2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "qapi/visitor.h"
23 #include "qemu/bitops.h"
24 #include "qemu/error-report.h"
25 #include "qom/object.h"
26 #include "trace-root.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/sysemu.h"
32 #include "hw/qdev-properties.h"
33 #include "migration/vmstate.h"
35 //#define DEBUG_UNASSIGNED
37 static unsigned memory_region_transaction_depth
;
38 static bool memory_region_update_pending
;
39 static bool ioeventfd_update_pending
;
40 static bool global_dirty_log
= false;
42 static QTAILQ_HEAD(, MemoryListener
) memory_listeners
43 = QTAILQ_HEAD_INITIALIZER(memory_listeners
);
45 static QTAILQ_HEAD(, AddressSpace
) address_spaces
46 = QTAILQ_HEAD_INITIALIZER(address_spaces
);
48 static GHashTable
*flat_views
;
50 typedef struct AddrRange AddrRange
;
53 * Note that signed integers are needed for negative offsetting in aliases
54 * (large MemoryRegion::alias_offset).
61 static AddrRange
addrrange_make(Int128 start
, Int128 size
)
63 return (AddrRange
) { start
, size
};
66 static bool addrrange_equal(AddrRange r1
, AddrRange r2
)
68 return int128_eq(r1
.start
, r2
.start
) && int128_eq(r1
.size
, r2
.size
);
71 static Int128
addrrange_end(AddrRange r
)
73 return int128_add(r
.start
, r
.size
);
76 static AddrRange
addrrange_shift(AddrRange range
, Int128 delta
)
78 int128_addto(&range
.start
, delta
);
82 static bool addrrange_contains(AddrRange range
, Int128 addr
)
84 return int128_ge(addr
, range
.start
)
85 && int128_lt(addr
, addrrange_end(range
));
88 static bool addrrange_intersects(AddrRange r1
, AddrRange r2
)
90 return addrrange_contains(r1
, r2
.start
)
91 || addrrange_contains(r2
, r1
.start
);
94 static AddrRange
addrrange_intersection(AddrRange r1
, AddrRange r2
)
96 Int128 start
= int128_max(r1
.start
, r2
.start
);
97 Int128 end
= int128_min(addrrange_end(r1
), addrrange_end(r2
));
98 return addrrange_make(start
, int128_sub(end
, start
));
101 enum ListenerDirection
{ Forward
, Reverse
};
103 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
105 MemoryListener *_listener; \
107 switch (_direction) { \
109 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
110 if (_listener->_callback) { \
111 _listener->_callback(_listener, ##_args); \
116 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
117 if (_listener->_callback) { \
118 _listener->_callback(_listener, ##_args); \
127 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
129 MemoryListener *_listener; \
131 switch (_direction) { \
133 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
134 if (_listener->_callback) { \
135 _listener->_callback(_listener, _section, ##_args); \
140 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
141 if (_listener->_callback) { \
142 _listener->_callback(_listener, _section, ##_args); \
151 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
152 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
154 MemoryRegionSection mrs = section_from_flat_range(fr, \
155 address_space_to_flatview(as)); \
156 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
159 struct CoalescedMemoryRange
{
161 QTAILQ_ENTRY(CoalescedMemoryRange
) link
;
164 struct MemoryRegionIoeventfd
{
171 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd
*a
,
172 MemoryRegionIoeventfd
*b
)
174 if (int128_lt(a
->addr
.start
, b
->addr
.start
)) {
176 } else if (int128_gt(a
->addr
.start
, b
->addr
.start
)) {
178 } else if (int128_lt(a
->addr
.size
, b
->addr
.size
)) {
180 } else if (int128_gt(a
->addr
.size
, b
->addr
.size
)) {
182 } else if (a
->match_data
< b
->match_data
) {
184 } else if (a
->match_data
> b
->match_data
) {
186 } else if (a
->match_data
) {
187 if (a
->data
< b
->data
) {
189 } else if (a
->data
> b
->data
) {
195 } else if (a
->e
> b
->e
) {
201 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd
*a
,
202 MemoryRegionIoeventfd
*b
)
204 return !memory_region_ioeventfd_before(a
, b
)
205 && !memory_region_ioeventfd_before(b
, a
);
208 /* Range of memory in the global map. Addresses are absolute. */
211 hwaddr offset_in_region
;
213 uint8_t dirty_log_mask
;
217 int has_coalesced_range
;
220 #define FOR_EACH_FLAT_RANGE(var, view) \
221 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
223 static inline MemoryRegionSection
224 section_from_flat_range(FlatRange
*fr
, FlatView
*fv
)
226 return (MemoryRegionSection
) {
229 .offset_within_region
= fr
->offset_in_region
,
230 .size
= fr
->addr
.size
,
231 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
232 .readonly
= fr
->readonly
,
233 .nonvolatile
= fr
->nonvolatile
,
237 static bool flatrange_equal(FlatRange
*a
, FlatRange
*b
)
239 return a
->mr
== b
->mr
240 && addrrange_equal(a
->addr
, b
->addr
)
241 && a
->offset_in_region
== b
->offset_in_region
242 && a
->romd_mode
== b
->romd_mode
243 && a
->readonly
== b
->readonly
244 && a
->nonvolatile
== b
->nonvolatile
;
247 static FlatView
*flatview_new(MemoryRegion
*mr_root
)
251 view
= g_new0(FlatView
, 1);
253 view
->root
= mr_root
;
254 memory_region_ref(mr_root
);
255 trace_flatview_new(view
, mr_root
);
260 /* Insert a range into a given position. Caller is responsible for maintaining
263 static void flatview_insert(FlatView
*view
, unsigned pos
, FlatRange
*range
)
265 if (view
->nr
== view
->nr_allocated
) {
266 view
->nr_allocated
= MAX(2 * view
->nr
, 10);
267 view
->ranges
= g_realloc(view
->ranges
,
268 view
->nr_allocated
* sizeof(*view
->ranges
));
270 memmove(view
->ranges
+ pos
+ 1, view
->ranges
+ pos
,
271 (view
->nr
- pos
) * sizeof(FlatRange
));
272 view
->ranges
[pos
] = *range
;
273 memory_region_ref(range
->mr
);
277 static void flatview_destroy(FlatView
*view
)
281 trace_flatview_destroy(view
, view
->root
);
282 if (view
->dispatch
) {
283 address_space_dispatch_free(view
->dispatch
);
285 for (i
= 0; i
< view
->nr
; i
++) {
286 memory_region_unref(view
->ranges
[i
].mr
);
288 g_free(view
->ranges
);
289 memory_region_unref(view
->root
);
293 static bool flatview_ref(FlatView
*view
)
295 return atomic_fetch_inc_nonzero(&view
->ref
) > 0;
298 void flatview_unref(FlatView
*view
)
300 if (atomic_fetch_dec(&view
->ref
) == 1) {
301 trace_flatview_destroy_rcu(view
, view
->root
);
303 call_rcu(view
, flatview_destroy
, rcu
);
307 static bool can_merge(FlatRange
*r1
, FlatRange
*r2
)
309 return int128_eq(addrrange_end(r1
->addr
), r2
->addr
.start
)
311 && int128_eq(int128_add(int128_make64(r1
->offset_in_region
),
313 int128_make64(r2
->offset_in_region
))
314 && r1
->dirty_log_mask
== r2
->dirty_log_mask
315 && r1
->romd_mode
== r2
->romd_mode
316 && r1
->readonly
== r2
->readonly
317 && r1
->nonvolatile
== r2
->nonvolatile
;
320 /* Attempt to simplify a view by merging adjacent ranges */
321 static void flatview_simplify(FlatView
*view
)
326 while (i
< view
->nr
) {
329 && can_merge(&view
->ranges
[j
-1], &view
->ranges
[j
])) {
330 int128_addto(&view
->ranges
[i
].addr
.size
, view
->ranges
[j
].addr
.size
);
334 memmove(&view
->ranges
[i
], &view
->ranges
[j
],
335 (view
->nr
- j
) * sizeof(view
->ranges
[j
]));
340 static bool memory_region_big_endian(MemoryRegion
*mr
)
342 #ifdef TARGET_WORDS_BIGENDIAN
343 return mr
->ops
->endianness
!= DEVICE_LITTLE_ENDIAN
;
345 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
349 static bool memory_region_wrong_endianness(MemoryRegion
*mr
)
351 #ifdef TARGET_WORDS_BIGENDIAN
352 return mr
->ops
->endianness
== DEVICE_LITTLE_ENDIAN
;
354 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
358 static void adjust_endianness(MemoryRegion
*mr
, uint64_t *data
, unsigned size
)
360 if (memory_region_wrong_endianness(mr
)) {
365 *data
= bswap16(*data
);
368 *data
= bswap32(*data
);
371 *data
= bswap64(*data
);
379 static inline void memory_region_shift_read_access(uint64_t *value
,
385 *value
|= (tmp
& mask
) << shift
;
387 *value
|= (tmp
& mask
) >> -shift
;
391 static inline uint64_t memory_region_shift_write_access(uint64_t *value
,
398 tmp
= (*value
>> shift
) & mask
;
400 tmp
= (*value
<< -shift
) & mask
;
406 static hwaddr
memory_region_to_absolute_addr(MemoryRegion
*mr
, hwaddr offset
)
409 hwaddr abs_addr
= offset
;
411 abs_addr
+= mr
->addr
;
412 for (root
= mr
; root
->container
; ) {
413 root
= root
->container
;
414 abs_addr
+= root
->addr
;
420 static int get_cpu_index(void)
423 return current_cpu
->cpu_index
;
428 static MemTxResult
memory_region_read_accessor(MemoryRegion
*mr
,
438 tmp
= mr
->ops
->read(mr
->opaque
, addr
, size
);
440 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
441 } else if (mr
== &io_mem_notdirty
) {
442 /* Accesses to code which has previously been translated into a TB show
443 * up in the MMIO path, as accesses to the io_mem_notdirty
445 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
446 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
447 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
448 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
450 memory_region_shift_read_access(value
, shift
, mask
, tmp
);
454 static MemTxResult
memory_region_read_with_attrs_accessor(MemoryRegion
*mr
,
465 r
= mr
->ops
->read_with_attrs(mr
->opaque
, addr
, &tmp
, size
, attrs
);
467 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
468 } else if (mr
== &io_mem_notdirty
) {
469 /* Accesses to code which has previously been translated into a TB show
470 * up in the MMIO path, as accesses to the io_mem_notdirty
472 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
473 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
474 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
475 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
477 memory_region_shift_read_access(value
, shift
, mask
, tmp
);
481 static MemTxResult
memory_region_write_accessor(MemoryRegion
*mr
,
489 uint64_t tmp
= memory_region_shift_write_access(value
, shift
, mask
);
492 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
493 } else if (mr
== &io_mem_notdirty
) {
494 /* Accesses to code which has previously been translated into a TB show
495 * up in the MMIO path, as accesses to the io_mem_notdirty
497 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
498 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
499 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
500 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
502 mr
->ops
->write(mr
->opaque
, addr
, tmp
, size
);
506 static MemTxResult
memory_region_write_with_attrs_accessor(MemoryRegion
*mr
,
514 uint64_t tmp
= memory_region_shift_write_access(value
, shift
, mask
);
517 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
518 } else if (mr
== &io_mem_notdirty
) {
519 /* Accesses to code which has previously been translated into a TB show
520 * up in the MMIO path, as accesses to the io_mem_notdirty
522 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
523 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
524 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
525 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
527 return mr
->ops
->write_with_attrs(mr
->opaque
, addr
, tmp
, size
, attrs
);
530 static MemTxResult
access_with_adjusted_size(hwaddr addr
,
533 unsigned access_size_min
,
534 unsigned access_size_max
,
535 MemTxResult (*access_fn
)
546 uint64_t access_mask
;
547 unsigned access_size
;
549 MemTxResult r
= MEMTX_OK
;
551 if (!access_size_min
) {
554 if (!access_size_max
) {
558 /* FIXME: support unaligned access? */
559 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
560 access_mask
= MAKE_64BIT_MASK(0, access_size
* 8);
561 if (memory_region_big_endian(mr
)) {
562 for (i
= 0; i
< size
; i
+= access_size
) {
563 r
|= access_fn(mr
, addr
+ i
, value
, access_size
,
564 (size
- access_size
- i
) * 8, access_mask
, attrs
);
567 for (i
= 0; i
< size
; i
+= access_size
) {
568 r
|= access_fn(mr
, addr
+ i
, value
, access_size
, i
* 8,
575 static AddressSpace
*memory_region_to_address_space(MemoryRegion
*mr
)
579 while (mr
->container
) {
582 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
583 if (mr
== as
->root
) {
590 /* Render a memory region into the global view. Ranges in @view obscure
593 static void render_memory_region(FlatView
*view
,
600 MemoryRegion
*subregion
;
602 hwaddr offset_in_region
;
612 int128_addto(&base
, int128_make64(mr
->addr
));
613 readonly
|= mr
->readonly
;
614 nonvolatile
|= mr
->nonvolatile
;
616 tmp
= addrrange_make(base
, mr
->size
);
618 if (!addrrange_intersects(tmp
, clip
)) {
622 clip
= addrrange_intersection(tmp
, clip
);
625 int128_subfrom(&base
, int128_make64(mr
->alias
->addr
));
626 int128_subfrom(&base
, int128_make64(mr
->alias_offset
));
627 render_memory_region(view
, mr
->alias
, base
, clip
,
628 readonly
, nonvolatile
);
632 /* Render subregions in priority order. */
633 QTAILQ_FOREACH(subregion
, &mr
->subregions
, subregions_link
) {
634 render_memory_region(view
, subregion
, base
, clip
,
635 readonly
, nonvolatile
);
638 if (!mr
->terminates
) {
642 offset_in_region
= int128_get64(int128_sub(clip
.start
, base
));
647 fr
.dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
648 fr
.romd_mode
= mr
->romd_mode
;
649 fr
.readonly
= readonly
;
650 fr
.nonvolatile
= nonvolatile
;
651 fr
.has_coalesced_range
= 0;
653 /* Render the region itself into any gaps left by the current view. */
654 for (i
= 0; i
< view
->nr
&& int128_nz(remain
); ++i
) {
655 if (int128_ge(base
, addrrange_end(view
->ranges
[i
].addr
))) {
658 if (int128_lt(base
, view
->ranges
[i
].addr
.start
)) {
659 now
= int128_min(remain
,
660 int128_sub(view
->ranges
[i
].addr
.start
, base
));
661 fr
.offset_in_region
= offset_in_region
;
662 fr
.addr
= addrrange_make(base
, now
);
663 flatview_insert(view
, i
, &fr
);
665 int128_addto(&base
, now
);
666 offset_in_region
+= int128_get64(now
);
667 int128_subfrom(&remain
, now
);
669 now
= int128_sub(int128_min(int128_add(base
, remain
),
670 addrrange_end(view
->ranges
[i
].addr
)),
672 int128_addto(&base
, now
);
673 offset_in_region
+= int128_get64(now
);
674 int128_subfrom(&remain
, now
);
676 if (int128_nz(remain
)) {
677 fr
.offset_in_region
= offset_in_region
;
678 fr
.addr
= addrrange_make(base
, remain
);
679 flatview_insert(view
, i
, &fr
);
683 static MemoryRegion
*memory_region_get_flatview_root(MemoryRegion
*mr
)
685 while (mr
->enabled
) {
687 if (!mr
->alias_offset
&& int128_ge(mr
->size
, mr
->alias
->size
)) {
688 /* The alias is included in its entirety. Use it as
689 * the "real" root, so that we can share more FlatViews.
694 } else if (!mr
->terminates
) {
695 unsigned int found
= 0;
696 MemoryRegion
*child
, *next
= NULL
;
697 QTAILQ_FOREACH(child
, &mr
->subregions
, subregions_link
) {
698 if (child
->enabled
) {
703 if (!child
->addr
&& int128_ge(mr
->size
, child
->size
)) {
704 /* A child is included in its entirety. If it's the only
705 * enabled one, use it in the hope of finding an alias down the
706 * way. This will also let us share FlatViews.
727 /* Render a memory topology into a list of disjoint absolute ranges. */
728 static FlatView
*generate_memory_topology(MemoryRegion
*mr
)
733 view
= flatview_new(mr
);
736 render_memory_region(view
, mr
, int128_zero(),
737 addrrange_make(int128_zero(), int128_2_64()),
740 flatview_simplify(view
);
742 view
->dispatch
= address_space_dispatch_new(view
);
743 for (i
= 0; i
< view
->nr
; i
++) {
744 MemoryRegionSection mrs
=
745 section_from_flat_range(&view
->ranges
[i
], view
);
746 flatview_add_to_dispatch(view
, &mrs
);
748 address_space_dispatch_compact(view
->dispatch
);
749 g_hash_table_replace(flat_views
, mr
, view
);
754 static void address_space_add_del_ioeventfds(AddressSpace
*as
,
755 MemoryRegionIoeventfd
*fds_new
,
757 MemoryRegionIoeventfd
*fds_old
,
761 MemoryRegionIoeventfd
*fd
;
762 MemoryRegionSection section
;
764 /* Generate a symmetric difference of the old and new fd sets, adding
765 * and deleting as necessary.
769 while (iold
< fds_old_nb
|| inew
< fds_new_nb
) {
770 if (iold
< fds_old_nb
771 && (inew
== fds_new_nb
772 || memory_region_ioeventfd_before(&fds_old
[iold
],
775 section
= (MemoryRegionSection
) {
776 .fv
= address_space_to_flatview(as
),
777 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
778 .size
= fd
->addr
.size
,
780 MEMORY_LISTENER_CALL(as
, eventfd_del
, Forward
, §ion
,
781 fd
->match_data
, fd
->data
, fd
->e
);
783 } else if (inew
< fds_new_nb
784 && (iold
== fds_old_nb
785 || memory_region_ioeventfd_before(&fds_new
[inew
],
788 section
= (MemoryRegionSection
) {
789 .fv
= address_space_to_flatview(as
),
790 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
791 .size
= fd
->addr
.size
,
793 MEMORY_LISTENER_CALL(as
, eventfd_add
, Reverse
, §ion
,
794 fd
->match_data
, fd
->data
, fd
->e
);
803 FlatView
*address_space_get_flatview(AddressSpace
*as
)
809 view
= address_space_to_flatview(as
);
810 /* If somebody has replaced as->current_map concurrently,
811 * flatview_ref returns false.
813 } while (!flatview_ref(view
));
818 static void address_space_update_ioeventfds(AddressSpace
*as
)
822 unsigned ioeventfd_nb
= 0;
823 MemoryRegionIoeventfd
*ioeventfds
= NULL
;
827 view
= address_space_get_flatview(as
);
828 FOR_EACH_FLAT_RANGE(fr
, view
) {
829 for (i
= 0; i
< fr
->mr
->ioeventfd_nb
; ++i
) {
830 tmp
= addrrange_shift(fr
->mr
->ioeventfds
[i
].addr
,
831 int128_sub(fr
->addr
.start
,
832 int128_make64(fr
->offset_in_region
)));
833 if (addrrange_intersects(fr
->addr
, tmp
)) {
835 ioeventfds
= g_realloc(ioeventfds
,
836 ioeventfd_nb
* sizeof(*ioeventfds
));
837 ioeventfds
[ioeventfd_nb
-1] = fr
->mr
->ioeventfds
[i
];
838 ioeventfds
[ioeventfd_nb
-1].addr
= tmp
;
843 address_space_add_del_ioeventfds(as
, ioeventfds
, ioeventfd_nb
,
844 as
->ioeventfds
, as
->ioeventfd_nb
);
846 g_free(as
->ioeventfds
);
847 as
->ioeventfds
= ioeventfds
;
848 as
->ioeventfd_nb
= ioeventfd_nb
;
849 flatview_unref(view
);
852 static void flat_range_coalesced_io_del(FlatRange
*fr
, AddressSpace
*as
)
854 if (!fr
->has_coalesced_range
) {
858 if (--fr
->has_coalesced_range
> 0) {
862 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Reverse
, coalesced_io_del
,
863 int128_get64(fr
->addr
.start
),
864 int128_get64(fr
->addr
.size
));
867 static void flat_range_coalesced_io_add(FlatRange
*fr
, AddressSpace
*as
)
869 MemoryRegion
*mr
= fr
->mr
;
870 CoalescedMemoryRange
*cmr
;
873 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
877 if (fr
->has_coalesced_range
++) {
881 QTAILQ_FOREACH(cmr
, &mr
->coalesced
, link
) {
882 tmp
= addrrange_shift(cmr
->addr
,
883 int128_sub(fr
->addr
.start
,
884 int128_make64(fr
->offset_in_region
)));
885 if (!addrrange_intersects(tmp
, fr
->addr
)) {
888 tmp
= addrrange_intersection(tmp
, fr
->addr
);
889 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Forward
, coalesced_io_add
,
890 int128_get64(tmp
.start
),
891 int128_get64(tmp
.size
));
895 static void address_space_update_topology_pass(AddressSpace
*as
,
896 const FlatView
*old_view
,
897 const FlatView
*new_view
,
901 FlatRange
*frold
, *frnew
;
903 /* Generate a symmetric difference of the old and new memory maps.
904 * Kill ranges in the old map, and instantiate ranges in the new map.
907 while (iold
< old_view
->nr
|| inew
< new_view
->nr
) {
908 if (iold
< old_view
->nr
) {
909 frold
= &old_view
->ranges
[iold
];
913 if (inew
< new_view
->nr
) {
914 frnew
= &new_view
->ranges
[inew
];
921 || int128_lt(frold
->addr
.start
, frnew
->addr
.start
)
922 || (int128_eq(frold
->addr
.start
, frnew
->addr
.start
)
923 && !flatrange_equal(frold
, frnew
)))) {
924 /* In old but not in new, or in both but attributes changed. */
927 flat_range_coalesced_io_del(frold
, as
);
928 MEMORY_LISTENER_UPDATE_REGION(frold
, as
, Reverse
, region_del
);
932 } else if (frold
&& frnew
&& flatrange_equal(frold
, frnew
)) {
933 /* In both and unchanged (except logging may have changed) */
936 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_nop
);
937 if (frnew
->dirty_log_mask
& ~frold
->dirty_log_mask
) {
938 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, log_start
,
939 frold
->dirty_log_mask
,
940 frnew
->dirty_log_mask
);
942 if (frold
->dirty_log_mask
& ~frnew
->dirty_log_mask
) {
943 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Reverse
, log_stop
,
944 frold
->dirty_log_mask
,
945 frnew
->dirty_log_mask
);
955 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_add
);
956 flat_range_coalesced_io_add(frnew
, as
);
964 static void flatviews_init(void)
966 static FlatView
*empty_view
;
972 flat_views
= g_hash_table_new_full(g_direct_hash
, g_direct_equal
, NULL
,
973 (GDestroyNotify
) flatview_unref
);
975 empty_view
= generate_memory_topology(NULL
);
976 /* We keep it alive forever in the global variable. */
977 flatview_ref(empty_view
);
979 g_hash_table_replace(flat_views
, NULL
, empty_view
);
980 flatview_ref(empty_view
);
984 static void flatviews_reset(void)
989 g_hash_table_unref(flat_views
);
994 /* Render unique FVs */
995 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
996 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
998 if (g_hash_table_lookup(flat_views
, physmr
)) {
1002 generate_memory_topology(physmr
);
1006 static void address_space_set_flatview(AddressSpace
*as
)
1008 FlatView
*old_view
= address_space_to_flatview(as
);
1009 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
1010 FlatView
*new_view
= g_hash_table_lookup(flat_views
, physmr
);
1014 if (old_view
== new_view
) {
1019 flatview_ref(old_view
);
1022 flatview_ref(new_view
);
1024 if (!QTAILQ_EMPTY(&as
->listeners
)) {
1025 FlatView tmpview
= { .nr
= 0 }, *old_view2
= old_view
;
1028 old_view2
= &tmpview
;
1030 address_space_update_topology_pass(as
, old_view2
, new_view
, false);
1031 address_space_update_topology_pass(as
, old_view2
, new_view
, true);
1034 /* Writes are protected by the BQL. */
1035 atomic_rcu_set(&as
->current_map
, new_view
);
1037 flatview_unref(old_view
);
1040 /* Note that all the old MemoryRegions are still alive up to this
1041 * point. This relieves most MemoryListeners from the need to
1042 * ref/unref the MemoryRegions they get---unless they use them
1043 * outside the iothread mutex, in which case precise reference
1044 * counting is necessary.
1047 flatview_unref(old_view
);
1051 static void address_space_update_topology(AddressSpace
*as
)
1053 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
1056 if (!g_hash_table_lookup(flat_views
, physmr
)) {
1057 generate_memory_topology(physmr
);
1059 address_space_set_flatview(as
);
1062 void memory_region_transaction_begin(void)
1064 qemu_flush_coalesced_mmio_buffer();
1065 ++memory_region_transaction_depth
;
1068 void memory_region_transaction_commit(void)
1072 assert(memory_region_transaction_depth
);
1073 assert(qemu_mutex_iothread_locked());
1075 --memory_region_transaction_depth
;
1076 if (!memory_region_transaction_depth
) {
1077 if (memory_region_update_pending
) {
1080 MEMORY_LISTENER_CALL_GLOBAL(begin
, Forward
);
1082 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1083 address_space_set_flatview(as
);
1084 address_space_update_ioeventfds(as
);
1086 memory_region_update_pending
= false;
1087 ioeventfd_update_pending
= false;
1088 MEMORY_LISTENER_CALL_GLOBAL(commit
, Forward
);
1089 } else if (ioeventfd_update_pending
) {
1090 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1091 address_space_update_ioeventfds(as
);
1093 ioeventfd_update_pending
= false;
1098 static void memory_region_destructor_none(MemoryRegion
*mr
)
1102 static void memory_region_destructor_ram(MemoryRegion
*mr
)
1104 qemu_ram_free(mr
->ram_block
);
1107 static bool memory_region_need_escape(char c
)
1109 return c
== '/' || c
== '[' || c
== '\\' || c
== ']';
1112 static char *memory_region_escape_name(const char *name
)
1119 for (p
= name
; *p
; p
++) {
1120 bytes
+= memory_region_need_escape(*p
) ? 4 : 1;
1122 if (bytes
== p
- name
) {
1123 return g_memdup(name
, bytes
+ 1);
1126 escaped
= g_malloc(bytes
+ 1);
1127 for (p
= name
, q
= escaped
; *p
; p
++) {
1129 if (unlikely(memory_region_need_escape(c
))) {
1132 *q
++ = "0123456789abcdef"[c
>> 4];
1133 c
= "0123456789abcdef"[c
& 15];
1141 static void memory_region_do_init(MemoryRegion
*mr
,
1146 mr
->size
= int128_make64(size
);
1147 if (size
== UINT64_MAX
) {
1148 mr
->size
= int128_2_64();
1150 mr
->name
= g_strdup(name
);
1152 mr
->ram_block
= NULL
;
1155 char *escaped_name
= memory_region_escape_name(name
);
1156 char *name_array
= g_strdup_printf("%s[*]", escaped_name
);
1159 owner
= container_get(qdev_get_machine(), "/unattached");
1162 object_property_add_child(owner
, name_array
, OBJECT(mr
), &error_abort
);
1163 object_unref(OBJECT(mr
));
1165 g_free(escaped_name
);
1169 void memory_region_init(MemoryRegion
*mr
,
1174 object_initialize(mr
, sizeof(*mr
), TYPE_MEMORY_REGION
);
1175 memory_region_do_init(mr
, owner
, name
, size
);
1178 static void memory_region_get_addr(Object
*obj
, Visitor
*v
, const char *name
,
1179 void *opaque
, Error
**errp
)
1181 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1182 uint64_t value
= mr
->addr
;
1184 visit_type_uint64(v
, name
, &value
, errp
);
1187 static void memory_region_get_container(Object
*obj
, Visitor
*v
,
1188 const char *name
, void *opaque
,
1191 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1192 gchar
*path
= (gchar
*)"";
1194 if (mr
->container
) {
1195 path
= object_get_canonical_path(OBJECT(mr
->container
));
1197 visit_type_str(v
, name
, &path
, errp
);
1198 if (mr
->container
) {
1203 static Object
*memory_region_resolve_container(Object
*obj
, void *opaque
,
1206 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1208 return OBJECT(mr
->container
);
1211 static void memory_region_get_priority(Object
*obj
, Visitor
*v
,
1212 const char *name
, void *opaque
,
1215 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1216 int32_t value
= mr
->priority
;
1218 visit_type_int32(v
, name
, &value
, errp
);
1221 static void memory_region_get_size(Object
*obj
, Visitor
*v
, const char *name
,
1222 void *opaque
, Error
**errp
)
1224 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1225 uint64_t value
= memory_region_size(mr
);
1227 visit_type_uint64(v
, name
, &value
, errp
);
1230 static void memory_region_initfn(Object
*obj
)
1232 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1235 mr
->ops
= &unassigned_mem_ops
;
1237 mr
->romd_mode
= true;
1238 mr
->global_locking
= true;
1239 mr
->destructor
= memory_region_destructor_none
;
1240 QTAILQ_INIT(&mr
->subregions
);
1241 QTAILQ_INIT(&mr
->coalesced
);
1243 op
= object_property_add(OBJECT(mr
), "container",
1244 "link<" TYPE_MEMORY_REGION
">",
1245 memory_region_get_container
,
1246 NULL
, /* memory_region_set_container */
1247 NULL
, NULL
, &error_abort
);
1248 op
->resolve
= memory_region_resolve_container
;
1250 object_property_add(OBJECT(mr
), "addr", "uint64",
1251 memory_region_get_addr
,
1252 NULL
, /* memory_region_set_addr */
1253 NULL
, NULL
, &error_abort
);
1254 object_property_add(OBJECT(mr
), "priority", "uint32",
1255 memory_region_get_priority
,
1256 NULL
, /* memory_region_set_priority */
1257 NULL
, NULL
, &error_abort
);
1258 object_property_add(OBJECT(mr
), "size", "uint64",
1259 memory_region_get_size
,
1260 NULL
, /* memory_region_set_size, */
1261 NULL
, NULL
, &error_abort
);
1264 static void iommu_memory_region_initfn(Object
*obj
)
1266 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1268 mr
->is_iommu
= true;
1271 static uint64_t unassigned_mem_read(void *opaque
, hwaddr addr
,
1274 #ifdef DEBUG_UNASSIGNED
1275 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
1277 if (current_cpu
!= NULL
) {
1278 bool is_exec
= current_cpu
->mem_io_access_type
== MMU_INST_FETCH
;
1279 cpu_unassigned_access(current_cpu
, addr
, false, is_exec
, 0, size
);
1284 static void unassigned_mem_write(void *opaque
, hwaddr addr
,
1285 uint64_t val
, unsigned size
)
1287 #ifdef DEBUG_UNASSIGNED
1288 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
1290 if (current_cpu
!= NULL
) {
1291 cpu_unassigned_access(current_cpu
, addr
, true, false, 0, size
);
1295 static bool unassigned_mem_accepts(void *opaque
, hwaddr addr
,
1296 unsigned size
, bool is_write
,
1302 const MemoryRegionOps unassigned_mem_ops
= {
1303 .valid
.accepts
= unassigned_mem_accepts
,
1304 .endianness
= DEVICE_NATIVE_ENDIAN
,
1307 static uint64_t memory_region_ram_device_read(void *opaque
,
1308 hwaddr addr
, unsigned size
)
1310 MemoryRegion
*mr
= opaque
;
1311 uint64_t data
= (uint64_t)~0;
1315 data
= *(uint8_t *)(mr
->ram_block
->host
+ addr
);
1318 data
= *(uint16_t *)(mr
->ram_block
->host
+ addr
);
1321 data
= *(uint32_t *)(mr
->ram_block
->host
+ addr
);
1324 data
= *(uint64_t *)(mr
->ram_block
->host
+ addr
);
1328 trace_memory_region_ram_device_read(get_cpu_index(), mr
, addr
, data
, size
);
1333 static void memory_region_ram_device_write(void *opaque
, hwaddr addr
,
1334 uint64_t data
, unsigned size
)
1336 MemoryRegion
*mr
= opaque
;
1338 trace_memory_region_ram_device_write(get_cpu_index(), mr
, addr
, data
, size
);
1342 *(uint8_t *)(mr
->ram_block
->host
+ addr
) = (uint8_t)data
;
1345 *(uint16_t *)(mr
->ram_block
->host
+ addr
) = (uint16_t)data
;
1348 *(uint32_t *)(mr
->ram_block
->host
+ addr
) = (uint32_t)data
;
1351 *(uint64_t *)(mr
->ram_block
->host
+ addr
) = data
;
1356 static const MemoryRegionOps ram_device_mem_ops
= {
1357 .read
= memory_region_ram_device_read
,
1358 .write
= memory_region_ram_device_write
,
1359 .endianness
= DEVICE_HOST_ENDIAN
,
1361 .min_access_size
= 1,
1362 .max_access_size
= 8,
1366 .min_access_size
= 1,
1367 .max_access_size
= 8,
1372 bool memory_region_access_valid(MemoryRegion
*mr
,
1378 int access_size_min
, access_size_max
;
1381 if (!mr
->ops
->valid
.unaligned
&& (addr
& (size
- 1))) {
1385 if (!mr
->ops
->valid
.accepts
) {
1389 access_size_min
= mr
->ops
->valid
.min_access_size
;
1390 if (!mr
->ops
->valid
.min_access_size
) {
1391 access_size_min
= 1;
1394 access_size_max
= mr
->ops
->valid
.max_access_size
;
1395 if (!mr
->ops
->valid
.max_access_size
) {
1396 access_size_max
= 4;
1399 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
1400 for (i
= 0; i
< size
; i
+= access_size
) {
1401 if (!mr
->ops
->valid
.accepts(mr
->opaque
, addr
+ i
, access_size
,
1410 static MemTxResult
memory_region_dispatch_read1(MemoryRegion
*mr
,
1418 if (mr
->ops
->read
) {
1419 return access_with_adjusted_size(addr
, pval
, size
,
1420 mr
->ops
->impl
.min_access_size
,
1421 mr
->ops
->impl
.max_access_size
,
1422 memory_region_read_accessor
,
1425 return access_with_adjusted_size(addr
, pval
, size
,
1426 mr
->ops
->impl
.min_access_size
,
1427 mr
->ops
->impl
.max_access_size
,
1428 memory_region_read_with_attrs_accessor
,
1433 MemTxResult
memory_region_dispatch_read(MemoryRegion
*mr
,
1441 if (!memory_region_access_valid(mr
, addr
, size
, false, attrs
)) {
1442 *pval
= unassigned_mem_read(mr
, addr
, size
);
1443 return MEMTX_DECODE_ERROR
;
1446 r
= memory_region_dispatch_read1(mr
, addr
, pval
, size
, attrs
);
1447 adjust_endianness(mr
, pval
, size
);
1451 /* Return true if an eventfd was signalled */
1452 static bool memory_region_dispatch_write_eventfds(MemoryRegion
*mr
,
1458 MemoryRegionIoeventfd ioeventfd
= {
1459 .addr
= addrrange_make(int128_make64(addr
), int128_make64(size
)),
1464 for (i
= 0; i
< mr
->ioeventfd_nb
; i
++) {
1465 ioeventfd
.match_data
= mr
->ioeventfds
[i
].match_data
;
1466 ioeventfd
.e
= mr
->ioeventfds
[i
].e
;
1468 if (memory_region_ioeventfd_equal(&ioeventfd
, &mr
->ioeventfds
[i
])) {
1469 event_notifier_set(ioeventfd
.e
);
1477 MemTxResult
memory_region_dispatch_write(MemoryRegion
*mr
,
1483 if (!memory_region_access_valid(mr
, addr
, size
, true, attrs
)) {
1484 unassigned_mem_write(mr
, addr
, data
, size
);
1485 return MEMTX_DECODE_ERROR
;
1488 adjust_endianness(mr
, &data
, size
);
1490 if ((!kvm_eventfds_enabled()) &&
1491 memory_region_dispatch_write_eventfds(mr
, addr
, data
, size
, attrs
)) {
1495 if (mr
->ops
->write
) {
1496 return access_with_adjusted_size(addr
, &data
, size
,
1497 mr
->ops
->impl
.min_access_size
,
1498 mr
->ops
->impl
.max_access_size
,
1499 memory_region_write_accessor
, mr
,
1503 access_with_adjusted_size(addr
, &data
, size
,
1504 mr
->ops
->impl
.min_access_size
,
1505 mr
->ops
->impl
.max_access_size
,
1506 memory_region_write_with_attrs_accessor
,
1511 void memory_region_init_io(MemoryRegion
*mr
,
1513 const MemoryRegionOps
*ops
,
1518 memory_region_init(mr
, owner
, name
, size
);
1519 mr
->ops
= ops
? ops
: &unassigned_mem_ops
;
1520 mr
->opaque
= opaque
;
1521 mr
->terminates
= true;
1524 void memory_region_init_ram_nomigrate(MemoryRegion
*mr
,
1530 memory_region_init_ram_shared_nomigrate(mr
, owner
, name
, size
, false, errp
);
1533 void memory_region_init_ram_shared_nomigrate(MemoryRegion
*mr
,
1541 memory_region_init(mr
, owner
, name
, size
);
1543 mr
->terminates
= true;
1544 mr
->destructor
= memory_region_destructor_ram
;
1545 mr
->ram_block
= qemu_ram_alloc(size
, share
, mr
, &err
);
1546 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1548 mr
->size
= int128_zero();
1549 object_unparent(OBJECT(mr
));
1550 error_propagate(errp
, err
);
1554 void memory_region_init_resizeable_ram(MemoryRegion
*mr
,
1559 void (*resized
)(const char*,
1565 memory_region_init(mr
, owner
, name
, size
);
1567 mr
->terminates
= true;
1568 mr
->destructor
= memory_region_destructor_ram
;
1569 mr
->ram_block
= qemu_ram_alloc_resizeable(size
, max_size
, resized
,
1571 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1573 mr
->size
= int128_zero();
1574 object_unparent(OBJECT(mr
));
1575 error_propagate(errp
, err
);
1580 void memory_region_init_ram_from_file(MemoryRegion
*mr
,
1581 struct Object
*owner
,
1590 memory_region_init(mr
, owner
, name
, size
);
1592 mr
->terminates
= true;
1593 mr
->destructor
= memory_region_destructor_ram
;
1595 mr
->ram_block
= qemu_ram_alloc_from_file(size
, mr
, ram_flags
, path
, &err
);
1596 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1598 mr
->size
= int128_zero();
1599 object_unparent(OBJECT(mr
));
1600 error_propagate(errp
, err
);
1604 void memory_region_init_ram_from_fd(MemoryRegion
*mr
,
1605 struct Object
*owner
,
1613 memory_region_init(mr
, owner
, name
, size
);
1615 mr
->terminates
= true;
1616 mr
->destructor
= memory_region_destructor_ram
;
1617 mr
->ram_block
= qemu_ram_alloc_from_fd(size
, mr
,
1618 share
? RAM_SHARED
: 0,
1620 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1622 mr
->size
= int128_zero();
1623 object_unparent(OBJECT(mr
));
1624 error_propagate(errp
, err
);
1629 void memory_region_init_ram_ptr(MemoryRegion
*mr
,
1635 memory_region_init(mr
, owner
, name
, size
);
1637 mr
->terminates
= true;
1638 mr
->destructor
= memory_region_destructor_ram
;
1639 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1641 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1642 assert(ptr
!= NULL
);
1643 mr
->ram_block
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_fatal
);
1646 void memory_region_init_ram_device_ptr(MemoryRegion
*mr
,
1652 memory_region_init(mr
, owner
, name
, size
);
1654 mr
->terminates
= true;
1655 mr
->ram_device
= true;
1656 mr
->ops
= &ram_device_mem_ops
;
1658 mr
->destructor
= memory_region_destructor_ram
;
1659 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1660 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1661 assert(ptr
!= NULL
);
1662 mr
->ram_block
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_fatal
);
1665 void memory_region_init_alias(MemoryRegion
*mr
,
1672 memory_region_init(mr
, owner
, name
, size
);
1674 mr
->alias_offset
= offset
;
1677 void memory_region_init_rom_nomigrate(MemoryRegion
*mr
,
1678 struct Object
*owner
,
1684 memory_region_init(mr
, owner
, name
, size
);
1686 mr
->readonly
= true;
1687 mr
->terminates
= true;
1688 mr
->destructor
= memory_region_destructor_ram
;
1689 mr
->ram_block
= qemu_ram_alloc(size
, false, mr
, &err
);
1690 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1692 mr
->size
= int128_zero();
1693 object_unparent(OBJECT(mr
));
1694 error_propagate(errp
, err
);
1698 void memory_region_init_rom_device_nomigrate(MemoryRegion
*mr
,
1700 const MemoryRegionOps
*ops
,
1708 memory_region_init(mr
, owner
, name
, size
);
1710 mr
->opaque
= opaque
;
1711 mr
->terminates
= true;
1712 mr
->rom_device
= true;
1713 mr
->destructor
= memory_region_destructor_ram
;
1714 mr
->ram_block
= qemu_ram_alloc(size
, false, mr
, &err
);
1716 mr
->size
= int128_zero();
1717 object_unparent(OBJECT(mr
));
1718 error_propagate(errp
, err
);
1722 void memory_region_init_iommu(void *_iommu_mr
,
1723 size_t instance_size
,
1724 const char *mrtypename
,
1729 struct IOMMUMemoryRegion
*iommu_mr
;
1730 struct MemoryRegion
*mr
;
1732 object_initialize(_iommu_mr
, instance_size
, mrtypename
);
1733 mr
= MEMORY_REGION(_iommu_mr
);
1734 memory_region_do_init(mr
, owner
, name
, size
);
1735 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1736 mr
->terminates
= true; /* then re-forwards */
1737 QLIST_INIT(&iommu_mr
->iommu_notify
);
1738 iommu_mr
->iommu_notify_flags
= IOMMU_NOTIFIER_NONE
;
1741 static void memory_region_finalize(Object
*obj
)
1743 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1745 assert(!mr
->container
);
1747 /* We know the region is not visible in any address space (it
1748 * does not have a container and cannot be a root either because
1749 * it has no references, so we can blindly clear mr->enabled.
1750 * memory_region_set_enabled instead could trigger a transaction
1751 * and cause an infinite loop.
1753 mr
->enabled
= false;
1754 memory_region_transaction_begin();
1755 while (!QTAILQ_EMPTY(&mr
->subregions
)) {
1756 MemoryRegion
*subregion
= QTAILQ_FIRST(&mr
->subregions
);
1757 memory_region_del_subregion(mr
, subregion
);
1759 memory_region_transaction_commit();
1762 memory_region_clear_coalescing(mr
);
1763 g_free((char *)mr
->name
);
1764 g_free(mr
->ioeventfds
);
1767 Object
*memory_region_owner(MemoryRegion
*mr
)
1769 Object
*obj
= OBJECT(mr
);
1773 void memory_region_ref(MemoryRegion
*mr
)
1775 /* MMIO callbacks most likely will access data that belongs
1776 * to the owner, hence the need to ref/unref the owner whenever
1777 * the memory region is in use.
1779 * The memory region is a child of its owner. As long as the
1780 * owner doesn't call unparent itself on the memory region,
1781 * ref-ing the owner will also keep the memory region alive.
1782 * Memory regions without an owner are supposed to never go away;
1783 * we do not ref/unref them because it slows down DMA sensibly.
1785 if (mr
&& mr
->owner
) {
1786 object_ref(mr
->owner
);
1790 void memory_region_unref(MemoryRegion
*mr
)
1792 if (mr
&& mr
->owner
) {
1793 object_unref(mr
->owner
);
1797 uint64_t memory_region_size(MemoryRegion
*mr
)
1799 if (int128_eq(mr
->size
, int128_2_64())) {
1802 return int128_get64(mr
->size
);
1805 const char *memory_region_name(const MemoryRegion
*mr
)
1808 ((MemoryRegion
*)mr
)->name
=
1809 object_get_canonical_path_component(OBJECT(mr
));
1814 bool memory_region_is_ram_device(MemoryRegion
*mr
)
1816 return mr
->ram_device
;
1819 uint8_t memory_region_get_dirty_log_mask(MemoryRegion
*mr
)
1821 uint8_t mask
= mr
->dirty_log_mask
;
1822 if (global_dirty_log
&& mr
->ram_block
) {
1823 mask
|= (1 << DIRTY_MEMORY_MIGRATION
);
1828 bool memory_region_is_logging(MemoryRegion
*mr
, uint8_t client
)
1830 return memory_region_get_dirty_log_mask(mr
) & (1 << client
);
1833 static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion
*iommu_mr
)
1835 IOMMUNotifierFlag flags
= IOMMU_NOTIFIER_NONE
;
1836 IOMMUNotifier
*iommu_notifier
;
1837 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1839 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
1840 flags
|= iommu_notifier
->notifier_flags
;
1843 if (flags
!= iommu_mr
->iommu_notify_flags
&& imrc
->notify_flag_changed
) {
1844 imrc
->notify_flag_changed(iommu_mr
,
1845 iommu_mr
->iommu_notify_flags
,
1849 iommu_mr
->iommu_notify_flags
= flags
;
1852 void memory_region_register_iommu_notifier(MemoryRegion
*mr
,
1855 IOMMUMemoryRegion
*iommu_mr
;
1858 memory_region_register_iommu_notifier(mr
->alias
, n
);
1862 /* We need to register for at least one bitfield */
1863 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1864 assert(n
->notifier_flags
!= IOMMU_NOTIFIER_NONE
);
1865 assert(n
->start
<= n
->end
);
1866 assert(n
->iommu_idx
>= 0 &&
1867 n
->iommu_idx
< memory_region_iommu_num_indexes(iommu_mr
));
1869 QLIST_INSERT_HEAD(&iommu_mr
->iommu_notify
, n
, node
);
1870 memory_region_update_iommu_notify_flags(iommu_mr
);
1873 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion
*iommu_mr
)
1875 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1877 if (imrc
->get_min_page_size
) {
1878 return imrc
->get_min_page_size(iommu_mr
);
1880 return TARGET_PAGE_SIZE
;
1883 void memory_region_iommu_replay(IOMMUMemoryRegion
*iommu_mr
, IOMMUNotifier
*n
)
1885 MemoryRegion
*mr
= MEMORY_REGION(iommu_mr
);
1886 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1887 hwaddr addr
, granularity
;
1888 IOMMUTLBEntry iotlb
;
1890 /* If the IOMMU has its own replay callback, override */
1892 imrc
->replay(iommu_mr
, n
);
1896 granularity
= memory_region_iommu_get_min_page_size(iommu_mr
);
1898 for (addr
= 0; addr
< memory_region_size(mr
); addr
+= granularity
) {
1899 iotlb
= imrc
->translate(iommu_mr
, addr
, IOMMU_NONE
, n
->iommu_idx
);
1900 if (iotlb
.perm
!= IOMMU_NONE
) {
1901 n
->notify(n
, &iotlb
);
1904 /* if (2^64 - MR size) < granularity, it's possible to get an
1905 * infinite loop here. This should catch such a wraparound */
1906 if ((addr
+ granularity
) < addr
) {
1912 void memory_region_iommu_replay_all(IOMMUMemoryRegion
*iommu_mr
)
1914 IOMMUNotifier
*notifier
;
1916 IOMMU_NOTIFIER_FOREACH(notifier
, iommu_mr
) {
1917 memory_region_iommu_replay(iommu_mr
, notifier
);
1921 void memory_region_unregister_iommu_notifier(MemoryRegion
*mr
,
1924 IOMMUMemoryRegion
*iommu_mr
;
1927 memory_region_unregister_iommu_notifier(mr
->alias
, n
);
1930 QLIST_REMOVE(n
, node
);
1931 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1932 memory_region_update_iommu_notify_flags(iommu_mr
);
1935 void memory_region_notify_one(IOMMUNotifier
*notifier
,
1936 IOMMUTLBEntry
*entry
)
1938 IOMMUNotifierFlag request_flags
;
1941 * Skip the notification if the notification does not overlap
1942 * with registered range.
1944 if (notifier
->start
> entry
->iova
+ entry
->addr_mask
||
1945 notifier
->end
< entry
->iova
) {
1949 if (entry
->perm
& IOMMU_RW
) {
1950 request_flags
= IOMMU_NOTIFIER_MAP
;
1952 request_flags
= IOMMU_NOTIFIER_UNMAP
;
1955 if (notifier
->notifier_flags
& request_flags
) {
1956 notifier
->notify(notifier
, entry
);
1960 void memory_region_notify_iommu(IOMMUMemoryRegion
*iommu_mr
,
1962 IOMMUTLBEntry entry
)
1964 IOMMUNotifier
*iommu_notifier
;
1966 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr
)));
1968 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
1969 if (iommu_notifier
->iommu_idx
== iommu_idx
) {
1970 memory_region_notify_one(iommu_notifier
, &entry
);
1975 int memory_region_iommu_get_attr(IOMMUMemoryRegion
*iommu_mr
,
1976 enum IOMMUMemoryRegionAttr attr
,
1979 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1981 if (!imrc
->get_attr
) {
1985 return imrc
->get_attr(iommu_mr
, attr
, data
);
1988 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion
*iommu_mr
,
1991 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1993 if (!imrc
->attrs_to_index
) {
1997 return imrc
->attrs_to_index(iommu_mr
, attrs
);
2000 int memory_region_iommu_num_indexes(IOMMUMemoryRegion
*iommu_mr
)
2002 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
2004 if (!imrc
->num_indexes
) {
2008 return imrc
->num_indexes(iommu_mr
);
2011 void memory_region_set_log(MemoryRegion
*mr
, bool log
, unsigned client
)
2013 uint8_t mask
= 1 << client
;
2014 uint8_t old_logging
;
2016 assert(client
== DIRTY_MEMORY_VGA
);
2017 old_logging
= mr
->vga_logging_count
;
2018 mr
->vga_logging_count
+= log
? 1 : -1;
2019 if (!!old_logging
== !!mr
->vga_logging_count
) {
2023 memory_region_transaction_begin();
2024 mr
->dirty_log_mask
= (mr
->dirty_log_mask
& ~mask
) | (log
* mask
);
2025 memory_region_update_pending
|= mr
->enabled
;
2026 memory_region_transaction_commit();
2029 bool memory_region_get_dirty(MemoryRegion
*mr
, hwaddr addr
,
2030 hwaddr size
, unsigned client
)
2032 assert(mr
->ram_block
);
2033 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr
) + addr
,
2037 void memory_region_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2040 assert(mr
->ram_block
);
2041 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr
) + addr
,
2043 memory_region_get_dirty_log_mask(mr
));
2046 static void memory_region_sync_dirty_bitmap(MemoryRegion
*mr
)
2048 MemoryListener
*listener
;
2053 /* If the same address space has multiple log_sync listeners, we
2054 * visit that address space's FlatView multiple times. But because
2055 * log_sync listeners are rare, it's still cheaper than walking each
2056 * address space once.
2058 QTAILQ_FOREACH(listener
, &memory_listeners
, link
) {
2059 if (!listener
->log_sync
) {
2062 as
= listener
->address_space
;
2063 view
= address_space_get_flatview(as
);
2064 FOR_EACH_FLAT_RANGE(fr
, view
) {
2065 if (fr
->dirty_log_mask
&& (!mr
|| fr
->mr
== mr
)) {
2066 MemoryRegionSection mrs
= section_from_flat_range(fr
, view
);
2067 listener
->log_sync(listener
, &mrs
);
2070 flatview_unref(view
);
2074 DirtyBitmapSnapshot
*memory_region_snapshot_and_clear_dirty(MemoryRegion
*mr
,
2079 assert(mr
->ram_block
);
2080 memory_region_sync_dirty_bitmap(mr
);
2081 return cpu_physical_memory_snapshot_and_clear_dirty(
2082 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
2085 bool memory_region_snapshot_get_dirty(MemoryRegion
*mr
, DirtyBitmapSnapshot
*snap
,
2086 hwaddr addr
, hwaddr size
)
2088 assert(mr
->ram_block
);
2089 return cpu_physical_memory_snapshot_get_dirty(snap
,
2090 memory_region_get_ram_addr(mr
) + addr
, size
);
2093 void memory_region_set_readonly(MemoryRegion
*mr
, bool readonly
)
2095 if (mr
->readonly
!= readonly
) {
2096 memory_region_transaction_begin();
2097 mr
->readonly
= readonly
;
2098 memory_region_update_pending
|= mr
->enabled
;
2099 memory_region_transaction_commit();
2103 void memory_region_set_nonvolatile(MemoryRegion
*mr
, bool nonvolatile
)
2105 if (mr
->nonvolatile
!= nonvolatile
) {
2106 memory_region_transaction_begin();
2107 mr
->nonvolatile
= nonvolatile
;
2108 memory_region_update_pending
|= mr
->enabled
;
2109 memory_region_transaction_commit();
2113 void memory_region_rom_device_set_romd(MemoryRegion
*mr
, bool romd_mode
)
2115 if (mr
->romd_mode
!= romd_mode
) {
2116 memory_region_transaction_begin();
2117 mr
->romd_mode
= romd_mode
;
2118 memory_region_update_pending
|= mr
->enabled
;
2119 memory_region_transaction_commit();
2123 void memory_region_reset_dirty(MemoryRegion
*mr
, hwaddr addr
,
2124 hwaddr size
, unsigned client
)
2126 assert(mr
->ram_block
);
2127 cpu_physical_memory_test_and_clear_dirty(
2128 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
2131 int memory_region_get_fd(MemoryRegion
*mr
)
2139 fd
= mr
->ram_block
->fd
;
2145 void *memory_region_get_ram_ptr(MemoryRegion
*mr
)
2148 uint64_t offset
= 0;
2152 offset
+= mr
->alias_offset
;
2155 assert(mr
->ram_block
);
2156 ptr
= qemu_map_ram_ptr(mr
->ram_block
, offset
);
2162 MemoryRegion
*memory_region_from_host(void *ptr
, ram_addr_t
*offset
)
2166 block
= qemu_ram_block_from_host(ptr
, false, offset
);
2174 ram_addr_t
memory_region_get_ram_addr(MemoryRegion
*mr
)
2176 return mr
->ram_block
? mr
->ram_block
->offset
: RAM_ADDR_INVALID
;
2179 void memory_region_ram_resize(MemoryRegion
*mr
, ram_addr_t newsize
, Error
**errp
)
2181 assert(mr
->ram_block
);
2183 qemu_ram_resize(mr
->ram_block
, newsize
, errp
);
2186 static void memory_region_update_coalesced_range_as(MemoryRegion
*mr
, AddressSpace
*as
)
2191 view
= address_space_get_flatview(as
);
2192 FOR_EACH_FLAT_RANGE(fr
, view
) {
2194 flat_range_coalesced_io_del(fr
, as
);
2195 flat_range_coalesced_io_add(fr
, as
);
2198 flatview_unref(view
);
2201 static void memory_region_update_coalesced_range(MemoryRegion
*mr
)
2205 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2206 memory_region_update_coalesced_range_as(mr
, as
);
2210 void memory_region_set_coalescing(MemoryRegion
*mr
)
2212 memory_region_clear_coalescing(mr
);
2213 memory_region_add_coalescing(mr
, 0, int128_get64(mr
->size
));
2216 void memory_region_add_coalescing(MemoryRegion
*mr
,
2220 CoalescedMemoryRange
*cmr
= g_malloc(sizeof(*cmr
));
2222 cmr
->addr
= addrrange_make(int128_make64(offset
), int128_make64(size
));
2223 QTAILQ_INSERT_TAIL(&mr
->coalesced
, cmr
, link
);
2224 memory_region_update_coalesced_range(mr
);
2225 memory_region_set_flush_coalesced(mr
);
2228 void memory_region_clear_coalescing(MemoryRegion
*mr
)
2230 CoalescedMemoryRange
*cmr
;
2231 bool updated
= false;
2233 qemu_flush_coalesced_mmio_buffer();
2234 mr
->flush_coalesced_mmio
= false;
2236 while (!QTAILQ_EMPTY(&mr
->coalesced
)) {
2237 cmr
= QTAILQ_FIRST(&mr
->coalesced
);
2238 QTAILQ_REMOVE(&mr
->coalesced
, cmr
, link
);
2244 memory_region_update_coalesced_range(mr
);
2248 void memory_region_set_flush_coalesced(MemoryRegion
*mr
)
2250 mr
->flush_coalesced_mmio
= true;
2253 void memory_region_clear_flush_coalesced(MemoryRegion
*mr
)
2255 qemu_flush_coalesced_mmio_buffer();
2256 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
2257 mr
->flush_coalesced_mmio
= false;
2261 void memory_region_clear_global_locking(MemoryRegion
*mr
)
2263 mr
->global_locking
= false;
2266 static bool userspace_eventfd_warning
;
2268 void memory_region_add_eventfd(MemoryRegion
*mr
,
2275 MemoryRegionIoeventfd mrfd
= {
2276 .addr
.start
= int128_make64(addr
),
2277 .addr
.size
= int128_make64(size
),
2278 .match_data
= match_data
,
2284 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2285 userspace_eventfd_warning
))) {
2286 userspace_eventfd_warning
= true;
2287 error_report("Using eventfd without MMIO binding in KVM. "
2288 "Suboptimal performance expected");
2292 adjust_endianness(mr
, &mrfd
.data
, size
);
2294 memory_region_transaction_begin();
2295 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2296 if (memory_region_ioeventfd_before(&mrfd
, &mr
->ioeventfds
[i
])) {
2301 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2302 sizeof(*mr
->ioeventfds
) * mr
->ioeventfd_nb
);
2303 memmove(&mr
->ioeventfds
[i
+1], &mr
->ioeventfds
[i
],
2304 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
-1 - i
));
2305 mr
->ioeventfds
[i
] = mrfd
;
2306 ioeventfd_update_pending
|= mr
->enabled
;
2307 memory_region_transaction_commit();
2310 void memory_region_del_eventfd(MemoryRegion
*mr
,
2317 MemoryRegionIoeventfd mrfd
= {
2318 .addr
.start
= int128_make64(addr
),
2319 .addr
.size
= int128_make64(size
),
2320 .match_data
= match_data
,
2327 adjust_endianness(mr
, &mrfd
.data
, size
);
2329 memory_region_transaction_begin();
2330 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2331 if (memory_region_ioeventfd_equal(&mrfd
, &mr
->ioeventfds
[i
])) {
2335 assert(i
!= mr
->ioeventfd_nb
);
2336 memmove(&mr
->ioeventfds
[i
], &mr
->ioeventfds
[i
+1],
2337 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
- (i
+1)));
2339 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2340 sizeof(*mr
->ioeventfds
)*mr
->ioeventfd_nb
+ 1);
2341 ioeventfd_update_pending
|= mr
->enabled
;
2342 memory_region_transaction_commit();
2345 static void memory_region_update_container_subregions(MemoryRegion
*subregion
)
2347 MemoryRegion
*mr
= subregion
->container
;
2348 MemoryRegion
*other
;
2350 memory_region_transaction_begin();
2352 memory_region_ref(subregion
);
2353 QTAILQ_FOREACH(other
, &mr
->subregions
, subregions_link
) {
2354 if (subregion
->priority
>= other
->priority
) {
2355 QTAILQ_INSERT_BEFORE(other
, subregion
, subregions_link
);
2359 QTAILQ_INSERT_TAIL(&mr
->subregions
, subregion
, subregions_link
);
2361 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2362 memory_region_transaction_commit();
2365 static void memory_region_add_subregion_common(MemoryRegion
*mr
,
2367 MemoryRegion
*subregion
)
2369 assert(!subregion
->container
);
2370 subregion
->container
= mr
;
2371 subregion
->addr
= offset
;
2372 memory_region_update_container_subregions(subregion
);
2375 void memory_region_add_subregion(MemoryRegion
*mr
,
2377 MemoryRegion
*subregion
)
2379 subregion
->priority
= 0;
2380 memory_region_add_subregion_common(mr
, offset
, subregion
);
2383 void memory_region_add_subregion_overlap(MemoryRegion
*mr
,
2385 MemoryRegion
*subregion
,
2388 subregion
->priority
= priority
;
2389 memory_region_add_subregion_common(mr
, offset
, subregion
);
2392 void memory_region_del_subregion(MemoryRegion
*mr
,
2393 MemoryRegion
*subregion
)
2395 memory_region_transaction_begin();
2396 assert(subregion
->container
== mr
);
2397 subregion
->container
= NULL
;
2398 QTAILQ_REMOVE(&mr
->subregions
, subregion
, subregions_link
);
2399 memory_region_unref(subregion
);
2400 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2401 memory_region_transaction_commit();
2404 void memory_region_set_enabled(MemoryRegion
*mr
, bool enabled
)
2406 if (enabled
== mr
->enabled
) {
2409 memory_region_transaction_begin();
2410 mr
->enabled
= enabled
;
2411 memory_region_update_pending
= true;
2412 memory_region_transaction_commit();
2415 void memory_region_set_size(MemoryRegion
*mr
, uint64_t size
)
2417 Int128 s
= int128_make64(size
);
2419 if (size
== UINT64_MAX
) {
2422 if (int128_eq(s
, mr
->size
)) {
2425 memory_region_transaction_begin();
2427 memory_region_update_pending
= true;
2428 memory_region_transaction_commit();
2431 static void memory_region_readd_subregion(MemoryRegion
*mr
)
2433 MemoryRegion
*container
= mr
->container
;
2436 memory_region_transaction_begin();
2437 memory_region_ref(mr
);
2438 memory_region_del_subregion(container
, mr
);
2439 mr
->container
= container
;
2440 memory_region_update_container_subregions(mr
);
2441 memory_region_unref(mr
);
2442 memory_region_transaction_commit();
2446 void memory_region_set_address(MemoryRegion
*mr
, hwaddr addr
)
2448 if (addr
!= mr
->addr
) {
2450 memory_region_readd_subregion(mr
);
2454 void memory_region_set_alias_offset(MemoryRegion
*mr
, hwaddr offset
)
2458 if (offset
== mr
->alias_offset
) {
2462 memory_region_transaction_begin();
2463 mr
->alias_offset
= offset
;
2464 memory_region_update_pending
|= mr
->enabled
;
2465 memory_region_transaction_commit();
2468 uint64_t memory_region_get_alignment(const MemoryRegion
*mr
)
2473 static int cmp_flatrange_addr(const void *addr_
, const void *fr_
)
2475 const AddrRange
*addr
= addr_
;
2476 const FlatRange
*fr
= fr_
;
2478 if (int128_le(addrrange_end(*addr
), fr
->addr
.start
)) {
2480 } else if (int128_ge(addr
->start
, addrrange_end(fr
->addr
))) {
2486 static FlatRange
*flatview_lookup(FlatView
*view
, AddrRange addr
)
2488 return bsearch(&addr
, view
->ranges
, view
->nr
,
2489 sizeof(FlatRange
), cmp_flatrange_addr
);
2492 bool memory_region_is_mapped(MemoryRegion
*mr
)
2494 return mr
->container
? true : false;
2497 /* Same as memory_region_find, but it does not add a reference to the
2498 * returned region. It must be called from an RCU critical section.
2500 static MemoryRegionSection
memory_region_find_rcu(MemoryRegion
*mr
,
2501 hwaddr addr
, uint64_t size
)
2503 MemoryRegionSection ret
= { .mr
= NULL
};
2511 for (root
= mr
; root
->container
; ) {
2512 root
= root
->container
;
2516 as
= memory_region_to_address_space(root
);
2520 range
= addrrange_make(int128_make64(addr
), int128_make64(size
));
2522 view
= address_space_to_flatview(as
);
2523 fr
= flatview_lookup(view
, range
);
2528 while (fr
> view
->ranges
&& addrrange_intersects(fr
[-1].addr
, range
)) {
2534 range
= addrrange_intersection(range
, fr
->addr
);
2535 ret
.offset_within_region
= fr
->offset_in_region
;
2536 ret
.offset_within_region
+= int128_get64(int128_sub(range
.start
,
2538 ret
.size
= range
.size
;
2539 ret
.offset_within_address_space
= int128_get64(range
.start
);
2540 ret
.readonly
= fr
->readonly
;
2541 ret
.nonvolatile
= fr
->nonvolatile
;
2545 MemoryRegionSection
memory_region_find(MemoryRegion
*mr
,
2546 hwaddr addr
, uint64_t size
)
2548 MemoryRegionSection ret
;
2550 ret
= memory_region_find_rcu(mr
, addr
, size
);
2552 memory_region_ref(ret
.mr
);
2558 bool memory_region_present(MemoryRegion
*container
, hwaddr addr
)
2563 mr
= memory_region_find_rcu(container
, addr
, 1).mr
;
2565 return mr
&& mr
!= container
;
2568 void memory_global_dirty_log_sync(void)
2570 memory_region_sync_dirty_bitmap(NULL
);
2573 static VMChangeStateEntry
*vmstate_change
;
2575 void memory_global_dirty_log_start(void)
2577 if (vmstate_change
) {
2578 qemu_del_vm_change_state_handler(vmstate_change
);
2579 vmstate_change
= NULL
;
2582 global_dirty_log
= true;
2584 MEMORY_LISTENER_CALL_GLOBAL(log_global_start
, Forward
);
2586 /* Refresh DIRTY_LOG_MIGRATION bit. */
2587 memory_region_transaction_begin();
2588 memory_region_update_pending
= true;
2589 memory_region_transaction_commit();
2592 static void memory_global_dirty_log_do_stop(void)
2594 global_dirty_log
= false;
2596 /* Refresh DIRTY_LOG_MIGRATION bit. */
2597 memory_region_transaction_begin();
2598 memory_region_update_pending
= true;
2599 memory_region_transaction_commit();
2601 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop
, Reverse
);
2604 static void memory_vm_change_state_handler(void *opaque
, int running
,
2608 memory_global_dirty_log_do_stop();
2610 if (vmstate_change
) {
2611 qemu_del_vm_change_state_handler(vmstate_change
);
2612 vmstate_change
= NULL
;
2617 void memory_global_dirty_log_stop(void)
2619 if (!runstate_is_running()) {
2620 if (vmstate_change
) {
2623 vmstate_change
= qemu_add_vm_change_state_handler(
2624 memory_vm_change_state_handler
, NULL
);
2628 memory_global_dirty_log_do_stop();
2631 static void listener_add_address_space(MemoryListener
*listener
,
2637 if (listener
->begin
) {
2638 listener
->begin(listener
);
2640 if (global_dirty_log
) {
2641 if (listener
->log_global_start
) {
2642 listener
->log_global_start(listener
);
2646 view
= address_space_get_flatview(as
);
2647 FOR_EACH_FLAT_RANGE(fr
, view
) {
2648 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
2650 if (listener
->region_add
) {
2651 listener
->region_add(listener
, §ion
);
2653 if (fr
->dirty_log_mask
&& listener
->log_start
) {
2654 listener
->log_start(listener
, §ion
, 0, fr
->dirty_log_mask
);
2657 if (listener
->commit
) {
2658 listener
->commit(listener
);
2660 flatview_unref(view
);
2663 static void listener_del_address_space(MemoryListener
*listener
,
2669 if (listener
->begin
) {
2670 listener
->begin(listener
);
2672 view
= address_space_get_flatview(as
);
2673 FOR_EACH_FLAT_RANGE(fr
, view
) {
2674 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
2676 if (fr
->dirty_log_mask
&& listener
->log_stop
) {
2677 listener
->log_stop(listener
, §ion
, fr
->dirty_log_mask
, 0);
2679 if (listener
->region_del
) {
2680 listener
->region_del(listener
, §ion
);
2683 if (listener
->commit
) {
2684 listener
->commit(listener
);
2686 flatview_unref(view
);
2689 void memory_listener_register(MemoryListener
*listener
, AddressSpace
*as
)
2691 MemoryListener
*other
= NULL
;
2693 listener
->address_space
= as
;
2694 if (QTAILQ_EMPTY(&memory_listeners
)
2695 || listener
->priority
>= QTAILQ_LAST(&memory_listeners
)->priority
) {
2696 QTAILQ_INSERT_TAIL(&memory_listeners
, listener
, link
);
2698 QTAILQ_FOREACH(other
, &memory_listeners
, link
) {
2699 if (listener
->priority
< other
->priority
) {
2703 QTAILQ_INSERT_BEFORE(other
, listener
, link
);
2706 if (QTAILQ_EMPTY(&as
->listeners
)
2707 || listener
->priority
>= QTAILQ_LAST(&as
->listeners
)->priority
) {
2708 QTAILQ_INSERT_TAIL(&as
->listeners
, listener
, link_as
);
2710 QTAILQ_FOREACH(other
, &as
->listeners
, link_as
) {
2711 if (listener
->priority
< other
->priority
) {
2715 QTAILQ_INSERT_BEFORE(other
, listener
, link_as
);
2718 listener_add_address_space(listener
, as
);
2721 void memory_listener_unregister(MemoryListener
*listener
)
2723 if (!listener
->address_space
) {
2727 listener_del_address_space(listener
, listener
->address_space
);
2728 QTAILQ_REMOVE(&memory_listeners
, listener
, link
);
2729 QTAILQ_REMOVE(&listener
->address_space
->listeners
, listener
, link_as
);
2730 listener
->address_space
= NULL
;
2733 void address_space_init(AddressSpace
*as
, MemoryRegion
*root
, const char *name
)
2735 memory_region_ref(root
);
2737 as
->current_map
= NULL
;
2738 as
->ioeventfd_nb
= 0;
2739 as
->ioeventfds
= NULL
;
2740 QTAILQ_INIT(&as
->listeners
);
2741 QTAILQ_INSERT_TAIL(&address_spaces
, as
, address_spaces_link
);
2742 as
->name
= g_strdup(name
? name
: "anonymous");
2743 address_space_update_topology(as
);
2744 address_space_update_ioeventfds(as
);
2747 static void do_address_space_destroy(AddressSpace
*as
)
2749 assert(QTAILQ_EMPTY(&as
->listeners
));
2751 flatview_unref(as
->current_map
);
2753 g_free(as
->ioeventfds
);
2754 memory_region_unref(as
->root
);
2757 void address_space_destroy(AddressSpace
*as
)
2759 MemoryRegion
*root
= as
->root
;
2761 /* Flush out anything from MemoryListeners listening in on this */
2762 memory_region_transaction_begin();
2764 memory_region_transaction_commit();
2765 QTAILQ_REMOVE(&address_spaces
, as
, address_spaces_link
);
2767 /* At this point, as->dispatch and as->current_map are dummy
2768 * entries that the guest should never use. Wait for the old
2769 * values to expire before freeing the data.
2772 call_rcu(as
, do_address_space_destroy
, rcu
);
2775 static const char *memory_region_type(MemoryRegion
*mr
)
2777 if (memory_region_is_ram_device(mr
)) {
2779 } else if (memory_region_is_romd(mr
)) {
2781 } else if (memory_region_is_rom(mr
)) {
2783 } else if (memory_region_is_ram(mr
)) {
2790 typedef struct MemoryRegionList MemoryRegionList
;
2792 struct MemoryRegionList
{
2793 const MemoryRegion
*mr
;
2794 QTAILQ_ENTRY(MemoryRegionList
) mrqueue
;
2797 typedef QTAILQ_HEAD(, MemoryRegionList
) MemoryRegionListHead
;
2799 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2800 int128_sub((size), int128_one())) : 0)
2801 #define MTREE_INDENT " "
2803 static void mtree_expand_owner(fprintf_function mon_printf
, void *f
,
2804 const char *label
, Object
*obj
)
2806 DeviceState
*dev
= (DeviceState
*) object_dynamic_cast(obj
, TYPE_DEVICE
);
2808 mon_printf(f
, " %s:{%s", label
, dev
? "dev" : "obj");
2809 if (dev
&& dev
->id
) {
2810 mon_printf(f
, " id=%s", dev
->id
);
2812 gchar
*canonical_path
= object_get_canonical_path(obj
);
2813 if (canonical_path
) {
2814 mon_printf(f
, " path=%s", canonical_path
);
2815 g_free(canonical_path
);
2817 mon_printf(f
, " type=%s", object_get_typename(obj
));
2823 static void mtree_print_mr_owner(fprintf_function mon_printf
, void *f
,
2824 const MemoryRegion
*mr
)
2826 Object
*owner
= mr
->owner
;
2827 Object
*parent
= memory_region_owner((MemoryRegion
*)mr
);
2829 if (!owner
&& !parent
) {
2830 mon_printf(f
, " orphan");
2834 mtree_expand_owner(mon_printf
, f
, "owner", owner
);
2836 if (parent
&& parent
!= owner
) {
2837 mtree_expand_owner(mon_printf
, f
, "parent", parent
);
2841 static void mtree_print_mr(fprintf_function mon_printf
, void *f
,
2842 const MemoryRegion
*mr
, unsigned int level
,
2844 MemoryRegionListHead
*alias_print_queue
,
2847 MemoryRegionList
*new_ml
, *ml
, *next_ml
;
2848 MemoryRegionListHead submr_print_queue
;
2849 const MemoryRegion
*submr
;
2851 hwaddr cur_start
, cur_end
;
2857 for (i
= 0; i
< level
; i
++) {
2858 mon_printf(f
, MTREE_INDENT
);
2861 cur_start
= base
+ mr
->addr
;
2862 cur_end
= cur_start
+ MR_SIZE(mr
->size
);
2865 * Try to detect overflow of memory region. This should never
2866 * happen normally. When it happens, we dump something to warn the
2867 * user who is observing this.
2869 if (cur_start
< base
|| cur_end
< cur_start
) {
2870 mon_printf(f
, "[DETECTED OVERFLOW!] ");
2874 MemoryRegionList
*ml
;
2877 /* check if the alias is already in the queue */
2878 QTAILQ_FOREACH(ml
, alias_print_queue
, mrqueue
) {
2879 if (ml
->mr
== mr
->alias
) {
2885 ml
= g_new(MemoryRegionList
, 1);
2887 QTAILQ_INSERT_TAIL(alias_print_queue
, ml
, mrqueue
);
2889 mon_printf(f
, TARGET_FMT_plx
"-" TARGET_FMT_plx
2890 " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
2891 "-" TARGET_FMT_plx
"%s",
2894 mr
->nonvolatile
? "nv-" : "",
2895 memory_region_type((MemoryRegion
*)mr
),
2896 memory_region_name(mr
),
2897 memory_region_name(mr
->alias
),
2899 mr
->alias_offset
+ MR_SIZE(mr
->size
),
2900 mr
->enabled
? "" : " [disabled]");
2902 mtree_print_mr_owner(mon_printf
, f
, mr
);
2906 TARGET_FMT_plx
"-" TARGET_FMT_plx
" (prio %d, %s%s): %s%s",
2909 mr
->nonvolatile
? "nv-" : "",
2910 memory_region_type((MemoryRegion
*)mr
),
2911 memory_region_name(mr
),
2912 mr
->enabled
? "" : " [disabled]");
2914 mtree_print_mr_owner(mon_printf
, f
, mr
);
2917 mon_printf(f
, "\n");
2919 QTAILQ_INIT(&submr_print_queue
);
2921 QTAILQ_FOREACH(submr
, &mr
->subregions
, subregions_link
) {
2922 new_ml
= g_new(MemoryRegionList
, 1);
2924 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
2925 if (new_ml
->mr
->addr
< ml
->mr
->addr
||
2926 (new_ml
->mr
->addr
== ml
->mr
->addr
&&
2927 new_ml
->mr
->priority
> ml
->mr
->priority
)) {
2928 QTAILQ_INSERT_BEFORE(ml
, new_ml
, mrqueue
);
2934 QTAILQ_INSERT_TAIL(&submr_print_queue
, new_ml
, mrqueue
);
2938 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
2939 mtree_print_mr(mon_printf
, f
, ml
->mr
, level
+ 1, cur_start
,
2940 alias_print_queue
, owner
);
2943 QTAILQ_FOREACH_SAFE(ml
, &submr_print_queue
, mrqueue
, next_ml
) {
2948 struct FlatViewInfo
{
2949 fprintf_function mon_printf
;
2956 static void mtree_print_flatview(gpointer key
, gpointer value
,
2959 FlatView
*view
= key
;
2960 GArray
*fv_address_spaces
= value
;
2961 struct FlatViewInfo
*fvi
= user_data
;
2962 fprintf_function p
= fvi
->mon_printf
;
2964 FlatRange
*range
= &view
->ranges
[0];
2970 p(f
, "FlatView #%d\n", fvi
->counter
);
2973 for (i
= 0; i
< fv_address_spaces
->len
; ++i
) {
2974 as
= g_array_index(fv_address_spaces
, AddressSpace
*, i
);
2975 p(f
, " AS \"%s\", root: %s", as
->name
, memory_region_name(as
->root
));
2976 if (as
->root
->alias
) {
2977 p(f
, ", alias %s", memory_region_name(as
->root
->alias
));
2982 p(f
, " Root memory region: %s\n",
2983 view
->root
? memory_region_name(view
->root
) : "(none)");
2986 p(f
, MTREE_INDENT
"No rendered FlatView\n\n");
2992 if (range
->offset_in_region
) {
2993 p(f
, MTREE_INDENT TARGET_FMT_plx
"-"
2994 TARGET_FMT_plx
" (prio %d, %s%s): %s @" TARGET_FMT_plx
,
2995 int128_get64(range
->addr
.start
),
2996 int128_get64(range
->addr
.start
) + MR_SIZE(range
->addr
.size
),
2998 range
->nonvolatile
? "nv-" : "",
2999 range
->readonly
? "rom" : memory_region_type(mr
),
3000 memory_region_name(mr
),
3001 range
->offset_in_region
);
3003 p(f
, MTREE_INDENT TARGET_FMT_plx
"-"
3004 TARGET_FMT_plx
" (prio %d, %s%s): %s",
3005 int128_get64(range
->addr
.start
),
3006 int128_get64(range
->addr
.start
) + MR_SIZE(range
->addr
.size
),
3008 range
->nonvolatile
? "nv-" : "",
3009 range
->readonly
? "rom" : memory_region_type(mr
),
3010 memory_region_name(mr
));
3013 mtree_print_mr_owner(p
, f
, mr
);
3019 #if !defined(CONFIG_USER_ONLY)
3020 if (fvi
->dispatch_tree
&& view
->root
) {
3021 mtree_print_dispatch(p
, f
, view
->dispatch
, view
->root
);
3028 static gboolean
mtree_info_flatview_free(gpointer key
, gpointer value
,
3031 FlatView
*view
= key
;
3032 GArray
*fv_address_spaces
= value
;
3034 g_array_unref(fv_address_spaces
);
3035 flatview_unref(view
);
3040 void mtree_info(fprintf_function mon_printf
, void *f
, bool flatview
,
3041 bool dispatch_tree
, bool owner
)
3043 MemoryRegionListHead ml_head
;
3044 MemoryRegionList
*ml
, *ml2
;
3049 struct FlatViewInfo fvi
= {
3050 .mon_printf
= mon_printf
,
3053 .dispatch_tree
= dispatch_tree
,
3056 GArray
*fv_address_spaces
;
3057 GHashTable
*views
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
3059 /* Gather all FVs in one table */
3060 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3061 view
= address_space_get_flatview(as
);
3063 fv_address_spaces
= g_hash_table_lookup(views
, view
);
3064 if (!fv_address_spaces
) {
3065 fv_address_spaces
= g_array_new(false, false, sizeof(as
));
3066 g_hash_table_insert(views
, view
, fv_address_spaces
);
3069 g_array_append_val(fv_address_spaces
, as
);
3073 g_hash_table_foreach(views
, mtree_print_flatview
, &fvi
);
3076 g_hash_table_foreach_remove(views
, mtree_info_flatview_free
, 0);
3077 g_hash_table_unref(views
);
3082 QTAILQ_INIT(&ml_head
);
3084 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3085 mon_printf(f
, "address-space: %s\n", as
->name
);
3086 mtree_print_mr(mon_printf
, f
, as
->root
, 1, 0, &ml_head
, owner
);
3087 mon_printf(f
, "\n");
3090 /* print aliased regions */
3091 QTAILQ_FOREACH(ml
, &ml_head
, mrqueue
) {
3092 mon_printf(f
, "memory-region: %s\n", memory_region_name(ml
->mr
));
3093 mtree_print_mr(mon_printf
, f
, ml
->mr
, 1, 0, &ml_head
, owner
);
3094 mon_printf(f
, "\n");
3097 QTAILQ_FOREACH_SAFE(ml
, &ml_head
, mrqueue
, ml2
) {
3102 void memory_region_init_ram(MemoryRegion
*mr
,
3103 struct Object
*owner
,
3108 DeviceState
*owner_dev
;
3111 memory_region_init_ram_nomigrate(mr
, owner
, name
, size
, &err
);
3113 error_propagate(errp
, err
);
3116 /* This will assert if owner is neither NULL nor a DeviceState.
3117 * We only want the owner here for the purposes of defining a
3118 * unique name for migration. TODO: Ideally we should implement
3119 * a naming scheme for Objects which are not DeviceStates, in
3120 * which case we can relax this restriction.
3122 owner_dev
= DEVICE(owner
);
3123 vmstate_register_ram(mr
, owner_dev
);
3126 void memory_region_init_rom(MemoryRegion
*mr
,
3127 struct Object
*owner
,
3132 DeviceState
*owner_dev
;
3135 memory_region_init_rom_nomigrate(mr
, owner
, name
, size
, &err
);
3137 error_propagate(errp
, err
);
3140 /* This will assert if owner is neither NULL nor a DeviceState.
3141 * We only want the owner here for the purposes of defining a
3142 * unique name for migration. TODO: Ideally we should implement
3143 * a naming scheme for Objects which are not DeviceStates, in
3144 * which case we can relax this restriction.
3146 owner_dev
= DEVICE(owner
);
3147 vmstate_register_ram(mr
, owner_dev
);
3150 void memory_region_init_rom_device(MemoryRegion
*mr
,
3151 struct Object
*owner
,
3152 const MemoryRegionOps
*ops
,
3158 DeviceState
*owner_dev
;
3161 memory_region_init_rom_device_nomigrate(mr
, owner
, ops
, opaque
,
3164 error_propagate(errp
, err
);
3167 /* This will assert if owner is neither NULL nor a DeviceState.
3168 * We only want the owner here for the purposes of defining a
3169 * unique name for migration. TODO: Ideally we should implement
3170 * a naming scheme for Objects which are not DeviceStates, in
3171 * which case we can relax this restriction.
3173 owner_dev
= DEVICE(owner
);
3174 vmstate_register_ram(mr
, owner_dev
);
3177 static const TypeInfo memory_region_info
= {
3178 .parent
= TYPE_OBJECT
,
3179 .name
= TYPE_MEMORY_REGION
,
3180 .instance_size
= sizeof(MemoryRegion
),
3181 .instance_init
= memory_region_initfn
,
3182 .instance_finalize
= memory_region_finalize
,
3185 static const TypeInfo iommu_memory_region_info
= {
3186 .parent
= TYPE_MEMORY_REGION
,
3187 .name
= TYPE_IOMMU_MEMORY_REGION
,
3188 .class_size
= sizeof(IOMMUMemoryRegionClass
),
3189 .instance_size
= sizeof(IOMMUMemoryRegion
),
3190 .instance_init
= iommu_memory_region_initfn
,
3194 static void memory_register_types(void)
3196 type_register_static(&memory_region_info
);
3197 type_register_static(&iommu_memory_region_info
);
3200 type_init(memory_register_types
)