2 * PowerPC floating point and SPE emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
24 #include "fpu/softfloat.h"
26 static inline float128
float128_snan_to_qnan(float128 x
)
30 r
.high
= x
.high
| 0x0000800000000000;
35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
36 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
37 #define float16_snan_to_qnan(x) ((x) | 0x0200)
39 static inline bool fp_exceptions_enabled(CPUPPCState
*env
)
41 #ifdef CONFIG_USER_ONLY
44 return (env
->msr
& ((1U << MSR_FE0
) | (1U << MSR_FE1
))) != 0;
48 /*****************************************************************************/
49 /* Floating point operations helpers */
52 * This is the non-arithmatic conversion that happens e.g. on loads.
53 * In the Power ISA pseudocode, this is called DOUBLE.
55 uint64_t helper_todouble(uint32_t arg
)
57 uint32_t abs_arg
= arg
& 0x7fffffff;
60 if (likely(abs_arg
>= 0x00800000)) {
61 if (unlikely(extract32(arg
, 23, 8) == 0xff)) {
63 ret
= (uint64_t)extract32(arg
, 31, 1) << 63;
64 ret
|= (uint64_t)0x7ff << 52;
65 ret
|= (uint64_t)extract32(arg
, 0, 23) << 29;
67 /* Normalized operand. */
68 ret
= (uint64_t)extract32(arg
, 30, 2) << 62;
69 ret
|= ((extract32(arg
, 30, 1) ^ 1) * (uint64_t)7) << 59;
70 ret
|= (uint64_t)extract32(arg
, 0, 30) << 29;
73 /* Zero or Denormalized operand. */
74 ret
= (uint64_t)extract32(arg
, 31, 1) << 63;
75 if (unlikely(abs_arg
!= 0)) {
77 * Denormalized operand.
78 * Shift fraction so that the msb is in the implicit bit position.
79 * Thus, shift is in the range [1:23].
81 int shift
= clz32(abs_arg
) - 8;
83 * The first 3 terms compute the float64 exponent. We then bias
84 * this result by -1 so that we can swallow the implicit bit below.
86 int exp
= -126 - shift
+ 1023 - 1;
88 ret
|= (uint64_t)exp
<< 52;
89 ret
+= (uint64_t)abs_arg
<< (52 - 23 + shift
);
96 * This is the non-arithmatic conversion that happens e.g. on stores.
97 * In the Power ISA pseudocode, this is called SINGLE.
99 uint32_t helper_tosingle(uint64_t arg
)
101 int exp
= extract64(arg
, 52, 11);
104 if (likely(exp
> 896)) {
105 /* No denormalization required (includes Inf, NaN). */
106 ret
= extract64(arg
, 62, 2) << 30;
107 ret
|= extract64(arg
, 29, 30);
110 * Zero or Denormal result. If the exponent is in bounds for
111 * a single-precision denormal result, extract the proper
112 * bits. If the input is not zero, and the exponent is out of
113 * bounds, then the result is undefined; this underflows to
116 ret
= extract64(arg
, 63, 1) << 31;
117 if (unlikely(exp
>= 874)) {
118 /* Denormal result. */
119 ret
|= ((1ULL << 52) | extract64(arg
, 0, 52)) >> (896 + 30 - exp
);
125 static inline int ppc_float32_get_unbiased_exp(float32 f
)
127 return ((f
>> 23) & 0xFF) - 127;
130 static inline int ppc_float64_get_unbiased_exp(float64 f
)
132 return ((f
>> 52) & 0x7FF) - 1023;
135 /* Classify a floating-point number. */
146 #define COMPUTE_CLASS(tp) \
147 static int tp##_classify(tp arg) \
149 int ret = tp##_is_neg(arg) * is_neg; \
150 if (unlikely(tp##_is_any_nan(arg))) { \
151 float_status dummy = { }; /* snan_bit_is_one = 0 */ \
152 ret |= (tp##_is_signaling_nan(arg, &dummy) \
153 ? is_snan : is_qnan); \
154 } else if (unlikely(tp##_is_infinity(arg))) { \
156 } else if (tp##_is_zero(arg)) { \
158 } else if (tp##_is_zero_or_denormal(arg)) { \
159 ret |= is_denormal; \
166 COMPUTE_CLASS(float16
)
167 COMPUTE_CLASS(float32
)
168 COMPUTE_CLASS(float64
)
169 COMPUTE_CLASS(float128
)
171 static void set_fprf_from_class(CPUPPCState
*env
, int class)
173 static const uint8_t fprf
[6][2] = {
174 { 0x04, 0x08 }, /* normalized */
175 { 0x02, 0x12 }, /* zero */
176 { 0x14, 0x18 }, /* denormalized */
177 { 0x05, 0x09 }, /* infinity */
178 { 0x11, 0x11 }, /* qnan */
179 { 0x00, 0x00 }, /* snan -- flags are undefined */
181 bool isneg
= class & is_neg
;
183 env
->fpscr
&= ~FP_FPRF
;
184 env
->fpscr
|= fprf
[ctz32(class)][isneg
] << FPSCR_FPRF
;
187 #define COMPUTE_FPRF(tp) \
188 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
190 set_fprf_from_class(env, tp##_classify(arg)); \
193 COMPUTE_FPRF(float16
)
194 COMPUTE_FPRF(float32
)
195 COMPUTE_FPRF(float64
)
196 COMPUTE_FPRF(float128
)
198 /* Floating-point invalid operations exception */
199 static void finish_invalid_op_excp(CPUPPCState
*env
, int op
, uintptr_t retaddr
)
201 /* Update the floating-point invalid operation summary */
203 /* Update the floating-point exception summary */
206 /* Update the floating-point enabled exception summary */
207 env
->fpscr
|= FP_FEX
;
208 if (fp_exceptions_enabled(env
)) {
209 raise_exception_err_ra(env
, POWERPC_EXCP_PROGRAM
,
210 POWERPC_EXCP_FP
| op
, retaddr
);
215 static void finish_invalid_op_arith(CPUPPCState
*env
, int op
,
216 bool set_fpcc
, uintptr_t retaddr
)
218 env
->fpscr
&= ~(FP_FR
| FP_FI
);
221 env
->fpscr
&= ~FP_FPCC
;
222 env
->fpscr
|= (FP_C
| FP_FU
);
225 finish_invalid_op_excp(env
, op
, retaddr
);
229 static void float_invalid_op_vxsnan(CPUPPCState
*env
, uintptr_t retaddr
)
231 env
->fpscr
|= FP_VXSNAN
;
232 finish_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
, retaddr
);
235 /* Magnitude subtraction of infinities */
236 static void float_invalid_op_vxisi(CPUPPCState
*env
, bool set_fpcc
,
239 env
->fpscr
|= FP_VXISI
;
240 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXISI
, set_fpcc
, retaddr
);
243 /* Division of infinity by infinity */
244 static void float_invalid_op_vxidi(CPUPPCState
*env
, bool set_fpcc
,
247 env
->fpscr
|= FP_VXIDI
;
248 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXIDI
, set_fpcc
, retaddr
);
251 /* Division of zero by zero */
252 static void float_invalid_op_vxzdz(CPUPPCState
*env
, bool set_fpcc
,
255 env
->fpscr
|= FP_VXZDZ
;
256 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXZDZ
, set_fpcc
, retaddr
);
259 /* Multiplication of zero by infinity */
260 static void float_invalid_op_vximz(CPUPPCState
*env
, bool set_fpcc
,
263 env
->fpscr
|= FP_VXIMZ
;
264 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXIMZ
, set_fpcc
, retaddr
);
267 /* Square root of a negative number */
268 static void float_invalid_op_vxsqrt(CPUPPCState
*env
, bool set_fpcc
,
271 env
->fpscr
|= FP_VXSQRT
;
272 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXSQRT
, set_fpcc
, retaddr
);
275 /* Ordered comparison of NaN */
276 static void float_invalid_op_vxvc(CPUPPCState
*env
, bool set_fpcc
,
279 env
->fpscr
|= FP_VXVC
;
281 env
->fpscr
&= ~FP_FPCC
;
282 env
->fpscr
|= (FP_C
| FP_FU
);
284 /* Update the floating-point invalid operation summary */
286 /* Update the floating-point exception summary */
288 /* We must update the target FPR before raising the exception */
290 CPUState
*cs
= env_cpu(env
);
292 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
293 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_VXVC
;
294 /* Update the floating-point enabled exception summary */
295 env
->fpscr
|= FP_FEX
;
296 /* Exception is deferred */
300 /* Invalid conversion */
301 static void float_invalid_op_vxcvi(CPUPPCState
*env
, bool set_fpcc
,
304 env
->fpscr
|= FP_VXCVI
;
305 env
->fpscr
&= ~(FP_FR
| FP_FI
);
308 env
->fpscr
&= ~FP_FPCC
;
309 env
->fpscr
|= (FP_C
| FP_FU
);
312 finish_invalid_op_excp(env
, POWERPC_EXCP_FP_VXCVI
, retaddr
);
315 static inline void float_zero_divide_excp(CPUPPCState
*env
, uintptr_t raddr
)
318 env
->fpscr
&= ~(FP_FR
| FP_FI
);
319 /* Update the floating-point exception summary */
322 /* Update the floating-point enabled exception summary */
323 env
->fpscr
|= FP_FEX
;
324 if (fp_exceptions_enabled(env
)) {
325 raise_exception_err_ra(env
, POWERPC_EXCP_PROGRAM
,
326 POWERPC_EXCP_FP
| POWERPC_EXCP_FP_ZX
,
332 static inline void float_overflow_excp(CPUPPCState
*env
)
334 CPUState
*cs
= env_cpu(env
);
337 /* Update the floating-point exception summary */
340 /* XXX: should adjust the result */
341 /* Update the floating-point enabled exception summary */
342 env
->fpscr
|= FP_FEX
;
343 /* We must update the target FPR before raising the exception */
344 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
345 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_OX
;
352 static inline void float_underflow_excp(CPUPPCState
*env
)
354 CPUState
*cs
= env_cpu(env
);
357 /* Update the floating-point exception summary */
360 /* XXX: should adjust the result */
361 /* Update the floating-point enabled exception summary */
362 env
->fpscr
|= FP_FEX
;
363 /* We must update the target FPR before raising the exception */
364 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
365 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_UX
;
369 static inline void float_inexact_excp(CPUPPCState
*env
)
371 CPUState
*cs
= env_cpu(env
);
375 /* Update the floating-point exception summary */
378 /* Update the floating-point enabled exception summary */
379 env
->fpscr
|= FP_FEX
;
380 /* We must update the target FPR before raising the exception */
381 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
382 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_XX
;
386 void helper_fpscr_clrbit(CPUPPCState
*env
, uint32_t bit
)
388 uint32_t mask
= 1u << bit
;
389 if (env
->fpscr
& mask
) {
390 ppc_store_fpscr(env
, env
->fpscr
& ~(target_ulong
)mask
);
394 void helper_fpscr_setbit(CPUPPCState
*env
, uint32_t bit
)
396 uint32_t mask
= 1u << bit
;
397 if (!(env
->fpscr
& mask
)) {
398 ppc_store_fpscr(env
, env
->fpscr
| mask
);
402 void helper_store_fpscr(CPUPPCState
*env
, uint64_t val
, uint32_t nibbles
)
404 target_ulong mask
= 0;
407 /* TODO: push this extension back to translation time */
408 for (i
= 0; i
< sizeof(target_ulong
) * 2; i
++) {
409 if (nibbles
& (1 << i
)) {
410 mask
|= (target_ulong
) 0xf << (4 * i
);
413 val
= (val
& mask
) | (env
->fpscr
& ~mask
);
414 ppc_store_fpscr(env
, val
);
417 void helper_fpscr_check_status(CPUPPCState
*env
)
419 CPUState
*cs
= env_cpu(env
);
420 target_ulong fpscr
= env
->fpscr
;
423 if ((fpscr
& FP_OX
) && (fpscr
& FP_OE
)) {
424 error
= POWERPC_EXCP_FP_OX
;
425 } else if ((fpscr
& FP_UX
) && (fpscr
& FP_UE
)) {
426 error
= POWERPC_EXCP_FP_UX
;
427 } else if ((fpscr
& FP_XX
) && (fpscr
& FP_XE
)) {
428 error
= POWERPC_EXCP_FP_XX
;
429 } else if ((fpscr
& FP_ZX
) && (fpscr
& FP_ZE
)) {
430 error
= POWERPC_EXCP_FP_ZX
;
431 } else if (fpscr
& FP_VE
) {
432 if (fpscr
& FP_VXSOFT
) {
433 error
= POWERPC_EXCP_FP_VXSOFT
;
434 } else if (fpscr
& FP_VXSNAN
) {
435 error
= POWERPC_EXCP_FP_VXSNAN
;
436 } else if (fpscr
& FP_VXISI
) {
437 error
= POWERPC_EXCP_FP_VXISI
;
438 } else if (fpscr
& FP_VXIDI
) {
439 error
= POWERPC_EXCP_FP_VXIDI
;
440 } else if (fpscr
& FP_VXZDZ
) {
441 error
= POWERPC_EXCP_FP_VXZDZ
;
442 } else if (fpscr
& FP_VXIMZ
) {
443 error
= POWERPC_EXCP_FP_VXIMZ
;
444 } else if (fpscr
& FP_VXVC
) {
445 error
= POWERPC_EXCP_FP_VXVC
;
446 } else if (fpscr
& FP_VXSQRT
) {
447 error
= POWERPC_EXCP_FP_VXSQRT
;
448 } else if (fpscr
& FP_VXCVI
) {
449 error
= POWERPC_EXCP_FP_VXCVI
;
456 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
457 env
->error_code
= error
| POWERPC_EXCP_FP
;
458 /* Deferred floating-point exception after target FPSCR update */
459 if (fp_exceptions_enabled(env
)) {
460 raise_exception_err_ra(env
, cs
->exception_index
,
461 env
->error_code
, GETPC());
465 static void do_float_check_status(CPUPPCState
*env
, uintptr_t raddr
)
467 CPUState
*cs
= env_cpu(env
);
468 int status
= get_float_exception_flags(&env
->fp_status
);
470 if (status
& float_flag_overflow
) {
471 float_overflow_excp(env
);
472 } else if (status
& float_flag_underflow
) {
473 float_underflow_excp(env
);
475 if (status
& float_flag_inexact
) {
476 float_inexact_excp(env
);
478 env
->fpscr
&= ~FP_FI
; /* clear the FPSCR[FI] bit */
481 if (cs
->exception_index
== POWERPC_EXCP_PROGRAM
&&
482 (env
->error_code
& POWERPC_EXCP_FP
)) {
483 /* Deferred floating-point exception after target FPR update */
484 if (fp_exceptions_enabled(env
)) {
485 raise_exception_err_ra(env
, cs
->exception_index
,
486 env
->error_code
, raddr
);
491 void helper_float_check_status(CPUPPCState
*env
)
493 do_float_check_status(env
, GETPC());
496 void helper_reset_fpstatus(CPUPPCState
*env
)
498 set_float_exception_flags(0, &env
->fp_status
);
501 static void float_invalid_op_addsub(CPUPPCState
*env
, int flags
,
502 bool set_fpcc
, uintptr_t retaddr
)
504 if (flags
& float_flag_invalid_isi
) {
505 float_invalid_op_vxisi(env
, set_fpcc
, retaddr
);
506 } else if (flags
& float_flag_invalid_snan
) {
507 float_invalid_op_vxsnan(env
, retaddr
);
512 float64
helper_fadd(CPUPPCState
*env
, float64 arg1
, float64 arg2
)
514 float64 ret
= float64_add(arg1
, arg2
, &env
->fp_status
);
515 int flags
= get_float_exception_flags(&env
->fp_status
);
517 if (unlikely(flags
& float_flag_invalid
)) {
518 float_invalid_op_addsub(env
, flags
, 1, GETPC());
525 float64
helper_fsub(CPUPPCState
*env
, float64 arg1
, float64 arg2
)
527 float64 ret
= float64_sub(arg1
, arg2
, &env
->fp_status
);
528 int flags
= get_float_exception_flags(&env
->fp_status
);
530 if (unlikely(flags
& float_flag_invalid
)) {
531 float_invalid_op_addsub(env
, flags
, 1, GETPC());
537 static void float_invalid_op_mul(CPUPPCState
*env
, int flags
,
538 bool set_fprc
, uintptr_t retaddr
)
540 if (flags
& float_flag_invalid_imz
) {
541 float_invalid_op_vximz(env
, set_fprc
, retaddr
);
542 } else if (flags
& float_flag_invalid_snan
) {
543 float_invalid_op_vxsnan(env
, retaddr
);
548 float64
helper_fmul(CPUPPCState
*env
, float64 arg1
, float64 arg2
)
550 float64 ret
= float64_mul(arg1
, arg2
, &env
->fp_status
);
551 int flags
= get_float_exception_flags(&env
->fp_status
);
553 if (unlikely(flags
& float_flag_invalid
)) {
554 float_invalid_op_mul(env
, flags
, 1, GETPC());
560 static void float_invalid_op_div(CPUPPCState
*env
, int flags
,
561 bool set_fprc
, uintptr_t retaddr
)
563 if (flags
& float_flag_invalid_idi
) {
564 float_invalid_op_vxidi(env
, set_fprc
, retaddr
);
565 } else if (flags
& float_flag_invalid_zdz
) {
566 float_invalid_op_vxzdz(env
, set_fprc
, retaddr
);
567 } else if (flags
& float_flag_invalid_snan
) {
568 float_invalid_op_vxsnan(env
, retaddr
);
573 float64
helper_fdiv(CPUPPCState
*env
, float64 arg1
, float64 arg2
)
575 float64 ret
= float64_div(arg1
, arg2
, &env
->fp_status
);
576 int flags
= get_float_exception_flags(&env
->fp_status
);
578 if (unlikely(flags
& float_flag_invalid
)) {
579 float_invalid_op_div(env
, flags
, 1, GETPC());
581 if (unlikely(flags
& float_flag_divbyzero
)) {
582 float_zero_divide_excp(env
, GETPC());
588 static uint64_t float_invalid_cvt(CPUPPCState
*env
, int flags
,
589 uint64_t ret
, uint64_t ret_nan
,
590 bool set_fprc
, uintptr_t retaddr
)
593 * VXCVI is different from most in that it sets two exception bits,
594 * VXCVI and VXSNAN for an SNaN input.
596 if (flags
& float_flag_invalid_snan
) {
597 env
->fpscr
|= FP_VXSNAN
;
599 float_invalid_op_vxcvi(env
, set_fprc
, retaddr
);
601 return flags
& float_flag_invalid_cvti
? ret
: ret_nan
;
604 #define FPU_FCTI(op, cvt, nanval) \
605 uint64_t helper_##op(CPUPPCState *env, float64 arg) \
607 uint64_t ret = float64_to_##cvt(arg, &env->fp_status); \
608 int flags = get_float_exception_flags(&env->fp_status); \
609 if (unlikely(flags & float_flag_invalid)) { \
610 ret = float_invalid_cvt(env, flags, ret, nanval, 1, GETPC()); \
615 FPU_FCTI(fctiw
, int32
, 0x80000000U
)
616 FPU_FCTI(fctiwz
, int32_round_to_zero
, 0x80000000U
)
617 FPU_FCTI(fctiwu
, uint32
, 0x00000000U
)
618 FPU_FCTI(fctiwuz
, uint32_round_to_zero
, 0x00000000U
)
619 FPU_FCTI(fctid
, int64
, 0x8000000000000000ULL
)
620 FPU_FCTI(fctidz
, int64_round_to_zero
, 0x8000000000000000ULL
)
621 FPU_FCTI(fctidu
, uint64
, 0x0000000000000000ULL
)
622 FPU_FCTI(fctiduz
, uint64_round_to_zero
, 0x0000000000000000ULL
)
624 #define FPU_FCFI(op, cvtr, is_single) \
625 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
630 float32 tmp = cvtr(arg, &env->fp_status); \
631 farg.d = float32_to_float64(tmp, &env->fp_status); \
633 farg.d = cvtr(arg, &env->fp_status); \
635 do_float_check_status(env, GETPC()); \
639 FPU_FCFI(fcfid
, int64_to_float64
, 0)
640 FPU_FCFI(fcfids
, int64_to_float32
, 1)
641 FPU_FCFI(fcfidu
, uint64_to_float64
, 0)
642 FPU_FCFI(fcfidus
, uint64_to_float32
, 1)
644 static uint64_t do_fri(CPUPPCState
*env
, uint64_t arg
,
645 FloatRoundMode rounding_mode
)
647 FloatRoundMode old_rounding_mode
= get_float_rounding_mode(&env
->fp_status
);
650 set_float_rounding_mode(rounding_mode
, &env
->fp_status
);
651 arg
= float64_round_to_int(arg
, &env
->fp_status
);
652 set_float_rounding_mode(old_rounding_mode
, &env
->fp_status
);
654 flags
= get_float_exception_flags(&env
->fp_status
);
655 if (flags
& float_flag_invalid_snan
) {
656 float_invalid_op_vxsnan(env
, GETPC());
659 /* fri* does not set FPSCR[XX] */
660 set_float_exception_flags(flags
& ~float_flag_inexact
, &env
->fp_status
);
661 do_float_check_status(env
, GETPC());
666 uint64_t helper_frin(CPUPPCState
*env
, uint64_t arg
)
668 return do_fri(env
, arg
, float_round_ties_away
);
671 uint64_t helper_friz(CPUPPCState
*env
, uint64_t arg
)
673 return do_fri(env
, arg
, float_round_to_zero
);
676 uint64_t helper_frip(CPUPPCState
*env
, uint64_t arg
)
678 return do_fri(env
, arg
, float_round_up
);
681 uint64_t helper_frim(CPUPPCState
*env
, uint64_t arg
)
683 return do_fri(env
, arg
, float_round_down
);
686 static void float_invalid_op_madd(CPUPPCState
*env
, int flags
,
687 bool set_fpcc
, uintptr_t retaddr
)
689 if (flags
& float_flag_invalid_imz
) {
690 float_invalid_op_vximz(env
, set_fpcc
, retaddr
);
692 float_invalid_op_addsub(env
, flags
, set_fpcc
, retaddr
);
696 static float64
do_fmadd(CPUPPCState
*env
, float64 a
, float64 b
,
697 float64 c
, int madd_flags
, uintptr_t retaddr
)
699 float64 ret
= float64_muladd(a
, b
, c
, madd_flags
, &env
->fp_status
);
700 int flags
= get_float_exception_flags(&env
->fp_status
);
702 if (unlikely(flags
& float_flag_invalid
)) {
703 float_invalid_op_madd(env
, flags
, 1, retaddr
);
708 #define FPU_FMADD(op, madd_flags) \
709 uint64_t helper_##op(CPUPPCState *env, uint64_t arg1, \
710 uint64_t arg2, uint64_t arg3) \
711 { return do_fmadd(env, arg1, arg2, arg3, madd_flags, GETPC()); }
714 #define MSUB_FLGS float_muladd_negate_c
715 #define NMADD_FLGS float_muladd_negate_result
716 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
718 FPU_FMADD(fmadd
, MADD_FLGS
)
719 FPU_FMADD(fnmadd
, NMADD_FLGS
)
720 FPU_FMADD(fmsub
, MSUB_FLGS
)
721 FPU_FMADD(fnmsub
, NMSUB_FLGS
)
724 static uint64_t do_frsp(CPUPPCState
*env
, uint64_t arg
, uintptr_t retaddr
)
726 float32 f32
= float64_to_float32(arg
, &env
->fp_status
);
727 int flags
= get_float_exception_flags(&env
->fp_status
);
729 if (unlikely(flags
& float_flag_invalid_snan
)) {
730 float_invalid_op_vxsnan(env
, retaddr
);
732 return float32_to_float64(f32
, &env
->fp_status
);
735 uint64_t helper_frsp(CPUPPCState
*env
, uint64_t arg
)
737 return do_frsp(env
, arg
, GETPC());
741 float64
helper_fsqrt(CPUPPCState
*env
, float64 arg
)
743 float64 ret
= float64_sqrt(arg
, &env
->fp_status
);
744 int status
= get_float_exception_flags(&env
->fp_status
);
746 if (unlikely(status
& float_flag_invalid
)) {
747 if (unlikely(float64_is_any_nan(arg
))) {
748 if (unlikely(float64_is_signaling_nan(arg
, &env
->fp_status
))) {
749 /* sNaN square root */
750 float_invalid_op_vxsnan(env
, GETPC());
753 /* Square root of a negative nonzero number */
754 float_invalid_op_vxsqrt(env
, 1, GETPC());
762 float64
helper_fre(CPUPPCState
*env
, float64 arg
)
764 /* "Estimate" the reciprocal with actual division. */
765 float64 ret
= float64_div(float64_one
, arg
, &env
->fp_status
);
766 int status
= get_float_exception_flags(&env
->fp_status
);
768 if (unlikely(status
)) {
769 if (status
& float_flag_invalid
) {
770 if (float64_is_signaling_nan(arg
, &env
->fp_status
)) {
771 /* sNaN reciprocal */
772 float_invalid_op_vxsnan(env
, GETPC());
775 if (status
& float_flag_divbyzero
) {
776 float_zero_divide_excp(env
, GETPC());
777 /* For FPSCR.ZE == 0, the result is 1/2. */
778 ret
= float64_set_sign(float64_half
, float64_is_neg(arg
));
786 uint64_t helper_fres(CPUPPCState
*env
, uint64_t arg
)
793 if (unlikely(float64_is_signaling_nan(farg
.d
, &env
->fp_status
))) {
794 /* sNaN reciprocal */
795 float_invalid_op_vxsnan(env
, GETPC());
797 farg
.d
= float64_div(float64_one
, farg
.d
, &env
->fp_status
);
798 f32
= float64_to_float32(farg
.d
, &env
->fp_status
);
799 farg
.d
= float32_to_float64(f32
, &env
->fp_status
);
804 /* frsqrte - frsqrte. */
805 float64
helper_frsqrte(CPUPPCState
*env
, float64 arg
)
807 /* "Estimate" the reciprocal with actual division. */
808 float64 rets
= float64_sqrt(arg
, &env
->fp_status
);
809 float64 retd
= float64_div(float64_one
, rets
, &env
->fp_status
);
810 int status
= get_float_exception_flags(&env
->fp_status
);
812 if (unlikely(status
)) {
813 if (status
& float_flag_invalid
) {
814 if (float64_is_signaling_nan(arg
, &env
->fp_status
)) {
815 /* sNaN reciprocal */
816 float_invalid_op_vxsnan(env
, GETPC());
818 /* Square root of a negative nonzero number */
819 float_invalid_op_vxsqrt(env
, 1, GETPC());
822 if (status
& float_flag_divbyzero
) {
823 /* Reciprocal of (square root of) zero. */
824 float_zero_divide_excp(env
, GETPC());
832 uint64_t helper_fsel(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
,
839 if ((!float64_is_neg(farg1
.d
) || float64_is_zero(farg1
.d
)) &&
840 !float64_is_any_nan(farg1
.d
)) {
847 uint32_t helper_ftdiv(uint64_t fra
, uint64_t frb
)
852 if (unlikely(float64_is_infinity(fra
) ||
853 float64_is_infinity(frb
) ||
854 float64_is_zero(frb
))) {
858 int e_a
= ppc_float64_get_unbiased_exp(fra
);
859 int e_b
= ppc_float64_get_unbiased_exp(frb
);
861 if (unlikely(float64_is_any_nan(fra
) ||
862 float64_is_any_nan(frb
))) {
864 } else if ((e_b
<= -1022) || (e_b
>= 1021)) {
866 } else if (!float64_is_zero(fra
) &&
867 (((e_a
- e_b
) >= 1023) ||
868 ((e_a
- e_b
) <= -1021) ||
873 if (unlikely(float64_is_zero_or_denormal(frb
))) {
874 /* XB is not zero because of the above check and */
875 /* so must be denormalized. */
880 return 0x8 | (fg_flag
? 4 : 0) | (fe_flag
? 2 : 0);
883 uint32_t helper_ftsqrt(uint64_t frb
)
888 if (unlikely(float64_is_infinity(frb
) || float64_is_zero(frb
))) {
892 int e_b
= ppc_float64_get_unbiased_exp(frb
);
894 if (unlikely(float64_is_any_nan(frb
))) {
896 } else if (unlikely(float64_is_zero(frb
))) {
898 } else if (unlikely(float64_is_neg(frb
))) {
900 } else if (!float64_is_zero(frb
) && (e_b
<= (-1022 + 52))) {
904 if (unlikely(float64_is_zero_or_denormal(frb
))) {
905 /* XB is not zero because of the above check and */
906 /* therefore must be denormalized. */
911 return 0x8 | (fg_flag
? 4 : 0) | (fe_flag
? 2 : 0);
914 void helper_fcmpu(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
,
917 CPU_DoubleU farg1
, farg2
;
923 if (unlikely(float64_is_any_nan(farg1
.d
) ||
924 float64_is_any_nan(farg2
.d
))) {
926 } else if (float64_lt(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
928 } else if (!float64_le(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
934 env
->fpscr
&= ~FP_FPCC
;
935 env
->fpscr
|= ret
<< FPSCR_FPCC
;
936 env
->crf
[crfD
] = ret
;
937 if (unlikely(ret
== 0x01UL
938 && (float64_is_signaling_nan(farg1
.d
, &env
->fp_status
) ||
939 float64_is_signaling_nan(farg2
.d
, &env
->fp_status
)))) {
940 /* sNaN comparison */
941 float_invalid_op_vxsnan(env
, GETPC());
945 void helper_fcmpo(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
,
948 CPU_DoubleU farg1
, farg2
;
954 if (unlikely(float64_is_any_nan(farg1
.d
) ||
955 float64_is_any_nan(farg2
.d
))) {
957 } else if (float64_lt(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
959 } else if (!float64_le(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
965 env
->fpscr
&= ~FP_FPCC
;
966 env
->fpscr
|= ret
<< FPSCR_FPCC
;
967 env
->crf
[crfD
] = (uint32_t) ret
;
968 if (unlikely(ret
== 0x01UL
)) {
969 float_invalid_op_vxvc(env
, 1, GETPC());
970 if (float64_is_signaling_nan(farg1
.d
, &env
->fp_status
) ||
971 float64_is_signaling_nan(farg2
.d
, &env
->fp_status
)) {
972 /* sNaN comparison */
973 float_invalid_op_vxsnan(env
, GETPC());
978 /* Single-precision floating-point conversions */
979 static inline uint32_t efscfsi(CPUPPCState
*env
, uint32_t val
)
983 u
.f
= int32_to_float32(val
, &env
->vec_status
);
988 static inline uint32_t efscfui(CPUPPCState
*env
, uint32_t val
)
992 u
.f
= uint32_to_float32(val
, &env
->vec_status
);
997 static inline int32_t efsctsi(CPUPPCState
*env
, uint32_t val
)
1002 /* NaN are not treated the same way IEEE 754 does */
1003 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1007 return float32_to_int32(u
.f
, &env
->vec_status
);
1010 static inline uint32_t efsctui(CPUPPCState
*env
, uint32_t val
)
1015 /* NaN are not treated the same way IEEE 754 does */
1016 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1020 return float32_to_uint32(u
.f
, &env
->vec_status
);
1023 static inline uint32_t efsctsiz(CPUPPCState
*env
, uint32_t val
)
1028 /* NaN are not treated the same way IEEE 754 does */
1029 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1033 return float32_to_int32_round_to_zero(u
.f
, &env
->vec_status
);
1036 static inline uint32_t efsctuiz(CPUPPCState
*env
, uint32_t val
)
1041 /* NaN are not treated the same way IEEE 754 does */
1042 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1046 return float32_to_uint32_round_to_zero(u
.f
, &env
->vec_status
);
1049 static inline uint32_t efscfsf(CPUPPCState
*env
, uint32_t val
)
1054 u
.f
= int32_to_float32(val
, &env
->vec_status
);
1055 tmp
= int64_to_float32(1ULL << 32, &env
->vec_status
);
1056 u
.f
= float32_div(u
.f
, tmp
, &env
->vec_status
);
1061 static inline uint32_t efscfuf(CPUPPCState
*env
, uint32_t val
)
1066 u
.f
= uint32_to_float32(val
, &env
->vec_status
);
1067 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
1068 u
.f
= float32_div(u
.f
, tmp
, &env
->vec_status
);
1073 static inline uint32_t efsctsf(CPUPPCState
*env
, uint32_t val
)
1079 /* NaN are not treated the same way IEEE 754 does */
1080 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1083 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
1084 u
.f
= float32_mul(u
.f
, tmp
, &env
->vec_status
);
1086 return float32_to_int32(u
.f
, &env
->vec_status
);
1089 static inline uint32_t efsctuf(CPUPPCState
*env
, uint32_t val
)
1095 /* NaN are not treated the same way IEEE 754 does */
1096 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1099 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
1100 u
.f
= float32_mul(u
.f
, tmp
, &env
->vec_status
);
1102 return float32_to_uint32(u
.f
, &env
->vec_status
);
1105 #define HELPER_SPE_SINGLE_CONV(name) \
1106 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1108 return e##name(env, val); \
1111 HELPER_SPE_SINGLE_CONV(fscfsi
);
1113 HELPER_SPE_SINGLE_CONV(fscfui
);
1115 HELPER_SPE_SINGLE_CONV(fscfuf
);
1117 HELPER_SPE_SINGLE_CONV(fscfsf
);
1119 HELPER_SPE_SINGLE_CONV(fsctsi
);
1121 HELPER_SPE_SINGLE_CONV(fsctui
);
1123 HELPER_SPE_SINGLE_CONV(fsctsiz
);
1125 HELPER_SPE_SINGLE_CONV(fsctuiz
);
1127 HELPER_SPE_SINGLE_CONV(fsctsf
);
1129 HELPER_SPE_SINGLE_CONV(fsctuf
);
1131 #define HELPER_SPE_VECTOR_CONV(name) \
1132 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1134 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1135 (uint64_t)e##name(env, val); \
1138 HELPER_SPE_VECTOR_CONV(fscfsi
);
1140 HELPER_SPE_VECTOR_CONV(fscfui
);
1142 HELPER_SPE_VECTOR_CONV(fscfuf
);
1144 HELPER_SPE_VECTOR_CONV(fscfsf
);
1146 HELPER_SPE_VECTOR_CONV(fsctsi
);
1148 HELPER_SPE_VECTOR_CONV(fsctui
);
1150 HELPER_SPE_VECTOR_CONV(fsctsiz
);
1152 HELPER_SPE_VECTOR_CONV(fsctuiz
);
1154 HELPER_SPE_VECTOR_CONV(fsctsf
);
1156 HELPER_SPE_VECTOR_CONV(fsctuf
);
1158 /* Single-precision floating-point arithmetic */
1159 static inline uint32_t efsadd(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1165 u1
.f
= float32_add(u1
.f
, u2
.f
, &env
->vec_status
);
1169 static inline uint32_t efssub(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1175 u1
.f
= float32_sub(u1
.f
, u2
.f
, &env
->vec_status
);
1179 static inline uint32_t efsmul(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1185 u1
.f
= float32_mul(u1
.f
, u2
.f
, &env
->vec_status
);
1189 static inline uint32_t efsdiv(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1195 u1
.f
= float32_div(u1
.f
, u2
.f
, &env
->vec_status
);
1199 #define HELPER_SPE_SINGLE_ARITH(name) \
1200 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1202 return e##name(env, op1, op2); \
1205 HELPER_SPE_SINGLE_ARITH(fsadd
);
1207 HELPER_SPE_SINGLE_ARITH(fssub
);
1209 HELPER_SPE_SINGLE_ARITH(fsmul
);
1211 HELPER_SPE_SINGLE_ARITH(fsdiv
);
1213 #define HELPER_SPE_VECTOR_ARITH(name) \
1214 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1216 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1217 (uint64_t)e##name(env, op1, op2); \
1220 HELPER_SPE_VECTOR_ARITH(fsadd
);
1222 HELPER_SPE_VECTOR_ARITH(fssub
);
1224 HELPER_SPE_VECTOR_ARITH(fsmul
);
1226 HELPER_SPE_VECTOR_ARITH(fsdiv
);
1228 /* Single-precision floating-point comparisons */
1229 static inline uint32_t efscmplt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1235 return float32_lt(u1
.f
, u2
.f
, &env
->vec_status
) ? 4 : 0;
1238 static inline uint32_t efscmpgt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1244 return float32_le(u1
.f
, u2
.f
, &env
->vec_status
) ? 0 : 4;
1247 static inline uint32_t efscmpeq(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1253 return float32_eq(u1
.f
, u2
.f
, &env
->vec_status
) ? 4 : 0;
1256 static inline uint32_t efststlt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1258 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1259 return efscmplt(env
, op1
, op2
);
1262 static inline uint32_t efststgt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1264 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1265 return efscmpgt(env
, op1
, op2
);
1268 static inline uint32_t efststeq(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1270 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1271 return efscmpeq(env
, op1
, op2
);
1274 #define HELPER_SINGLE_SPE_CMP(name) \
1275 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1277 return e##name(env, op1, op2); \
1280 HELPER_SINGLE_SPE_CMP(fststlt
);
1282 HELPER_SINGLE_SPE_CMP(fststgt
);
1284 HELPER_SINGLE_SPE_CMP(fststeq
);
1286 HELPER_SINGLE_SPE_CMP(fscmplt
);
1288 HELPER_SINGLE_SPE_CMP(fscmpgt
);
1290 HELPER_SINGLE_SPE_CMP(fscmpeq
);
1292 static inline uint32_t evcmp_merge(int t0
, int t1
)
1294 return (t0
<< 3) | (t1
<< 2) | ((t0
| t1
) << 1) | (t0
& t1
);
1297 #define HELPER_VECTOR_SPE_CMP(name) \
1298 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1300 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1301 e##name(env, op1, op2)); \
1304 HELPER_VECTOR_SPE_CMP(fststlt
);
1306 HELPER_VECTOR_SPE_CMP(fststgt
);
1308 HELPER_VECTOR_SPE_CMP(fststeq
);
1310 HELPER_VECTOR_SPE_CMP(fscmplt
);
1312 HELPER_VECTOR_SPE_CMP(fscmpgt
);
1314 HELPER_VECTOR_SPE_CMP(fscmpeq
);
1316 /* Double-precision floating-point conversion */
1317 uint64_t helper_efdcfsi(CPUPPCState
*env
, uint32_t val
)
1321 u
.d
= int32_to_float64(val
, &env
->vec_status
);
1326 uint64_t helper_efdcfsid(CPUPPCState
*env
, uint64_t val
)
1330 u
.d
= int64_to_float64(val
, &env
->vec_status
);
1335 uint64_t helper_efdcfui(CPUPPCState
*env
, uint32_t val
)
1339 u
.d
= uint32_to_float64(val
, &env
->vec_status
);
1344 uint64_t helper_efdcfuid(CPUPPCState
*env
, uint64_t val
)
1348 u
.d
= uint64_to_float64(val
, &env
->vec_status
);
1353 uint32_t helper_efdctsi(CPUPPCState
*env
, uint64_t val
)
1358 /* NaN are not treated the same way IEEE 754 does */
1359 if (unlikely(float64_is_any_nan(u
.d
))) {
1363 return float64_to_int32(u
.d
, &env
->vec_status
);
1366 uint32_t helper_efdctui(CPUPPCState
*env
, uint64_t val
)
1371 /* NaN are not treated the same way IEEE 754 does */
1372 if (unlikely(float64_is_any_nan(u
.d
))) {
1376 return float64_to_uint32(u
.d
, &env
->vec_status
);
1379 uint32_t helper_efdctsiz(CPUPPCState
*env
, uint64_t val
)
1384 /* NaN are not treated the same way IEEE 754 does */
1385 if (unlikely(float64_is_any_nan(u
.d
))) {
1389 return float64_to_int32_round_to_zero(u
.d
, &env
->vec_status
);
1392 uint64_t helper_efdctsidz(CPUPPCState
*env
, uint64_t val
)
1397 /* NaN are not treated the same way IEEE 754 does */
1398 if (unlikely(float64_is_any_nan(u
.d
))) {
1402 return float64_to_int64_round_to_zero(u
.d
, &env
->vec_status
);
1405 uint32_t helper_efdctuiz(CPUPPCState
*env
, uint64_t val
)
1410 /* NaN are not treated the same way IEEE 754 does */
1411 if (unlikely(float64_is_any_nan(u
.d
))) {
1415 return float64_to_uint32_round_to_zero(u
.d
, &env
->vec_status
);
1418 uint64_t helper_efdctuidz(CPUPPCState
*env
, uint64_t val
)
1423 /* NaN are not treated the same way IEEE 754 does */
1424 if (unlikely(float64_is_any_nan(u
.d
))) {
1428 return float64_to_uint64_round_to_zero(u
.d
, &env
->vec_status
);
1431 uint64_t helper_efdcfsf(CPUPPCState
*env
, uint32_t val
)
1436 u
.d
= int32_to_float64(val
, &env
->vec_status
);
1437 tmp
= int64_to_float64(1ULL << 32, &env
->vec_status
);
1438 u
.d
= float64_div(u
.d
, tmp
, &env
->vec_status
);
1443 uint64_t helper_efdcfuf(CPUPPCState
*env
, uint32_t val
)
1448 u
.d
= uint32_to_float64(val
, &env
->vec_status
);
1449 tmp
= int64_to_float64(1ULL << 32, &env
->vec_status
);
1450 u
.d
= float64_div(u
.d
, tmp
, &env
->vec_status
);
1455 uint32_t helper_efdctsf(CPUPPCState
*env
, uint64_t val
)
1461 /* NaN are not treated the same way IEEE 754 does */
1462 if (unlikely(float64_is_any_nan(u
.d
))) {
1465 tmp
= uint64_to_float64(1ULL << 32, &env
->vec_status
);
1466 u
.d
= float64_mul(u
.d
, tmp
, &env
->vec_status
);
1468 return float64_to_int32(u
.d
, &env
->vec_status
);
1471 uint32_t helper_efdctuf(CPUPPCState
*env
, uint64_t val
)
1477 /* NaN are not treated the same way IEEE 754 does */
1478 if (unlikely(float64_is_any_nan(u
.d
))) {
1481 tmp
= uint64_to_float64(1ULL << 32, &env
->vec_status
);
1482 u
.d
= float64_mul(u
.d
, tmp
, &env
->vec_status
);
1484 return float64_to_uint32(u
.d
, &env
->vec_status
);
1487 uint32_t helper_efscfd(CPUPPCState
*env
, uint64_t val
)
1493 u2
.f
= float64_to_float32(u1
.d
, &env
->vec_status
);
1498 uint64_t helper_efdcfs(CPUPPCState
*env
, uint32_t val
)
1504 u2
.d
= float32_to_float64(u1
.f
, &env
->vec_status
);
1509 /* Double precision fixed-point arithmetic */
1510 uint64_t helper_efdadd(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1516 u1
.d
= float64_add(u1
.d
, u2
.d
, &env
->vec_status
);
1520 uint64_t helper_efdsub(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1526 u1
.d
= float64_sub(u1
.d
, u2
.d
, &env
->vec_status
);
1530 uint64_t helper_efdmul(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1536 u1
.d
= float64_mul(u1
.d
, u2
.d
, &env
->vec_status
);
1540 uint64_t helper_efddiv(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1546 u1
.d
= float64_div(u1
.d
, u2
.d
, &env
->vec_status
);
1550 /* Double precision floating point helpers */
1551 uint32_t helper_efdtstlt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1557 return float64_lt(u1
.d
, u2
.d
, &env
->vec_status
) ? 4 : 0;
1560 uint32_t helper_efdtstgt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1566 return float64_le(u1
.d
, u2
.d
, &env
->vec_status
) ? 0 : 4;
1569 uint32_t helper_efdtsteq(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1575 return float64_eq_quiet(u1
.d
, u2
.d
, &env
->vec_status
) ? 4 : 0;
1578 uint32_t helper_efdcmplt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1580 /* XXX: TODO: test special values (NaN, infinites, ...) */
1581 return helper_efdtstlt(env
, op1
, op2
);
1584 uint32_t helper_efdcmpgt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1586 /* XXX: TODO: test special values (NaN, infinites, ...) */
1587 return helper_efdtstgt(env
, op1
, op2
);
1590 uint32_t helper_efdcmpeq(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1592 /* XXX: TODO: test special values (NaN, infinites, ...) */
1593 return helper_efdtsteq(env
, op1
, op2
);
1596 #define float64_to_float64(x, env) x
1600 * VSX_ADD_SUB - VSX floating point add/subtract
1601 * name - instruction mnemonic
1602 * op - operation (add or sub)
1603 * nels - number of elements (1, 2 or 4)
1604 * tp - type (float32 or float64)
1605 * fld - vsr_t field (VsrD(*) or VsrW(*))
1608 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \
1609 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
1610 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1612 ppc_vsr_t t = *xt; \
1615 helper_reset_fpstatus(env); \
1617 for (i = 0; i < nels; i++) { \
1618 float_status tstat = env->fp_status; \
1619 set_float_exception_flags(0, &tstat); \
1620 t.fld = tp##_##op(xa->fld, xb->fld, &tstat); \
1621 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1623 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1624 float_invalid_op_addsub(env, tstat.float_exception_flags, \
1629 t.fld = do_frsp(env, t.fld, GETPC()); \
1633 helper_compute_fprf_float64(env, t.fld); \
1637 do_float_check_status(env, GETPC()); \
1640 VSX_ADD_SUB(xsadddp
, add
, 1, float64
, VsrD(0), 1, 0)
1641 VSX_ADD_SUB(xsaddsp
, add
, 1, float64
, VsrD(0), 1, 1)
1642 VSX_ADD_SUB(xvadddp
, add
, 2, float64
, VsrD(i
), 0, 0)
1643 VSX_ADD_SUB(xvaddsp
, add
, 4, float32
, VsrW(i
), 0, 0)
1644 VSX_ADD_SUB(xssubdp
, sub
, 1, float64
, VsrD(0), 1, 0)
1645 VSX_ADD_SUB(xssubsp
, sub
, 1, float64
, VsrD(0), 1, 1)
1646 VSX_ADD_SUB(xvsubdp
, sub
, 2, float64
, VsrD(i
), 0, 0)
1647 VSX_ADD_SUB(xvsubsp
, sub
, 4, float32
, VsrW(i
), 0, 0)
1649 void helper_xsaddqp(CPUPPCState
*env
, uint32_t opcode
,
1650 ppc_vsr_t
*xt
, ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
1655 helper_reset_fpstatus(env
);
1657 tstat
= env
->fp_status
;
1658 if (unlikely(Rc(opcode
) != 0)) {
1659 tstat
.float_rounding_mode
= float_round_to_odd
;
1662 set_float_exception_flags(0, &tstat
);
1663 t
.f128
= float128_add(xa
->f128
, xb
->f128
, &tstat
);
1664 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
1666 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
1667 float_invalid_op_addsub(env
, tstat
.float_exception_flags
, 1, GETPC());
1670 helper_compute_fprf_float128(env
, t
.f128
);
1673 do_float_check_status(env
, GETPC());
1677 * VSX_MUL - VSX floating point multiply
1678 * op - instruction mnemonic
1679 * nels - number of elements (1, 2 or 4)
1680 * tp - type (float32 or float64)
1681 * fld - vsr_t field (VsrD(*) or VsrW(*))
1684 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \
1685 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1686 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1688 ppc_vsr_t t = *xt; \
1691 helper_reset_fpstatus(env); \
1693 for (i = 0; i < nels; i++) { \
1694 float_status tstat = env->fp_status; \
1695 set_float_exception_flags(0, &tstat); \
1696 t.fld = tp##_mul(xa->fld, xb->fld, &tstat); \
1697 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1699 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1700 float_invalid_op_mul(env, tstat.float_exception_flags, \
1705 t.fld = do_frsp(env, t.fld, GETPC()); \
1709 helper_compute_fprf_float64(env, t.fld); \
1714 do_float_check_status(env, GETPC()); \
1717 VSX_MUL(xsmuldp
, 1, float64
, VsrD(0), 1, 0)
1718 VSX_MUL(xsmulsp
, 1, float64
, VsrD(0), 1, 1)
1719 VSX_MUL(xvmuldp
, 2, float64
, VsrD(i
), 0, 0)
1720 VSX_MUL(xvmulsp
, 4, float32
, VsrW(i
), 0, 0)
1722 void helper_xsmulqp(CPUPPCState
*env
, uint32_t opcode
,
1723 ppc_vsr_t
*xt
, ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
1728 helper_reset_fpstatus(env
);
1729 tstat
= env
->fp_status
;
1730 if (unlikely(Rc(opcode
) != 0)) {
1731 tstat
.float_rounding_mode
= float_round_to_odd
;
1734 set_float_exception_flags(0, &tstat
);
1735 t
.f128
= float128_mul(xa
->f128
, xb
->f128
, &tstat
);
1736 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
1738 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
1739 float_invalid_op_mul(env
, tstat
.float_exception_flags
, 1, GETPC());
1741 helper_compute_fprf_float128(env
, t
.f128
);
1744 do_float_check_status(env
, GETPC());
1748 * VSX_DIV - VSX floating point divide
1749 * op - instruction mnemonic
1750 * nels - number of elements (1, 2 or 4)
1751 * tp - type (float32 or float64)
1752 * fld - vsr_t field (VsrD(*) or VsrW(*))
1755 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \
1756 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1757 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1759 ppc_vsr_t t = *xt; \
1762 helper_reset_fpstatus(env); \
1764 for (i = 0; i < nels; i++) { \
1765 float_status tstat = env->fp_status; \
1766 set_float_exception_flags(0, &tstat); \
1767 t.fld = tp##_div(xa->fld, xb->fld, &tstat); \
1768 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1770 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1771 float_invalid_op_div(env, tstat.float_exception_flags, \
1774 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { \
1775 float_zero_divide_excp(env, GETPC()); \
1779 t.fld = do_frsp(env, t.fld, GETPC()); \
1783 helper_compute_fprf_float64(env, t.fld); \
1788 do_float_check_status(env, GETPC()); \
1791 VSX_DIV(xsdivdp
, 1, float64
, VsrD(0), 1, 0)
1792 VSX_DIV(xsdivsp
, 1, float64
, VsrD(0), 1, 1)
1793 VSX_DIV(xvdivdp
, 2, float64
, VsrD(i
), 0, 0)
1794 VSX_DIV(xvdivsp
, 4, float32
, VsrW(i
), 0, 0)
1796 void helper_xsdivqp(CPUPPCState
*env
, uint32_t opcode
,
1797 ppc_vsr_t
*xt
, ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
1802 helper_reset_fpstatus(env
);
1803 tstat
= env
->fp_status
;
1804 if (unlikely(Rc(opcode
) != 0)) {
1805 tstat
.float_rounding_mode
= float_round_to_odd
;
1808 set_float_exception_flags(0, &tstat
);
1809 t
.f128
= float128_div(xa
->f128
, xb
->f128
, &tstat
);
1810 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
1812 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
1813 float_invalid_op_div(env
, tstat
.float_exception_flags
, 1, GETPC());
1815 if (unlikely(tstat
.float_exception_flags
& float_flag_divbyzero
)) {
1816 float_zero_divide_excp(env
, GETPC());
1819 helper_compute_fprf_float128(env
, t
.f128
);
1821 do_float_check_status(env
, GETPC());
1825 * VSX_RE - VSX floating point reciprocal estimate
1826 * op - instruction mnemonic
1827 * nels - number of elements (1, 2 or 4)
1828 * tp - type (float32 or float64)
1829 * fld - vsr_t field (VsrD(*) or VsrW(*))
1832 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \
1833 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
1835 ppc_vsr_t t = *xt; \
1838 helper_reset_fpstatus(env); \
1840 for (i = 0; i < nels; i++) { \
1841 if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
1842 float_invalid_op_vxsnan(env, GETPC()); \
1844 t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status); \
1847 t.fld = do_frsp(env, t.fld, GETPC()); \
1851 helper_compute_fprf_float64(env, t.fld); \
1856 do_float_check_status(env, GETPC()); \
1859 VSX_RE(xsredp
, 1, float64
, VsrD(0), 1, 0)
1860 VSX_RE(xsresp
, 1, float64
, VsrD(0), 1, 1)
1861 VSX_RE(xvredp
, 2, float64
, VsrD(i
), 0, 0)
1862 VSX_RE(xvresp
, 4, float32
, VsrW(i
), 0, 0)
1865 * VSX_SQRT - VSX floating point square root
1866 * op - instruction mnemonic
1867 * nels - number of elements (1, 2 or 4)
1868 * tp - type (float32 or float64)
1869 * fld - vsr_t field (VsrD(*) or VsrW(*))
1872 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \
1873 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
1875 ppc_vsr_t t = *xt; \
1878 helper_reset_fpstatus(env); \
1880 for (i = 0; i < nels; i++) { \
1881 float_status tstat = env->fp_status; \
1882 set_float_exception_flags(0, &tstat); \
1883 t.fld = tp##_sqrt(xb->fld, &tstat); \
1884 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1886 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1887 if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \
1888 float_invalid_op_vxsqrt(env, sfprf, GETPC()); \
1889 } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \
1890 float_invalid_op_vxsnan(env, GETPC()); \
1895 t.fld = do_frsp(env, t.fld, GETPC()); \
1899 helper_compute_fprf_float64(env, t.fld); \
1904 do_float_check_status(env, GETPC()); \
1907 VSX_SQRT(xssqrtdp
, 1, float64
, VsrD(0), 1, 0)
1908 VSX_SQRT(xssqrtsp
, 1, float64
, VsrD(0), 1, 1)
1909 VSX_SQRT(xvsqrtdp
, 2, float64
, VsrD(i
), 0, 0)
1910 VSX_SQRT(xvsqrtsp
, 4, float32
, VsrW(i
), 0, 0)
1913 *VSX_RSQRTE - VSX floating point reciprocal square root estimate
1914 * op - instruction mnemonic
1915 * nels - number of elements (1, 2 or 4)
1916 * tp - type (float32 or float64)
1917 * fld - vsr_t field (VsrD(*) or VsrW(*))
1920 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \
1921 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
1923 ppc_vsr_t t = *xt; \
1926 helper_reset_fpstatus(env); \
1928 for (i = 0; i < nels; i++) { \
1929 float_status tstat = env->fp_status; \
1930 set_float_exception_flags(0, &tstat); \
1931 t.fld = tp##_sqrt(xb->fld, &tstat); \
1932 t.fld = tp##_div(tp##_one, t.fld, &tstat); \
1933 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1935 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1936 if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \
1937 float_invalid_op_vxsqrt(env, sfprf, GETPC()); \
1938 } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \
1939 float_invalid_op_vxsnan(env, GETPC()); \
1944 t.fld = do_frsp(env, t.fld, GETPC()); \
1948 helper_compute_fprf_float64(env, t.fld); \
1953 do_float_check_status(env, GETPC()); \
1956 VSX_RSQRTE(xsrsqrtedp
, 1, float64
, VsrD(0), 1, 0)
1957 VSX_RSQRTE(xsrsqrtesp
, 1, float64
, VsrD(0), 1, 1)
1958 VSX_RSQRTE(xvrsqrtedp
, 2, float64
, VsrD(i
), 0, 0)
1959 VSX_RSQRTE(xvrsqrtesp
, 4, float32
, VsrW(i
), 0, 0)
1962 * VSX_TDIV - VSX floating point test for divide
1963 * op - instruction mnemonic
1964 * nels - number of elements (1, 2 or 4)
1965 * tp - type (float32 or float64)
1966 * fld - vsr_t field (VsrD(*) or VsrW(*))
1967 * emin - minimum unbiased exponent
1968 * emax - maximum unbiased exponent
1969 * nbits - number of fraction bits
1971 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
1972 void helper_##op(CPUPPCState *env, uint32_t opcode, \
1973 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1979 for (i = 0; i < nels; i++) { \
1980 if (unlikely(tp##_is_infinity(xa->fld) || \
1981 tp##_is_infinity(xb->fld) || \
1982 tp##_is_zero(xb->fld))) { \
1986 int e_a = ppc_##tp##_get_unbiased_exp(xa->fld); \
1987 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
1989 if (unlikely(tp##_is_any_nan(xa->fld) || \
1990 tp##_is_any_nan(xb->fld))) { \
1992 } else if ((e_b <= emin) || (e_b >= (emax - 2))) { \
1994 } else if (!tp##_is_zero(xa->fld) && \
1995 (((e_a - e_b) >= emax) || \
1996 ((e_a - e_b) <= (emin + 1)) || \
1997 (e_a <= (emin + nbits)))) { \
2001 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
2003 * XB is not zero because of the above check and so \
2004 * must be denormalized. \
2011 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2014 VSX_TDIV(xstdivdp
, 1, float64
, VsrD(0), -1022, 1023, 52)
2015 VSX_TDIV(xvtdivdp
, 2, float64
, VsrD(i
), -1022, 1023, 52)
2016 VSX_TDIV(xvtdivsp
, 4, float32
, VsrW(i
), -126, 127, 23)
2019 * VSX_TSQRT - VSX floating point test for square root
2020 * op - instruction mnemonic
2021 * nels - number of elements (1, 2 or 4)
2022 * tp - type (float32 or float64)
2023 * fld - vsr_t field (VsrD(*) or VsrW(*))
2024 * emin - minimum unbiased exponent
2025 * emax - maximum unbiased exponent
2026 * nbits - number of fraction bits
2028 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
2029 void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) \
2035 for (i = 0; i < nels; i++) { \
2036 if (unlikely(tp##_is_infinity(xb->fld) || \
2037 tp##_is_zero(xb->fld))) { \
2041 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
2043 if (unlikely(tp##_is_any_nan(xb->fld))) { \
2045 } else if (unlikely(tp##_is_zero(xb->fld))) { \
2047 } else if (unlikely(tp##_is_neg(xb->fld))) { \
2049 } else if (!tp##_is_zero(xb->fld) && \
2050 (e_b <= (emin + nbits))) { \
2054 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
2056 * XB is not zero because of the above check and \
2057 * therefore must be denormalized. \
2064 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2067 VSX_TSQRT(xstsqrtdp
, 1, float64
, VsrD(0), -1022, 52)
2068 VSX_TSQRT(xvtsqrtdp
, 2, float64
, VsrD(i
), -1022, 52)
2069 VSX_TSQRT(xvtsqrtsp
, 4, float32
, VsrW(i
), -126, 23)
2072 * VSX_MADD - VSX floating point muliply/add variations
2073 * op - instruction mnemonic
2074 * nels - number of elements (1, 2 or 4)
2075 * tp - type (float32 or float64)
2076 * fld - vsr_t field (VsrD(*) or VsrW(*))
2077 * maddflgs - flags for the float*muladd routine that control the
2078 * various forms (madd, msub, nmadd, nmsub)
2081 #define VSX_MADD(op, nels, tp, fld, maddflgs, sfprf, r2sp) \
2082 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2083 ppc_vsr_t *xa, ppc_vsr_t *b, ppc_vsr_t *c) \
2085 ppc_vsr_t t = *xt; \
2088 helper_reset_fpstatus(env); \
2090 for (i = 0; i < nels; i++) { \
2091 float_status tstat = env->fp_status; \
2092 set_float_exception_flags(0, &tstat); \
2093 if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2095 * Avoid double rounding errors by rounding the intermediate \
2098 set_float_rounding_mode(float_round_to_zero, &tstat); \
2099 t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \
2100 maddflgs, &tstat); \
2101 t.fld |= (get_float_exception_flags(&tstat) & \
2102 float_flag_inexact) != 0; \
2104 t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \
2105 maddflgs, &tstat); \
2107 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2109 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2110 float_invalid_op_madd(env, tstat.float_exception_flags, \
2115 t.fld = do_frsp(env, t.fld, GETPC()); \
2119 helper_compute_fprf_float64(env, t.fld); \
2123 do_float_check_status(env, GETPC()); \
2126 VSX_MADD(xsmadddp
, 1, float64
, VsrD(0), MADD_FLGS
, 1, 0)
2127 VSX_MADD(xsmsubdp
, 1, float64
, VsrD(0), MSUB_FLGS
, 1, 0)
2128 VSX_MADD(xsnmadddp
, 1, float64
, VsrD(0), NMADD_FLGS
, 1, 0)
2129 VSX_MADD(xsnmsubdp
, 1, float64
, VsrD(0), NMSUB_FLGS
, 1, 0)
2130 VSX_MADD(xsmaddsp
, 1, float64
, VsrD(0), MADD_FLGS
, 1, 1)
2131 VSX_MADD(xsmsubsp
, 1, float64
, VsrD(0), MSUB_FLGS
, 1, 1)
2132 VSX_MADD(xsnmaddsp
, 1, float64
, VsrD(0), NMADD_FLGS
, 1, 1)
2133 VSX_MADD(xsnmsubsp
, 1, float64
, VsrD(0), NMSUB_FLGS
, 1, 1)
2135 VSX_MADD(xvmadddp
, 2, float64
, VsrD(i
), MADD_FLGS
, 0, 0)
2136 VSX_MADD(xvmsubdp
, 2, float64
, VsrD(i
), MSUB_FLGS
, 0, 0)
2137 VSX_MADD(xvnmadddp
, 2, float64
, VsrD(i
), NMADD_FLGS
, 0, 0)
2138 VSX_MADD(xvnmsubdp
, 2, float64
, VsrD(i
), NMSUB_FLGS
, 0, 0)
2140 VSX_MADD(xvmaddsp
, 4, float32
, VsrW(i
), MADD_FLGS
, 0, 0)
2141 VSX_MADD(xvmsubsp
, 4, float32
, VsrW(i
), MSUB_FLGS
, 0, 0)
2142 VSX_MADD(xvnmaddsp
, 4, float32
, VsrW(i
), NMADD_FLGS
, 0, 0)
2143 VSX_MADD(xvnmsubsp
, 4, float32
, VsrW(i
), NMSUB_FLGS
, 0, 0)
2146 * VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision
2147 * op - instruction mnemonic
2148 * cmp - comparison operation
2149 * exp - expected result of comparison
2150 * svxvc - set VXVC bit
2152 #define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc) \
2153 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2154 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2156 ppc_vsr_t t = *xt; \
2157 bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false; \
2159 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
2160 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2161 vxsnan_flag = true; \
2162 if (fpscr_ve == 0 && svxvc) { \
2165 } else if (svxvc) { \
2166 vxvc_flag = float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \
2167 float64_is_quiet_nan(xb->VsrD(0), &env->fp_status); \
2169 if (vxsnan_flag) { \
2170 float_invalid_op_vxsnan(env, GETPC()); \
2173 float_invalid_op_vxvc(env, 0, GETPC()); \
2175 vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag); \
2178 if (float64_##cmp(xb->VsrD(0), xa->VsrD(0), \
2179 &env->fp_status) == exp) { \
2188 do_float_check_status(env, GETPC()); \
2191 VSX_SCALAR_CMP_DP(xscmpeqdp
, eq
, 1, 0)
2192 VSX_SCALAR_CMP_DP(xscmpgedp
, le
, 1, 1)
2193 VSX_SCALAR_CMP_DP(xscmpgtdp
, lt
, 1, 1)
2194 VSX_SCALAR_CMP_DP(xscmpnedp
, eq
, 0, 0)
2196 void helper_xscmpexpdp(CPUPPCState
*env
, uint32_t opcode
,
2197 ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
2199 int64_t exp_a
, exp_b
;
2202 exp_a
= extract64(xa
->VsrD(0), 52, 11);
2203 exp_b
= extract64(xb
->VsrD(0), 52, 11);
2205 if (unlikely(float64_is_any_nan(xa
->VsrD(0)) ||
2206 float64_is_any_nan(xb
->VsrD(0)))) {
2209 if (exp_a
< exp_b
) {
2211 } else if (exp_a
> exp_b
) {
2218 env
->fpscr
&= ~FP_FPCC
;
2219 env
->fpscr
|= cc
<< FPSCR_FPCC
;
2220 env
->crf
[BF(opcode
)] = cc
;
2222 do_float_check_status(env
, GETPC());
2225 void helper_xscmpexpqp(CPUPPCState
*env
, uint32_t opcode
,
2226 ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
2228 int64_t exp_a
, exp_b
;
2231 exp_a
= extract64(xa
->VsrD(0), 48, 15);
2232 exp_b
= extract64(xb
->VsrD(0), 48, 15);
2234 if (unlikely(float128_is_any_nan(xa
->f128
) ||
2235 float128_is_any_nan(xb
->f128
))) {
2238 if (exp_a
< exp_b
) {
2240 } else if (exp_a
> exp_b
) {
2247 env
->fpscr
&= ~FP_FPCC
;
2248 env
->fpscr
|= cc
<< FPSCR_FPCC
;
2249 env
->crf
[BF(opcode
)] = cc
;
2251 do_float_check_status(env
, GETPC());
2254 static inline void do_scalar_cmp(CPUPPCState
*env
, ppc_vsr_t
*xa
, ppc_vsr_t
*xb
,
2255 int crf_idx
, bool ordered
)
2258 bool vxsnan_flag
= false, vxvc_flag
= false;
2260 helper_reset_fpstatus(env
);
2262 switch (float64_compare(xa
->VsrD(0), xb
->VsrD(0), &env
->fp_status
)) {
2263 case float_relation_less
:
2266 case float_relation_equal
:
2269 case float_relation_greater
:
2272 case float_relation_unordered
:
2275 if (float64_is_signaling_nan(xa
->VsrD(0), &env
->fp_status
) ||
2276 float64_is_signaling_nan(xb
->VsrD(0), &env
->fp_status
)) {
2278 if (fpscr_ve
== 0 && ordered
) {
2281 } else if (float64_is_quiet_nan(xa
->VsrD(0), &env
->fp_status
) ||
2282 float64_is_quiet_nan(xb
->VsrD(0), &env
->fp_status
)) {
2290 g_assert_not_reached();
2293 env
->fpscr
&= ~FP_FPCC
;
2294 env
->fpscr
|= cc
<< FPSCR_FPCC
;
2295 env
->crf
[crf_idx
] = cc
;
2298 float_invalid_op_vxsnan(env
, GETPC());
2301 float_invalid_op_vxvc(env
, 0, GETPC());
2304 do_float_check_status(env
, GETPC());
2307 void helper_xscmpodp(CPUPPCState
*env
, uint32_t opcode
, ppc_vsr_t
*xa
,
2310 do_scalar_cmp(env
, xa
, xb
, BF(opcode
), true);
2313 void helper_xscmpudp(CPUPPCState
*env
, uint32_t opcode
, ppc_vsr_t
*xa
,
2316 do_scalar_cmp(env
, xa
, xb
, BF(opcode
), false);
2319 static inline void do_scalar_cmpq(CPUPPCState
*env
, ppc_vsr_t
*xa
,
2320 ppc_vsr_t
*xb
, int crf_idx
, bool ordered
)
2323 bool vxsnan_flag
= false, vxvc_flag
= false;
2325 helper_reset_fpstatus(env
);
2327 switch (float128_compare(xa
->f128
, xb
->f128
, &env
->fp_status
)) {
2328 case float_relation_less
:
2331 case float_relation_equal
:
2334 case float_relation_greater
:
2337 case float_relation_unordered
:
2340 if (float128_is_signaling_nan(xa
->f128
, &env
->fp_status
) ||
2341 float128_is_signaling_nan(xb
->f128
, &env
->fp_status
)) {
2343 if (fpscr_ve
== 0 && ordered
) {
2346 } else if (float128_is_quiet_nan(xa
->f128
, &env
->fp_status
) ||
2347 float128_is_quiet_nan(xb
->f128
, &env
->fp_status
)) {
2355 g_assert_not_reached();
2358 env
->fpscr
&= ~FP_FPCC
;
2359 env
->fpscr
|= cc
<< FPSCR_FPCC
;
2360 env
->crf
[crf_idx
] = cc
;
2363 float_invalid_op_vxsnan(env
, GETPC());
2366 float_invalid_op_vxvc(env
, 0, GETPC());
2369 do_float_check_status(env
, GETPC());
2372 void helper_xscmpoqp(CPUPPCState
*env
, uint32_t opcode
, ppc_vsr_t
*xa
,
2375 do_scalar_cmpq(env
, xa
, xb
, BF(opcode
), true);
2378 void helper_xscmpuqp(CPUPPCState
*env
, uint32_t opcode
, ppc_vsr_t
*xa
,
2381 do_scalar_cmpq(env
, xa
, xb
, BF(opcode
), false);
2385 * VSX_MAX_MIN - VSX floating point maximum/minimum
2386 * name - instruction mnemonic
2387 * op - operation (max or min)
2388 * nels - number of elements (1, 2 or 4)
2389 * tp - type (float32 or float64)
2390 * fld - vsr_t field (VsrD(*) or VsrW(*))
2392 #define VSX_MAX_MIN(name, op, nels, tp, fld) \
2393 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
2394 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2396 ppc_vsr_t t = *xt; \
2399 for (i = 0; i < nels; i++) { \
2400 t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status); \
2401 if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2402 tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
2403 float_invalid_op_vxsnan(env, GETPC()); \
2408 do_float_check_status(env, GETPC()); \
2411 VSX_MAX_MIN(xsmaxdp
, maxnum
, 1, float64
, VsrD(0))
2412 VSX_MAX_MIN(xvmaxdp
, maxnum
, 2, float64
, VsrD(i
))
2413 VSX_MAX_MIN(xvmaxsp
, maxnum
, 4, float32
, VsrW(i
))
2414 VSX_MAX_MIN(xsmindp
, minnum
, 1, float64
, VsrD(0))
2415 VSX_MAX_MIN(xvmindp
, minnum
, 2, float64
, VsrD(i
))
2416 VSX_MAX_MIN(xvminsp
, minnum
, 4, float32
, VsrW(i
))
2418 #define VSX_MAX_MINC(name, max) \
2419 void helper_##name(CPUPPCState *env, uint32_t opcode, \
2420 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
2422 ppc_vsr_t t = *xt; \
2423 bool vxsnan_flag = false, vex_flag = false; \
2425 if (unlikely(float64_is_any_nan(xa->VsrD(0)) || \
2426 float64_is_any_nan(xb->VsrD(0)))) { \
2427 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
2428 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2429 vxsnan_flag = true; \
2431 t.VsrD(0) = xb->VsrD(0); \
2432 } else if ((max && \
2433 !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
2435 float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
2436 t.VsrD(0) = xa->VsrD(0); \
2438 t.VsrD(0) = xb->VsrD(0); \
2441 vex_flag = fpscr_ve & vxsnan_flag; \
2442 if (vxsnan_flag) { \
2443 float_invalid_op_vxsnan(env, GETPC()); \
2450 VSX_MAX_MINC(xsmaxcdp, 1);
2451 VSX_MAX_MINC(xsmincdp
, 0);
2453 #define VSX_MAX_MINJ(name, max) \
2454 void helper_##name(CPUPPCState *env, uint32_t opcode, \
2455 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
2457 ppc_vsr_t t = *xt; \
2458 bool vxsnan_flag = false, vex_flag = false; \
2460 if (unlikely(float64_is_any_nan(xa->VsrD(0)))) { \
2461 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) { \
2462 vxsnan_flag = true; \
2464 t.VsrD(0) = xa->VsrD(0); \
2465 } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) { \
2466 if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2467 vxsnan_flag = true; \
2469 t.VsrD(0) = xb->VsrD(0); \
2470 } else if (float64_is_zero(xa->VsrD(0)) && \
2471 float64_is_zero(xb->VsrD(0))) { \
2473 if (!float64_is_neg(xa->VsrD(0)) || \
2474 !float64_is_neg(xb->VsrD(0))) { \
2477 t.VsrD(0) = 0x8000000000000000ULL; \
2480 if (float64_is_neg(xa->VsrD(0)) || \
2481 float64_is_neg(xb->VsrD(0))) { \
2482 t.VsrD(0) = 0x8000000000000000ULL; \
2487 } else if ((max && \
2488 !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
2490 float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
2491 t.VsrD(0) = xa->VsrD(0); \
2493 t.VsrD(0) = xb->VsrD(0); \
2496 vex_flag = fpscr_ve & vxsnan_flag; \
2497 if (vxsnan_flag) { \
2498 float_invalid_op_vxsnan(env, GETPC()); \
2505 VSX_MAX_MINJ(xsmaxjdp, 1);
2506 VSX_MAX_MINJ(xsminjdp
, 0);
2509 * VSX_CMP - VSX floating point compare
2510 * op - instruction mnemonic
2511 * nels - number of elements (1, 2 or 4)
2512 * tp - type (float32 or float64)
2513 * fld - vsr_t field (VsrD(*) or VsrW(*))
2514 * cmp - comparison operation
2515 * svxvc - set VXVC bit
2516 * exp - expected result of comparison
2518 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \
2519 uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2520 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2522 ppc_vsr_t t = *xt; \
2523 uint32_t crf6 = 0; \
2526 int all_false = 1; \
2528 for (i = 0; i < nels; i++) { \
2529 if (unlikely(tp##_is_any_nan(xa->fld) || \
2530 tp##_is_any_nan(xb->fld))) { \
2531 if (tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2532 tp##_is_signaling_nan(xb->fld, &env->fp_status)) { \
2533 float_invalid_op_vxsnan(env, GETPC()); \
2536 float_invalid_op_vxvc(env, 0, GETPC()); \
2541 if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) { \
2552 crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
2556 VSX_CMP(xvcmpeqdp
, 2, float64
, VsrD(i
), eq
, 0, 1)
2557 VSX_CMP(xvcmpgedp
, 2, float64
, VsrD(i
), le
, 1, 1)
2558 VSX_CMP(xvcmpgtdp
, 2, float64
, VsrD(i
), lt
, 1, 1)
2559 VSX_CMP(xvcmpnedp
, 2, float64
, VsrD(i
), eq
, 0, 0)
2560 VSX_CMP(xvcmpeqsp
, 4, float32
, VsrW(i
), eq
, 0, 1)
2561 VSX_CMP(xvcmpgesp
, 4, float32
, VsrW(i
), le
, 1, 1)
2562 VSX_CMP(xvcmpgtsp
, 4, float32
, VsrW(i
), lt
, 1, 1)
2563 VSX_CMP(xvcmpnesp
, 4, float32
, VsrW(i
), eq
, 0, 0)
2566 * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2567 * op - instruction mnemonic
2568 * nels - number of elements (1, 2 or 4)
2569 * stp - source type (float32 or float64)
2570 * ttp - target type (float32 or float64)
2571 * sfld - source vsr_t field
2572 * tfld - target vsr_t field (f32 or f64)
2575 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2576 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2578 ppc_vsr_t t = *xt; \
2581 for (i = 0; i < nels; i++) { \
2582 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2583 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2584 &env->fp_status))) { \
2585 float_invalid_op_vxsnan(env, GETPC()); \
2586 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2589 helper_compute_fprf_##ttp(env, t.tfld); \
2594 do_float_check_status(env, GETPC()); \
2597 VSX_CVT_FP_TO_FP(xscvdpsp
, 1, float64
, float32
, VsrD(0), VsrW(0), 1)
2598 VSX_CVT_FP_TO_FP(xscvspdp
, 1, float32
, float64
, VsrW(0), VsrD(0), 1)
2599 VSX_CVT_FP_TO_FP(xvcvdpsp
, 2, float64
, float32
, VsrD(i
), VsrW(2 * i
), 0)
2600 VSX_CVT_FP_TO_FP(xvcvspdp
, 2, float32
, float64
, VsrW(2 * i
), VsrD(i
), 0)
2603 * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2604 * op - instruction mnemonic
2605 * nels - number of elements (1, 2 or 4)
2606 * stp - source type (float32 or float64)
2607 * ttp - target type (float32 or float64)
2608 * sfld - source vsr_t field
2609 * tfld - target vsr_t field (f32 or f64)
2612 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \
2613 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2614 ppc_vsr_t *xt, ppc_vsr_t *xb) \
2616 ppc_vsr_t t = *xt; \
2619 for (i = 0; i < nels; i++) { \
2620 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2621 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2622 &env->fp_status))) { \
2623 float_invalid_op_vxsnan(env, GETPC()); \
2624 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2627 helper_compute_fprf_##ttp(env, t.tfld); \
2632 do_float_check_status(env, GETPC()); \
2635 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp
, 1, float64
, float128
, VsrD(0), f128
, 1)
2638 * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2639 * involving one half precision value
2640 * op - instruction mnemonic
2641 * nels - number of elements (1, 2 or 4)
2644 * sfld - source vsr_t field
2645 * tfld - target vsr_t field
2648 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2649 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2651 ppc_vsr_t t = { }; \
2654 for (i = 0; i < nels; i++) { \
2655 t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status); \
2656 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2657 &env->fp_status))) { \
2658 float_invalid_op_vxsnan(env, GETPC()); \
2659 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2662 helper_compute_fprf_##ttp(env, t.tfld); \
2667 do_float_check_status(env, GETPC()); \
2670 VSX_CVT_FP_TO_FP_HP(xscvdphp
, 1, float64
, float16
, VsrD(0), VsrH(3), 1)
2671 VSX_CVT_FP_TO_FP_HP(xscvhpdp
, 1, float16
, float64
, VsrH(3), VsrD(0), 1)
2672 VSX_CVT_FP_TO_FP_HP(xvcvsphp
, 4, float32
, float16
, VsrW(i
), VsrH(2 * i
+ 1), 0)
2673 VSX_CVT_FP_TO_FP_HP(xvcvhpsp
, 4, float16
, float32
, VsrH(2 * i
+ 1), VsrW(i
), 0)
2676 * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be
2677 * added to this later.
2679 void helper_xscvqpdp(CPUPPCState
*env
, uint32_t opcode
,
2680 ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
2685 tstat
= env
->fp_status
;
2686 if (unlikely(Rc(opcode
) != 0)) {
2687 tstat
.float_rounding_mode
= float_round_to_odd
;
2690 t
.VsrD(0) = float128_to_float64(xb
->f128
, &tstat
);
2691 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
2692 if (unlikely(float128_is_signaling_nan(xb
->f128
, &tstat
))) {
2693 float_invalid_op_vxsnan(env
, GETPC());
2694 t
.VsrD(0) = float64_snan_to_qnan(t
.VsrD(0));
2696 helper_compute_fprf_float64(env
, t
.VsrD(0));
2699 do_float_check_status(env
, GETPC());
2702 uint64_t helper_xscvdpspn(CPUPPCState
*env
, uint64_t xb
)
2704 uint64_t result
, sign
, exp
, frac
;
2706 float_status tstat
= env
->fp_status
;
2707 set_float_exception_flags(0, &tstat
);
2709 sign
= extract64(xb
, 63, 1);
2710 exp
= extract64(xb
, 52, 11);
2711 frac
= extract64(xb
, 0, 52) | 0x10000000000000ULL
;
2713 if (unlikely(exp
== 0 && extract64(frac
, 0, 52) != 0)) {
2714 /* DP denormal operand. */
2715 /* Exponent override to DP min exp. */
2717 /* Implicit bit override to 0. */
2718 frac
= deposit64(frac
, 53, 1, 0);
2721 if (unlikely(exp
< 897 && frac
!= 0)) {
2722 /* SP tiny operand. */
2723 if (897 - exp
> 63) {
2726 /* Denormalize until exp = SP min exp. */
2727 frac
>>= (897 - exp
);
2729 /* Exponent override to SP min exp - 1. */
2733 result
= sign
<< 31;
2734 result
|= extract64(exp
, 10, 1) << 30;
2735 result
|= extract64(exp
, 0, 7) << 23;
2736 result
|= extract64(frac
, 29, 23);
2738 /* hardware replicates result to both words of the doubleword result. */
2739 return (result
<< 32) | result
;
2742 uint64_t helper_xscvspdpn(CPUPPCState
*env
, uint64_t xb
)
2744 float_status tstat
= env
->fp_status
;
2745 set_float_exception_flags(0, &tstat
);
2747 return float32_to_float64(xb
>> 32, &tstat
);
2751 * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2752 * op - instruction mnemonic
2753 * nels - number of elements (1, 2 or 4)
2754 * stp - source type (float32 or float64)
2755 * ttp - target type (int32, uint32, int64 or uint64)
2756 * sfld - source vsr_t field
2757 * tfld - target vsr_t field
2758 * rnan - resulting NaN
2760 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \
2761 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2763 int all_flags = env->fp_status.float_exception_flags, flags; \
2764 ppc_vsr_t t = *xt; \
2767 for (i = 0; i < nels; i++) { \
2768 env->fp_status.float_exception_flags = 0; \
2769 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
2770 flags = env->fp_status.float_exception_flags; \
2771 if (unlikely(flags & float_flag_invalid)) { \
2772 t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC());\
2774 all_flags |= flags; \
2778 env->fp_status.float_exception_flags = all_flags; \
2779 do_float_check_status(env, GETPC()); \
2782 VSX_CVT_FP_TO_INT(xscvdpsxds
, 1, float64
, int64
, VsrD(0), VsrD(0), \
2783 0x8000000000000000ULL
)
2784 VSX_CVT_FP_TO_INT(xscvdpsxws
, 1, float64
, int32
, VsrD(0), VsrW(1), \
2786 VSX_CVT_FP_TO_INT(xscvdpuxds
, 1, float64
, uint64
, VsrD(0), VsrD(0), 0ULL)
2787 VSX_CVT_FP_TO_INT(xscvdpuxws
, 1, float64
, uint32
, VsrD(0), VsrW(1), 0U)
2788 VSX_CVT_FP_TO_INT(xvcvdpsxds
, 2, float64
, int64
, VsrD(i
), VsrD(i
), \
2789 0x8000000000000000ULL
)
2790 VSX_CVT_FP_TO_INT(xvcvdpsxws
, 2, float64
, int32
, VsrD(i
), VsrW(2 * i
), \
2792 VSX_CVT_FP_TO_INT(xvcvdpuxds
, 2, float64
, uint64
, VsrD(i
), VsrD(i
), 0ULL)
2793 VSX_CVT_FP_TO_INT(xvcvdpuxws
, 2, float64
, uint32
, VsrD(i
), VsrW(2 * i
), 0U)
2794 VSX_CVT_FP_TO_INT(xvcvspsxds
, 2, float32
, int64
, VsrW(2 * i
), VsrD(i
), \
2795 0x8000000000000000ULL
)
2796 VSX_CVT_FP_TO_INT(xvcvspsxws
, 4, float32
, int32
, VsrW(i
), VsrW(i
), 0x80000000U
)
2797 VSX_CVT_FP_TO_INT(xvcvspuxds
, 2, float32
, uint64
, VsrW(2 * i
), VsrD(i
), 0ULL)
2798 VSX_CVT_FP_TO_INT(xvcvspuxws
, 4, float32
, uint32
, VsrW(i
), VsrW(i
), 0U)
2801 * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
2802 * op - instruction mnemonic
2803 * stp - source type (float32 or float64)
2804 * ttp - target type (int32, uint32, int64 or uint64)
2805 * sfld - source vsr_t field
2806 * tfld - target vsr_t field
2807 * rnan - resulting NaN
2809 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \
2810 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2811 ppc_vsr_t *xt, ppc_vsr_t *xb) \
2813 ppc_vsr_t t = { }; \
2816 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
2817 flags = get_float_exception_flags(&env->fp_status); \
2818 if (flags & float_flag_invalid) { \
2819 t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC()); \
2823 do_float_check_status(env, GETPC()); \
2826 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz
, float128
, int64
, f128
, VsrD(0), \
2827 0x8000000000000000ULL
)
2829 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz
, float128
, int32
, f128
, VsrD(0), \
2830 0xffffffff80000000ULL
)
2831 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz
, float128
, uint64
, f128
, VsrD(0), 0x0ULL
)
2832 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz
, float128
, uint32
, f128
, VsrD(0), 0x0ULL
)
2835 * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2836 * op - instruction mnemonic
2837 * nels - number of elements (1, 2 or 4)
2838 * stp - source type (int32, uint32, int64 or uint64)
2839 * ttp - target type (float32 or float64)
2840 * sfld - source vsr_t field
2841 * tfld - target vsr_t field
2842 * jdef - definition of the j index (i or 2*i)
2845 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \
2846 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2848 ppc_vsr_t t = *xt; \
2851 for (i = 0; i < nels; i++) { \
2852 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2854 t.tfld = do_frsp(env, t.tfld, GETPC()); \
2857 helper_compute_fprf_float64(env, t.tfld); \
2862 do_float_check_status(env, GETPC()); \
2865 VSX_CVT_INT_TO_FP(xscvsxddp
, 1, int64
, float64
, VsrD(0), VsrD(0), 1, 0)
2866 VSX_CVT_INT_TO_FP(xscvuxddp
, 1, uint64
, float64
, VsrD(0), VsrD(0), 1, 0)
2867 VSX_CVT_INT_TO_FP(xscvsxdsp
, 1, int64
, float64
, VsrD(0), VsrD(0), 1, 1)
2868 VSX_CVT_INT_TO_FP(xscvuxdsp
, 1, uint64
, float64
, VsrD(0), VsrD(0), 1, 1)
2869 VSX_CVT_INT_TO_FP(xvcvsxddp
, 2, int64
, float64
, VsrD(i
), VsrD(i
), 0, 0)
2870 VSX_CVT_INT_TO_FP(xvcvuxddp
, 2, uint64
, float64
, VsrD(i
), VsrD(i
), 0, 0)
2871 VSX_CVT_INT_TO_FP(xvcvsxwdp
, 2, int32
, float64
, VsrW(2 * i
), VsrD(i
), 0, 0)
2872 VSX_CVT_INT_TO_FP(xvcvuxwdp
, 2, uint64
, float64
, VsrW(2 * i
), VsrD(i
), 0, 0)
2873 VSX_CVT_INT_TO_FP(xvcvsxdsp
, 2, int64
, float32
, VsrD(i
), VsrW(2 * i
), 0, 0)
2874 VSX_CVT_INT_TO_FP(xvcvuxdsp
, 2, uint64
, float32
, VsrD(i
), VsrW(2 * i
), 0, 0)
2875 VSX_CVT_INT_TO_FP(xvcvsxwsp
, 4, int32
, float32
, VsrW(i
), VsrW(i
), 0, 0)
2876 VSX_CVT_INT_TO_FP(xvcvuxwsp
, 4, uint32
, float32
, VsrW(i
), VsrW(i
), 0, 0)
2879 * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
2880 * op - instruction mnemonic
2881 * stp - source type (int32, uint32, int64 or uint64)
2882 * ttp - target type (float32 or float64)
2883 * sfld - source vsr_t field
2884 * tfld - target vsr_t field
2886 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \
2887 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2888 ppc_vsr_t *xt, ppc_vsr_t *xb) \
2890 ppc_vsr_t t = *xt; \
2892 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2893 helper_compute_fprf_##ttp(env, t.tfld); \
2896 do_float_check_status(env, GETPC()); \
2899 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp
, int64
, float128
, VsrD(0), f128
)
2900 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp
, uint64
, float128
, VsrD(0), f128
)
2903 * For "use current rounding mode", define a value that will not be
2904 * one of the existing rounding model enums.
2906 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
2907 float_round_up + float_round_to_zero)
2910 * VSX_ROUND - VSX floating point round
2911 * op - instruction mnemonic
2912 * nels - number of elements (1, 2 or 4)
2913 * tp - type (float32 or float64)
2914 * fld - vsr_t field (VsrD(*) or VsrW(*))
2915 * rmode - rounding mode
2918 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \
2919 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2921 ppc_vsr_t t = *xt; \
2923 FloatRoundMode curr_rounding_mode; \
2925 if (rmode != FLOAT_ROUND_CURRENT) { \
2926 curr_rounding_mode = get_float_rounding_mode(&env->fp_status); \
2927 set_float_rounding_mode(rmode, &env->fp_status); \
2930 for (i = 0; i < nels; i++) { \
2931 if (unlikely(tp##_is_signaling_nan(xb->fld, \
2932 &env->fp_status))) { \
2933 float_invalid_op_vxsnan(env, GETPC()); \
2934 t.fld = tp##_snan_to_qnan(xb->fld); \
2936 t.fld = tp##_round_to_int(xb->fld, &env->fp_status); \
2939 helper_compute_fprf_float64(env, t.fld); \
2944 * If this is not a "use current rounding mode" instruction, \
2945 * then inhibit setting of the XX bit and restore rounding \
2948 if (rmode != FLOAT_ROUND_CURRENT) { \
2949 set_float_rounding_mode(curr_rounding_mode, &env->fp_status); \
2950 env->fp_status.float_exception_flags &= ~float_flag_inexact; \
2954 do_float_check_status(env, GETPC()); \
2957 VSX_ROUND(xsrdpi
, 1, float64
, VsrD(0), float_round_ties_away
, 1)
2958 VSX_ROUND(xsrdpic
, 1, float64
, VsrD(0), FLOAT_ROUND_CURRENT
, 1)
2959 VSX_ROUND(xsrdpim
, 1, float64
, VsrD(0), float_round_down
, 1)
2960 VSX_ROUND(xsrdpip
, 1, float64
, VsrD(0), float_round_up
, 1)
2961 VSX_ROUND(xsrdpiz
, 1, float64
, VsrD(0), float_round_to_zero
, 1)
2963 VSX_ROUND(xvrdpi
, 2, float64
, VsrD(i
), float_round_ties_away
, 0)
2964 VSX_ROUND(xvrdpic
, 2, float64
, VsrD(i
), FLOAT_ROUND_CURRENT
, 0)
2965 VSX_ROUND(xvrdpim
, 2, float64
, VsrD(i
), float_round_down
, 0)
2966 VSX_ROUND(xvrdpip
, 2, float64
, VsrD(i
), float_round_up
, 0)
2967 VSX_ROUND(xvrdpiz
, 2, float64
, VsrD(i
), float_round_to_zero
, 0)
2969 VSX_ROUND(xvrspi
, 4, float32
, VsrW(i
), float_round_ties_away
, 0)
2970 VSX_ROUND(xvrspic
, 4, float32
, VsrW(i
), FLOAT_ROUND_CURRENT
, 0)
2971 VSX_ROUND(xvrspim
, 4, float32
, VsrW(i
), float_round_down
, 0)
2972 VSX_ROUND(xvrspip
, 4, float32
, VsrW(i
), float_round_up
, 0)
2973 VSX_ROUND(xvrspiz
, 4, float32
, VsrW(i
), float_round_to_zero
, 0)
2975 uint64_t helper_xsrsp(CPUPPCState
*env
, uint64_t xb
)
2977 helper_reset_fpstatus(env
);
2979 uint64_t xt
= do_frsp(env
, xb
, GETPC());
2981 helper_compute_fprf_float64(env
, xt
);
2982 do_float_check_status(env
, GETPC());
2986 #define VSX_XXPERM(op, indexed) \
2987 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2988 ppc_vsr_t *xa, ppc_vsr_t *pcv) \
2990 ppc_vsr_t t = *xt; \
2993 for (i = 0; i < 16; i++) { \
2994 idx = pcv->VsrB(i) & 0x1F; \
2998 t.VsrB(i) = (idx <= 15) ? xa->VsrB(idx) \
2999 : xt->VsrB(idx - 16); \
3004 VSX_XXPERM(xxperm
, 0)
3005 VSX_XXPERM(xxpermr
, 1)
3007 void helper_xvxsigsp(CPUPPCState
*env
, ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
3010 uint32_t exp
, i
, fraction
;
3012 for (i
= 0; i
< 4; i
++) {
3013 exp
= (xb
->VsrW(i
) >> 23) & 0xFF;
3014 fraction
= xb
->VsrW(i
) & 0x7FFFFF;
3015 if (exp
!= 0 && exp
!= 255) {
3016 t
.VsrW(i
) = fraction
| 0x00800000;
3018 t
.VsrW(i
) = fraction
;
3025 * VSX_TEST_DC - VSX floating point test data class
3026 * op - instruction mnemonic
3027 * nels - number of elements (1, 2 or 4)
3028 * xbn - VSR register number
3029 * tp - type (float32 or float64)
3030 * fld - vsr_t field (VsrD(*) or VsrW(*))
3031 * tfld - target vsr_t field (VsrD(*) or VsrW(*))
3032 * fld_max - target field max
3033 * scrf - set result in CR and FPCC
3035 #define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf) \
3036 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3038 ppc_vsr_t *xt = &env->vsr[xT(opcode)]; \
3039 ppc_vsr_t *xb = &env->vsr[xbn]; \
3040 ppc_vsr_t t = { }; \
3041 uint32_t i, sign, dcmx; \
3042 uint32_t cc, match = 0; \
3045 dcmx = DCMX_XV(opcode); \
3048 dcmx = DCMX(opcode); \
3051 for (i = 0; i < nels; i++) { \
3052 sign = tp##_is_neg(xb->fld); \
3053 if (tp##_is_any_nan(xb->fld)) { \
3054 match = extract32(dcmx, 6, 1); \
3055 } else if (tp##_is_infinity(xb->fld)) { \
3056 match = extract32(dcmx, 4 + !sign, 1); \
3057 } else if (tp##_is_zero(xb->fld)) { \
3058 match = extract32(dcmx, 2 + !sign, 1); \
3059 } else if (tp##_is_zero_or_denormal(xb->fld)) { \
3060 match = extract32(dcmx, 0 + !sign, 1); \
3064 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \
3065 env->fpscr &= ~FP_FPCC; \
3066 env->fpscr |= cc << FPSCR_FPCC; \
3067 env->crf[BF(opcode)] = cc; \
3069 t.tfld = match ? fld_max : 0; \
3078 VSX_TEST_DC(xvtstdcdp
, 2, xB(opcode
), float64
, VsrD(i
), VsrD(i
), UINT64_MAX
, 0)
3079 VSX_TEST_DC(xvtstdcsp
, 4, xB(opcode
), float32
, VsrW(i
), VsrW(i
), UINT32_MAX
, 0)
3080 VSX_TEST_DC(xststdcdp
, 1, xB(opcode
), float64
, VsrD(0), VsrD(0), 0, 1)
3081 VSX_TEST_DC(xststdcqp
, 1, (rB(opcode
) + 32), float128
, f128
, VsrD(0), 0, 1)
3083 void helper_xststdcsp(CPUPPCState
*env
, uint32_t opcode
, ppc_vsr_t
*xb
)
3085 uint32_t dcmx
, sign
, exp
;
3086 uint32_t cc
, match
= 0, not_sp
= 0;
3088 dcmx
= DCMX(opcode
);
3089 exp
= (xb
->VsrD(0) >> 52) & 0x7FF;
3091 sign
= float64_is_neg(xb
->VsrD(0));
3092 if (float64_is_any_nan(xb
->VsrD(0))) {
3093 match
= extract32(dcmx
, 6, 1);
3094 } else if (float64_is_infinity(xb
->VsrD(0))) {
3095 match
= extract32(dcmx
, 4 + !sign
, 1);
3096 } else if (float64_is_zero(xb
->VsrD(0))) {
3097 match
= extract32(dcmx
, 2 + !sign
, 1);
3098 } else if (float64_is_zero_or_denormal(xb
->VsrD(0)) ||
3099 (exp
> 0 && exp
< 0x381)) {
3100 match
= extract32(dcmx
, 0 + !sign
, 1);
3103 not_sp
= !float64_eq(xb
->VsrD(0),
3105 float64_to_float32(xb
->VsrD(0), &env
->fp_status
),
3106 &env
->fp_status
), &env
->fp_status
);
3108 cc
= sign
<< CRF_LT_BIT
| match
<< CRF_EQ_BIT
| not_sp
<< CRF_SO_BIT
;
3109 env
->fpscr
&= ~FP_FPCC
;
3110 env
->fpscr
|= cc
<< FPSCR_FPCC
;
3111 env
->crf
[BF(opcode
)] = cc
;
3114 void helper_xsrqpi(CPUPPCState
*env
, uint32_t opcode
,
3115 ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
3118 uint8_t r
= Rrm(opcode
);
3119 uint8_t ex
= Rc(opcode
);
3120 uint8_t rmc
= RMC(opcode
);
3124 helper_reset_fpstatus(env
);
3126 if (r
== 0 && rmc
== 0) {
3127 rmode
= float_round_ties_away
;
3128 } else if (r
== 0 && rmc
== 0x3) {
3130 } else if (r
== 1) {
3133 rmode
= float_round_nearest_even
;
3136 rmode
= float_round_to_zero
;
3139 rmode
= float_round_up
;
3142 rmode
= float_round_down
;
3149 tstat
= env
->fp_status
;
3150 set_float_exception_flags(0, &tstat
);
3151 set_float_rounding_mode(rmode
, &tstat
);
3152 t
.f128
= float128_round_to_int(xb
->f128
, &tstat
);
3153 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
3155 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
3156 if (float128_is_signaling_nan(xb
->f128
, &tstat
)) {
3157 float_invalid_op_vxsnan(env
, GETPC());
3158 t
.f128
= float128_snan_to_qnan(t
.f128
);
3162 if (ex
== 0 && (tstat
.float_exception_flags
& float_flag_inexact
)) {
3163 env
->fp_status
.float_exception_flags
&= ~float_flag_inexact
;
3166 helper_compute_fprf_float128(env
, t
.f128
);
3167 do_float_check_status(env
, GETPC());
3171 void helper_xsrqpxp(CPUPPCState
*env
, uint32_t opcode
,
3172 ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
3175 uint8_t r
= Rrm(opcode
);
3176 uint8_t rmc
= RMC(opcode
);
3181 helper_reset_fpstatus(env
);
3183 if (r
== 0 && rmc
== 0) {
3184 rmode
= float_round_ties_away
;
3185 } else if (r
== 0 && rmc
== 0x3) {
3187 } else if (r
== 1) {
3190 rmode
= float_round_nearest_even
;
3193 rmode
= float_round_to_zero
;
3196 rmode
= float_round_up
;
3199 rmode
= float_round_down
;
3206 tstat
= env
->fp_status
;
3207 set_float_exception_flags(0, &tstat
);
3208 set_float_rounding_mode(rmode
, &tstat
);
3209 round_res
= float128_to_floatx80(xb
->f128
, &tstat
);
3210 t
.f128
= floatx80_to_float128(round_res
, &tstat
);
3211 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
3213 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
3214 if (float128_is_signaling_nan(xb
->f128
, &tstat
)) {
3215 float_invalid_op_vxsnan(env
, GETPC());
3216 t
.f128
= float128_snan_to_qnan(t
.f128
);
3220 helper_compute_fprf_float128(env
, t
.f128
);
3222 do_float_check_status(env
, GETPC());
3225 void helper_xssqrtqp(CPUPPCState
*env
, uint32_t opcode
,
3226 ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
3231 helper_reset_fpstatus(env
);
3233 tstat
= env
->fp_status
;
3234 if (unlikely(Rc(opcode
) != 0)) {
3235 tstat
.float_rounding_mode
= float_round_to_odd
;
3238 set_float_exception_flags(0, &tstat
);
3239 t
.f128
= float128_sqrt(xb
->f128
, &tstat
);
3240 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
3242 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
3243 if (float128_is_signaling_nan(xb
->f128
, &tstat
)) {
3244 float_invalid_op_vxsnan(env
, GETPC());
3245 t
.f128
= float128_snan_to_qnan(xb
->f128
);
3246 } else if (float128_is_quiet_nan(xb
->f128
, &tstat
)) {
3248 } else if (float128_is_neg(xb
->f128
) && !float128_is_zero(xb
->f128
)) {
3249 float_invalid_op_vxsqrt(env
, 1, GETPC());
3250 t
.f128
= float128_default_nan(&env
->fp_status
);
3254 helper_compute_fprf_float128(env
, t
.f128
);
3256 do_float_check_status(env
, GETPC());
3259 void helper_xssubqp(CPUPPCState
*env
, uint32_t opcode
,
3260 ppc_vsr_t
*xt
, ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
3265 helper_reset_fpstatus(env
);
3267 tstat
= env
->fp_status
;
3268 if (unlikely(Rc(opcode
) != 0)) {
3269 tstat
.float_rounding_mode
= float_round_to_odd
;
3272 set_float_exception_flags(0, &tstat
);
3273 t
.f128
= float128_sub(xa
->f128
, xb
->f128
, &tstat
);
3274 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
3276 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
3277 float_invalid_op_addsub(env
, tstat
.float_exception_flags
, 1, GETPC());
3280 helper_compute_fprf_float128(env
, t
.f128
);
3282 do_float_check_status(env
, GETPC());