2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
21 #include "migration.h"
22 #include "qemu-file.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/module.h"
29 #include "qemu/sockets.h"
30 #include "qemu/bitmap.h"
31 #include "qemu/coroutine.h"
32 #include "exec/memory.h"
33 #include <sys/socket.h>
35 #include <arpa/inet.h>
36 #include <rdma/rdma_cma.h>
38 #include "qom/object.h"
42 * Print and error on both the Monitor and the Log file.
44 #define ERROR(errp, fmt, ...) \
46 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
47 if (errp && (*(errp) == NULL)) { \
48 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
52 #define RDMA_RESOLVE_TIMEOUT_MS 10000
54 /* Do not merge data if larger than this. */
55 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
56 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
58 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
61 * This is only for non-live state being migrated.
62 * Instead of RDMA_WRITE messages, we use RDMA_SEND
63 * messages for that state, which requires a different
64 * delivery design than main memory.
66 #define RDMA_SEND_INCREMENT 32768
69 * Maximum size infiniband SEND message
71 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
72 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
74 #define RDMA_CONTROL_VERSION_CURRENT 1
76 * Capabilities for negotiation.
78 #define RDMA_CAPABILITY_PIN_ALL 0x01
81 * Add the other flags above to this list of known capabilities
82 * as they are introduced.
84 static uint32_t known_capabilities
= RDMA_CAPABILITY_PIN_ALL
;
86 #define CHECK_ERROR_STATE() \
88 if (rdma->error_state) { \
89 if (!rdma->error_reported) { \
90 error_report("RDMA is in an error state waiting migration" \
92 rdma->error_reported = 1; \
94 return rdma->error_state; \
99 * A work request ID is 64-bits and we split up these bits
102 * bits 0-15 : type of control message, 2^16
103 * bits 16-29: ram block index, 2^14
104 * bits 30-63: ram block chunk number, 2^34
106 * The last two bit ranges are only used for RDMA writes,
107 * in order to track their completion and potentially
108 * also track unregistration status of the message.
110 #define RDMA_WRID_TYPE_SHIFT 0UL
111 #define RDMA_WRID_BLOCK_SHIFT 16UL
112 #define RDMA_WRID_CHUNK_SHIFT 30UL
114 #define RDMA_WRID_TYPE_MASK \
115 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
117 #define RDMA_WRID_BLOCK_MASK \
118 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
120 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
123 * RDMA migration protocol:
124 * 1. RDMA Writes (data messages, i.e. RAM)
125 * 2. IB Send/Recv (control channel messages)
129 RDMA_WRID_RDMA_WRITE
= 1,
130 RDMA_WRID_SEND_CONTROL
= 2000,
131 RDMA_WRID_RECV_CONTROL
= 4000,
134 static const char *wrid_desc
[] = {
135 [RDMA_WRID_NONE
] = "NONE",
136 [RDMA_WRID_RDMA_WRITE
] = "WRITE RDMA",
137 [RDMA_WRID_SEND_CONTROL
] = "CONTROL SEND",
138 [RDMA_WRID_RECV_CONTROL
] = "CONTROL RECV",
142 * Work request IDs for IB SEND messages only (not RDMA writes).
143 * This is used by the migration protocol to transmit
144 * control messages (such as device state and registration commands)
146 * We could use more WRs, but we have enough for now.
156 * SEND/RECV IB Control Messages.
159 RDMA_CONTROL_NONE
= 0,
161 RDMA_CONTROL_READY
, /* ready to receive */
162 RDMA_CONTROL_QEMU_FILE
, /* QEMUFile-transmitted bytes */
163 RDMA_CONTROL_RAM_BLOCKS_REQUEST
, /* RAMBlock synchronization */
164 RDMA_CONTROL_RAM_BLOCKS_RESULT
, /* RAMBlock synchronization */
165 RDMA_CONTROL_COMPRESS
, /* page contains repeat values */
166 RDMA_CONTROL_REGISTER_REQUEST
, /* dynamic page registration */
167 RDMA_CONTROL_REGISTER_RESULT
, /* key to use after registration */
168 RDMA_CONTROL_REGISTER_FINISHED
, /* current iteration finished */
169 RDMA_CONTROL_UNREGISTER_REQUEST
, /* dynamic UN-registration */
170 RDMA_CONTROL_UNREGISTER_FINISHED
, /* unpinning finished */
175 * Memory and MR structures used to represent an IB Send/Recv work request.
176 * This is *not* used for RDMA writes, only IB Send/Recv.
179 uint8_t control
[RDMA_CONTROL_MAX_BUFFER
]; /* actual buffer to register */
180 struct ibv_mr
*control_mr
; /* registration metadata */
181 size_t control_len
; /* length of the message */
182 uint8_t *control_curr
; /* start of unconsumed bytes */
183 } RDMAWorkRequestData
;
186 * Negotiate RDMA capabilities during connection-setup time.
193 static void caps_to_network(RDMACapabilities
*cap
)
195 cap
->version
= htonl(cap
->version
);
196 cap
->flags
= htonl(cap
->flags
);
199 static void network_to_caps(RDMACapabilities
*cap
)
201 cap
->version
= ntohl(cap
->version
);
202 cap
->flags
= ntohl(cap
->flags
);
206 * Representation of a RAMBlock from an RDMA perspective.
207 * This is not transmitted, only local.
208 * This and subsequent structures cannot be linked lists
209 * because we're using a single IB message to transmit
210 * the information. It's small anyway, so a list is overkill.
212 typedef struct RDMALocalBlock
{
214 uint8_t *local_host_addr
; /* local virtual address */
215 uint64_t remote_host_addr
; /* remote virtual address */
218 struct ibv_mr
**pmr
; /* MRs for chunk-level registration */
219 struct ibv_mr
*mr
; /* MR for non-chunk-level registration */
220 uint32_t *remote_keys
; /* rkeys for chunk-level registration */
221 uint32_t remote_rkey
; /* rkeys for non-chunk-level registration */
222 int index
; /* which block are we */
223 unsigned int src_index
; /* (Only used on dest) */
226 unsigned long *transit_bitmap
;
227 unsigned long *unregister_bitmap
;
231 * Also represents a RAMblock, but only on the dest.
232 * This gets transmitted by the dest during connection-time
233 * to the source VM and then is used to populate the
234 * corresponding RDMALocalBlock with
235 * the information needed to perform the actual RDMA.
237 typedef struct QEMU_PACKED RDMADestBlock
{
238 uint64_t remote_host_addr
;
241 uint32_t remote_rkey
;
245 static const char *control_desc(unsigned int rdma_control
)
247 static const char *strs
[] = {
248 [RDMA_CONTROL_NONE
] = "NONE",
249 [RDMA_CONTROL_ERROR
] = "ERROR",
250 [RDMA_CONTROL_READY
] = "READY",
251 [RDMA_CONTROL_QEMU_FILE
] = "QEMU FILE",
252 [RDMA_CONTROL_RAM_BLOCKS_REQUEST
] = "RAM BLOCKS REQUEST",
253 [RDMA_CONTROL_RAM_BLOCKS_RESULT
] = "RAM BLOCKS RESULT",
254 [RDMA_CONTROL_COMPRESS
] = "COMPRESS",
255 [RDMA_CONTROL_REGISTER_REQUEST
] = "REGISTER REQUEST",
256 [RDMA_CONTROL_REGISTER_RESULT
] = "REGISTER RESULT",
257 [RDMA_CONTROL_REGISTER_FINISHED
] = "REGISTER FINISHED",
258 [RDMA_CONTROL_UNREGISTER_REQUEST
] = "UNREGISTER REQUEST",
259 [RDMA_CONTROL_UNREGISTER_FINISHED
] = "UNREGISTER FINISHED",
262 if (rdma_control
> RDMA_CONTROL_UNREGISTER_FINISHED
) {
263 return "??BAD CONTROL VALUE??";
266 return strs
[rdma_control
];
269 static uint64_t htonll(uint64_t v
)
271 union { uint32_t lv
[2]; uint64_t llv
; } u
;
272 u
.lv
[0] = htonl(v
>> 32);
273 u
.lv
[1] = htonl(v
& 0xFFFFFFFFULL
);
277 static uint64_t ntohll(uint64_t v
)
279 union { uint32_t lv
[2]; uint64_t llv
; } u
;
281 return ((uint64_t)ntohl(u
.lv
[0]) << 32) | (uint64_t) ntohl(u
.lv
[1]);
284 static void dest_block_to_network(RDMADestBlock
*db
)
286 db
->remote_host_addr
= htonll(db
->remote_host_addr
);
287 db
->offset
= htonll(db
->offset
);
288 db
->length
= htonll(db
->length
);
289 db
->remote_rkey
= htonl(db
->remote_rkey
);
292 static void network_to_dest_block(RDMADestBlock
*db
)
294 db
->remote_host_addr
= ntohll(db
->remote_host_addr
);
295 db
->offset
= ntohll(db
->offset
);
296 db
->length
= ntohll(db
->length
);
297 db
->remote_rkey
= ntohl(db
->remote_rkey
);
301 * Virtual address of the above structures used for transmitting
302 * the RAMBlock descriptions at connection-time.
303 * This structure is *not* transmitted.
305 typedef struct RDMALocalBlocks
{
307 bool init
; /* main memory init complete */
308 RDMALocalBlock
*block
;
312 * Main data structure for RDMA state.
313 * While there is only one copy of this structure being allocated right now,
314 * this is the place where one would start if you wanted to consider
315 * having more than one RDMA connection open at the same time.
317 typedef struct RDMAContext
{
322 RDMAWorkRequestData wr_data
[RDMA_WRID_MAX
];
325 * This is used by *_exchange_send() to figure out whether or not
326 * the initial "READY" message has already been received or not.
327 * This is because other functions may potentially poll() and detect
328 * the READY message before send() does, in which case we need to
329 * know if it completed.
331 int control_ready_expected
;
333 /* number of outstanding writes */
336 /* store info about current buffer so that we can
337 merge it with future sends */
338 uint64_t current_addr
;
339 uint64_t current_length
;
340 /* index of ram block the current buffer belongs to */
342 /* index of the chunk in the current ram block */
348 * infiniband-specific variables for opening the device
349 * and maintaining connection state and so forth.
351 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
352 * cm_id->verbs, cm_id->channel, and cm_id->qp.
354 struct rdma_cm_id
*cm_id
; /* connection manager ID */
355 struct rdma_cm_id
*listen_id
;
358 struct ibv_context
*verbs
;
359 struct rdma_event_channel
*channel
;
360 struct ibv_qp
*qp
; /* queue pair */
361 struct ibv_comp_channel
*comp_channel
; /* completion channel */
362 struct ibv_pd
*pd
; /* protection domain */
363 struct ibv_cq
*cq
; /* completion queue */
366 * If a previous write failed (perhaps because of a failed
367 * memory registration, then do not attempt any future work
368 * and remember the error state.
375 * Description of ram blocks used throughout the code.
377 RDMALocalBlocks local_ram_blocks
;
378 RDMADestBlock
*dest_blocks
;
380 /* Index of the next RAMBlock received during block registration */
381 unsigned int next_src_index
;
384 * Migration on *destination* started.
385 * Then use coroutine yield function.
386 * Source runs in a thread, so we don't care.
388 int migration_started_on_destination
;
390 int total_registrations
;
393 int unregister_current
, unregister_next
;
394 uint64_t unregistrations
[RDMA_SIGNALED_SEND_MAX
];
396 GHashTable
*blockmap
;
398 /* the RDMAContext for return path */
399 struct RDMAContext
*return_path
;
403 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
404 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA
, QIO_CHANNEL_RDMA
)
408 struct QIOChannelRDMA
{
411 RDMAContext
*rdmaout
;
413 bool blocking
; /* XXX we don't actually honour this yet */
417 * Main structure for IB Send/Recv control messages.
418 * This gets prepended at the beginning of every Send/Recv.
420 typedef struct QEMU_PACKED
{
421 uint32_t len
; /* Total length of data portion */
422 uint32_t type
; /* which control command to perform */
423 uint32_t repeat
; /* number of commands in data portion of same type */
427 static void control_to_network(RDMAControlHeader
*control
)
429 control
->type
= htonl(control
->type
);
430 control
->len
= htonl(control
->len
);
431 control
->repeat
= htonl(control
->repeat
);
434 static void network_to_control(RDMAControlHeader
*control
)
436 control
->type
= ntohl(control
->type
);
437 control
->len
= ntohl(control
->len
);
438 control
->repeat
= ntohl(control
->repeat
);
442 * Register a single Chunk.
443 * Information sent by the source VM to inform the dest
444 * to register an single chunk of memory before we can perform
445 * the actual RDMA operation.
447 typedef struct QEMU_PACKED
{
449 uint64_t current_addr
; /* offset into the ram_addr_t space */
450 uint64_t chunk
; /* chunk to lookup if unregistering */
452 uint32_t current_index
; /* which ramblock the chunk belongs to */
454 uint64_t chunks
; /* how many sequential chunks to register */
457 static void register_to_network(RDMAContext
*rdma
, RDMARegister
*reg
)
459 RDMALocalBlock
*local_block
;
460 local_block
= &rdma
->local_ram_blocks
.block
[reg
->current_index
];
462 if (local_block
->is_ram_block
) {
464 * current_addr as passed in is an address in the local ram_addr_t
465 * space, we need to translate this for the destination
467 reg
->key
.current_addr
-= local_block
->offset
;
468 reg
->key
.current_addr
+= rdma
->dest_blocks
[reg
->current_index
].offset
;
470 reg
->key
.current_addr
= htonll(reg
->key
.current_addr
);
471 reg
->current_index
= htonl(reg
->current_index
);
472 reg
->chunks
= htonll(reg
->chunks
);
475 static void network_to_register(RDMARegister
*reg
)
477 reg
->key
.current_addr
= ntohll(reg
->key
.current_addr
);
478 reg
->current_index
= ntohl(reg
->current_index
);
479 reg
->chunks
= ntohll(reg
->chunks
);
482 typedef struct QEMU_PACKED
{
483 uint32_t value
; /* if zero, we will madvise() */
484 uint32_t block_idx
; /* which ram block index */
485 uint64_t offset
; /* Address in remote ram_addr_t space */
486 uint64_t length
; /* length of the chunk */
489 static void compress_to_network(RDMAContext
*rdma
, RDMACompress
*comp
)
491 comp
->value
= htonl(comp
->value
);
493 * comp->offset as passed in is an address in the local ram_addr_t
494 * space, we need to translate this for the destination
496 comp
->offset
-= rdma
->local_ram_blocks
.block
[comp
->block_idx
].offset
;
497 comp
->offset
+= rdma
->dest_blocks
[comp
->block_idx
].offset
;
498 comp
->block_idx
= htonl(comp
->block_idx
);
499 comp
->offset
= htonll(comp
->offset
);
500 comp
->length
= htonll(comp
->length
);
503 static void network_to_compress(RDMACompress
*comp
)
505 comp
->value
= ntohl(comp
->value
);
506 comp
->block_idx
= ntohl(comp
->block_idx
);
507 comp
->offset
= ntohll(comp
->offset
);
508 comp
->length
= ntohll(comp
->length
);
512 * The result of the dest's memory registration produces an "rkey"
513 * which the source VM must reference in order to perform
514 * the RDMA operation.
516 typedef struct QEMU_PACKED
{
520 } RDMARegisterResult
;
522 static void result_to_network(RDMARegisterResult
*result
)
524 result
->rkey
= htonl(result
->rkey
);
525 result
->host_addr
= htonll(result
->host_addr
);
528 static void network_to_result(RDMARegisterResult
*result
)
530 result
->rkey
= ntohl(result
->rkey
);
531 result
->host_addr
= ntohll(result
->host_addr
);
534 const char *print_wrid(int wrid
);
535 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
536 uint8_t *data
, RDMAControlHeader
*resp
,
538 int (*callback
)(RDMAContext
*rdma
));
540 static inline uint64_t ram_chunk_index(const uint8_t *start
,
543 return ((uintptr_t) host
- (uintptr_t) start
) >> RDMA_REG_CHUNK_SHIFT
;
546 static inline uint8_t *ram_chunk_start(const RDMALocalBlock
*rdma_ram_block
,
549 return (uint8_t *)(uintptr_t)(rdma_ram_block
->local_host_addr
+
550 (i
<< RDMA_REG_CHUNK_SHIFT
));
553 static inline uint8_t *ram_chunk_end(const RDMALocalBlock
*rdma_ram_block
,
556 uint8_t *result
= ram_chunk_start(rdma_ram_block
, i
) +
557 (1UL << RDMA_REG_CHUNK_SHIFT
);
559 if (result
> (rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
)) {
560 result
= rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
;
566 static int rdma_add_block(RDMAContext
*rdma
, const char *block_name
,
568 ram_addr_t block_offset
, uint64_t length
)
570 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
571 RDMALocalBlock
*block
;
572 RDMALocalBlock
*old
= local
->block
;
574 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
+ 1);
576 if (local
->nb_blocks
) {
579 if (rdma
->blockmap
) {
580 for (x
= 0; x
< local
->nb_blocks
; x
++) {
581 g_hash_table_remove(rdma
->blockmap
,
582 (void *)(uintptr_t)old
[x
].offset
);
583 g_hash_table_insert(rdma
->blockmap
,
584 (void *)(uintptr_t)old
[x
].offset
,
588 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * local
->nb_blocks
);
592 block
= &local
->block
[local
->nb_blocks
];
594 block
->block_name
= g_strdup(block_name
);
595 block
->local_host_addr
= host_addr
;
596 block
->offset
= block_offset
;
597 block
->length
= length
;
598 block
->index
= local
->nb_blocks
;
599 block
->src_index
= ~0U; /* Filled in by the receipt of the block list */
600 block
->nb_chunks
= ram_chunk_index(host_addr
, host_addr
+ length
) + 1UL;
601 block
->transit_bitmap
= bitmap_new(block
->nb_chunks
);
602 bitmap_clear(block
->transit_bitmap
, 0, block
->nb_chunks
);
603 block
->unregister_bitmap
= bitmap_new(block
->nb_chunks
);
604 bitmap_clear(block
->unregister_bitmap
, 0, block
->nb_chunks
);
605 block
->remote_keys
= g_new0(uint32_t, block
->nb_chunks
);
607 block
->is_ram_block
= local
->init
? false : true;
609 if (rdma
->blockmap
) {
610 g_hash_table_insert(rdma
->blockmap
, (void *)(uintptr_t)block_offset
, block
);
613 trace_rdma_add_block(block_name
, local
->nb_blocks
,
614 (uintptr_t) block
->local_host_addr
,
615 block
->offset
, block
->length
,
616 (uintptr_t) (block
->local_host_addr
+ block
->length
),
617 BITS_TO_LONGS(block
->nb_chunks
) *
618 sizeof(unsigned long) * 8,
627 * Memory regions need to be registered with the device and queue pairs setup
628 * in advanced before the migration starts. This tells us where the RAM blocks
629 * are so that we can register them individually.
631 static int qemu_rdma_init_one_block(RAMBlock
*rb
, void *opaque
)
633 const char *block_name
= qemu_ram_get_idstr(rb
);
634 void *host_addr
= qemu_ram_get_host_addr(rb
);
635 ram_addr_t block_offset
= qemu_ram_get_offset(rb
);
636 ram_addr_t length
= qemu_ram_get_used_length(rb
);
637 return rdma_add_block(opaque
, block_name
, host_addr
, block_offset
, length
);
641 * Identify the RAMBlocks and their quantity. They will be references to
642 * identify chunk boundaries inside each RAMBlock and also be referenced
643 * during dynamic page registration.
645 static int qemu_rdma_init_ram_blocks(RDMAContext
*rdma
)
647 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
650 assert(rdma
->blockmap
== NULL
);
651 memset(local
, 0, sizeof *local
);
652 ret
= foreach_not_ignored_block(qemu_rdma_init_one_block
, rdma
);
656 trace_qemu_rdma_init_ram_blocks(local
->nb_blocks
);
657 rdma
->dest_blocks
= g_new0(RDMADestBlock
,
658 rdma
->local_ram_blocks
.nb_blocks
);
664 * Note: If used outside of cleanup, the caller must ensure that the destination
665 * block structures are also updated
667 static int rdma_delete_block(RDMAContext
*rdma
, RDMALocalBlock
*block
)
669 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
670 RDMALocalBlock
*old
= local
->block
;
673 if (rdma
->blockmap
) {
674 g_hash_table_remove(rdma
->blockmap
, (void *)(uintptr_t)block
->offset
);
679 for (j
= 0; j
< block
->nb_chunks
; j
++) {
680 if (!block
->pmr
[j
]) {
683 ibv_dereg_mr(block
->pmr
[j
]);
684 rdma
->total_registrations
--;
691 ibv_dereg_mr(block
->mr
);
692 rdma
->total_registrations
--;
696 g_free(block
->transit_bitmap
);
697 block
->transit_bitmap
= NULL
;
699 g_free(block
->unregister_bitmap
);
700 block
->unregister_bitmap
= NULL
;
702 g_free(block
->remote_keys
);
703 block
->remote_keys
= NULL
;
705 g_free(block
->block_name
);
706 block
->block_name
= NULL
;
708 if (rdma
->blockmap
) {
709 for (x
= 0; x
< local
->nb_blocks
; x
++) {
710 g_hash_table_remove(rdma
->blockmap
,
711 (void *)(uintptr_t)old
[x
].offset
);
715 if (local
->nb_blocks
> 1) {
717 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
- 1);
720 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * block
->index
);
723 if (block
->index
< (local
->nb_blocks
- 1)) {
724 memcpy(local
->block
+ block
->index
, old
+ (block
->index
+ 1),
725 sizeof(RDMALocalBlock
) *
726 (local
->nb_blocks
- (block
->index
+ 1)));
727 for (x
= block
->index
; x
< local
->nb_blocks
- 1; x
++) {
728 local
->block
[x
].index
--;
732 assert(block
== local
->block
);
736 trace_rdma_delete_block(block
, (uintptr_t)block
->local_host_addr
,
737 block
->offset
, block
->length
,
738 (uintptr_t)(block
->local_host_addr
+ block
->length
),
739 BITS_TO_LONGS(block
->nb_chunks
) *
740 sizeof(unsigned long) * 8, block
->nb_chunks
);
746 if (local
->nb_blocks
&& rdma
->blockmap
) {
747 for (x
= 0; x
< local
->nb_blocks
; x
++) {
748 g_hash_table_insert(rdma
->blockmap
,
749 (void *)(uintptr_t)local
->block
[x
].offset
,
758 * Put in the log file which RDMA device was opened and the details
759 * associated with that device.
761 static void qemu_rdma_dump_id(const char *who
, struct ibv_context
*verbs
)
763 struct ibv_port_attr port
;
765 if (ibv_query_port(verbs
, 1, &port
)) {
766 error_report("Failed to query port information");
770 printf("%s RDMA Device opened: kernel name %s "
771 "uverbs device name %s, "
772 "infiniband_verbs class device path %s, "
773 "infiniband class device path %s, "
774 "transport: (%d) %s\n",
777 verbs
->device
->dev_name
,
778 verbs
->device
->dev_path
,
779 verbs
->device
->ibdev_path
,
781 (port
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) ? "Infiniband" :
782 ((port
.link_layer
== IBV_LINK_LAYER_ETHERNET
)
783 ? "Ethernet" : "Unknown"));
787 * Put in the log file the RDMA gid addressing information,
788 * useful for folks who have trouble understanding the
789 * RDMA device hierarchy in the kernel.
791 static void qemu_rdma_dump_gid(const char *who
, struct rdma_cm_id
*id
)
795 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.sgid
, sgid
, sizeof sgid
);
796 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.dgid
, dgid
, sizeof dgid
);
797 trace_qemu_rdma_dump_gid(who
, sgid
, dgid
);
801 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
802 * We will try the next addrinfo struct, and fail if there are
803 * no other valid addresses to bind against.
805 * If user is listening on '[::]', then we will not have a opened a device
806 * yet and have no way of verifying if the device is RoCE or not.
808 * In this case, the source VM will throw an error for ALL types of
809 * connections (both IPv4 and IPv6) if the destination machine does not have
810 * a regular infiniband network available for use.
812 * The only way to guarantee that an error is thrown for broken kernels is
813 * for the management software to choose a *specific* interface at bind time
814 * and validate what time of hardware it is.
816 * Unfortunately, this puts the user in a fix:
818 * If the source VM connects with an IPv4 address without knowing that the
819 * destination has bound to '[::]' the migration will unconditionally fail
820 * unless the management software is explicitly listening on the IPv4
821 * address while using a RoCE-based device.
823 * If the source VM connects with an IPv6 address, then we're OK because we can
824 * throw an error on the source (and similarly on the destination).
826 * But in mixed environments, this will be broken for a while until it is fixed
829 * We do provide a *tiny* bit of help in this function: We can list all of the
830 * devices in the system and check to see if all the devices are RoCE or
833 * If we detect that we have a *pure* RoCE environment, then we can safely
834 * thrown an error even if the management software has specified '[::]' as the
837 * However, if there is are multiple hetergeneous devices, then we cannot make
838 * this assumption and the user just has to be sure they know what they are
841 * Patches are being reviewed on linux-rdma.
843 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context
*verbs
, Error
**errp
)
845 /* This bug only exists in linux, to our knowledge. */
847 struct ibv_port_attr port_attr
;
850 * Verbs are only NULL if management has bound to '[::]'.
852 * Let's iterate through all the devices and see if there any pure IB
853 * devices (non-ethernet).
855 * If not, then we can safely proceed with the migration.
856 * Otherwise, there are no guarantees until the bug is fixed in linux.
860 struct ibv_device
**dev_list
= ibv_get_device_list(&num_devices
);
861 bool roce_found
= false;
862 bool ib_found
= false;
864 for (x
= 0; x
< num_devices
; x
++) {
865 verbs
= ibv_open_device(dev_list
[x
]);
867 if (errno
== EPERM
) {
874 if (ibv_query_port(verbs
, 1, &port_attr
)) {
875 ibv_close_device(verbs
);
876 ERROR(errp
, "Could not query initial IB port");
880 if (port_attr
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) {
882 } else if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
886 ibv_close_device(verbs
);
892 fprintf(stderr
, "WARN: migrations may fail:"
893 " IPv6 over RoCE / iWARP in linux"
894 " is broken. But since you appear to have a"
895 " mixed RoCE / IB environment, be sure to only"
896 " migrate over the IB fabric until the kernel "
897 " fixes the bug.\n");
899 ERROR(errp
, "You only have RoCE / iWARP devices in your systems"
900 " and your management software has specified '[::]'"
901 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
910 * If we have a verbs context, that means that some other than '[::]' was
911 * used by the management software for binding. In which case we can
912 * actually warn the user about a potentially broken kernel.
915 /* IB ports start with 1, not 0 */
916 if (ibv_query_port(verbs
, 1, &port_attr
)) {
917 ERROR(errp
, "Could not query initial IB port");
921 if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
922 ERROR(errp
, "Linux kernel's RoCE / iWARP does not support IPv6 "
923 "(but patches on linux-rdma in progress)");
933 * Figure out which RDMA device corresponds to the requested IP hostname
934 * Also create the initial connection manager identifiers for opening
937 static int qemu_rdma_resolve_host(RDMAContext
*rdma
, Error
**errp
)
940 struct rdma_addrinfo
*res
;
942 struct rdma_cm_event
*cm_event
;
943 char ip
[40] = "unknown";
944 struct rdma_addrinfo
*e
;
946 if (rdma
->host
== NULL
|| !strcmp(rdma
->host
, "")) {
947 ERROR(errp
, "RDMA hostname has not been set");
951 /* create CM channel */
952 rdma
->channel
= rdma_create_event_channel();
953 if (!rdma
->channel
) {
954 ERROR(errp
, "could not create CM channel");
959 ret
= rdma_create_id(rdma
->channel
, &rdma
->cm_id
, NULL
, RDMA_PS_TCP
);
961 ERROR(errp
, "could not create channel id");
962 goto err_resolve_create_id
;
965 snprintf(port_str
, 16, "%d", rdma
->port
);
968 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
970 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
971 goto err_resolve_get_addr
;
974 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
975 inet_ntop(e
->ai_family
,
976 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
977 trace_qemu_rdma_resolve_host_trying(rdma
->host
, ip
);
979 ret
= rdma_resolve_addr(rdma
->cm_id
, NULL
, e
->ai_dst_addr
,
980 RDMA_RESOLVE_TIMEOUT_MS
);
982 if (e
->ai_family
== AF_INET6
) {
983 ret
= qemu_rdma_broken_ipv6_kernel(rdma
->cm_id
->verbs
, errp
);
992 rdma_freeaddrinfo(res
);
993 ERROR(errp
, "could not resolve address %s", rdma
->host
);
994 goto err_resolve_get_addr
;
997 rdma_freeaddrinfo(res
);
998 qemu_rdma_dump_gid("source_resolve_addr", rdma
->cm_id
);
1000 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1002 ERROR(errp
, "could not perform event_addr_resolved");
1003 goto err_resolve_get_addr
;
1006 if (cm_event
->event
!= RDMA_CM_EVENT_ADDR_RESOLVED
) {
1007 ERROR(errp
, "result not equal to event_addr_resolved %s",
1008 rdma_event_str(cm_event
->event
));
1009 error_report("rdma_resolve_addr");
1010 rdma_ack_cm_event(cm_event
);
1012 goto err_resolve_get_addr
;
1014 rdma_ack_cm_event(cm_event
);
1017 ret
= rdma_resolve_route(rdma
->cm_id
, RDMA_RESOLVE_TIMEOUT_MS
);
1019 ERROR(errp
, "could not resolve rdma route");
1020 goto err_resolve_get_addr
;
1023 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1025 ERROR(errp
, "could not perform event_route_resolved");
1026 goto err_resolve_get_addr
;
1028 if (cm_event
->event
!= RDMA_CM_EVENT_ROUTE_RESOLVED
) {
1029 ERROR(errp
, "result not equal to event_route_resolved: %s",
1030 rdma_event_str(cm_event
->event
));
1031 rdma_ack_cm_event(cm_event
);
1033 goto err_resolve_get_addr
;
1035 rdma_ack_cm_event(cm_event
);
1036 rdma
->verbs
= rdma
->cm_id
->verbs
;
1037 qemu_rdma_dump_id("source_resolve_host", rdma
->cm_id
->verbs
);
1038 qemu_rdma_dump_gid("source_resolve_host", rdma
->cm_id
);
1041 err_resolve_get_addr
:
1042 rdma_destroy_id(rdma
->cm_id
);
1044 err_resolve_create_id
:
1045 rdma_destroy_event_channel(rdma
->channel
);
1046 rdma
->channel
= NULL
;
1051 * Create protection domain and completion queues
1053 static int qemu_rdma_alloc_pd_cq(RDMAContext
*rdma
)
1056 rdma
->pd
= ibv_alloc_pd(rdma
->verbs
);
1058 error_report("failed to allocate protection domain");
1062 /* create completion channel */
1063 rdma
->comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1064 if (!rdma
->comp_channel
) {
1065 error_report("failed to allocate completion channel");
1066 goto err_alloc_pd_cq
;
1070 * Completion queue can be filled by both read and write work requests,
1071 * so must reflect the sum of both possible queue sizes.
1073 rdma
->cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1074 NULL
, rdma
->comp_channel
, 0);
1076 error_report("failed to allocate completion queue");
1077 goto err_alloc_pd_cq
;
1084 ibv_dealloc_pd(rdma
->pd
);
1086 if (rdma
->comp_channel
) {
1087 ibv_destroy_comp_channel(rdma
->comp_channel
);
1090 rdma
->comp_channel
= NULL
;
1096 * Create queue pairs.
1098 static int qemu_rdma_alloc_qp(RDMAContext
*rdma
)
1100 struct ibv_qp_init_attr attr
= { 0 };
1103 attr
.cap
.max_send_wr
= RDMA_SIGNALED_SEND_MAX
;
1104 attr
.cap
.max_recv_wr
= 3;
1105 attr
.cap
.max_send_sge
= 1;
1106 attr
.cap
.max_recv_sge
= 1;
1107 attr
.send_cq
= rdma
->cq
;
1108 attr
.recv_cq
= rdma
->cq
;
1109 attr
.qp_type
= IBV_QPT_RC
;
1111 ret
= rdma_create_qp(rdma
->cm_id
, rdma
->pd
, &attr
);
1116 rdma
->qp
= rdma
->cm_id
->qp
;
1120 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext
*rdma
)
1123 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
1125 for (i
= 0; i
< local
->nb_blocks
; i
++) {
1126 local
->block
[i
].mr
=
1127 ibv_reg_mr(rdma
->pd
,
1128 local
->block
[i
].local_host_addr
,
1129 local
->block
[i
].length
,
1130 IBV_ACCESS_LOCAL_WRITE
|
1131 IBV_ACCESS_REMOTE_WRITE
1133 if (!local
->block
[i
].mr
) {
1134 perror("Failed to register local dest ram block!");
1137 rdma
->total_registrations
++;
1140 if (i
>= local
->nb_blocks
) {
1144 for (i
--; i
>= 0; i
--) {
1145 ibv_dereg_mr(local
->block
[i
].mr
);
1146 local
->block
[i
].mr
= NULL
;
1147 rdma
->total_registrations
--;
1155 * Find the ram block that corresponds to the page requested to be
1156 * transmitted by QEMU.
1158 * Once the block is found, also identify which 'chunk' within that
1159 * block that the page belongs to.
1161 * This search cannot fail or the migration will fail.
1163 static int qemu_rdma_search_ram_block(RDMAContext
*rdma
,
1164 uintptr_t block_offset
,
1167 uint64_t *block_index
,
1168 uint64_t *chunk_index
)
1170 uint64_t current_addr
= block_offset
+ offset
;
1171 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
1172 (void *) block_offset
);
1174 assert(current_addr
>= block
->offset
);
1175 assert((current_addr
+ length
) <= (block
->offset
+ block
->length
));
1177 *block_index
= block
->index
;
1178 *chunk_index
= ram_chunk_index(block
->local_host_addr
,
1179 block
->local_host_addr
+ (current_addr
- block
->offset
));
1185 * Register a chunk with IB. If the chunk was already registered
1186 * previously, then skip.
1188 * Also return the keys associated with the registration needed
1189 * to perform the actual RDMA operation.
1191 static int qemu_rdma_register_and_get_keys(RDMAContext
*rdma
,
1192 RDMALocalBlock
*block
, uintptr_t host_addr
,
1193 uint32_t *lkey
, uint32_t *rkey
, int chunk
,
1194 uint8_t *chunk_start
, uint8_t *chunk_end
)
1198 *lkey
= block
->mr
->lkey
;
1201 *rkey
= block
->mr
->rkey
;
1206 /* allocate memory to store chunk MRs */
1208 block
->pmr
= g_new0(struct ibv_mr
*, block
->nb_chunks
);
1212 * If 'rkey', then we're the destination, so grant access to the source.
1214 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1216 if (!block
->pmr
[chunk
]) {
1217 uint64_t len
= chunk_end
- chunk_start
;
1219 trace_qemu_rdma_register_and_get_keys(len
, chunk_start
);
1221 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
,
1223 (rkey
? (IBV_ACCESS_LOCAL_WRITE
|
1224 IBV_ACCESS_REMOTE_WRITE
) : 0));
1226 if (!block
->pmr
[chunk
]) {
1227 perror("Failed to register chunk!");
1228 fprintf(stderr
, "Chunk details: block: %d chunk index %d"
1229 " start %" PRIuPTR
" end %" PRIuPTR
1231 " local %" PRIuPTR
" registrations: %d\n",
1232 block
->index
, chunk
, (uintptr_t)chunk_start
,
1233 (uintptr_t)chunk_end
, host_addr
,
1234 (uintptr_t)block
->local_host_addr
,
1235 rdma
->total_registrations
);
1238 rdma
->total_registrations
++;
1242 *lkey
= block
->pmr
[chunk
]->lkey
;
1245 *rkey
= block
->pmr
[chunk
]->rkey
;
1251 * Register (at connection time) the memory used for control
1254 static int qemu_rdma_reg_control(RDMAContext
*rdma
, int idx
)
1256 rdma
->wr_data
[idx
].control_mr
= ibv_reg_mr(rdma
->pd
,
1257 rdma
->wr_data
[idx
].control
, RDMA_CONTROL_MAX_BUFFER
,
1258 IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
);
1259 if (rdma
->wr_data
[idx
].control_mr
) {
1260 rdma
->total_registrations
++;
1263 error_report("qemu_rdma_reg_control failed");
1267 const char *print_wrid(int wrid
)
1269 if (wrid
>= RDMA_WRID_RECV_CONTROL
) {
1270 return wrid_desc
[RDMA_WRID_RECV_CONTROL
];
1272 return wrid_desc
[wrid
];
1276 * RDMA requires memory registration (mlock/pinning), but this is not good for
1279 * In preparation for the future where LRU information or workload-specific
1280 * writable writable working set memory access behavior is available to QEMU
1281 * it would be nice to have in place the ability to UN-register/UN-pin
1282 * particular memory regions from the RDMA hardware when it is determine that
1283 * those regions of memory will likely not be accessed again in the near future.
1285 * While we do not yet have such information right now, the following
1286 * compile-time option allows us to perform a non-optimized version of this
1289 * By uncommenting this option, you will cause *all* RDMA transfers to be
1290 * unregistered immediately after the transfer completes on both sides of the
1291 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1293 * This will have a terrible impact on migration performance, so until future
1294 * workload information or LRU information is available, do not attempt to use
1295 * this feature except for basic testing.
1297 /* #define RDMA_UNREGISTRATION_EXAMPLE */
1300 * Perform a non-optimized memory unregistration after every transfer
1301 * for demonstration purposes, only if pin-all is not requested.
1303 * Potential optimizations:
1304 * 1. Start a new thread to run this function continuously
1306 - and for receipt of unregister messages
1308 * 3. Use workload hints.
1310 static int qemu_rdma_unregister_waiting(RDMAContext
*rdma
)
1312 while (rdma
->unregistrations
[rdma
->unregister_current
]) {
1314 uint64_t wr_id
= rdma
->unregistrations
[rdma
->unregister_current
];
1316 (wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1318 (wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1319 RDMALocalBlock
*block
=
1320 &(rdma
->local_ram_blocks
.block
[index
]);
1321 RDMARegister reg
= { .current_index
= index
};
1322 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
1324 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1325 .type
= RDMA_CONTROL_UNREGISTER_REQUEST
,
1329 trace_qemu_rdma_unregister_waiting_proc(chunk
,
1330 rdma
->unregister_current
);
1332 rdma
->unregistrations
[rdma
->unregister_current
] = 0;
1333 rdma
->unregister_current
++;
1335 if (rdma
->unregister_current
== RDMA_SIGNALED_SEND_MAX
) {
1336 rdma
->unregister_current
= 0;
1341 * Unregistration is speculative (because migration is single-threaded
1342 * and we cannot break the protocol's inifinband message ordering).
1343 * Thus, if the memory is currently being used for transmission,
1344 * then abort the attempt to unregister and try again
1345 * later the next time a completion is received for this memory.
1347 clear_bit(chunk
, block
->unregister_bitmap
);
1349 if (test_bit(chunk
, block
->transit_bitmap
)) {
1350 trace_qemu_rdma_unregister_waiting_inflight(chunk
);
1354 trace_qemu_rdma_unregister_waiting_send(chunk
);
1356 ret
= ibv_dereg_mr(block
->pmr
[chunk
]);
1357 block
->pmr
[chunk
] = NULL
;
1358 block
->remote_keys
[chunk
] = 0;
1361 perror("unregistration chunk failed");
1364 rdma
->total_registrations
--;
1366 reg
.key
.chunk
= chunk
;
1367 register_to_network(rdma
, ®
);
1368 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1374 trace_qemu_rdma_unregister_waiting_complete(chunk
);
1380 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id
, uint64_t index
,
1383 uint64_t result
= wr_id
& RDMA_WRID_TYPE_MASK
;
1385 result
|= (index
<< RDMA_WRID_BLOCK_SHIFT
);
1386 result
|= (chunk
<< RDMA_WRID_CHUNK_SHIFT
);
1392 * Set bit for unregistration in the next iteration.
1393 * We cannot transmit right here, but will unpin later.
1395 static void qemu_rdma_signal_unregister(RDMAContext
*rdma
, uint64_t index
,
1396 uint64_t chunk
, uint64_t wr_id
)
1398 if (rdma
->unregistrations
[rdma
->unregister_next
] != 0) {
1399 error_report("rdma migration: queue is full");
1401 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1403 if (!test_and_set_bit(chunk
, block
->unregister_bitmap
)) {
1404 trace_qemu_rdma_signal_unregister_append(chunk
,
1405 rdma
->unregister_next
);
1407 rdma
->unregistrations
[rdma
->unregister_next
++] =
1408 qemu_rdma_make_wrid(wr_id
, index
, chunk
);
1410 if (rdma
->unregister_next
== RDMA_SIGNALED_SEND_MAX
) {
1411 rdma
->unregister_next
= 0;
1414 trace_qemu_rdma_signal_unregister_already(chunk
);
1420 * Consult the connection manager to see a work request
1421 * (of any kind) has completed.
1422 * Return the work request ID that completed.
1424 static uint64_t qemu_rdma_poll(RDMAContext
*rdma
, uint64_t *wr_id_out
,
1431 ret
= ibv_poll_cq(rdma
->cq
, 1, &wc
);
1434 *wr_id_out
= RDMA_WRID_NONE
;
1439 error_report("ibv_poll_cq return %d", ret
);
1443 wr_id
= wc
.wr_id
& RDMA_WRID_TYPE_MASK
;
1445 if (wc
.status
!= IBV_WC_SUCCESS
) {
1446 fprintf(stderr
, "ibv_poll_cq wc.status=%d %s!\n",
1447 wc
.status
, ibv_wc_status_str(wc
.status
));
1448 fprintf(stderr
, "ibv_poll_cq wrid=%s!\n", wrid_desc
[wr_id
]);
1453 if (rdma
->control_ready_expected
&&
1454 (wr_id
>= RDMA_WRID_RECV_CONTROL
)) {
1455 trace_qemu_rdma_poll_recv(wrid_desc
[RDMA_WRID_RECV_CONTROL
],
1456 wr_id
- RDMA_WRID_RECV_CONTROL
, wr_id
, rdma
->nb_sent
);
1457 rdma
->control_ready_expected
= 0;
1460 if (wr_id
== RDMA_WRID_RDMA_WRITE
) {
1462 (wc
.wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1464 (wc
.wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1465 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1467 trace_qemu_rdma_poll_write(print_wrid(wr_id
), wr_id
, rdma
->nb_sent
,
1468 index
, chunk
, block
->local_host_addr
,
1469 (void *)(uintptr_t)block
->remote_host_addr
);
1471 clear_bit(chunk
, block
->transit_bitmap
);
1473 if (rdma
->nb_sent
> 0) {
1477 if (!rdma
->pin_all
) {
1479 * FYI: If one wanted to signal a specific chunk to be unregistered
1480 * using LRU or workload-specific information, this is the function
1481 * you would call to do so. That chunk would then get asynchronously
1482 * unregistered later.
1484 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1485 qemu_rdma_signal_unregister(rdma
, index
, chunk
, wc
.wr_id
);
1489 trace_qemu_rdma_poll_other(print_wrid(wr_id
), wr_id
, rdma
->nb_sent
);
1492 *wr_id_out
= wc
.wr_id
;
1494 *byte_len
= wc
.byte_len
;
1500 /* Wait for activity on the completion channel.
1501 * Returns 0 on success, none-0 on error.
1503 static int qemu_rdma_wait_comp_channel(RDMAContext
*rdma
)
1505 struct rdma_cm_event
*cm_event
;
1509 * Coroutine doesn't start until migration_fd_process_incoming()
1510 * so don't yield unless we know we're running inside of a coroutine.
1512 if (rdma
->migration_started_on_destination
&&
1513 migration_incoming_get_current()->state
== MIGRATION_STATUS_ACTIVE
) {
1514 yield_until_fd_readable(rdma
->comp_channel
->fd
);
1516 /* This is the source side, we're in a separate thread
1517 * or destination prior to migration_fd_process_incoming()
1518 * after postcopy, the destination also in a separate thread.
1519 * we can't yield; so we have to poll the fd.
1520 * But we need to be able to handle 'cancel' or an error
1521 * without hanging forever.
1523 while (!rdma
->error_state
&& !rdma
->received_error
) {
1525 pfds
[0].fd
= rdma
->comp_channel
->fd
;
1526 pfds
[0].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1527 pfds
[0].revents
= 0;
1529 pfds
[1].fd
= rdma
->channel
->fd
;
1530 pfds
[1].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1531 pfds
[1].revents
= 0;
1533 /* 0.1s timeout, should be fine for a 'cancel' */
1534 switch (qemu_poll_ns(pfds
, 2, 100 * 1000 * 1000)) {
1536 case 1: /* fd active */
1537 if (pfds
[0].revents
) {
1541 if (pfds
[1].revents
) {
1542 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1544 error_report("failed to get cm event while wait "
1545 "completion channel");
1549 error_report("receive cm event while wait comp channel,"
1550 "cm event is %d", cm_event
->event
);
1551 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
1552 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
1553 rdma_ack_cm_event(cm_event
);
1556 rdma_ack_cm_event(cm_event
);
1560 case 0: /* Timeout, go around again */
1563 default: /* Error of some type -
1564 * I don't trust errno from qemu_poll_ns
1566 error_report("%s: poll failed", __func__
);
1570 if (migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) {
1571 /* Bail out and let the cancellation happen */
1577 if (rdma
->received_error
) {
1580 return rdma
->error_state
;
1584 * Block until the next work request has completed.
1586 * First poll to see if a work request has already completed,
1589 * If we encounter completed work requests for IDs other than
1590 * the one we're interested in, then that's generally an error.
1592 * The only exception is actual RDMA Write completions. These
1593 * completions only need to be recorded, but do not actually
1594 * need further processing.
1596 static int qemu_rdma_block_for_wrid(RDMAContext
*rdma
, int wrid_requested
,
1599 int num_cq_events
= 0, ret
= 0;
1602 uint64_t wr_id
= RDMA_WRID_NONE
, wr_id_in
;
1604 if (ibv_req_notify_cq(rdma
->cq
, 0)) {
1608 while (wr_id
!= wrid_requested
) {
1609 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1614 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1616 if (wr_id
== RDMA_WRID_NONE
) {
1619 if (wr_id
!= wrid_requested
) {
1620 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested
),
1621 wrid_requested
, print_wrid(wr_id
), wr_id
);
1625 if (wr_id
== wrid_requested
) {
1630 ret
= qemu_rdma_wait_comp_channel(rdma
);
1632 goto err_block_for_wrid
;
1635 ret
= ibv_get_cq_event(rdma
->comp_channel
, &cq
, &cq_ctx
);
1637 perror("ibv_get_cq_event");
1638 goto err_block_for_wrid
;
1643 ret
= -ibv_req_notify_cq(cq
, 0);
1645 goto err_block_for_wrid
;
1648 while (wr_id
!= wrid_requested
) {
1649 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1651 goto err_block_for_wrid
;
1654 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1656 if (wr_id
== RDMA_WRID_NONE
) {
1659 if (wr_id
!= wrid_requested
) {
1660 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested
),
1661 wrid_requested
, print_wrid(wr_id
), wr_id
);
1665 if (wr_id
== wrid_requested
) {
1666 goto success_block_for_wrid
;
1670 success_block_for_wrid
:
1671 if (num_cq_events
) {
1672 ibv_ack_cq_events(cq
, num_cq_events
);
1677 if (num_cq_events
) {
1678 ibv_ack_cq_events(cq
, num_cq_events
);
1681 rdma
->error_state
= ret
;
1686 * Post a SEND message work request for the control channel
1687 * containing some data and block until the post completes.
1689 static int qemu_rdma_post_send_control(RDMAContext
*rdma
, uint8_t *buf
,
1690 RDMAControlHeader
*head
)
1693 RDMAWorkRequestData
*wr
= &rdma
->wr_data
[RDMA_WRID_CONTROL
];
1694 struct ibv_send_wr
*bad_wr
;
1695 struct ibv_sge sge
= {
1696 .addr
= (uintptr_t)(wr
->control
),
1697 .length
= head
->len
+ sizeof(RDMAControlHeader
),
1698 .lkey
= wr
->control_mr
->lkey
,
1700 struct ibv_send_wr send_wr
= {
1701 .wr_id
= RDMA_WRID_SEND_CONTROL
,
1702 .opcode
= IBV_WR_SEND
,
1703 .send_flags
= IBV_SEND_SIGNALED
,
1708 trace_qemu_rdma_post_send_control(control_desc(head
->type
));
1711 * We don't actually need to do a memcpy() in here if we used
1712 * the "sge" properly, but since we're only sending control messages
1713 * (not RAM in a performance-critical path), then its OK for now.
1715 * The copy makes the RDMAControlHeader simpler to manipulate
1716 * for the time being.
1718 assert(head
->len
<= RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
));
1719 memcpy(wr
->control
, head
, sizeof(RDMAControlHeader
));
1720 control_to_network((void *) wr
->control
);
1723 memcpy(wr
->control
+ sizeof(RDMAControlHeader
), buf
, head
->len
);
1727 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
1730 error_report("Failed to use post IB SEND for control");
1734 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_SEND_CONTROL
, NULL
);
1736 error_report("rdma migration: send polling control error");
1743 * Post a RECV work request in anticipation of some future receipt
1744 * of data on the control channel.
1746 static int qemu_rdma_post_recv_control(RDMAContext
*rdma
, int idx
)
1748 struct ibv_recv_wr
*bad_wr
;
1749 struct ibv_sge sge
= {
1750 .addr
= (uintptr_t)(rdma
->wr_data
[idx
].control
),
1751 .length
= RDMA_CONTROL_MAX_BUFFER
,
1752 .lkey
= rdma
->wr_data
[idx
].control_mr
->lkey
,
1755 struct ibv_recv_wr recv_wr
= {
1756 .wr_id
= RDMA_WRID_RECV_CONTROL
+ idx
,
1762 if (ibv_post_recv(rdma
->qp
, &recv_wr
, &bad_wr
)) {
1770 * Block and wait for a RECV control channel message to arrive.
1772 static int qemu_rdma_exchange_get_response(RDMAContext
*rdma
,
1773 RDMAControlHeader
*head
, int expecting
, int idx
)
1776 int ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RECV_CONTROL
+ idx
,
1780 error_report("rdma migration: recv polling control error!");
1784 network_to_control((void *) rdma
->wr_data
[idx
].control
);
1785 memcpy(head
, rdma
->wr_data
[idx
].control
, sizeof(RDMAControlHeader
));
1787 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting
));
1789 if (expecting
== RDMA_CONTROL_NONE
) {
1790 trace_qemu_rdma_exchange_get_response_none(control_desc(head
->type
),
1792 } else if (head
->type
!= expecting
|| head
->type
== RDMA_CONTROL_ERROR
) {
1793 error_report("Was expecting a %s (%d) control message"
1794 ", but got: %s (%d), length: %d",
1795 control_desc(expecting
), expecting
,
1796 control_desc(head
->type
), head
->type
, head
->len
);
1797 if (head
->type
== RDMA_CONTROL_ERROR
) {
1798 rdma
->received_error
= true;
1802 if (head
->len
> RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
)) {
1803 error_report("too long length: %d", head
->len
);
1806 if (sizeof(*head
) + head
->len
!= byte_len
) {
1807 error_report("Malformed length: %d byte_len %d", head
->len
, byte_len
);
1815 * When a RECV work request has completed, the work request's
1816 * buffer is pointed at the header.
1818 * This will advance the pointer to the data portion
1819 * of the control message of the work request's buffer that
1820 * was populated after the work request finished.
1822 static void qemu_rdma_move_header(RDMAContext
*rdma
, int idx
,
1823 RDMAControlHeader
*head
)
1825 rdma
->wr_data
[idx
].control_len
= head
->len
;
1826 rdma
->wr_data
[idx
].control_curr
=
1827 rdma
->wr_data
[idx
].control
+ sizeof(RDMAControlHeader
);
1831 * This is an 'atomic' high-level operation to deliver a single, unified
1832 * control-channel message.
1834 * Additionally, if the user is expecting some kind of reply to this message,
1835 * they can request a 'resp' response message be filled in by posting an
1836 * additional work request on behalf of the user and waiting for an additional
1839 * The extra (optional) response is used during registration to us from having
1840 * to perform an *additional* exchange of message just to provide a response by
1841 * instead piggy-backing on the acknowledgement.
1843 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1844 uint8_t *data
, RDMAControlHeader
*resp
,
1846 int (*callback
)(RDMAContext
*rdma
))
1851 * Wait until the dest is ready before attempting to deliver the message
1852 * by waiting for a READY message.
1854 if (rdma
->control_ready_expected
) {
1855 RDMAControlHeader resp
;
1856 ret
= qemu_rdma_exchange_get_response(rdma
,
1857 &resp
, RDMA_CONTROL_READY
, RDMA_WRID_READY
);
1864 * If the user is expecting a response, post a WR in anticipation of it.
1867 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_DATA
);
1869 error_report("rdma migration: error posting"
1870 " extra control recv for anticipated result!");
1876 * Post a WR to replace the one we just consumed for the READY message.
1878 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1880 error_report("rdma migration: error posting first control recv!");
1885 * Deliver the control message that was requested.
1887 ret
= qemu_rdma_post_send_control(rdma
, data
, head
);
1890 error_report("Failed to send control buffer!");
1895 * If we're expecting a response, block and wait for it.
1899 trace_qemu_rdma_exchange_send_issue_callback();
1900 ret
= callback(rdma
);
1906 trace_qemu_rdma_exchange_send_waiting(control_desc(resp
->type
));
1907 ret
= qemu_rdma_exchange_get_response(rdma
, resp
,
1908 resp
->type
, RDMA_WRID_DATA
);
1914 qemu_rdma_move_header(rdma
, RDMA_WRID_DATA
, resp
);
1916 *resp_idx
= RDMA_WRID_DATA
;
1918 trace_qemu_rdma_exchange_send_received(control_desc(resp
->type
));
1921 rdma
->control_ready_expected
= 1;
1927 * This is an 'atomic' high-level operation to receive a single, unified
1928 * control-channel message.
1930 static int qemu_rdma_exchange_recv(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1933 RDMAControlHeader ready
= {
1935 .type
= RDMA_CONTROL_READY
,
1941 * Inform the source that we're ready to receive a message.
1943 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &ready
);
1946 error_report("Failed to send control buffer!");
1951 * Block and wait for the message.
1953 ret
= qemu_rdma_exchange_get_response(rdma
, head
,
1954 expecting
, RDMA_WRID_READY
);
1960 qemu_rdma_move_header(rdma
, RDMA_WRID_READY
, head
);
1963 * Post a new RECV work request to replace the one we just consumed.
1965 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1967 error_report("rdma migration: error posting second control recv!");
1975 * Write an actual chunk of memory using RDMA.
1977 * If we're using dynamic registration on the dest-side, we have to
1978 * send a registration command first.
1980 static int qemu_rdma_write_one(QEMUFile
*f
, RDMAContext
*rdma
,
1981 int current_index
, uint64_t current_addr
,
1985 struct ibv_send_wr send_wr
= { 0 };
1986 struct ibv_send_wr
*bad_wr
;
1987 int reg_result_idx
, ret
, count
= 0;
1988 uint64_t chunk
, chunks
;
1989 uint8_t *chunk_start
, *chunk_end
;
1990 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[current_index
]);
1992 RDMARegisterResult
*reg_result
;
1993 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_REGISTER_RESULT
};
1994 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1995 .type
= RDMA_CONTROL_REGISTER_REQUEST
,
2000 sge
.addr
= (uintptr_t)(block
->local_host_addr
+
2001 (current_addr
- block
->offset
));
2002 sge
.length
= length
;
2004 chunk
= ram_chunk_index(block
->local_host_addr
,
2005 (uint8_t *)(uintptr_t)sge
.addr
);
2006 chunk_start
= ram_chunk_start(block
, chunk
);
2008 if (block
->is_ram_block
) {
2009 chunks
= length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2011 if (chunks
&& ((length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2015 chunks
= block
->length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2017 if (chunks
&& ((block
->length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2022 trace_qemu_rdma_write_one_top(chunks
+ 1,
2024 (1UL << RDMA_REG_CHUNK_SHIFT
) / 1024 / 1024);
2026 chunk_end
= ram_chunk_end(block
, chunk
+ chunks
);
2028 if (!rdma
->pin_all
) {
2029 #ifdef RDMA_UNREGISTRATION_EXAMPLE
2030 qemu_rdma_unregister_waiting(rdma
);
2034 while (test_bit(chunk
, block
->transit_bitmap
)) {
2036 trace_qemu_rdma_write_one_block(count
++, current_index
, chunk
,
2037 sge
.addr
, length
, rdma
->nb_sent
, block
->nb_chunks
);
2039 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2042 error_report("Failed to Wait for previous write to complete "
2043 "block %d chunk %" PRIu64
2044 " current %" PRIu64
" len %" PRIu64
" %d",
2045 current_index
, chunk
, sge
.addr
, length
, rdma
->nb_sent
);
2050 if (!rdma
->pin_all
|| !block
->is_ram_block
) {
2051 if (!block
->remote_keys
[chunk
]) {
2053 * This chunk has not yet been registered, so first check to see
2054 * if the entire chunk is zero. If so, tell the other size to
2055 * memset() + madvise() the entire chunk without RDMA.
2058 if (buffer_is_zero((void *)(uintptr_t)sge
.addr
, length
)) {
2059 RDMACompress comp
= {
2060 .offset
= current_addr
,
2062 .block_idx
= current_index
,
2066 head
.len
= sizeof(comp
);
2067 head
.type
= RDMA_CONTROL_COMPRESS
;
2069 trace_qemu_rdma_write_one_zero(chunk
, sge
.length
,
2070 current_index
, current_addr
);
2072 compress_to_network(rdma
, &comp
);
2073 ret
= qemu_rdma_exchange_send(rdma
, &head
,
2074 (uint8_t *) &comp
, NULL
, NULL
, NULL
);
2080 acct_update_position(f
, sge
.length
, true);
2086 * Otherwise, tell other side to register.
2088 reg
.current_index
= current_index
;
2089 if (block
->is_ram_block
) {
2090 reg
.key
.current_addr
= current_addr
;
2092 reg
.key
.chunk
= chunk
;
2094 reg
.chunks
= chunks
;
2096 trace_qemu_rdma_write_one_sendreg(chunk
, sge
.length
, current_index
,
2099 register_to_network(rdma
, ®
);
2100 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
2101 &resp
, ®_result_idx
, NULL
);
2106 /* try to overlap this single registration with the one we sent. */
2107 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2108 &sge
.lkey
, NULL
, chunk
,
2109 chunk_start
, chunk_end
)) {
2110 error_report("cannot get lkey");
2114 reg_result
= (RDMARegisterResult
*)
2115 rdma
->wr_data
[reg_result_idx
].control_curr
;
2117 network_to_result(reg_result
);
2119 trace_qemu_rdma_write_one_recvregres(block
->remote_keys
[chunk
],
2120 reg_result
->rkey
, chunk
);
2122 block
->remote_keys
[chunk
] = reg_result
->rkey
;
2123 block
->remote_host_addr
= reg_result
->host_addr
;
2125 /* already registered before */
2126 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2127 &sge
.lkey
, NULL
, chunk
,
2128 chunk_start
, chunk_end
)) {
2129 error_report("cannot get lkey!");
2134 send_wr
.wr
.rdma
.rkey
= block
->remote_keys
[chunk
];
2136 send_wr
.wr
.rdma
.rkey
= block
->remote_rkey
;
2138 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2139 &sge
.lkey
, NULL
, chunk
,
2140 chunk_start
, chunk_end
)) {
2141 error_report("cannot get lkey!");
2147 * Encode the ram block index and chunk within this wrid.
2148 * We will use this information at the time of completion
2149 * to figure out which bitmap to check against and then which
2150 * chunk in the bitmap to look for.
2152 send_wr
.wr_id
= qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE
,
2153 current_index
, chunk
);
2155 send_wr
.opcode
= IBV_WR_RDMA_WRITE
;
2156 send_wr
.send_flags
= IBV_SEND_SIGNALED
;
2157 send_wr
.sg_list
= &sge
;
2158 send_wr
.num_sge
= 1;
2159 send_wr
.wr
.rdma
.remote_addr
= block
->remote_host_addr
+
2160 (current_addr
- block
->offset
);
2162 trace_qemu_rdma_write_one_post(chunk
, sge
.addr
, send_wr
.wr
.rdma
.remote_addr
,
2166 * ibv_post_send() does not return negative error numbers,
2167 * per the specification they are positive - no idea why.
2169 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
2171 if (ret
== ENOMEM
) {
2172 trace_qemu_rdma_write_one_queue_full();
2173 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2175 error_report("rdma migration: failed to make "
2176 "room in full send queue! %d", ret
);
2182 } else if (ret
> 0) {
2183 perror("rdma migration: post rdma write failed");
2187 set_bit(chunk
, block
->transit_bitmap
);
2188 acct_update_position(f
, sge
.length
, false);
2189 rdma
->total_writes
++;
2195 * Push out any unwritten RDMA operations.
2197 * We support sending out multiple chunks at the same time.
2198 * Not all of them need to get signaled in the completion queue.
2200 static int qemu_rdma_write_flush(QEMUFile
*f
, RDMAContext
*rdma
)
2204 if (!rdma
->current_length
) {
2208 ret
= qemu_rdma_write_one(f
, rdma
,
2209 rdma
->current_index
, rdma
->current_addr
, rdma
->current_length
);
2217 trace_qemu_rdma_write_flush(rdma
->nb_sent
);
2220 rdma
->current_length
= 0;
2221 rdma
->current_addr
= 0;
2226 static inline int qemu_rdma_buffer_mergable(RDMAContext
*rdma
,
2227 uint64_t offset
, uint64_t len
)
2229 RDMALocalBlock
*block
;
2233 if (rdma
->current_index
< 0) {
2237 if (rdma
->current_chunk
< 0) {
2241 block
= &(rdma
->local_ram_blocks
.block
[rdma
->current_index
]);
2242 host_addr
= block
->local_host_addr
+ (offset
- block
->offset
);
2243 chunk_end
= ram_chunk_end(block
, rdma
->current_chunk
);
2245 if (rdma
->current_length
== 0) {
2250 * Only merge into chunk sequentially.
2252 if (offset
!= (rdma
->current_addr
+ rdma
->current_length
)) {
2256 if (offset
< block
->offset
) {
2260 if ((offset
+ len
) > (block
->offset
+ block
->length
)) {
2264 if ((host_addr
+ len
) > chunk_end
) {
2272 * We're not actually writing here, but doing three things:
2274 * 1. Identify the chunk the buffer belongs to.
2275 * 2. If the chunk is full or the buffer doesn't belong to the current
2276 * chunk, then start a new chunk and flush() the old chunk.
2277 * 3. To keep the hardware busy, we also group chunks into batches
2278 * and only require that a batch gets acknowledged in the completion
2279 * queue instead of each individual chunk.
2281 static int qemu_rdma_write(QEMUFile
*f
, RDMAContext
*rdma
,
2282 uint64_t block_offset
, uint64_t offset
,
2285 uint64_t current_addr
= block_offset
+ offset
;
2286 uint64_t index
= rdma
->current_index
;
2287 uint64_t chunk
= rdma
->current_chunk
;
2290 /* If we cannot merge it, we flush the current buffer first. */
2291 if (!qemu_rdma_buffer_mergable(rdma
, current_addr
, len
)) {
2292 ret
= qemu_rdma_write_flush(f
, rdma
);
2296 rdma
->current_length
= 0;
2297 rdma
->current_addr
= current_addr
;
2299 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
2300 offset
, len
, &index
, &chunk
);
2302 error_report("ram block search failed");
2305 rdma
->current_index
= index
;
2306 rdma
->current_chunk
= chunk
;
2310 rdma
->current_length
+= len
;
2312 /* flush it if buffer is too large */
2313 if (rdma
->current_length
>= RDMA_MERGE_MAX
) {
2314 return qemu_rdma_write_flush(f
, rdma
);
2320 static void qemu_rdma_cleanup(RDMAContext
*rdma
)
2324 if (rdma
->cm_id
&& rdma
->connected
) {
2325 if ((rdma
->error_state
||
2326 migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) &&
2327 !rdma
->received_error
) {
2328 RDMAControlHeader head
= { .len
= 0,
2329 .type
= RDMA_CONTROL_ERROR
,
2332 error_report("Early error. Sending error.");
2333 qemu_rdma_post_send_control(rdma
, NULL
, &head
);
2336 rdma_disconnect(rdma
->cm_id
);
2337 trace_qemu_rdma_cleanup_disconnect();
2338 rdma
->connected
= false;
2341 if (rdma
->channel
) {
2342 qemu_set_fd_handler(rdma
->channel
->fd
, NULL
, NULL
, NULL
);
2344 g_free(rdma
->dest_blocks
);
2345 rdma
->dest_blocks
= NULL
;
2347 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2348 if (rdma
->wr_data
[idx
].control_mr
) {
2349 rdma
->total_registrations
--;
2350 ibv_dereg_mr(rdma
->wr_data
[idx
].control_mr
);
2352 rdma
->wr_data
[idx
].control_mr
= NULL
;
2355 if (rdma
->local_ram_blocks
.block
) {
2356 while (rdma
->local_ram_blocks
.nb_blocks
) {
2357 rdma_delete_block(rdma
, &rdma
->local_ram_blocks
.block
[0]);
2362 rdma_destroy_qp(rdma
->cm_id
);
2366 ibv_destroy_cq(rdma
->cq
);
2369 if (rdma
->comp_channel
) {
2370 ibv_destroy_comp_channel(rdma
->comp_channel
);
2371 rdma
->comp_channel
= NULL
;
2374 ibv_dealloc_pd(rdma
->pd
);
2378 rdma_destroy_id(rdma
->cm_id
);
2382 /* the destination side, listen_id and channel is shared */
2383 if (rdma
->listen_id
) {
2384 if (!rdma
->is_return_path
) {
2385 rdma_destroy_id(rdma
->listen_id
);
2387 rdma
->listen_id
= NULL
;
2389 if (rdma
->channel
) {
2390 if (!rdma
->is_return_path
) {
2391 rdma_destroy_event_channel(rdma
->channel
);
2393 rdma
->channel
= NULL
;
2397 if (rdma
->channel
) {
2398 rdma_destroy_event_channel(rdma
->channel
);
2399 rdma
->channel
= NULL
;
2402 g_free(rdma
->host_port
);
2404 rdma
->host_port
= NULL
;
2408 static int qemu_rdma_source_init(RDMAContext
*rdma
, bool pin_all
, Error
**errp
)
2411 Error
*local_err
= NULL
, **temp
= &local_err
;
2414 * Will be validated against destination's actual capabilities
2415 * after the connect() completes.
2417 rdma
->pin_all
= pin_all
;
2419 ret
= qemu_rdma_resolve_host(rdma
, temp
);
2421 goto err_rdma_source_init
;
2424 ret
= qemu_rdma_alloc_pd_cq(rdma
);
2426 ERROR(temp
, "rdma migration: error allocating pd and cq! Your mlock()"
2427 " limits may be too low. Please check $ ulimit -a # and "
2428 "search for 'ulimit -l' in the output");
2429 goto err_rdma_source_init
;
2432 ret
= qemu_rdma_alloc_qp(rdma
);
2434 ERROR(temp
, "rdma migration: error allocating qp!");
2435 goto err_rdma_source_init
;
2438 ret
= qemu_rdma_init_ram_blocks(rdma
);
2440 ERROR(temp
, "rdma migration: error initializing ram blocks!");
2441 goto err_rdma_source_init
;
2444 /* Build the hash that maps from offset to RAMBlock */
2445 rdma
->blockmap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
2446 for (idx
= 0; idx
< rdma
->local_ram_blocks
.nb_blocks
; idx
++) {
2447 g_hash_table_insert(rdma
->blockmap
,
2448 (void *)(uintptr_t)rdma
->local_ram_blocks
.block
[idx
].offset
,
2449 &rdma
->local_ram_blocks
.block
[idx
]);
2452 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2453 ret
= qemu_rdma_reg_control(rdma
, idx
);
2455 ERROR(temp
, "rdma migration: error registering %d control!",
2457 goto err_rdma_source_init
;
2463 err_rdma_source_init
:
2464 error_propagate(errp
, local_err
);
2465 qemu_rdma_cleanup(rdma
);
2469 static int qemu_get_cm_event_timeout(RDMAContext
*rdma
,
2470 struct rdma_cm_event
**cm_event
,
2471 long msec
, Error
**errp
)
2474 struct pollfd poll_fd
= {
2475 .fd
= rdma
->channel
->fd
,
2481 ret
= poll(&poll_fd
, 1, msec
);
2482 } while (ret
< 0 && errno
== EINTR
);
2485 ERROR(errp
, "poll cm event timeout");
2487 } else if (ret
< 0) {
2488 ERROR(errp
, "failed to poll cm event, errno=%i", errno
);
2490 } else if (poll_fd
.revents
& POLLIN
) {
2491 return rdma_get_cm_event(rdma
->channel
, cm_event
);
2493 ERROR(errp
, "no POLLIN event, revent=%x", poll_fd
.revents
);
2498 static int qemu_rdma_connect(RDMAContext
*rdma
, Error
**errp
, bool return_path
)
2500 RDMACapabilities cap
= {
2501 .version
= RDMA_CONTROL_VERSION_CURRENT
,
2504 struct rdma_conn_param conn_param
= { .initiator_depth
= 2,
2506 .private_data
= &cap
,
2507 .private_data_len
= sizeof(cap
),
2509 struct rdma_cm_event
*cm_event
;
2513 * Only negotiate the capability with destination if the user
2514 * on the source first requested the capability.
2516 if (rdma
->pin_all
) {
2517 trace_qemu_rdma_connect_pin_all_requested();
2518 cap
.flags
|= RDMA_CAPABILITY_PIN_ALL
;
2521 caps_to_network(&cap
);
2523 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
2525 ERROR(errp
, "posting second control recv");
2526 goto err_rdma_source_connect
;
2529 ret
= rdma_connect(rdma
->cm_id
, &conn_param
);
2531 perror("rdma_connect");
2532 ERROR(errp
, "connecting to destination!");
2533 goto err_rdma_source_connect
;
2537 ret
= qemu_get_cm_event_timeout(rdma
, &cm_event
, 5000, errp
);
2539 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2542 perror("rdma_get_cm_event after rdma_connect");
2543 ERROR(errp
, "connecting to destination!");
2544 goto err_rdma_source_connect
;
2547 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2548 error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2549 ERROR(errp
, "connecting to destination!");
2550 rdma_ack_cm_event(cm_event
);
2551 goto err_rdma_source_connect
;
2553 rdma
->connected
= true;
2555 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2556 network_to_caps(&cap
);
2559 * Verify that the *requested* capabilities are supported by the destination
2560 * and disable them otherwise.
2562 if (rdma
->pin_all
&& !(cap
.flags
& RDMA_CAPABILITY_PIN_ALL
)) {
2563 ERROR(errp
, "Server cannot support pinning all memory. "
2564 "Will register memory dynamically.");
2565 rdma
->pin_all
= false;
2568 trace_qemu_rdma_connect_pin_all_outcome(rdma
->pin_all
);
2570 rdma_ack_cm_event(cm_event
);
2572 rdma
->control_ready_expected
= 1;
2576 err_rdma_source_connect
:
2577 qemu_rdma_cleanup(rdma
);
2581 static int qemu_rdma_dest_init(RDMAContext
*rdma
, Error
**errp
)
2584 struct rdma_cm_id
*listen_id
;
2585 char ip
[40] = "unknown";
2586 struct rdma_addrinfo
*res
, *e
;
2589 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2590 rdma
->wr_data
[idx
].control_len
= 0;
2591 rdma
->wr_data
[idx
].control_curr
= NULL
;
2594 if (!rdma
->host
|| !rdma
->host
[0]) {
2595 ERROR(errp
, "RDMA host is not set!");
2596 rdma
->error_state
= -EINVAL
;
2599 /* create CM channel */
2600 rdma
->channel
= rdma_create_event_channel();
2601 if (!rdma
->channel
) {
2602 ERROR(errp
, "could not create rdma event channel");
2603 rdma
->error_state
= -EINVAL
;
2608 ret
= rdma_create_id(rdma
->channel
, &listen_id
, NULL
, RDMA_PS_TCP
);
2610 ERROR(errp
, "could not create cm_id!");
2611 goto err_dest_init_create_listen_id
;
2614 snprintf(port_str
, 16, "%d", rdma
->port
);
2615 port_str
[15] = '\0';
2617 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
2619 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
2620 goto err_dest_init_bind_addr
;
2623 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
2624 inet_ntop(e
->ai_family
,
2625 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
2626 trace_qemu_rdma_dest_init_trying(rdma
->host
, ip
);
2627 ret
= rdma_bind_addr(listen_id
, e
->ai_dst_addr
);
2631 if (e
->ai_family
== AF_INET6
) {
2632 ret
= qemu_rdma_broken_ipv6_kernel(listen_id
->verbs
, errp
);
2640 rdma_freeaddrinfo(res
);
2642 ERROR(errp
, "Error: could not rdma_bind_addr!");
2643 goto err_dest_init_bind_addr
;
2646 rdma
->listen_id
= listen_id
;
2647 qemu_rdma_dump_gid("dest_init", listen_id
);
2650 err_dest_init_bind_addr
:
2651 rdma_destroy_id(listen_id
);
2652 err_dest_init_create_listen_id
:
2653 rdma_destroy_event_channel(rdma
->channel
);
2654 rdma
->channel
= NULL
;
2655 rdma
->error_state
= ret
;
2660 static void qemu_rdma_return_path_dest_init(RDMAContext
*rdma_return_path
,
2665 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2666 rdma_return_path
->wr_data
[idx
].control_len
= 0;
2667 rdma_return_path
->wr_data
[idx
].control_curr
= NULL
;
2670 /*the CM channel and CM id is shared*/
2671 rdma_return_path
->channel
= rdma
->channel
;
2672 rdma_return_path
->listen_id
= rdma
->listen_id
;
2674 rdma
->return_path
= rdma_return_path
;
2675 rdma_return_path
->return_path
= rdma
;
2676 rdma_return_path
->is_return_path
= true;
2679 static void *qemu_rdma_data_init(const char *host_port
, Error
**errp
)
2681 RDMAContext
*rdma
= NULL
;
2682 InetSocketAddress
*addr
;
2685 rdma
= g_new0(RDMAContext
, 1);
2686 rdma
->current_index
= -1;
2687 rdma
->current_chunk
= -1;
2689 addr
= g_new(InetSocketAddress
, 1);
2690 if (!inet_parse(addr
, host_port
, NULL
)) {
2691 rdma
->port
= atoi(addr
->port
);
2692 rdma
->host
= g_strdup(addr
->host
);
2693 rdma
->host_port
= g_strdup(host_port
);
2695 ERROR(errp
, "bad RDMA migration address '%s'", host_port
);
2700 qapi_free_InetSocketAddress(addr
);
2707 * QEMUFile interface to the control channel.
2708 * SEND messages for control only.
2709 * VM's ram is handled with regular RDMA messages.
2711 static ssize_t
qio_channel_rdma_writev(QIOChannel
*ioc
,
2712 const struct iovec
*iov
,
2718 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2719 QEMUFile
*f
= rioc
->file
;
2726 RCU_READ_LOCK_GUARD();
2727 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
2733 CHECK_ERROR_STATE();
2736 * Push out any writes that
2737 * we're queued up for VM's ram.
2739 ret
= qemu_rdma_write_flush(f
, rdma
);
2741 rdma
->error_state
= ret
;
2745 for (i
= 0; i
< niov
; i
++) {
2746 size_t remaining
= iov
[i
].iov_len
;
2747 uint8_t * data
= (void *)iov
[i
].iov_base
;
2749 RDMAControlHeader head
;
2751 len
= MIN(remaining
, RDMA_SEND_INCREMENT
);
2755 head
.type
= RDMA_CONTROL_QEMU_FILE
;
2757 ret
= qemu_rdma_exchange_send(rdma
, &head
, data
, NULL
, NULL
, NULL
);
2760 rdma
->error_state
= ret
;
2772 static size_t qemu_rdma_fill(RDMAContext
*rdma
, uint8_t *buf
,
2773 size_t size
, int idx
)
2777 if (rdma
->wr_data
[idx
].control_len
) {
2778 trace_qemu_rdma_fill(rdma
->wr_data
[idx
].control_len
, size
);
2780 len
= MIN(size
, rdma
->wr_data
[idx
].control_len
);
2781 memcpy(buf
, rdma
->wr_data
[idx
].control_curr
, len
);
2782 rdma
->wr_data
[idx
].control_curr
+= len
;
2783 rdma
->wr_data
[idx
].control_len
-= len
;
2790 * QEMUFile interface to the control channel.
2791 * RDMA links don't use bytestreams, so we have to
2792 * return bytes to QEMUFile opportunistically.
2794 static ssize_t
qio_channel_rdma_readv(QIOChannel
*ioc
,
2795 const struct iovec
*iov
,
2801 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2803 RDMAControlHeader head
;
2808 RCU_READ_LOCK_GUARD();
2809 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
2815 CHECK_ERROR_STATE();
2817 for (i
= 0; i
< niov
; i
++) {
2818 size_t want
= iov
[i
].iov_len
;
2819 uint8_t *data
= (void *)iov
[i
].iov_base
;
2822 * First, we hold on to the last SEND message we
2823 * were given and dish out the bytes until we run
2826 ret
= qemu_rdma_fill(rdma
, data
, want
, 0);
2829 /* Got what we needed, so go to next iovec */
2834 /* If we got any data so far, then don't wait
2835 * for more, just return what we have */
2841 /* We've got nothing at all, so lets wait for
2844 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_QEMU_FILE
);
2847 rdma
->error_state
= ret
;
2852 * SEND was received with new bytes, now try again.
2854 ret
= qemu_rdma_fill(rdma
, data
, want
, 0);
2858 /* Still didn't get enough, so lets just return */
2861 return QIO_CHANNEL_ERR_BLOCK
;
2871 * Block until all the outstanding chunks have been delivered by the hardware.
2873 static int qemu_rdma_drain_cq(QEMUFile
*f
, RDMAContext
*rdma
)
2877 if (qemu_rdma_write_flush(f
, rdma
) < 0) {
2881 while (rdma
->nb_sent
) {
2882 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2884 error_report("rdma migration: complete polling error!");
2889 qemu_rdma_unregister_waiting(rdma
);
2895 static int qio_channel_rdma_set_blocking(QIOChannel
*ioc
,
2899 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2900 /* XXX we should make readv/writev actually honour this :-) */
2901 rioc
->blocking
= blocking
;
2906 typedef struct QIOChannelRDMASource QIOChannelRDMASource
;
2907 struct QIOChannelRDMASource
{
2909 QIOChannelRDMA
*rioc
;
2910 GIOCondition condition
;
2914 qio_channel_rdma_source_prepare(GSource
*source
,
2917 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2919 GIOCondition cond
= 0;
2922 RCU_READ_LOCK_GUARD();
2923 if (rsource
->condition
== G_IO_IN
) {
2924 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
2926 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
2930 error_report("RDMAContext is NULL when prepare Gsource");
2934 if (rdma
->wr_data
[0].control_len
) {
2939 return cond
& rsource
->condition
;
2943 qio_channel_rdma_source_check(GSource
*source
)
2945 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2947 GIOCondition cond
= 0;
2949 RCU_READ_LOCK_GUARD();
2950 if (rsource
->condition
== G_IO_IN
) {
2951 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
2953 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
2957 error_report("RDMAContext is NULL when check Gsource");
2961 if (rdma
->wr_data
[0].control_len
) {
2966 return cond
& rsource
->condition
;
2970 qio_channel_rdma_source_dispatch(GSource
*source
,
2971 GSourceFunc callback
,
2974 QIOChannelFunc func
= (QIOChannelFunc
)callback
;
2975 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2977 GIOCondition cond
= 0;
2979 RCU_READ_LOCK_GUARD();
2980 if (rsource
->condition
== G_IO_IN
) {
2981 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
2983 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
2987 error_report("RDMAContext is NULL when dispatch Gsource");
2991 if (rdma
->wr_data
[0].control_len
) {
2996 return (*func
)(QIO_CHANNEL(rsource
->rioc
),
2997 (cond
& rsource
->condition
),
3002 qio_channel_rdma_source_finalize(GSource
*source
)
3004 QIOChannelRDMASource
*ssource
= (QIOChannelRDMASource
*)source
;
3006 object_unref(OBJECT(ssource
->rioc
));
3009 GSourceFuncs qio_channel_rdma_source_funcs
= {
3010 qio_channel_rdma_source_prepare
,
3011 qio_channel_rdma_source_check
,
3012 qio_channel_rdma_source_dispatch
,
3013 qio_channel_rdma_source_finalize
3016 static GSource
*qio_channel_rdma_create_watch(QIOChannel
*ioc
,
3017 GIOCondition condition
)
3019 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3020 QIOChannelRDMASource
*ssource
;
3023 source
= g_source_new(&qio_channel_rdma_source_funcs
,
3024 sizeof(QIOChannelRDMASource
));
3025 ssource
= (QIOChannelRDMASource
*)source
;
3027 ssource
->rioc
= rioc
;
3028 object_ref(OBJECT(rioc
));
3030 ssource
->condition
= condition
;
3035 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel
*ioc
,
3038 IOHandler
*io_write
,
3041 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3043 aio_set_fd_handler(ctx
, rioc
->rdmain
->comp_channel
->fd
,
3044 false, io_read
, io_write
, NULL
, opaque
);
3046 aio_set_fd_handler(ctx
, rioc
->rdmaout
->comp_channel
->fd
,
3047 false, io_read
, io_write
, NULL
, opaque
);
3051 struct rdma_close_rcu
{
3052 struct rcu_head rcu
;
3053 RDMAContext
*rdmain
;
3054 RDMAContext
*rdmaout
;
3057 /* callback from qio_channel_rdma_close via call_rcu */
3058 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu
*rcu
)
3061 qemu_rdma_cleanup(rcu
->rdmain
);
3065 qemu_rdma_cleanup(rcu
->rdmaout
);
3068 g_free(rcu
->rdmain
);
3069 g_free(rcu
->rdmaout
);
3073 static int qio_channel_rdma_close(QIOChannel
*ioc
,
3076 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3077 RDMAContext
*rdmain
, *rdmaout
;
3078 struct rdma_close_rcu
*rcu
= g_new(struct rdma_close_rcu
, 1);
3080 trace_qemu_rdma_close();
3082 rdmain
= rioc
->rdmain
;
3084 qatomic_rcu_set(&rioc
->rdmain
, NULL
);
3087 rdmaout
= rioc
->rdmaout
;
3089 qatomic_rcu_set(&rioc
->rdmaout
, NULL
);
3092 rcu
->rdmain
= rdmain
;
3093 rcu
->rdmaout
= rdmaout
;
3094 call_rcu(rcu
, qio_channel_rdma_close_rcu
, rcu
);
3100 qio_channel_rdma_shutdown(QIOChannel
*ioc
,
3101 QIOChannelShutdown how
,
3104 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3105 RDMAContext
*rdmain
, *rdmaout
;
3107 RCU_READ_LOCK_GUARD();
3109 rdmain
= qatomic_rcu_read(&rioc
->rdmain
);
3110 rdmaout
= qatomic_rcu_read(&rioc
->rdmain
);
3113 case QIO_CHANNEL_SHUTDOWN_READ
:
3115 rdmain
->error_state
= -1;
3118 case QIO_CHANNEL_SHUTDOWN_WRITE
:
3120 rdmaout
->error_state
= -1;
3123 case QIO_CHANNEL_SHUTDOWN_BOTH
:
3126 rdmain
->error_state
= -1;
3129 rdmaout
->error_state
= -1;
3140 * This means that 'block_offset' is a full virtual address that does not
3141 * belong to a RAMBlock of the virtual machine and instead
3142 * represents a private malloc'd memory area that the caller wishes to
3146 * Offset is an offset to be added to block_offset and used
3147 * to also lookup the corresponding RAMBlock.
3150 * Initiate an transfer this size.
3153 * A 'hint' or 'advice' that means that we wish to speculatively
3154 * and asynchronously unregister this memory. In this case, there is no
3155 * guarantee that the unregister will actually happen, for example,
3156 * if the memory is being actively transmitted. Additionally, the memory
3157 * may be re-registered at any future time if a write within the same
3158 * chunk was requested again, even if you attempted to unregister it
3161 * @size < 0 : TODO, not yet supported
3162 * Unregister the memory NOW. This means that the caller does not
3163 * expect there to be any future RDMA transfers and we just want to clean
3164 * things up. This is used in case the upper layer owns the memory and
3165 * cannot wait for qemu_fclose() to occur.
3167 * @bytes_sent : User-specificed pointer to indicate how many bytes were
3168 * sent. Usually, this will not be more than a few bytes of
3169 * the protocol because most transfers are sent asynchronously.
3171 static size_t qemu_rdma_save_page(QEMUFile
*f
, void *opaque
,
3172 ram_addr_t block_offset
, ram_addr_t offset
,
3173 size_t size
, uint64_t *bytes_sent
)
3175 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3179 RCU_READ_LOCK_GUARD();
3180 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3186 CHECK_ERROR_STATE();
3188 if (migration_in_postcopy()) {
3189 return RAM_SAVE_CONTROL_NOT_SUPP
;
3196 * Add this page to the current 'chunk'. If the chunk
3197 * is full, or the page doesn't belong to the current chunk,
3198 * an actual RDMA write will occur and a new chunk will be formed.
3200 ret
= qemu_rdma_write(f
, rdma
, block_offset
, offset
, size
);
3202 error_report("rdma migration: write error! %d", ret
);
3207 * We always return 1 bytes because the RDMA
3208 * protocol is completely asynchronous. We do not yet know
3209 * whether an identified chunk is zero or not because we're
3210 * waiting for other pages to potentially be merged with
3211 * the current chunk. So, we have to call qemu_update_position()
3212 * later on when the actual write occurs.
3218 uint64_t index
, chunk
;
3220 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3222 ret = qemu_rdma_drain_cq(f, rdma);
3224 fprintf(stderr, "rdma: failed to synchronously drain"
3225 " completion queue before unregistration.\n");
3231 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
3232 offset
, size
, &index
, &chunk
);
3235 error_report("ram block search failed");
3239 qemu_rdma_signal_unregister(rdma
, index
, chunk
, 0);
3242 * TODO: Synchronous, guaranteed unregistration (should not occur during
3243 * fast-path). Otherwise, unregisters will process on the next call to
3244 * qemu_rdma_drain_cq()
3246 qemu_rdma_unregister_waiting(rdma);
3252 * Drain the Completion Queue if possible, but do not block,
3255 * If nothing to poll, the end of the iteration will do this
3256 * again to make sure we don't overflow the request queue.
3259 uint64_t wr_id
, wr_id_in
;
3260 int ret
= qemu_rdma_poll(rdma
, &wr_id_in
, NULL
);
3262 error_report("rdma migration: polling error! %d", ret
);
3266 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
3268 if (wr_id
== RDMA_WRID_NONE
) {
3273 return RAM_SAVE_CONTROL_DELAYED
;
3275 rdma
->error_state
= ret
;
3279 static void rdma_accept_incoming_migration(void *opaque
);
3281 static void rdma_cm_poll_handler(void *opaque
)
3283 RDMAContext
*rdma
= opaque
;
3285 struct rdma_cm_event
*cm_event
;
3286 MigrationIncomingState
*mis
= migration_incoming_get_current();
3288 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3290 error_report("get_cm_event failed %d", errno
);
3294 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
3295 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
3296 if (!rdma
->error_state
&&
3297 migration_incoming_get_current()->state
!=
3298 MIGRATION_STATUS_COMPLETED
) {
3299 error_report("receive cm event, cm event is %d", cm_event
->event
);
3300 rdma
->error_state
= -EPIPE
;
3301 if (rdma
->return_path
) {
3302 rdma
->return_path
->error_state
= -EPIPE
;
3305 rdma_ack_cm_event(cm_event
);
3307 if (mis
->migration_incoming_co
) {
3308 qemu_coroutine_enter(mis
->migration_incoming_co
);
3312 rdma_ack_cm_event(cm_event
);
3315 static int qemu_rdma_accept(RDMAContext
*rdma
)
3317 RDMACapabilities cap
;
3318 struct rdma_conn_param conn_param
= {
3319 .responder_resources
= 2,
3320 .private_data
= &cap
,
3321 .private_data_len
= sizeof(cap
),
3323 RDMAContext
*rdma_return_path
= NULL
;
3324 struct rdma_cm_event
*cm_event
;
3325 struct ibv_context
*verbs
;
3329 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3331 goto err_rdma_dest_wait
;
3334 if (cm_event
->event
!= RDMA_CM_EVENT_CONNECT_REQUEST
) {
3335 rdma_ack_cm_event(cm_event
);
3336 goto err_rdma_dest_wait
;
3340 * initialize the RDMAContext for return path for postcopy after first
3341 * connection request reached.
3343 if (migrate_postcopy() && !rdma
->is_return_path
) {
3344 rdma_return_path
= qemu_rdma_data_init(rdma
->host_port
, NULL
);
3345 if (rdma_return_path
== NULL
) {
3346 rdma_ack_cm_event(cm_event
);
3347 goto err_rdma_dest_wait
;
3350 qemu_rdma_return_path_dest_init(rdma_return_path
, rdma
);
3353 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
3355 network_to_caps(&cap
);
3357 if (cap
.version
< 1 || cap
.version
> RDMA_CONTROL_VERSION_CURRENT
) {
3358 error_report("Unknown source RDMA version: %d, bailing...",
3360 rdma_ack_cm_event(cm_event
);
3361 goto err_rdma_dest_wait
;
3365 * Respond with only the capabilities this version of QEMU knows about.
3367 cap
.flags
&= known_capabilities
;
3370 * Enable the ones that we do know about.
3371 * Add other checks here as new ones are introduced.
3373 if (cap
.flags
& RDMA_CAPABILITY_PIN_ALL
) {
3374 rdma
->pin_all
= true;
3377 rdma
->cm_id
= cm_event
->id
;
3378 verbs
= cm_event
->id
->verbs
;
3380 rdma_ack_cm_event(cm_event
);
3382 trace_qemu_rdma_accept_pin_state(rdma
->pin_all
);
3384 caps_to_network(&cap
);
3386 trace_qemu_rdma_accept_pin_verbsc(verbs
);
3389 rdma
->verbs
= verbs
;
3390 } else if (rdma
->verbs
!= verbs
) {
3391 error_report("ibv context not matching %p, %p!", rdma
->verbs
,
3393 goto err_rdma_dest_wait
;
3396 qemu_rdma_dump_id("dest_init", verbs
);
3398 ret
= qemu_rdma_alloc_pd_cq(rdma
);
3400 error_report("rdma migration: error allocating pd and cq!");
3401 goto err_rdma_dest_wait
;
3404 ret
= qemu_rdma_alloc_qp(rdma
);
3406 error_report("rdma migration: error allocating qp!");
3407 goto err_rdma_dest_wait
;
3410 ret
= qemu_rdma_init_ram_blocks(rdma
);
3412 error_report("rdma migration: error initializing ram blocks!");
3413 goto err_rdma_dest_wait
;
3416 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
3417 ret
= qemu_rdma_reg_control(rdma
, idx
);
3419 error_report("rdma: error registering %d control", idx
);
3420 goto err_rdma_dest_wait
;
3424 /* Accept the second connection request for return path */
3425 if (migrate_postcopy() && !rdma
->is_return_path
) {
3426 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
3428 (void *)(intptr_t)rdma
->return_path
);
3430 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_cm_poll_handler
,
3434 ret
= rdma_accept(rdma
->cm_id
, &conn_param
);
3436 error_report("rdma_accept returns %d", ret
);
3437 goto err_rdma_dest_wait
;
3440 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3442 error_report("rdma_accept get_cm_event failed %d", ret
);
3443 goto err_rdma_dest_wait
;
3446 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
3447 error_report("rdma_accept not event established");
3448 rdma_ack_cm_event(cm_event
);
3449 goto err_rdma_dest_wait
;
3452 rdma_ack_cm_event(cm_event
);
3453 rdma
->connected
= true;
3455 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
3457 error_report("rdma migration: error posting second control recv");
3458 goto err_rdma_dest_wait
;
3461 qemu_rdma_dump_gid("dest_connect", rdma
->cm_id
);
3466 rdma
->error_state
= ret
;
3467 qemu_rdma_cleanup(rdma
);
3468 g_free(rdma_return_path
);
3472 static int dest_ram_sort_func(const void *a
, const void *b
)
3474 unsigned int a_index
= ((const RDMALocalBlock
*)a
)->src_index
;
3475 unsigned int b_index
= ((const RDMALocalBlock
*)b
)->src_index
;
3477 return (a_index
< b_index
) ? -1 : (a_index
!= b_index
);
3481 * During each iteration of the migration, we listen for instructions
3482 * by the source VM to perform dynamic page registrations before they
3483 * can perform RDMA operations.
3485 * We respond with the 'rkey'.
3487 * Keep doing this until the source tells us to stop.
3489 static int qemu_rdma_registration_handle(QEMUFile
*f
, void *opaque
)
3491 RDMAControlHeader reg_resp
= { .len
= sizeof(RDMARegisterResult
),
3492 .type
= RDMA_CONTROL_REGISTER_RESULT
,
3495 RDMAControlHeader unreg_resp
= { .len
= 0,
3496 .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
3499 RDMAControlHeader blocks
= { .type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
,
3501 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3503 RDMALocalBlocks
*local
;
3504 RDMAControlHeader head
;
3505 RDMARegister
*reg
, *registers
;
3507 RDMARegisterResult
*reg_result
;
3508 static RDMARegisterResult results
[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
];
3509 RDMALocalBlock
*block
;
3516 RCU_READ_LOCK_GUARD();
3517 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
3523 CHECK_ERROR_STATE();
3525 local
= &rdma
->local_ram_blocks
;
3527 trace_qemu_rdma_registration_handle_wait();
3529 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_NONE
);
3535 if (head
.repeat
> RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
) {
3536 error_report("rdma: Too many requests in this message (%d)."
3537 "Bailing.", head
.repeat
);
3542 switch (head
.type
) {
3543 case RDMA_CONTROL_COMPRESS
:
3544 comp
= (RDMACompress
*) rdma
->wr_data
[idx
].control_curr
;
3545 network_to_compress(comp
);
3547 trace_qemu_rdma_registration_handle_compress(comp
->length
,
3550 if (comp
->block_idx
>= rdma
->local_ram_blocks
.nb_blocks
) {
3551 error_report("rdma: 'compress' bad block index %u (vs %d)",
3552 (unsigned int)comp
->block_idx
,
3553 rdma
->local_ram_blocks
.nb_blocks
);
3557 block
= &(rdma
->local_ram_blocks
.block
[comp
->block_idx
]);
3559 host_addr
= block
->local_host_addr
+
3560 (comp
->offset
- block
->offset
);
3562 ram_handle_compressed(host_addr
, comp
->value
, comp
->length
);
3565 case RDMA_CONTROL_REGISTER_FINISHED
:
3566 trace_qemu_rdma_registration_handle_finished();
3569 case RDMA_CONTROL_RAM_BLOCKS_REQUEST
:
3570 trace_qemu_rdma_registration_handle_ram_blocks();
3572 /* Sort our local RAM Block list so it's the same as the source,
3573 * we can do this since we've filled in a src_index in the list
3574 * as we received the RAMBlock list earlier.
3576 qsort(rdma
->local_ram_blocks
.block
,
3577 rdma
->local_ram_blocks
.nb_blocks
,
3578 sizeof(RDMALocalBlock
), dest_ram_sort_func
);
3579 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3580 local
->block
[i
].index
= i
;
3583 if (rdma
->pin_all
) {
3584 ret
= qemu_rdma_reg_whole_ram_blocks(rdma
);
3586 error_report("rdma migration: error dest "
3587 "registering ram blocks");
3593 * Dest uses this to prepare to transmit the RAMBlock descriptions
3594 * to the source VM after connection setup.
3595 * Both sides use the "remote" structure to communicate and update
3596 * their "local" descriptions with what was sent.
3598 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3599 rdma
->dest_blocks
[i
].remote_host_addr
=
3600 (uintptr_t)(local
->block
[i
].local_host_addr
);
3602 if (rdma
->pin_all
) {
3603 rdma
->dest_blocks
[i
].remote_rkey
= local
->block
[i
].mr
->rkey
;
3606 rdma
->dest_blocks
[i
].offset
= local
->block
[i
].offset
;
3607 rdma
->dest_blocks
[i
].length
= local
->block
[i
].length
;
3609 dest_block_to_network(&rdma
->dest_blocks
[i
]);
3610 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3611 local
->block
[i
].block_name
,
3612 local
->block
[i
].offset
,
3613 local
->block
[i
].length
,
3614 local
->block
[i
].local_host_addr
,
3615 local
->block
[i
].src_index
);
3618 blocks
.len
= rdma
->local_ram_blocks
.nb_blocks
3619 * sizeof(RDMADestBlock
);
3622 ret
= qemu_rdma_post_send_control(rdma
,
3623 (uint8_t *) rdma
->dest_blocks
, &blocks
);
3626 error_report("rdma migration: error sending remote info");
3631 case RDMA_CONTROL_REGISTER_REQUEST
:
3632 trace_qemu_rdma_registration_handle_register(head
.repeat
);
3634 reg_resp
.repeat
= head
.repeat
;
3635 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3637 for (count
= 0; count
< head
.repeat
; count
++) {
3639 uint8_t *chunk_start
, *chunk_end
;
3641 reg
= ®isters
[count
];
3642 network_to_register(reg
);
3644 reg_result
= &results
[count
];
3646 trace_qemu_rdma_registration_handle_register_loop(count
,
3647 reg
->current_index
, reg
->key
.current_addr
, reg
->chunks
);
3649 if (reg
->current_index
>= rdma
->local_ram_blocks
.nb_blocks
) {
3650 error_report("rdma: 'register' bad block index %u (vs %d)",
3651 (unsigned int)reg
->current_index
,
3652 rdma
->local_ram_blocks
.nb_blocks
);
3656 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3657 if (block
->is_ram_block
) {
3658 if (block
->offset
> reg
->key
.current_addr
) {
3659 error_report("rdma: bad register address for block %s"
3660 " offset: %" PRIx64
" current_addr: %" PRIx64
,
3661 block
->block_name
, block
->offset
,
3662 reg
->key
.current_addr
);
3666 host_addr
= (block
->local_host_addr
+
3667 (reg
->key
.current_addr
- block
->offset
));
3668 chunk
= ram_chunk_index(block
->local_host_addr
,
3669 (uint8_t *) host_addr
);
3671 chunk
= reg
->key
.chunk
;
3672 host_addr
= block
->local_host_addr
+
3673 (reg
->key
.chunk
* (1UL << RDMA_REG_CHUNK_SHIFT
));
3674 /* Check for particularly bad chunk value */
3675 if (host_addr
< (void *)block
->local_host_addr
) {
3676 error_report("rdma: bad chunk for block %s"
3678 block
->block_name
, reg
->key
.chunk
);
3683 chunk_start
= ram_chunk_start(block
, chunk
);
3684 chunk_end
= ram_chunk_end(block
, chunk
+ reg
->chunks
);
3685 /* avoid "-Waddress-of-packed-member" warning */
3686 uint32_t tmp_rkey
= 0;
3687 if (qemu_rdma_register_and_get_keys(rdma
, block
,
3688 (uintptr_t)host_addr
, NULL
, &tmp_rkey
,
3689 chunk
, chunk_start
, chunk_end
)) {
3690 error_report("cannot get rkey");
3694 reg_result
->rkey
= tmp_rkey
;
3696 reg_result
->host_addr
= (uintptr_t)block
->local_host_addr
;
3698 trace_qemu_rdma_registration_handle_register_rkey(
3701 result_to_network(reg_result
);
3704 ret
= qemu_rdma_post_send_control(rdma
,
3705 (uint8_t *) results
, ®_resp
);
3708 error_report("Failed to send control buffer");
3712 case RDMA_CONTROL_UNREGISTER_REQUEST
:
3713 trace_qemu_rdma_registration_handle_unregister(head
.repeat
);
3714 unreg_resp
.repeat
= head
.repeat
;
3715 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3717 for (count
= 0; count
< head
.repeat
; count
++) {
3718 reg
= ®isters
[count
];
3719 network_to_register(reg
);
3721 trace_qemu_rdma_registration_handle_unregister_loop(count
,
3722 reg
->current_index
, reg
->key
.chunk
);
3724 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3726 ret
= ibv_dereg_mr(block
->pmr
[reg
->key
.chunk
]);
3727 block
->pmr
[reg
->key
.chunk
] = NULL
;
3730 perror("rdma unregistration chunk failed");
3735 rdma
->total_registrations
--;
3737 trace_qemu_rdma_registration_handle_unregister_success(
3741 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &unreg_resp
);
3744 error_report("Failed to send control buffer");
3748 case RDMA_CONTROL_REGISTER_RESULT
:
3749 error_report("Invalid RESULT message at dest.");
3753 error_report("Unknown control message %s", control_desc(head
.type
));
3760 rdma
->error_state
= ret
;
3766 * Called via a ram_control_load_hook during the initial RAM load section which
3767 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3769 * We've already built our local RAMBlock list, but not yet sent the list to
3773 rdma_block_notification_handle(QIOChannelRDMA
*rioc
, const char *name
)
3779 RCU_READ_LOCK_GUARD();
3780 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
3786 /* Find the matching RAMBlock in our local list */
3787 for (curr
= 0; curr
< rdma
->local_ram_blocks
.nb_blocks
; curr
++) {
3788 if (!strcmp(rdma
->local_ram_blocks
.block
[curr
].block_name
, name
)) {
3795 error_report("RAMBlock '%s' not found on destination", name
);
3799 rdma
->local_ram_blocks
.block
[curr
].src_index
= rdma
->next_src_index
;
3800 trace_rdma_block_notification_handle(name
, rdma
->next_src_index
);
3801 rdma
->next_src_index
++;
3806 static int rdma_load_hook(QEMUFile
*f
, void *opaque
, uint64_t flags
, void *data
)
3809 case RAM_CONTROL_BLOCK_REG
:
3810 return rdma_block_notification_handle(opaque
, data
);
3812 case RAM_CONTROL_HOOK
:
3813 return qemu_rdma_registration_handle(f
, opaque
);
3816 /* Shouldn't be called with any other values */
3821 static int qemu_rdma_registration_start(QEMUFile
*f
, void *opaque
,
3822 uint64_t flags
, void *data
)
3824 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3827 RCU_READ_LOCK_GUARD();
3828 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3833 CHECK_ERROR_STATE();
3835 if (migration_in_postcopy()) {
3839 trace_qemu_rdma_registration_start(flags
);
3840 qemu_put_be64(f
, RAM_SAVE_FLAG_HOOK
);
3847 * Inform dest that dynamic registrations are done for now.
3848 * First, flush writes, if any.
3850 static int qemu_rdma_registration_stop(QEMUFile
*f
, void *opaque
,
3851 uint64_t flags
, void *data
)
3853 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3855 RDMAControlHeader head
= { .len
= 0, .repeat
= 1 };
3858 RCU_READ_LOCK_GUARD();
3859 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3864 CHECK_ERROR_STATE();
3866 if (migration_in_postcopy()) {
3871 ret
= qemu_rdma_drain_cq(f
, rdma
);
3877 if (flags
== RAM_CONTROL_SETUP
) {
3878 RDMAControlHeader resp
= {.type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
};
3879 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
3880 int reg_result_idx
, i
, nb_dest_blocks
;
3882 head
.type
= RDMA_CONTROL_RAM_BLOCKS_REQUEST
;
3883 trace_qemu_rdma_registration_stop_ram();
3886 * Make sure that we parallelize the pinning on both sides.
3887 * For very large guests, doing this serially takes a really
3888 * long time, so we have to 'interleave' the pinning locally
3889 * with the control messages by performing the pinning on this
3890 * side before we receive the control response from the other
3891 * side that the pinning has completed.
3893 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, &resp
,
3894 ®_result_idx
, rdma
->pin_all
?
3895 qemu_rdma_reg_whole_ram_blocks
: NULL
);
3897 fprintf(stderr
, "receiving remote info!");
3901 nb_dest_blocks
= resp
.len
/ sizeof(RDMADestBlock
);
3904 * The protocol uses two different sets of rkeys (mutually exclusive):
3905 * 1. One key to represent the virtual address of the entire ram block.
3906 * (dynamic chunk registration disabled - pin everything with one rkey.)
3907 * 2. One to represent individual chunks within a ram block.
3908 * (dynamic chunk registration enabled - pin individual chunks.)
3910 * Once the capability is successfully negotiated, the destination transmits
3911 * the keys to use (or sends them later) including the virtual addresses
3912 * and then propagates the remote ram block descriptions to his local copy.
3915 if (local
->nb_blocks
!= nb_dest_blocks
) {
3916 fprintf(stderr
, "ram blocks mismatch (Number of blocks %d vs %d) "
3917 "Your QEMU command line parameters are probably "
3918 "not identical on both the source and destination.",
3919 local
->nb_blocks
, nb_dest_blocks
);
3920 rdma
->error_state
= -EINVAL
;
3924 qemu_rdma_move_header(rdma
, reg_result_idx
, &resp
);
3925 memcpy(rdma
->dest_blocks
,
3926 rdma
->wr_data
[reg_result_idx
].control_curr
, resp
.len
);
3927 for (i
= 0; i
< nb_dest_blocks
; i
++) {
3928 network_to_dest_block(&rdma
->dest_blocks
[i
]);
3930 /* We require that the blocks are in the same order */
3931 if (rdma
->dest_blocks
[i
].length
!= local
->block
[i
].length
) {
3932 fprintf(stderr
, "Block %s/%d has a different length %" PRIu64
3933 "vs %" PRIu64
, local
->block
[i
].block_name
, i
,
3934 local
->block
[i
].length
,
3935 rdma
->dest_blocks
[i
].length
);
3936 rdma
->error_state
= -EINVAL
;
3939 local
->block
[i
].remote_host_addr
=
3940 rdma
->dest_blocks
[i
].remote_host_addr
;
3941 local
->block
[i
].remote_rkey
= rdma
->dest_blocks
[i
].remote_rkey
;
3945 trace_qemu_rdma_registration_stop(flags
);
3947 head
.type
= RDMA_CONTROL_REGISTER_FINISHED
;
3948 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, NULL
, NULL
, NULL
);
3956 rdma
->error_state
= ret
;
3960 static const QEMUFileHooks rdma_read_hooks
= {
3961 .hook_ram_load
= rdma_load_hook
,
3964 static const QEMUFileHooks rdma_write_hooks
= {
3965 .before_ram_iterate
= qemu_rdma_registration_start
,
3966 .after_ram_iterate
= qemu_rdma_registration_stop
,
3967 .save_page
= qemu_rdma_save_page
,
3971 static void qio_channel_rdma_finalize(Object
*obj
)
3973 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(obj
);
3975 qemu_rdma_cleanup(rioc
->rdmain
);
3976 g_free(rioc
->rdmain
);
3977 rioc
->rdmain
= NULL
;
3979 if (rioc
->rdmaout
) {
3980 qemu_rdma_cleanup(rioc
->rdmaout
);
3981 g_free(rioc
->rdmaout
);
3982 rioc
->rdmaout
= NULL
;
3986 static void qio_channel_rdma_class_init(ObjectClass
*klass
,
3987 void *class_data G_GNUC_UNUSED
)
3989 QIOChannelClass
*ioc_klass
= QIO_CHANNEL_CLASS(klass
);
3991 ioc_klass
->io_writev
= qio_channel_rdma_writev
;
3992 ioc_klass
->io_readv
= qio_channel_rdma_readv
;
3993 ioc_klass
->io_set_blocking
= qio_channel_rdma_set_blocking
;
3994 ioc_klass
->io_close
= qio_channel_rdma_close
;
3995 ioc_klass
->io_create_watch
= qio_channel_rdma_create_watch
;
3996 ioc_klass
->io_set_aio_fd_handler
= qio_channel_rdma_set_aio_fd_handler
;
3997 ioc_klass
->io_shutdown
= qio_channel_rdma_shutdown
;
4000 static const TypeInfo qio_channel_rdma_info
= {
4001 .parent
= TYPE_QIO_CHANNEL
,
4002 .name
= TYPE_QIO_CHANNEL_RDMA
,
4003 .instance_size
= sizeof(QIOChannelRDMA
),
4004 .instance_finalize
= qio_channel_rdma_finalize
,
4005 .class_init
= qio_channel_rdma_class_init
,
4008 static void qio_channel_rdma_register_types(void)
4010 type_register_static(&qio_channel_rdma_info
);
4013 type_init(qio_channel_rdma_register_types
);
4015 static QEMUFile
*qemu_fopen_rdma(RDMAContext
*rdma
, const char *mode
)
4017 QIOChannelRDMA
*rioc
;
4019 if (qemu_file_mode_is_not_valid(mode
)) {
4023 rioc
= QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA
));
4025 if (mode
[0] == 'w') {
4026 rioc
->file
= qemu_fopen_channel_output(QIO_CHANNEL(rioc
));
4027 rioc
->rdmaout
= rdma
;
4028 rioc
->rdmain
= rdma
->return_path
;
4029 qemu_file_set_hooks(rioc
->file
, &rdma_write_hooks
);
4031 rioc
->file
= qemu_fopen_channel_input(QIO_CHANNEL(rioc
));
4032 rioc
->rdmain
= rdma
;
4033 rioc
->rdmaout
= rdma
->return_path
;
4034 qemu_file_set_hooks(rioc
->file
, &rdma_read_hooks
);
4040 static void rdma_accept_incoming_migration(void *opaque
)
4042 RDMAContext
*rdma
= opaque
;
4045 Error
*local_err
= NULL
;
4047 trace_qemu_rdma_accept_incoming_migration();
4048 ret
= qemu_rdma_accept(rdma
);
4051 fprintf(stderr
, "RDMA ERROR: Migration initialization failed\n");
4055 trace_qemu_rdma_accept_incoming_migration_accepted();
4057 if (rdma
->is_return_path
) {
4061 f
= qemu_fopen_rdma(rdma
, "rb");
4063 fprintf(stderr
, "RDMA ERROR: could not qemu_fopen_rdma\n");
4064 qemu_rdma_cleanup(rdma
);
4068 rdma
->migration_started_on_destination
= 1;
4069 migration_fd_process_incoming(f
, &local_err
);
4071 error_reportf_err(local_err
, "RDMA ERROR:");
4075 void rdma_start_incoming_migration(const char *host_port
, Error
**errp
)
4078 RDMAContext
*rdma
, *rdma_return_path
= NULL
;
4079 Error
*local_err
= NULL
;
4081 trace_rdma_start_incoming_migration();
4083 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4084 if (ram_block_discard_is_required()) {
4085 error_setg(errp
, "RDMA: cannot disable RAM discard");
4089 rdma
= qemu_rdma_data_init(host_port
, &local_err
);
4094 ret
= qemu_rdma_dest_init(rdma
, &local_err
);
4100 trace_rdma_start_incoming_migration_after_dest_init();
4102 ret
= rdma_listen(rdma
->listen_id
, 5);
4105 ERROR(errp
, "listening on socket!");
4109 trace_rdma_start_incoming_migration_after_rdma_listen();
4111 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
4112 NULL
, (void *)(intptr_t)rdma
);
4116 qemu_rdma_cleanup(rdma
);
4118 error_propagate(errp
, local_err
);
4121 g_free(rdma
->host_port
);
4124 g_free(rdma_return_path
);
4127 void rdma_start_outgoing_migration(void *opaque
,
4128 const char *host_port
, Error
**errp
)
4130 MigrationState
*s
= opaque
;
4131 RDMAContext
*rdma_return_path
= NULL
;
4135 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4136 if (ram_block_discard_is_required()) {
4137 error_setg(errp
, "RDMA: cannot disable RAM discard");
4141 rdma
= qemu_rdma_data_init(host_port
, errp
);
4146 ret
= qemu_rdma_source_init(rdma
,
4147 s
->enabled_capabilities
[MIGRATION_CAPABILITY_RDMA_PIN_ALL
], errp
);
4153 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4154 ret
= qemu_rdma_connect(rdma
, errp
, false);
4160 /* RDMA postcopy need a separate queue pair for return path */
4161 if (migrate_postcopy()) {
4162 rdma_return_path
= qemu_rdma_data_init(host_port
, errp
);
4164 if (rdma_return_path
== NULL
) {
4165 goto return_path_err
;
4168 ret
= qemu_rdma_source_init(rdma_return_path
,
4169 s
->enabled_capabilities
[MIGRATION_CAPABILITY_RDMA_PIN_ALL
], errp
);
4172 goto return_path_err
;
4175 ret
= qemu_rdma_connect(rdma_return_path
, errp
, true);
4178 goto return_path_err
;
4181 rdma
->return_path
= rdma_return_path
;
4182 rdma_return_path
->return_path
= rdma
;
4183 rdma_return_path
->is_return_path
= true;
4186 trace_rdma_start_outgoing_migration_after_rdma_connect();
4188 s
->to_dst_file
= qemu_fopen_rdma(rdma
, "wb");
4189 migrate_fd_connect(s
, NULL
);
4192 qemu_rdma_cleanup(rdma
);
4195 g_free(rdma_return_path
);