2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include "qemu-barrier.h"
25 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
26 // Work around ugly bugs in glibc that mangle global register contents
28 #define env cpu_single_env
31 int tb_invalidated_flag
;
33 //#define CONFIG_DEBUG_EXEC
35 int qemu_cpu_has_work(CPUState
*env
)
37 return cpu_has_work(env
);
40 void cpu_loop_exit(void)
42 env
->current_tb
= NULL
;
43 longjmp(env
->jmp_env
, 1);
46 /* exit the current TB from a signal handler. The host registers are
47 restored in a state compatible with the CPU emulator
49 #if defined(CONFIG_SOFTMMU)
50 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
54 /* XXX: restore cpu registers saved in host registers */
56 env
->exception_index
= -1;
57 longjmp(env
->jmp_env
, 1);
61 /* Execute the code without caching the generated code. An interpreter
62 could be used if available. */
63 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
65 unsigned long next_tb
;
68 /* Should never happen.
69 We only end up here when an existing TB is too long. */
70 if (max_cycles
> CF_COUNT_MASK
)
71 max_cycles
= CF_COUNT_MASK
;
73 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
76 /* execute the generated code */
77 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
78 env
->current_tb
= NULL
;
80 if ((next_tb
& 3) == 2) {
81 /* Restore PC. This may happen if async event occurs before
82 the TB starts executing. */
83 cpu_pc_from_tb(env
, tb
);
85 tb_phys_invalidate(tb
, -1);
89 static TranslationBlock
*tb_find_slow(target_ulong pc
,
93 TranslationBlock
*tb
, **ptb1
;
95 tb_page_addr_t phys_pc
, phys_page1
, phys_page2
;
96 target_ulong virt_page2
;
98 tb_invalidated_flag
= 0;
100 /* find translated block using physical mappings */
101 phys_pc
= get_page_addr_code(env
, pc
);
102 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
104 h
= tb_phys_hash_func(phys_pc
);
105 ptb1
= &tb_phys_hash
[h
];
111 tb
->page_addr
[0] == phys_page1
&&
112 tb
->cs_base
== cs_base
&&
113 tb
->flags
== flags
) {
114 /* check next page if needed */
115 if (tb
->page_addr
[1] != -1) {
116 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
118 phys_page2
= get_page_addr_code(env
, virt_page2
);
119 if (tb
->page_addr
[1] == phys_page2
)
125 ptb1
= &tb
->phys_hash_next
;
128 /* if no translated code available, then translate it now */
129 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
132 /* Move the last found TB to the head of the list */
134 *ptb1
= tb
->phys_hash_next
;
135 tb
->phys_hash_next
= tb_phys_hash
[h
];
136 tb_phys_hash
[h
] = tb
;
138 /* we add the TB in the virtual pc hash table */
139 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
143 static inline TranslationBlock
*tb_find_fast(void)
145 TranslationBlock
*tb
;
146 target_ulong cs_base
, pc
;
149 /* we record a subset of the CPU state. It will
150 always be the same before a given translated block
152 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
153 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
154 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
155 tb
->flags
!= flags
)) {
156 tb
= tb_find_slow(pc
, cs_base
, flags
);
161 static CPUDebugExcpHandler
*debug_excp_handler
;
163 CPUDebugExcpHandler
*cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
165 CPUDebugExcpHandler
*old_handler
= debug_excp_handler
;
167 debug_excp_handler
= handler
;
171 static void cpu_handle_debug_exception(CPUState
*env
)
175 if (!env
->watchpoint_hit
) {
176 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
177 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
180 if (debug_excp_handler
) {
181 debug_excp_handler(env
);
185 /* main execution loop */
187 volatile sig_atomic_t exit_request
;
189 int cpu_exec(CPUState
*env1
)
191 volatile host_reg_t saved_env_reg
;
192 int ret
, interrupt_request
;
193 TranslationBlock
*tb
;
195 unsigned long next_tb
;
198 if (!cpu_has_work(env1
)) {
205 cpu_single_env
= env1
;
207 /* the access to env below is actually saving the global register's
208 value, so that files not including target-xyz/exec.h are free to
210 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg
) != sizeof (env
));
211 saved_env_reg
= (host_reg_t
) env
;
215 if (unlikely(exit_request
)) {
216 env
->exit_request
= 1;
219 #if defined(TARGET_I386)
220 /* put eflags in CPU temporary format */
221 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
222 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
223 CC_OP
= CC_OP_EFLAGS
;
224 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
225 #elif defined(TARGET_SPARC)
226 #elif defined(TARGET_M68K)
227 env
->cc_op
= CC_OP_FLAGS
;
228 env
->cc_dest
= env
->sr
& 0xf;
229 env
->cc_x
= (env
->sr
>> 4) & 1;
230 #elif defined(TARGET_ALPHA)
231 #elif defined(TARGET_ARM)
232 #elif defined(TARGET_UNICORE32)
233 #elif defined(TARGET_PPC)
234 #elif defined(TARGET_LM32)
235 #elif defined(TARGET_MICROBLAZE)
236 #elif defined(TARGET_MIPS)
237 #elif defined(TARGET_SH4)
238 #elif defined(TARGET_CRIS)
239 #elif defined(TARGET_S390X)
242 #error unsupported target CPU
244 env
->exception_index
= -1;
246 /* prepare setjmp context for exception handling */
248 if (setjmp(env
->jmp_env
) == 0) {
249 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
251 env
= cpu_single_env
;
252 #define env cpu_single_env
254 /* if an exception is pending, we execute it here */
255 if (env
->exception_index
>= 0) {
256 if (env
->exception_index
>= EXCP_INTERRUPT
) {
257 /* exit request from the cpu execution loop */
258 ret
= env
->exception_index
;
259 if (ret
== EXCP_DEBUG
) {
260 cpu_handle_debug_exception(env
);
264 #if defined(CONFIG_USER_ONLY)
265 /* if user mode only, we simulate a fake exception
266 which will be handled outside the cpu execution
268 #if defined(TARGET_I386)
269 do_interrupt_user(env
->exception_index
,
270 env
->exception_is_int
,
272 env
->exception_next_eip
);
273 /* successfully delivered */
274 env
->old_exception
= -1;
276 ret
= env
->exception_index
;
279 #if defined(TARGET_I386)
280 /* simulate a real cpu exception. On i386, it can
281 trigger new exceptions, but we do not handle
282 double or triple faults yet. */
283 do_interrupt(env
->exception_index
,
284 env
->exception_is_int
,
286 env
->exception_next_eip
, 0);
287 /* successfully delivered */
288 env
->old_exception
= -1;
289 #elif defined(TARGET_PPC)
291 #elif defined(TARGET_LM32)
293 #elif defined(TARGET_MICROBLAZE)
295 #elif defined(TARGET_MIPS)
297 #elif defined(TARGET_SPARC)
299 #elif defined(TARGET_ARM)
301 #elif defined(TARGET_UNICORE32)
303 #elif defined(TARGET_SH4)
305 #elif defined(TARGET_ALPHA)
307 #elif defined(TARGET_CRIS)
309 #elif defined(TARGET_M68K)
311 #elif defined(TARGET_S390X)
314 env
->exception_index
= -1;
319 next_tb
= 0; /* force lookup of first TB */
321 interrupt_request
= env
->interrupt_request
;
322 if (unlikely(interrupt_request
)) {
323 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
324 /* Mask out external interrupts for this step. */
325 interrupt_request
&= ~CPU_INTERRUPT_SSTEP_MASK
;
327 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
328 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
329 env
->exception_index
= EXCP_DEBUG
;
332 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
333 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
334 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
335 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
336 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
338 env
->exception_index
= EXCP_HLT
;
342 #if defined(TARGET_I386)
343 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
344 svm_check_intercept(SVM_EXIT_INIT
);
346 env
->exception_index
= EXCP_HALTED
;
348 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
350 } else if (env
->hflags2
& HF2_GIF_MASK
) {
351 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
352 !(env
->hflags
& HF_SMM_MASK
)) {
353 svm_check_intercept(SVM_EXIT_SMI
);
354 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
357 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
358 !(env
->hflags2
& HF2_NMI_MASK
)) {
359 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
360 env
->hflags2
|= HF2_NMI_MASK
;
361 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
363 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
364 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
365 do_interrupt(EXCP12_MCHK
, 0, 0, 0, 0);
367 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
368 (((env
->hflags2
& HF2_VINTR_MASK
) &&
369 (env
->hflags2
& HF2_HIF_MASK
)) ||
370 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
371 (env
->eflags
& IF_MASK
&&
372 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
374 svm_check_intercept(SVM_EXIT_INTR
);
375 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
376 intno
= cpu_get_pic_interrupt(env
);
377 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
378 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
380 env
= cpu_single_env
;
381 #define env cpu_single_env
383 do_interrupt(intno
, 0, 0, 0, 1);
384 /* ensure that no TB jump will be modified as
385 the program flow was changed */
387 #if !defined(CONFIG_USER_ONLY)
388 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
389 (env
->eflags
& IF_MASK
) &&
390 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
392 /* FIXME: this should respect TPR */
393 svm_check_intercept(SVM_EXIT_VINTR
);
394 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
395 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
396 do_interrupt(intno
, 0, 0, 0, 1);
397 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
402 #elif defined(TARGET_PPC)
404 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
408 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
409 ppc_hw_interrupt(env
);
410 if (env
->pending_interrupts
== 0)
411 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
414 #elif defined(TARGET_LM32)
415 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
416 && (env
->ie
& IE_IE
)) {
417 env
->exception_index
= EXCP_IRQ
;
421 #elif defined(TARGET_MICROBLAZE)
422 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
423 && (env
->sregs
[SR_MSR
] & MSR_IE
)
424 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
425 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
426 env
->exception_index
= EXCP_IRQ
;
430 #elif defined(TARGET_MIPS)
431 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
432 cpu_mips_hw_interrupts_pending(env
)) {
434 env
->exception_index
= EXCP_EXT_INTERRUPT
;
439 #elif defined(TARGET_SPARC)
440 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
441 if (cpu_interrupts_enabled(env
) &&
442 env
->interrupt_index
> 0) {
443 int pil
= env
->interrupt_index
& 0xf;
444 int type
= env
->interrupt_index
& 0xf0;
446 if (((type
== TT_EXTINT
) &&
447 cpu_pil_allowed(env
, pil
)) ||
449 env
->exception_index
= env
->interrupt_index
;
455 #elif defined(TARGET_ARM)
456 if (interrupt_request
& CPU_INTERRUPT_FIQ
457 && !(env
->uncached_cpsr
& CPSR_F
)) {
458 env
->exception_index
= EXCP_FIQ
;
462 /* ARMv7-M interrupt return works by loading a magic value
463 into the PC. On real hardware the load causes the
464 return to occur. The qemu implementation performs the
465 jump normally, then does the exception return when the
466 CPU tries to execute code at the magic address.
467 This will cause the magic PC value to be pushed to
468 the stack if an interrupt occurred at the wrong time.
469 We avoid this by disabling interrupts when
470 pc contains a magic address. */
471 if (interrupt_request
& CPU_INTERRUPT_HARD
472 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
473 || !(env
->uncached_cpsr
& CPSR_I
))) {
474 env
->exception_index
= EXCP_IRQ
;
478 #elif defined(TARGET_UNICORE32)
479 if (interrupt_request
& CPU_INTERRUPT_HARD
480 && !(env
->uncached_asr
& ASR_I
)) {
484 #elif defined(TARGET_SH4)
485 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
489 #elif defined(TARGET_ALPHA)
492 /* ??? This hard-codes the OSF/1 interrupt levels. */
493 switch (env
->pal_mode
? 7 : env
->ps
& PS_INT_MASK
) {
495 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
496 idx
= EXCP_DEV_INTERRUPT
;
500 if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
501 idx
= EXCP_CLK_INTERRUPT
;
505 if (interrupt_request
& CPU_INTERRUPT_SMP
) {
506 idx
= EXCP_SMP_INTERRUPT
;
510 if (interrupt_request
& CPU_INTERRUPT_MCHK
) {
515 env
->exception_index
= idx
;
521 #elif defined(TARGET_CRIS)
522 if (interrupt_request
& CPU_INTERRUPT_HARD
523 && (env
->pregs
[PR_CCS
] & I_FLAG
)
524 && !env
->locked_irq
) {
525 env
->exception_index
= EXCP_IRQ
;
529 if (interrupt_request
& CPU_INTERRUPT_NMI
530 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
531 env
->exception_index
= EXCP_NMI
;
535 #elif defined(TARGET_M68K)
536 if (interrupt_request
& CPU_INTERRUPT_HARD
537 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
538 < env
->pending_level
) {
539 /* Real hardware gets the interrupt vector via an
540 IACK cycle at this point. Current emulated
541 hardware doesn't rely on this, so we
542 provide/save the vector when the interrupt is
544 env
->exception_index
= env
->pending_vector
;
548 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
549 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
550 (env
->psw
.mask
& PSW_MASK_EXT
)) {
555 /* Don't use the cached interrupt_request value,
556 do_interrupt may have updated the EXITTB flag. */
557 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
558 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
559 /* ensure that no TB jump will be modified as
560 the program flow was changed */
564 if (unlikely(env
->exit_request
)) {
565 env
->exit_request
= 0;
566 env
->exception_index
= EXCP_INTERRUPT
;
569 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
570 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
571 /* restore flags in standard format */
572 #if defined(TARGET_I386)
573 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
574 log_cpu_state(env
, X86_DUMP_CCOP
);
575 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
576 #elif defined(TARGET_M68K)
577 cpu_m68k_flush_flags(env
, env
->cc_op
);
578 env
->cc_op
= CC_OP_FLAGS
;
579 env
->sr
= (env
->sr
& 0xffe0)
580 | env
->cc_dest
| (env
->cc_x
<< 4);
581 log_cpu_state(env
, 0);
583 log_cpu_state(env
, 0);
586 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
589 /* Note: we do it here to avoid a gcc bug on Mac OS X when
590 doing it in tb_find_slow */
591 if (tb_invalidated_flag
) {
592 /* as some TB could have been invalidated because
593 of memory exceptions while generating the code, we
594 must recompute the hash index here */
596 tb_invalidated_flag
= 0;
598 #ifdef CONFIG_DEBUG_EXEC
599 qemu_log_mask(CPU_LOG_EXEC
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
600 (long)tb
->tc_ptr
, tb
->pc
,
601 lookup_symbol(tb
->pc
));
603 /* see if we can patch the calling TB. When the TB
604 spans two pages, we cannot safely do a direct
606 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
607 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
609 spin_unlock(&tb_lock
);
611 /* cpu_interrupt might be called while translating the
612 TB, but before it is linked into a potentially
613 infinite loop and becomes env->current_tb. Avoid
614 starting execution if there is a pending interrupt. */
615 env
->current_tb
= tb
;
617 if (likely(!env
->exit_request
)) {
619 /* execute the generated code */
620 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
622 env
= cpu_single_env
;
623 #define env cpu_single_env
625 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
626 if ((next_tb
& 3) == 2) {
627 /* Instruction counter expired. */
629 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
631 cpu_pc_from_tb(env
, tb
);
632 insns_left
= env
->icount_decr
.u32
;
633 if (env
->icount_extra
&& insns_left
>= 0) {
634 /* Refill decrementer and continue execution. */
635 env
->icount_extra
+= insns_left
;
636 if (env
->icount_extra
> 0xffff) {
639 insns_left
= env
->icount_extra
;
641 env
->icount_extra
-= insns_left
;
642 env
->icount_decr
.u16
.low
= insns_left
;
644 if (insns_left
> 0) {
645 /* Execute remaining instructions. */
646 cpu_exec_nocache(insns_left
, tb
);
648 env
->exception_index
= EXCP_INTERRUPT
;
654 env
->current_tb
= NULL
;
655 /* reset soft MMU for next block (it can currently
656 only be set by a memory fault) */
662 #if defined(TARGET_I386)
663 /* restore flags in standard format */
664 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
665 #elif defined(TARGET_ARM)
666 /* XXX: Save/restore host fpu exception state?. */
667 #elif defined(TARGET_UNICORE32)
668 #elif defined(TARGET_SPARC)
669 #elif defined(TARGET_PPC)
670 #elif defined(TARGET_LM32)
671 #elif defined(TARGET_M68K)
672 cpu_m68k_flush_flags(env
, env
->cc_op
);
673 env
->cc_op
= CC_OP_FLAGS
;
674 env
->sr
= (env
->sr
& 0xffe0)
675 | env
->cc_dest
| (env
->cc_x
<< 4);
676 #elif defined(TARGET_MICROBLAZE)
677 #elif defined(TARGET_MIPS)
678 #elif defined(TARGET_SH4)
679 #elif defined(TARGET_ALPHA)
680 #elif defined(TARGET_CRIS)
681 #elif defined(TARGET_S390X)
684 #error unsupported target CPU
687 /* restore global registers */
689 env
= (void *) saved_env_reg
;
691 /* fail safe : never use cpu_single_env outside cpu_exec() */
692 cpu_single_env
= NULL
;