synchronize_from_tb
;
2164 cc
->gdb_read_register
= arm_cpu_gdb_read_register
;
2165 cc
->gdb_write_register
= arm_cpu_gdb_write_register
;
2166 #ifndef CONFIG_USER_ONLY
2167 cc
->do_interrupt
= arm_cpu_do_interrupt
;
2168 cc
->do_unaligned_access
= arm_cpu_do_unaligned_access
;
2169 cc
->do_transaction_failed
= arm_cpu_do_transaction_failed
;
2170 cc
->get_phys_page_attrs_debug
= arm_cpu_get_phys_page_attrs_debug
;
2171 cc
->asidx_from_attrs
= arm_asidx_from_attrs
;
2172 cc
->vmsd
= &vmstate_arm_cpu
;
2173 cc
->virtio_is_big_endian
= arm_cpu_virtio_is_big_endian
;
2174 cc
->write_elf64_note
= arm_cpu_write_elf64_note
;
2175 cc
->write_elf32_note
= arm_cpu_write_elf32_note
;
2177 cc
->gdb_num_core_regs
= 26;
2178 cc
->gdb_core_xml_file
= "arm-core.xml";
2179 cc
->gdb_arch_name
= arm_gdb_arch_name
;
2180 cc
->gdb_get_dynamic_xml
= arm_gdb_get_dynamic_xml
;
2181 cc
->gdb_stop_before_watchpoint
= true;
2182 cc
->debug_excp_handler
= arm_debug_excp_handler
;
2183 cc
->debug_check_watchpoint
= arm_debug_check_watchpoint
;
2184 #if !defined(CONFIG_USER_ONLY)
2185 cc
->adjust_watchpoint_address
= arm_adjust_watchpoint_address
;
2188 cc
->disas_set_info
= arm_disas_set_info
;
2190 cc
->tcg_initialize
= arm_translate_init
;
2191 cc
->tlb_fill
= arm_cpu_tlb_fill
;
2196 static void arm_host_initfn(Object
*obj
)
2198 ARMCPU
*cpu
= ARM_CPU(obj
);
2200 kvm_arm_set_cpu_features_from_host(cpu
);
2201 arm_cpu_post_init(obj
);
2204 static const TypeInfo host_arm_cpu_type_info
= {
2205 .name
= TYPE_ARM_HOST_CPU
,
2206 #ifdef TARGET_AARCH64
2207 .parent
= TYPE_AARCH64_CPU
,
2209 .parent
= TYPE_ARM_CPU
,
2211 .instance_init
= arm_host_initfn
,
2216 static void arm_cpu_instance_init(Object
*obj
)
2218 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(obj
);
2220 acc
->info
->initfn(obj
);
2221 arm_cpu_post_init(obj
);
2224 static void cpu_register_class_init(ObjectClass
*oc
, void *data
)
2226 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2231 static void cpu_register(const ARMCPUInfo
*info
)
2233 TypeInfo type_info
= {
2234 .parent
= TYPE_ARM_CPU
,
2235 .instance_size
= sizeof(ARMCPU
),
2236 .instance_init
= arm_cpu_instance_init
,
2237 .class_size
= sizeof(ARMCPUClass
),
2238 .class_init
= info
->class_init
?: cpu_register_class_init
,
2239 .class_data
= (void *)info
,
2242 type_info
.name
= g_strdup_printf("%s-" TYPE_ARM_CPU
, info
->name
);
2243 type_register(&type_info
);
2244 g_free((void *)type_info
.name
);
2247 static const TypeInfo arm_cpu_type_info
= {
2248 .name
= TYPE_ARM_CPU
,
2250 .instance_size
= sizeof(ARMCPU
),
2251 .instance_init
= arm_cpu_initfn
,
2252 .instance_finalize
= arm_cpu_finalizefn
,
2254 .class_size
= sizeof(ARMCPUClass
),
2255 .class_init
= arm_cpu_class_init
,
2258 static const TypeInfo idau_interface_type_info
= {
2259 .name
= TYPE_IDAU_INTERFACE
,
2260 .parent
= TYPE_INTERFACE
,
2261 .class_size
= sizeof(IDAUInterfaceClass
),
2264 static void arm_cpu_register_types(void)
2266 const ARMCPUInfo
*info
= arm_cpus
;
2268 type_register_static(&arm_cpu_type_info
);
2269 type_register_static(&idau_interface_type_info
);
2271 while (info
->name
) {
2277 type_register_static(&host_arm_cpu_type_info
);
2281 type_init(arm_cpu_register_types
)