spapr: DRC lookup cannot fail
[qemu.git] / hw / ppc / spapr.c
blob08f57f9164110e6f87d7b687a95794975786394a
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/visitor.h"
32 #include "sysemu/sysemu.h"
33 #include "sysemu/hostmem.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/qtest.h"
36 #include "sysemu/reset.h"
37 #include "sysemu/runstate.h"
38 #include "qemu/log.h"
39 #include "hw/fw-path-provider.h"
40 #include "elf.h"
41 #include "net/net.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/cpus.h"
44 #include "sysemu/hw_accel.h"
45 #include "kvm_ppc.h"
46 #include "migration/misc.h"
47 #include "migration/qemu-file-types.h"
48 #include "migration/global_state.h"
49 #include "migration/register.h"
50 #include "migration/blocker.h"
51 #include "mmu-hash64.h"
52 #include "mmu-book3s-v3.h"
53 #include "cpu-models.h"
54 #include "hw/core/cpu.h"
56 #include "hw/boards.h"
57 #include "hw/ppc/ppc.h"
58 #include "hw/loader.h"
60 #include "hw/ppc/fdt.h"
61 #include "hw/ppc/spapr.h"
62 #include "hw/ppc/spapr_vio.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/pci-host/spapr.h"
65 #include "hw/pci/msi.h"
67 #include "hw/pci/pci.h"
68 #include "hw/scsi/scsi.h"
69 #include "hw/virtio/virtio-scsi.h"
70 #include "hw/virtio/vhost-scsi-common.h"
72 #include "exec/address-spaces.h"
73 #include "exec/ram_addr.h"
74 #include "hw/usb.h"
75 #include "qemu/config-file.h"
76 #include "qemu/error-report.h"
77 #include "trace.h"
78 #include "hw/nmi.h"
79 #include "hw/intc/intc.h"
81 #include "hw/ppc/spapr_cpu_core.h"
82 #include "hw/mem/memory-device.h"
83 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include "hw/ppc/spapr_nvdimm.h"
85 #include "hw/ppc/spapr_numa.h"
87 #include "monitor/monitor.h"
89 #include <libfdt.h>
91 /* SLOF memory layout:
93 * SLOF raw image loaded at 0, copies its romfs right below the flat
94 * device-tree, then position SLOF itself 31M below that
96 * So we set FW_OVERHEAD to 40MB which should account for all of that
97 * and more
99 * We load our kernel at 4M, leaving space for SLOF initial image
101 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
102 #define FW_MAX_SIZE 0x400000
103 #define FW_FILE_NAME "slof.bin"
104 #define FW_OVERHEAD 0x2800000
105 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
107 #define MIN_RMA_SLOF (128 * MiB)
109 #define PHANDLE_INTC 0x00001111
111 /* These two functions implement the VCPU id numbering: one to compute them
112 * all and one to identify thread 0 of a VCORE. Any change to the first one
113 * is likely to have an impact on the second one, so let's keep them close.
115 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
117 MachineState *ms = MACHINE(spapr);
118 unsigned int smp_threads = ms->smp.threads;
120 assert(spapr->vsmt);
121 return
122 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
124 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
125 PowerPCCPU *cpu)
127 assert(spapr->vsmt);
128 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
131 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
133 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
134 * and newer QEMUs don't even have them. In both cases, we don't want
135 * to send anything on the wire.
137 return false;
140 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
141 .name = "icp/server",
142 .version_id = 1,
143 .minimum_version_id = 1,
144 .needed = pre_2_10_vmstate_dummy_icp_needed,
145 .fields = (VMStateField[]) {
146 VMSTATE_UNUSED(4), /* uint32_t xirr */
147 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
148 VMSTATE_UNUSED(1), /* uint8_t mfrr */
149 VMSTATE_END_OF_LIST()
153 static void pre_2_10_vmstate_register_dummy_icp(int i)
155 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
156 (void *)(uintptr_t) i);
159 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
161 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
162 (void *)(uintptr_t) i);
165 int spapr_max_server_number(SpaprMachineState *spapr)
167 MachineState *ms = MACHINE(spapr);
169 assert(spapr->vsmt);
170 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
173 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
174 int smt_threads)
176 int i, ret = 0;
177 uint32_t servers_prop[smt_threads];
178 uint32_t gservers_prop[smt_threads * 2];
179 int index = spapr_get_vcpu_id(cpu);
181 if (cpu->compat_pvr) {
182 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
183 if (ret < 0) {
184 return ret;
188 /* Build interrupt servers and gservers properties */
189 for (i = 0; i < smt_threads; i++) {
190 servers_prop[i] = cpu_to_be32(index + i);
191 /* Hack, direct the group queues back to cpu 0 */
192 gservers_prop[i*2] = cpu_to_be32(index + i);
193 gservers_prop[i*2 + 1] = 0;
195 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
196 servers_prop, sizeof(servers_prop));
197 if (ret < 0) {
198 return ret;
200 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
201 gservers_prop, sizeof(gservers_prop));
203 return ret;
206 static void spapr_dt_pa_features(SpaprMachineState *spapr,
207 PowerPCCPU *cpu,
208 void *fdt, int offset)
210 uint8_t pa_features_206[] = { 6, 0,
211 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
212 uint8_t pa_features_207[] = { 24, 0,
213 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
214 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
215 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
216 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
217 uint8_t pa_features_300[] = { 66, 0,
218 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
219 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
220 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
221 /* 6: DS207 */
222 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
223 /* 16: Vector */
224 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
225 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
226 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
227 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
228 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
229 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
230 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
231 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
232 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
233 /* 42: PM, 44: PC RA, 46: SC vec'd */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
235 /* 48: SIMD, 50: QP BFP, 52: String */
236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
237 /* 54: DecFP, 56: DecI, 58: SHA */
238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
239 /* 60: NM atomic, 62: RNG */
240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
242 uint8_t *pa_features = NULL;
243 size_t pa_size;
245 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
246 pa_features = pa_features_206;
247 pa_size = sizeof(pa_features_206);
249 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
250 pa_features = pa_features_207;
251 pa_size = sizeof(pa_features_207);
253 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
254 pa_features = pa_features_300;
255 pa_size = sizeof(pa_features_300);
257 if (!pa_features) {
258 return;
261 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
263 * Note: we keep CI large pages off by default because a 64K capable
264 * guest provisioned with large pages might otherwise try to map a qemu
265 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
266 * even if that qemu runs on a 4k host.
267 * We dd this bit back here if we are confident this is not an issue
269 pa_features[3] |= 0x20;
271 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
272 pa_features[24] |= 0x80; /* Transactional memory support */
274 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
275 /* Workaround for broken kernels that attempt (guest) radix
276 * mode when they can't handle it, if they see the radix bit set
277 * in pa-features. So hide it from them. */
278 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
281 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
284 static hwaddr spapr_node0_size(MachineState *machine)
286 if (machine->numa_state->num_nodes) {
287 int i;
288 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
289 if (machine->numa_state->nodes[i].node_mem) {
290 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
291 machine->ram_size);
295 return machine->ram_size;
298 bool spapr_machine_using_legacy_numa(SpaprMachineState *spapr)
300 MachineState *machine = MACHINE(spapr);
301 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
303 return smc->pre_5_2_numa_associativity ||
304 machine->numa_state->num_nodes <= 1;
307 static void add_str(GString *s, const gchar *s1)
309 g_string_append_len(s, s1, strlen(s1) + 1);
312 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
313 hwaddr start, hwaddr size)
315 char mem_name[32];
316 uint64_t mem_reg_property[2];
317 int off;
319 mem_reg_property[0] = cpu_to_be64(start);
320 mem_reg_property[1] = cpu_to_be64(size);
322 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
323 off = fdt_add_subnode(fdt, 0, mem_name);
324 _FDT(off);
325 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
326 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
327 sizeof(mem_reg_property))));
328 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
329 return off;
332 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
334 MemoryDeviceInfoList *info;
336 for (info = list; info; info = info->next) {
337 MemoryDeviceInfo *value = info->value;
339 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
340 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
342 if (addr >= pcdimm_info->addr &&
343 addr < (pcdimm_info->addr + pcdimm_info->size)) {
344 return pcdimm_info->node;
349 return -1;
352 struct sPAPRDrconfCellV2 {
353 uint32_t seq_lmbs;
354 uint64_t base_addr;
355 uint32_t drc_index;
356 uint32_t aa_index;
357 uint32_t flags;
358 } QEMU_PACKED;
360 typedef struct DrconfCellQueue {
361 struct sPAPRDrconfCellV2 cell;
362 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
363 } DrconfCellQueue;
365 static DrconfCellQueue *
366 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
367 uint32_t drc_index, uint32_t aa_index,
368 uint32_t flags)
370 DrconfCellQueue *elem;
372 elem = g_malloc0(sizeof(*elem));
373 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
374 elem->cell.base_addr = cpu_to_be64(base_addr);
375 elem->cell.drc_index = cpu_to_be32(drc_index);
376 elem->cell.aa_index = cpu_to_be32(aa_index);
377 elem->cell.flags = cpu_to_be32(flags);
379 return elem;
382 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
383 int offset, MemoryDeviceInfoList *dimms)
385 MachineState *machine = MACHINE(spapr);
386 uint8_t *int_buf, *cur_index;
387 int ret;
388 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
389 uint64_t addr, cur_addr, size;
390 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
391 uint64_t mem_end = machine->device_memory->base +
392 memory_region_size(&machine->device_memory->mr);
393 uint32_t node, buf_len, nr_entries = 0;
394 SpaprDrc *drc;
395 DrconfCellQueue *elem, *next;
396 MemoryDeviceInfoList *info;
397 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
398 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
400 /* Entry to cover RAM and the gap area */
401 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
402 SPAPR_LMB_FLAGS_RESERVED |
403 SPAPR_LMB_FLAGS_DRC_INVALID);
404 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
405 nr_entries++;
407 cur_addr = machine->device_memory->base;
408 for (info = dimms; info; info = info->next) {
409 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
411 addr = di->addr;
412 size = di->size;
413 node = di->node;
416 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
417 * area is marked hotpluggable in the next iteration for the bigger
418 * chunk including the NVDIMM occupied area.
420 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
421 continue;
423 /* Entry for hot-pluggable area */
424 if (cur_addr < addr) {
425 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
426 g_assert(drc);
427 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
428 cur_addr, spapr_drc_index(drc), -1, 0);
429 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
430 nr_entries++;
433 /* Entry for DIMM */
434 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
435 g_assert(drc);
436 elem = spapr_get_drconf_cell(size / lmb_size, addr,
437 spapr_drc_index(drc), node,
438 (SPAPR_LMB_FLAGS_ASSIGNED |
439 SPAPR_LMB_FLAGS_HOTREMOVABLE));
440 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
441 nr_entries++;
442 cur_addr = addr + size;
445 /* Entry for remaining hotpluggable area */
446 if (cur_addr < mem_end) {
447 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
448 g_assert(drc);
449 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
450 cur_addr, spapr_drc_index(drc), -1, 0);
451 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
452 nr_entries++;
455 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
456 int_buf = cur_index = g_malloc0(buf_len);
457 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
458 cur_index += sizeof(nr_entries);
460 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
461 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
462 cur_index += sizeof(elem->cell);
463 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
464 g_free(elem);
467 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
468 g_free(int_buf);
469 if (ret < 0) {
470 return -1;
472 return 0;
475 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
476 int offset, MemoryDeviceInfoList *dimms)
478 MachineState *machine = MACHINE(spapr);
479 int i, ret;
480 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
481 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
482 uint32_t nr_lmbs = (machine->device_memory->base +
483 memory_region_size(&machine->device_memory->mr)) /
484 lmb_size;
485 uint32_t *int_buf, *cur_index, buf_len;
488 * Allocate enough buffer size to fit in ibm,dynamic-memory
490 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
491 cur_index = int_buf = g_malloc0(buf_len);
492 int_buf[0] = cpu_to_be32(nr_lmbs);
493 cur_index++;
494 for (i = 0; i < nr_lmbs; i++) {
495 uint64_t addr = i * lmb_size;
496 uint32_t *dynamic_memory = cur_index;
498 if (i >= device_lmb_start) {
499 SpaprDrc *drc;
501 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
502 g_assert(drc);
504 dynamic_memory[0] = cpu_to_be32(addr >> 32);
505 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
506 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
507 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
508 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
509 if (memory_region_present(get_system_memory(), addr)) {
510 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
511 } else {
512 dynamic_memory[5] = cpu_to_be32(0);
514 } else {
516 * LMB information for RMA, boot time RAM and gap b/n RAM and
517 * device memory region -- all these are marked as reserved
518 * and as having no valid DRC.
520 dynamic_memory[0] = cpu_to_be32(addr >> 32);
521 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
522 dynamic_memory[2] = cpu_to_be32(0);
523 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
524 dynamic_memory[4] = cpu_to_be32(-1);
525 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
526 SPAPR_LMB_FLAGS_DRC_INVALID);
529 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
531 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
532 g_free(int_buf);
533 if (ret < 0) {
534 return -1;
536 return 0;
540 * Adds ibm,dynamic-reconfiguration-memory node.
541 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
542 * of this device tree node.
544 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
545 void *fdt)
547 MachineState *machine = MACHINE(spapr);
548 int ret, offset;
549 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
550 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
551 cpu_to_be32(lmb_size & 0xffffffff)};
552 MemoryDeviceInfoList *dimms = NULL;
555 * Don't create the node if there is no device memory
557 if (machine->ram_size == machine->maxram_size) {
558 return 0;
561 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
563 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
564 sizeof(prop_lmb_size));
565 if (ret < 0) {
566 return ret;
569 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
570 if (ret < 0) {
571 return ret;
574 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
575 if (ret < 0) {
576 return ret;
579 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
580 dimms = qmp_memory_device_list();
581 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
582 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
583 } else {
584 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
586 qapi_free_MemoryDeviceInfoList(dimms);
588 if (ret < 0) {
589 return ret;
592 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
594 return ret;
597 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
599 MachineState *machine = MACHINE(spapr);
600 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
601 hwaddr mem_start, node_size;
602 int i, nb_nodes = machine->numa_state->num_nodes;
603 NodeInfo *nodes = machine->numa_state->nodes;
605 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
606 if (!nodes[i].node_mem) {
607 continue;
609 if (mem_start >= machine->ram_size) {
610 node_size = 0;
611 } else {
612 node_size = nodes[i].node_mem;
613 if (node_size > machine->ram_size - mem_start) {
614 node_size = machine->ram_size - mem_start;
617 if (!mem_start) {
618 /* spapr_machine_init() checks for rma_size <= node0_size
619 * already */
620 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
621 mem_start += spapr->rma_size;
622 node_size -= spapr->rma_size;
624 for ( ; node_size; ) {
625 hwaddr sizetmp = pow2floor(node_size);
627 /* mem_start != 0 here */
628 if (ctzl(mem_start) < ctzl(sizetmp)) {
629 sizetmp = 1ULL << ctzl(mem_start);
632 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
633 node_size -= sizetmp;
634 mem_start += sizetmp;
638 /* Generate ibm,dynamic-reconfiguration-memory node if required */
639 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
640 int ret;
642 g_assert(smc->dr_lmb_enabled);
643 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
644 if (ret) {
645 return ret;
649 return 0;
652 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
653 SpaprMachineState *spapr)
655 MachineState *ms = MACHINE(spapr);
656 PowerPCCPU *cpu = POWERPC_CPU(cs);
657 CPUPPCState *env = &cpu->env;
658 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
659 int index = spapr_get_vcpu_id(cpu);
660 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
661 0xffffffff, 0xffffffff};
662 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
663 : SPAPR_TIMEBASE_FREQ;
664 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
665 uint32_t page_sizes_prop[64];
666 size_t page_sizes_prop_size;
667 unsigned int smp_threads = ms->smp.threads;
668 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
669 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
670 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
671 SpaprDrc *drc;
672 int drc_index;
673 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
674 int i;
676 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
677 if (drc) {
678 drc_index = spapr_drc_index(drc);
679 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
682 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
683 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
685 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
686 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
687 env->dcache_line_size)));
688 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
689 env->dcache_line_size)));
690 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
691 env->icache_line_size)));
692 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
693 env->icache_line_size)));
695 if (pcc->l1_dcache_size) {
696 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
697 pcc->l1_dcache_size)));
698 } else {
699 warn_report("Unknown L1 dcache size for cpu");
701 if (pcc->l1_icache_size) {
702 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
703 pcc->l1_icache_size)));
704 } else {
705 warn_report("Unknown L1 icache size for cpu");
708 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
709 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
710 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
711 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
712 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
713 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
715 if (env->spr_cb[SPR_PURR].oea_read) {
716 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
718 if (env->spr_cb[SPR_SPURR].oea_read) {
719 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
722 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
723 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
724 segs, sizeof(segs))));
727 /* Advertise VSX (vector extensions) if available
728 * 1 == VMX / Altivec available
729 * 2 == VSX available
731 * Only CPUs for which we create core types in spapr_cpu_core.c
732 * are possible, and all of those have VMX */
733 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
734 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
735 } else {
736 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
739 /* Advertise DFP (Decimal Floating Point) if available
740 * 0 / no property == no DFP
741 * 1 == DFP available */
742 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
743 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
746 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
747 sizeof(page_sizes_prop));
748 if (page_sizes_prop_size) {
749 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
750 page_sizes_prop, page_sizes_prop_size)));
753 spapr_dt_pa_features(spapr, cpu, fdt, offset);
755 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
756 cs->cpu_index / vcpus_per_socket)));
758 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
759 pft_size_prop, sizeof(pft_size_prop))));
761 if (ms->numa_state->num_nodes > 1) {
762 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
765 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
767 if (pcc->radix_page_info) {
768 for (i = 0; i < pcc->radix_page_info->count; i++) {
769 radix_AP_encodings[i] =
770 cpu_to_be32(pcc->radix_page_info->entries[i]);
772 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
773 radix_AP_encodings,
774 pcc->radix_page_info->count *
775 sizeof(radix_AP_encodings[0]))));
779 * We set this property to let the guest know that it can use the large
780 * decrementer and its width in bits.
782 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
783 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
784 pcc->lrg_decr_bits)));
787 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
789 CPUState **rev;
790 CPUState *cs;
791 int n_cpus;
792 int cpus_offset;
793 char *nodename;
794 int i;
796 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
797 _FDT(cpus_offset);
798 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
799 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
802 * We walk the CPUs in reverse order to ensure that CPU DT nodes
803 * created by fdt_add_subnode() end up in the right order in FDT
804 * for the guest kernel the enumerate the CPUs correctly.
806 * The CPU list cannot be traversed in reverse order, so we need
807 * to do extra work.
809 n_cpus = 0;
810 rev = NULL;
811 CPU_FOREACH(cs) {
812 rev = g_renew(CPUState *, rev, n_cpus + 1);
813 rev[n_cpus++] = cs;
816 for (i = n_cpus - 1; i >= 0; i--) {
817 CPUState *cs = rev[i];
818 PowerPCCPU *cpu = POWERPC_CPU(cs);
819 int index = spapr_get_vcpu_id(cpu);
820 DeviceClass *dc = DEVICE_GET_CLASS(cs);
821 int offset;
823 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
824 continue;
827 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
828 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
829 g_free(nodename);
830 _FDT(offset);
831 spapr_dt_cpu(cs, fdt, offset, spapr);
834 g_free(rev);
837 static int spapr_dt_rng(void *fdt)
839 int node;
840 int ret;
842 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
843 if (node <= 0) {
844 return -1;
846 ret = fdt_setprop_string(fdt, node, "device_type",
847 "ibm,platform-facilities");
848 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
849 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
851 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
852 if (node <= 0) {
853 return -1;
855 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
857 return ret ? -1 : 0;
860 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
862 MachineState *ms = MACHINE(spapr);
863 int rtas;
864 GString *hypertas = g_string_sized_new(256);
865 GString *qemu_hypertas = g_string_sized_new(256);
866 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
867 memory_region_size(&MACHINE(spapr)->device_memory->mr);
868 uint32_t lrdr_capacity[] = {
869 cpu_to_be32(max_device_addr >> 32),
870 cpu_to_be32(max_device_addr & 0xffffffff),
871 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
872 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
873 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
876 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
878 /* hypertas */
879 add_str(hypertas, "hcall-pft");
880 add_str(hypertas, "hcall-term");
881 add_str(hypertas, "hcall-dabr");
882 add_str(hypertas, "hcall-interrupt");
883 add_str(hypertas, "hcall-tce");
884 add_str(hypertas, "hcall-vio");
885 add_str(hypertas, "hcall-splpar");
886 add_str(hypertas, "hcall-join");
887 add_str(hypertas, "hcall-bulk");
888 add_str(hypertas, "hcall-set-mode");
889 add_str(hypertas, "hcall-sprg0");
890 add_str(hypertas, "hcall-copy");
891 add_str(hypertas, "hcall-debug");
892 add_str(hypertas, "hcall-vphn");
893 add_str(qemu_hypertas, "hcall-memop1");
895 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
896 add_str(hypertas, "hcall-multi-tce");
899 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
900 add_str(hypertas, "hcall-hpt-resize");
903 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
904 hypertas->str, hypertas->len));
905 g_string_free(hypertas, TRUE);
906 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
907 qemu_hypertas->str, qemu_hypertas->len));
908 g_string_free(qemu_hypertas, TRUE);
910 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
913 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
914 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
916 * The system reset requirements are driven by existing Linux and PowerVM
917 * implementation which (contrary to PAPR) saves r3 in the error log
918 * structure like machine check, so Linux expects to find the saved r3
919 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
920 * does not look at the error value).
922 * System reset interrupts are not subject to interlock like machine
923 * check, so this memory area could be corrupted if the sreset is
924 * interrupted by a machine check (or vice versa) if it was shared. To
925 * prevent this, system reset uses per-CPU areas for the sreset save
926 * area. A system reset that interrupts a system reset handler could
927 * still overwrite this area, but Linux doesn't try to recover in that
928 * case anyway.
930 * The extra 8 bytes is required because Linux's FWNMI error log check
931 * is off-by-one.
933 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
934 ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
935 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
936 RTAS_ERROR_LOG_MAX));
937 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
938 RTAS_EVENT_SCAN_RATE));
940 g_assert(msi_nonbroken);
941 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
944 * According to PAPR, rtas ibm,os-term does not guarantee a return
945 * back to the guest cpu.
947 * While an additional ibm,extended-os-term property indicates
948 * that rtas call return will always occur. Set this property.
950 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
952 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
953 lrdr_capacity, sizeof(lrdr_capacity)));
955 spapr_dt_rtas_tokens(fdt, rtas);
959 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
960 * and the XIVE features that the guest may request and thus the valid
961 * values for bytes 23..26 of option vector 5:
963 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
964 int chosen)
966 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
968 char val[2 * 4] = {
969 23, 0x00, /* XICS / XIVE mode */
970 24, 0x00, /* Hash/Radix, filled in below. */
971 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
972 26, 0x40, /* Radix options: GTSE == yes. */
975 if (spapr->irq->xics && spapr->irq->xive) {
976 val[1] = SPAPR_OV5_XIVE_BOTH;
977 } else if (spapr->irq->xive) {
978 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
979 } else {
980 assert(spapr->irq->xics);
981 val[1] = SPAPR_OV5_XIVE_LEGACY;
984 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
985 first_ppc_cpu->compat_pvr)) {
987 * If we're in a pre POWER9 compat mode then the guest should
988 * do hash and use the legacy interrupt mode
990 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
991 val[3] = 0x00; /* Hash */
992 } else if (kvm_enabled()) {
993 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
994 val[3] = 0x80; /* OV5_MMU_BOTH */
995 } else if (kvmppc_has_cap_mmu_radix()) {
996 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
997 } else {
998 val[3] = 0x00; /* Hash */
1000 } else {
1001 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1002 val[3] = 0xC0;
1004 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1005 val, sizeof(val)));
1008 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1010 MachineState *machine = MACHINE(spapr);
1011 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1012 int chosen;
1014 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1016 if (reset) {
1017 const char *boot_device = machine->boot_order;
1018 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1019 size_t cb = 0;
1020 char *bootlist = get_boot_devices_list(&cb);
1022 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1023 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1024 machine->kernel_cmdline));
1027 if (spapr->initrd_size) {
1028 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1029 spapr->initrd_base));
1030 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1031 spapr->initrd_base + spapr->initrd_size));
1034 if (spapr->kernel_size) {
1035 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1036 cpu_to_be64(spapr->kernel_size) };
1038 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1039 &kprop, sizeof(kprop)));
1040 if (spapr->kernel_le) {
1041 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1044 if (boot_menu) {
1045 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1047 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1048 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1049 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1051 if (cb && bootlist) {
1052 int i;
1054 for (i = 0; i < cb; i++) {
1055 if (bootlist[i] == '\n') {
1056 bootlist[i] = ' ';
1059 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1062 if (boot_device && strlen(boot_device)) {
1063 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1066 if (!spapr->has_graphics && stdout_path) {
1068 * "linux,stdout-path" and "stdout" properties are
1069 * deprecated by linux kernel. New platforms should only
1070 * use the "stdout-path" property. Set the new property
1071 * and continue using older property to remain compatible
1072 * with the existing firmware.
1074 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1075 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1079 * We can deal with BAR reallocation just fine, advertise it
1080 * to the guest
1082 if (smc->linux_pci_probe) {
1083 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1086 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1088 g_free(stdout_path);
1089 g_free(bootlist);
1092 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1095 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1097 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1098 * KVM to work under pHyp with some guest co-operation */
1099 int hypervisor;
1100 uint8_t hypercall[16];
1102 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1103 /* indicate KVM hypercall interface */
1104 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1105 if (kvmppc_has_cap_fixup_hcalls()) {
1107 * Older KVM versions with older guest kernels were broken
1108 * with the magic page, don't allow the guest to map it.
1110 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1111 sizeof(hypercall))) {
1112 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1113 hypercall, sizeof(hypercall)));
1118 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1120 MachineState *machine = MACHINE(spapr);
1121 MachineClass *mc = MACHINE_GET_CLASS(machine);
1122 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1123 int ret;
1124 void *fdt;
1125 SpaprPhbState *phb;
1126 char *buf;
1128 fdt = g_malloc0(space);
1129 _FDT((fdt_create_empty_tree(fdt, space)));
1131 /* Root node */
1132 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1133 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1134 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1136 /* Guest UUID & Name*/
1137 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1138 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1139 if (qemu_uuid_set) {
1140 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1142 g_free(buf);
1144 if (qemu_get_vm_name()) {
1145 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1146 qemu_get_vm_name()));
1149 /* Host Model & Serial Number */
1150 if (spapr->host_model) {
1151 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1152 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1153 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1154 g_free(buf);
1157 if (spapr->host_serial) {
1158 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1159 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1160 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1161 g_free(buf);
1164 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1165 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1167 /* /interrupt controller */
1168 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1170 ret = spapr_dt_memory(spapr, fdt);
1171 if (ret < 0) {
1172 error_report("couldn't setup memory nodes in fdt");
1173 exit(1);
1176 /* /vdevice */
1177 spapr_dt_vdevice(spapr->vio_bus, fdt);
1179 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1180 ret = spapr_dt_rng(fdt);
1181 if (ret < 0) {
1182 error_report("could not set up rng device in the fdt");
1183 exit(1);
1187 QLIST_FOREACH(phb, &spapr->phbs, list) {
1188 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1189 if (ret < 0) {
1190 error_report("couldn't setup PCI devices in fdt");
1191 exit(1);
1195 spapr_dt_cpus(fdt, spapr);
1197 if (smc->dr_lmb_enabled) {
1198 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1201 if (mc->has_hotpluggable_cpus) {
1202 int offset = fdt_path_offset(fdt, "/cpus");
1203 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1204 if (ret < 0) {
1205 error_report("Couldn't set up CPU DR device tree properties");
1206 exit(1);
1210 /* /event-sources */
1211 spapr_dt_events(spapr, fdt);
1213 /* /rtas */
1214 spapr_dt_rtas(spapr, fdt);
1216 /* /chosen */
1217 spapr_dt_chosen(spapr, fdt, reset);
1219 /* /hypervisor */
1220 if (kvm_enabled()) {
1221 spapr_dt_hypervisor(spapr, fdt);
1224 /* Build memory reserve map */
1225 if (reset) {
1226 if (spapr->kernel_size) {
1227 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1228 spapr->kernel_size)));
1230 if (spapr->initrd_size) {
1231 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1232 spapr->initrd_size)));
1236 if (smc->dr_phb_enabled) {
1237 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1238 if (ret < 0) {
1239 error_report("Couldn't set up PHB DR device tree properties");
1240 exit(1);
1244 /* NVDIMM devices */
1245 if (mc->nvdimm_supported) {
1246 spapr_dt_persistent_memory(spapr, fdt);
1249 return fdt;
1252 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1254 SpaprMachineState *spapr = opaque;
1256 return (addr & 0x0fffffff) + spapr->kernel_addr;
1259 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1260 PowerPCCPU *cpu)
1262 CPUPPCState *env = &cpu->env;
1264 /* The TCG path should also be holding the BQL at this point */
1265 g_assert(qemu_mutex_iothread_locked());
1267 if (msr_pr) {
1268 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1269 env->gpr[3] = H_PRIVILEGE;
1270 } else {
1271 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1275 struct LPCRSyncState {
1276 target_ulong value;
1277 target_ulong mask;
1280 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1282 struct LPCRSyncState *s = arg.host_ptr;
1283 PowerPCCPU *cpu = POWERPC_CPU(cs);
1284 CPUPPCState *env = &cpu->env;
1285 target_ulong lpcr;
1287 cpu_synchronize_state(cs);
1288 lpcr = env->spr[SPR_LPCR];
1289 lpcr &= ~s->mask;
1290 lpcr |= s->value;
1291 ppc_store_lpcr(cpu, lpcr);
1294 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1296 CPUState *cs;
1297 struct LPCRSyncState s = {
1298 .value = value,
1299 .mask = mask
1301 CPU_FOREACH(cs) {
1302 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1306 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1308 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1310 /* Copy PATE1:GR into PATE0:HR */
1311 entry->dw0 = spapr->patb_entry & PATE0_HR;
1312 entry->dw1 = spapr->patb_entry;
1315 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1316 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1317 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1318 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1319 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1322 * Get the fd to access the kernel htab, re-opening it if necessary
1324 static int get_htab_fd(SpaprMachineState *spapr)
1326 Error *local_err = NULL;
1328 if (spapr->htab_fd >= 0) {
1329 return spapr->htab_fd;
1332 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1333 if (spapr->htab_fd < 0) {
1334 error_report_err(local_err);
1337 return spapr->htab_fd;
1340 void close_htab_fd(SpaprMachineState *spapr)
1342 if (spapr->htab_fd >= 0) {
1343 close(spapr->htab_fd);
1345 spapr->htab_fd = -1;
1348 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1350 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1352 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1355 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1357 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1359 assert(kvm_enabled());
1361 if (!spapr->htab) {
1362 return 0;
1365 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1368 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1369 hwaddr ptex, int n)
1371 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1372 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1374 if (!spapr->htab) {
1376 * HTAB is controlled by KVM. Fetch into temporary buffer
1378 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1379 kvmppc_read_hptes(hptes, ptex, n);
1380 return hptes;
1384 * HTAB is controlled by QEMU. Just point to the internally
1385 * accessible PTEG.
1387 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1390 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1391 const ppc_hash_pte64_t *hptes,
1392 hwaddr ptex, int n)
1394 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1396 if (!spapr->htab) {
1397 g_free((void *)hptes);
1400 /* Nothing to do for qemu managed HPT */
1403 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1404 uint64_t pte0, uint64_t pte1)
1406 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1407 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1409 if (!spapr->htab) {
1410 kvmppc_write_hpte(ptex, pte0, pte1);
1411 } else {
1412 if (pte0 & HPTE64_V_VALID) {
1413 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1415 * When setting valid, we write PTE1 first. This ensures
1416 * proper synchronization with the reading code in
1417 * ppc_hash64_pteg_search()
1419 smp_wmb();
1420 stq_p(spapr->htab + offset, pte0);
1421 } else {
1422 stq_p(spapr->htab + offset, pte0);
1424 * When clearing it we set PTE0 first. This ensures proper
1425 * synchronization with the reading code in
1426 * ppc_hash64_pteg_search()
1428 smp_wmb();
1429 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1434 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1435 uint64_t pte1)
1437 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1438 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1440 if (!spapr->htab) {
1441 /* There should always be a hash table when this is called */
1442 error_report("spapr_hpte_set_c called with no hash table !");
1443 return;
1446 /* The HW performs a non-atomic byte update */
1447 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1450 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1451 uint64_t pte1)
1453 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1454 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1456 if (!spapr->htab) {
1457 /* There should always be a hash table when this is called */
1458 error_report("spapr_hpte_set_r called with no hash table !");
1459 return;
1462 /* The HW performs a non-atomic byte update */
1463 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1466 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1468 int shift;
1470 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1471 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1472 * that's much more than is needed for Linux guests */
1473 shift = ctz64(pow2ceil(ramsize)) - 7;
1474 shift = MAX(shift, 18); /* Minimum architected size */
1475 shift = MIN(shift, 46); /* Maximum architected size */
1476 return shift;
1479 void spapr_free_hpt(SpaprMachineState *spapr)
1481 g_free(spapr->htab);
1482 spapr->htab = NULL;
1483 spapr->htab_shift = 0;
1484 close_htab_fd(spapr);
1487 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1489 ERRP_GUARD();
1490 long rc;
1492 /* Clean up any HPT info from a previous boot */
1493 spapr_free_hpt(spapr);
1495 rc = kvmppc_reset_htab(shift);
1497 if (rc == -EOPNOTSUPP) {
1498 error_setg(errp, "HPT not supported in nested guests");
1499 return -EOPNOTSUPP;
1502 if (rc < 0) {
1503 /* kernel-side HPT needed, but couldn't allocate one */
1504 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1505 shift);
1506 error_append_hint(errp, "Try smaller maxmem?\n");
1507 return -errno;
1508 } else if (rc > 0) {
1509 /* kernel-side HPT allocated */
1510 if (rc != shift) {
1511 error_setg(errp,
1512 "Requested order %d HPT, but kernel allocated order %ld",
1513 shift, rc);
1514 error_append_hint(errp, "Try smaller maxmem?\n");
1515 return -ENOSPC;
1518 spapr->htab_shift = shift;
1519 spapr->htab = NULL;
1520 } else {
1521 /* kernel-side HPT not needed, allocate in userspace instead */
1522 size_t size = 1ULL << shift;
1523 int i;
1525 spapr->htab = qemu_memalign(size, size);
1526 memset(spapr->htab, 0, size);
1527 spapr->htab_shift = shift;
1529 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1530 DIRTY_HPTE(HPTE(spapr->htab, i));
1533 /* We're setting up a hash table, so that means we're not radix */
1534 spapr->patb_entry = 0;
1535 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1536 return 0;
1539 void spapr_setup_hpt(SpaprMachineState *spapr)
1541 int hpt_shift;
1543 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1544 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1545 } else {
1546 uint64_t current_ram_size;
1548 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1549 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1551 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1553 if (kvm_enabled()) {
1554 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1556 /* Check our RMA fits in the possible VRMA */
1557 if (vrma_limit < spapr->rma_size) {
1558 error_report("Unable to create %" HWADDR_PRIu
1559 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1560 spapr->rma_size / MiB, vrma_limit / MiB);
1561 exit(EXIT_FAILURE);
1566 static int spapr_reset_drcs(Object *child, void *opaque)
1568 SpaprDrc *drc =
1569 (SpaprDrc *) object_dynamic_cast(child,
1570 TYPE_SPAPR_DR_CONNECTOR);
1572 if (drc) {
1573 spapr_drc_reset(drc);
1576 return 0;
1579 static void spapr_machine_reset(MachineState *machine)
1581 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1582 PowerPCCPU *first_ppc_cpu;
1583 hwaddr fdt_addr;
1584 void *fdt;
1585 int rc;
1587 kvmppc_svm_off(&error_fatal);
1588 spapr_caps_apply(spapr);
1590 first_ppc_cpu = POWERPC_CPU(first_cpu);
1591 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1592 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1593 spapr->max_compat_pvr)) {
1595 * If using KVM with radix mode available, VCPUs can be started
1596 * without a HPT because KVM will start them in radix mode.
1597 * Set the GR bit in PATE so that we know there is no HPT.
1599 spapr->patb_entry = PATE1_GR;
1600 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1601 } else {
1602 spapr_setup_hpt(spapr);
1605 qemu_devices_reset();
1607 spapr_ovec_cleanup(spapr->ov5_cas);
1608 spapr->ov5_cas = spapr_ovec_new();
1610 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1613 * This is fixing some of the default configuration of the XIVE
1614 * devices. To be called after the reset of the machine devices.
1616 spapr_irq_reset(spapr, &error_fatal);
1619 * There is no CAS under qtest. Simulate one to please the code that
1620 * depends on spapr->ov5_cas. This is especially needed to test device
1621 * unplug, so we do that before resetting the DRCs.
1623 if (qtest_enabled()) {
1624 spapr_ovec_cleanup(spapr->ov5_cas);
1625 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1628 /* DRC reset may cause a device to be unplugged. This will cause troubles
1629 * if this device is used by another device (eg, a running vhost backend
1630 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1631 * situations, we reset DRCs after all devices have been reset.
1633 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1635 spapr_clear_pending_events(spapr);
1638 * We place the device tree and RTAS just below either the top of the RMA,
1639 * or just below 2GB, whichever is lower, so that it can be
1640 * processed with 32-bit real mode code if necessary
1642 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1644 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1646 rc = fdt_pack(fdt);
1648 /* Should only fail if we've built a corrupted tree */
1649 assert(rc == 0);
1651 /* Load the fdt */
1652 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1653 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1654 g_free(spapr->fdt_blob);
1655 spapr->fdt_size = fdt_totalsize(fdt);
1656 spapr->fdt_initial_size = spapr->fdt_size;
1657 spapr->fdt_blob = fdt;
1659 /* Set up the entry state */
1660 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1661 first_ppc_cpu->env.gpr[5] = 0;
1663 spapr->fwnmi_system_reset_addr = -1;
1664 spapr->fwnmi_machine_check_addr = -1;
1665 spapr->fwnmi_machine_check_interlock = -1;
1667 /* Signal all vCPUs waiting on this condition */
1668 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1670 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1673 static void spapr_create_nvram(SpaprMachineState *spapr)
1675 DeviceState *dev = qdev_new("spapr-nvram");
1676 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1678 if (dinfo) {
1679 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1680 &error_fatal);
1683 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1685 spapr->nvram = (struct SpaprNvram *)dev;
1688 static void spapr_rtc_create(SpaprMachineState *spapr)
1690 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1691 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1692 &error_fatal, NULL);
1693 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1694 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1695 "date");
1698 /* Returns whether we want to use VGA or not */
1699 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1701 switch (vga_interface_type) {
1702 case VGA_NONE:
1703 return false;
1704 case VGA_DEVICE:
1705 return true;
1706 case VGA_STD:
1707 case VGA_VIRTIO:
1708 case VGA_CIRRUS:
1709 return pci_vga_init(pci_bus) != NULL;
1710 default:
1711 error_setg(errp,
1712 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1713 return false;
1717 static int spapr_pre_load(void *opaque)
1719 int rc;
1721 rc = spapr_caps_pre_load(opaque);
1722 if (rc) {
1723 return rc;
1726 return 0;
1729 static int spapr_post_load(void *opaque, int version_id)
1731 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1732 int err = 0;
1734 err = spapr_caps_post_migration(spapr);
1735 if (err) {
1736 return err;
1740 * In earlier versions, there was no separate qdev for the PAPR
1741 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1742 * So when migrating from those versions, poke the incoming offset
1743 * value into the RTC device
1745 if (version_id < 3) {
1746 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1747 if (err) {
1748 return err;
1752 if (kvm_enabled() && spapr->patb_entry) {
1753 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1754 bool radix = !!(spapr->patb_entry & PATE1_GR);
1755 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1758 * Update LPCR:HR and UPRT as they may not be set properly in
1759 * the stream
1761 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1762 LPCR_HR | LPCR_UPRT);
1764 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1765 if (err) {
1766 error_report("Process table config unsupported by the host");
1767 return -EINVAL;
1771 err = spapr_irq_post_load(spapr, version_id);
1772 if (err) {
1773 return err;
1776 return err;
1779 static int spapr_pre_save(void *opaque)
1781 int rc;
1783 rc = spapr_caps_pre_save(opaque);
1784 if (rc) {
1785 return rc;
1788 return 0;
1791 static bool version_before_3(void *opaque, int version_id)
1793 return version_id < 3;
1796 static bool spapr_pending_events_needed(void *opaque)
1798 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1799 return !QTAILQ_EMPTY(&spapr->pending_events);
1802 static const VMStateDescription vmstate_spapr_event_entry = {
1803 .name = "spapr_event_log_entry",
1804 .version_id = 1,
1805 .minimum_version_id = 1,
1806 .fields = (VMStateField[]) {
1807 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1808 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1809 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1810 NULL, extended_length),
1811 VMSTATE_END_OF_LIST()
1815 static const VMStateDescription vmstate_spapr_pending_events = {
1816 .name = "spapr_pending_events",
1817 .version_id = 1,
1818 .minimum_version_id = 1,
1819 .needed = spapr_pending_events_needed,
1820 .fields = (VMStateField[]) {
1821 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1822 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1823 VMSTATE_END_OF_LIST()
1827 static bool spapr_ov5_cas_needed(void *opaque)
1829 SpaprMachineState *spapr = opaque;
1830 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1831 bool cas_needed;
1833 /* Prior to the introduction of SpaprOptionVector, we had two option
1834 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1835 * Both of these options encode machine topology into the device-tree
1836 * in such a way that the now-booted OS should still be able to interact
1837 * appropriately with QEMU regardless of what options were actually
1838 * negotiatied on the source side.
1840 * As such, we can avoid migrating the CAS-negotiated options if these
1841 * are the only options available on the current machine/platform.
1842 * Since these are the only options available for pseries-2.7 and
1843 * earlier, this allows us to maintain old->new/new->old migration
1844 * compatibility.
1846 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1847 * via default pseries-2.8 machines and explicit command-line parameters.
1848 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1849 * of the actual CAS-negotiated values to continue working properly. For
1850 * example, availability of memory unplug depends on knowing whether
1851 * OV5_HP_EVT was negotiated via CAS.
1853 * Thus, for any cases where the set of available CAS-negotiatable
1854 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1855 * include the CAS-negotiated options in the migration stream, unless
1856 * if they affect boot time behaviour only.
1858 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1859 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1860 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1862 /* We need extra information if we have any bits outside the mask
1863 * defined above */
1864 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1866 spapr_ovec_cleanup(ov5_mask);
1868 return cas_needed;
1871 static const VMStateDescription vmstate_spapr_ov5_cas = {
1872 .name = "spapr_option_vector_ov5_cas",
1873 .version_id = 1,
1874 .minimum_version_id = 1,
1875 .needed = spapr_ov5_cas_needed,
1876 .fields = (VMStateField[]) {
1877 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1878 vmstate_spapr_ovec, SpaprOptionVector),
1879 VMSTATE_END_OF_LIST()
1883 static bool spapr_patb_entry_needed(void *opaque)
1885 SpaprMachineState *spapr = opaque;
1887 return !!spapr->patb_entry;
1890 static const VMStateDescription vmstate_spapr_patb_entry = {
1891 .name = "spapr_patb_entry",
1892 .version_id = 1,
1893 .minimum_version_id = 1,
1894 .needed = spapr_patb_entry_needed,
1895 .fields = (VMStateField[]) {
1896 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1897 VMSTATE_END_OF_LIST()
1901 static bool spapr_irq_map_needed(void *opaque)
1903 SpaprMachineState *spapr = opaque;
1905 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1908 static const VMStateDescription vmstate_spapr_irq_map = {
1909 .name = "spapr_irq_map",
1910 .version_id = 1,
1911 .minimum_version_id = 1,
1912 .needed = spapr_irq_map_needed,
1913 .fields = (VMStateField[]) {
1914 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1915 VMSTATE_END_OF_LIST()
1919 static bool spapr_dtb_needed(void *opaque)
1921 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1923 return smc->update_dt_enabled;
1926 static int spapr_dtb_pre_load(void *opaque)
1928 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1930 g_free(spapr->fdt_blob);
1931 spapr->fdt_blob = NULL;
1932 spapr->fdt_size = 0;
1934 return 0;
1937 static const VMStateDescription vmstate_spapr_dtb = {
1938 .name = "spapr_dtb",
1939 .version_id = 1,
1940 .minimum_version_id = 1,
1941 .needed = spapr_dtb_needed,
1942 .pre_load = spapr_dtb_pre_load,
1943 .fields = (VMStateField[]) {
1944 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1945 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1946 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1947 fdt_size),
1948 VMSTATE_END_OF_LIST()
1952 static bool spapr_fwnmi_needed(void *opaque)
1954 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1956 return spapr->fwnmi_machine_check_addr != -1;
1959 static int spapr_fwnmi_pre_save(void *opaque)
1961 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1964 * Check if machine check handling is in progress and print a
1965 * warning message.
1967 if (spapr->fwnmi_machine_check_interlock != -1) {
1968 warn_report("A machine check is being handled during migration. The"
1969 "handler may run and log hardware error on the destination");
1972 return 0;
1975 static const VMStateDescription vmstate_spapr_fwnmi = {
1976 .name = "spapr_fwnmi",
1977 .version_id = 1,
1978 .minimum_version_id = 1,
1979 .needed = spapr_fwnmi_needed,
1980 .pre_save = spapr_fwnmi_pre_save,
1981 .fields = (VMStateField[]) {
1982 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1983 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1984 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1985 VMSTATE_END_OF_LIST()
1989 static const VMStateDescription vmstate_spapr = {
1990 .name = "spapr",
1991 .version_id = 3,
1992 .minimum_version_id = 1,
1993 .pre_load = spapr_pre_load,
1994 .post_load = spapr_post_load,
1995 .pre_save = spapr_pre_save,
1996 .fields = (VMStateField[]) {
1997 /* used to be @next_irq */
1998 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2000 /* RTC offset */
2001 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2003 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2004 VMSTATE_END_OF_LIST()
2006 .subsections = (const VMStateDescription*[]) {
2007 &vmstate_spapr_ov5_cas,
2008 &vmstate_spapr_patb_entry,
2009 &vmstate_spapr_pending_events,
2010 &vmstate_spapr_cap_htm,
2011 &vmstate_spapr_cap_vsx,
2012 &vmstate_spapr_cap_dfp,
2013 &vmstate_spapr_cap_cfpc,
2014 &vmstate_spapr_cap_sbbc,
2015 &vmstate_spapr_cap_ibs,
2016 &vmstate_spapr_cap_hpt_maxpagesize,
2017 &vmstate_spapr_irq_map,
2018 &vmstate_spapr_cap_nested_kvm_hv,
2019 &vmstate_spapr_dtb,
2020 &vmstate_spapr_cap_large_decr,
2021 &vmstate_spapr_cap_ccf_assist,
2022 &vmstate_spapr_cap_fwnmi,
2023 &vmstate_spapr_fwnmi,
2024 NULL
2028 static int htab_save_setup(QEMUFile *f, void *opaque)
2030 SpaprMachineState *spapr = opaque;
2032 /* "Iteration" header */
2033 if (!spapr->htab_shift) {
2034 qemu_put_be32(f, -1);
2035 } else {
2036 qemu_put_be32(f, spapr->htab_shift);
2039 if (spapr->htab) {
2040 spapr->htab_save_index = 0;
2041 spapr->htab_first_pass = true;
2042 } else {
2043 if (spapr->htab_shift) {
2044 assert(kvm_enabled());
2049 return 0;
2052 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2053 int chunkstart, int n_valid, int n_invalid)
2055 qemu_put_be32(f, chunkstart);
2056 qemu_put_be16(f, n_valid);
2057 qemu_put_be16(f, n_invalid);
2058 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2059 HASH_PTE_SIZE_64 * n_valid);
2062 static void htab_save_end_marker(QEMUFile *f)
2064 qemu_put_be32(f, 0);
2065 qemu_put_be16(f, 0);
2066 qemu_put_be16(f, 0);
2069 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2070 int64_t max_ns)
2072 bool has_timeout = max_ns != -1;
2073 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2074 int index = spapr->htab_save_index;
2075 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2077 assert(spapr->htab_first_pass);
2079 do {
2080 int chunkstart;
2082 /* Consume invalid HPTEs */
2083 while ((index < htabslots)
2084 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2085 CLEAN_HPTE(HPTE(spapr->htab, index));
2086 index++;
2089 /* Consume valid HPTEs */
2090 chunkstart = index;
2091 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2092 && HPTE_VALID(HPTE(spapr->htab, index))) {
2093 CLEAN_HPTE(HPTE(spapr->htab, index));
2094 index++;
2097 if (index > chunkstart) {
2098 int n_valid = index - chunkstart;
2100 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2102 if (has_timeout &&
2103 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2104 break;
2107 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2109 if (index >= htabslots) {
2110 assert(index == htabslots);
2111 index = 0;
2112 spapr->htab_first_pass = false;
2114 spapr->htab_save_index = index;
2117 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2118 int64_t max_ns)
2120 bool final = max_ns < 0;
2121 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2122 int examined = 0, sent = 0;
2123 int index = spapr->htab_save_index;
2124 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2126 assert(!spapr->htab_first_pass);
2128 do {
2129 int chunkstart, invalidstart;
2131 /* Consume non-dirty HPTEs */
2132 while ((index < htabslots)
2133 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2134 index++;
2135 examined++;
2138 chunkstart = index;
2139 /* Consume valid dirty HPTEs */
2140 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2141 && HPTE_DIRTY(HPTE(spapr->htab, index))
2142 && HPTE_VALID(HPTE(spapr->htab, index))) {
2143 CLEAN_HPTE(HPTE(spapr->htab, index));
2144 index++;
2145 examined++;
2148 invalidstart = index;
2149 /* Consume invalid dirty HPTEs */
2150 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2151 && HPTE_DIRTY(HPTE(spapr->htab, index))
2152 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2153 CLEAN_HPTE(HPTE(spapr->htab, index));
2154 index++;
2155 examined++;
2158 if (index > chunkstart) {
2159 int n_valid = invalidstart - chunkstart;
2160 int n_invalid = index - invalidstart;
2162 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2163 sent += index - chunkstart;
2165 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2166 break;
2170 if (examined >= htabslots) {
2171 break;
2174 if (index >= htabslots) {
2175 assert(index == htabslots);
2176 index = 0;
2178 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2180 if (index >= htabslots) {
2181 assert(index == htabslots);
2182 index = 0;
2185 spapr->htab_save_index = index;
2187 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2190 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2191 #define MAX_KVM_BUF_SIZE 2048
2193 static int htab_save_iterate(QEMUFile *f, void *opaque)
2195 SpaprMachineState *spapr = opaque;
2196 int fd;
2197 int rc = 0;
2199 /* Iteration header */
2200 if (!spapr->htab_shift) {
2201 qemu_put_be32(f, -1);
2202 return 1;
2203 } else {
2204 qemu_put_be32(f, 0);
2207 if (!spapr->htab) {
2208 assert(kvm_enabled());
2210 fd = get_htab_fd(spapr);
2211 if (fd < 0) {
2212 return fd;
2215 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2216 if (rc < 0) {
2217 return rc;
2219 } else if (spapr->htab_first_pass) {
2220 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2221 } else {
2222 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2225 htab_save_end_marker(f);
2227 return rc;
2230 static int htab_save_complete(QEMUFile *f, void *opaque)
2232 SpaprMachineState *spapr = opaque;
2233 int fd;
2235 /* Iteration header */
2236 if (!spapr->htab_shift) {
2237 qemu_put_be32(f, -1);
2238 return 0;
2239 } else {
2240 qemu_put_be32(f, 0);
2243 if (!spapr->htab) {
2244 int rc;
2246 assert(kvm_enabled());
2248 fd = get_htab_fd(spapr);
2249 if (fd < 0) {
2250 return fd;
2253 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2254 if (rc < 0) {
2255 return rc;
2257 } else {
2258 if (spapr->htab_first_pass) {
2259 htab_save_first_pass(f, spapr, -1);
2261 htab_save_later_pass(f, spapr, -1);
2264 /* End marker */
2265 htab_save_end_marker(f);
2267 return 0;
2270 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2272 SpaprMachineState *spapr = opaque;
2273 uint32_t section_hdr;
2274 int fd = -1;
2275 Error *local_err = NULL;
2277 if (version_id < 1 || version_id > 1) {
2278 error_report("htab_load() bad version");
2279 return -EINVAL;
2282 section_hdr = qemu_get_be32(f);
2284 if (section_hdr == -1) {
2285 spapr_free_hpt(spapr);
2286 return 0;
2289 if (section_hdr) {
2290 int ret;
2292 /* First section gives the htab size */
2293 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2294 if (ret < 0) {
2295 error_report_err(local_err);
2296 return ret;
2298 return 0;
2301 if (!spapr->htab) {
2302 assert(kvm_enabled());
2304 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2305 if (fd < 0) {
2306 error_report_err(local_err);
2307 return fd;
2311 while (true) {
2312 uint32_t index;
2313 uint16_t n_valid, n_invalid;
2315 index = qemu_get_be32(f);
2316 n_valid = qemu_get_be16(f);
2317 n_invalid = qemu_get_be16(f);
2319 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2320 /* End of Stream */
2321 break;
2324 if ((index + n_valid + n_invalid) >
2325 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2326 /* Bad index in stream */
2327 error_report(
2328 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2329 index, n_valid, n_invalid, spapr->htab_shift);
2330 return -EINVAL;
2333 if (spapr->htab) {
2334 if (n_valid) {
2335 qemu_get_buffer(f, HPTE(spapr->htab, index),
2336 HASH_PTE_SIZE_64 * n_valid);
2338 if (n_invalid) {
2339 memset(HPTE(spapr->htab, index + n_valid), 0,
2340 HASH_PTE_SIZE_64 * n_invalid);
2342 } else {
2343 int rc;
2345 assert(fd >= 0);
2347 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2348 &local_err);
2349 if (rc < 0) {
2350 error_report_err(local_err);
2351 return rc;
2356 if (!spapr->htab) {
2357 assert(fd >= 0);
2358 close(fd);
2361 return 0;
2364 static void htab_save_cleanup(void *opaque)
2366 SpaprMachineState *spapr = opaque;
2368 close_htab_fd(spapr);
2371 static SaveVMHandlers savevm_htab_handlers = {
2372 .save_setup = htab_save_setup,
2373 .save_live_iterate = htab_save_iterate,
2374 .save_live_complete_precopy = htab_save_complete,
2375 .save_cleanup = htab_save_cleanup,
2376 .load_state = htab_load,
2379 static void spapr_boot_set(void *opaque, const char *boot_device,
2380 Error **errp)
2382 MachineState *machine = MACHINE(opaque);
2383 machine->boot_order = g_strdup(boot_device);
2386 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2388 MachineState *machine = MACHINE(spapr);
2389 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2390 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2391 int i;
2393 for (i = 0; i < nr_lmbs; i++) {
2394 uint64_t addr;
2396 addr = i * lmb_size + machine->device_memory->base;
2397 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2398 addr / lmb_size);
2403 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2404 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2405 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2407 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2409 int i;
2411 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2412 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2413 " is not aligned to %" PRIu64 " MiB",
2414 machine->ram_size,
2415 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2416 return;
2419 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2420 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2421 " is not aligned to %" PRIu64 " MiB",
2422 machine->ram_size,
2423 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2424 return;
2427 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2428 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2429 error_setg(errp,
2430 "Node %d memory size 0x%" PRIx64
2431 " is not aligned to %" PRIu64 " MiB",
2432 i, machine->numa_state->nodes[i].node_mem,
2433 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2434 return;
2439 /* find cpu slot in machine->possible_cpus by core_id */
2440 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2442 int index = id / ms->smp.threads;
2444 if (index >= ms->possible_cpus->len) {
2445 return NULL;
2447 if (idx) {
2448 *idx = index;
2450 return &ms->possible_cpus->cpus[index];
2453 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2455 MachineState *ms = MACHINE(spapr);
2456 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2457 Error *local_err = NULL;
2458 bool vsmt_user = !!spapr->vsmt;
2459 int kvm_smt = kvmppc_smt_threads();
2460 int ret;
2461 unsigned int smp_threads = ms->smp.threads;
2463 if (!kvm_enabled() && (smp_threads > 1)) {
2464 error_setg(errp, "TCG cannot support more than 1 thread/core "
2465 "on a pseries machine");
2466 return;
2468 if (!is_power_of_2(smp_threads)) {
2469 error_setg(errp, "Cannot support %d threads/core on a pseries "
2470 "machine because it must be a power of 2", smp_threads);
2471 return;
2474 /* Detemine the VSMT mode to use: */
2475 if (vsmt_user) {
2476 if (spapr->vsmt < smp_threads) {
2477 error_setg(errp, "Cannot support VSMT mode %d"
2478 " because it must be >= threads/core (%d)",
2479 spapr->vsmt, smp_threads);
2480 return;
2482 /* In this case, spapr->vsmt has been set by the command line */
2483 } else if (!smc->smp_threads_vsmt) {
2485 * Default VSMT value is tricky, because we need it to be as
2486 * consistent as possible (for migration), but this requires
2487 * changing it for at least some existing cases. We pick 8 as
2488 * the value that we'd get with KVM on POWER8, the
2489 * overwhelmingly common case in production systems.
2491 spapr->vsmt = MAX(8, smp_threads);
2492 } else {
2493 spapr->vsmt = smp_threads;
2496 /* KVM: If necessary, set the SMT mode: */
2497 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2498 ret = kvmppc_set_smt_threads(spapr->vsmt);
2499 if (ret) {
2500 /* Looks like KVM isn't able to change VSMT mode */
2501 error_setg(&local_err,
2502 "Failed to set KVM's VSMT mode to %d (errno %d)",
2503 spapr->vsmt, ret);
2504 /* We can live with that if the default one is big enough
2505 * for the number of threads, and a submultiple of the one
2506 * we want. In this case we'll waste some vcpu ids, but
2507 * behaviour will be correct */
2508 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2509 warn_report_err(local_err);
2510 } else {
2511 if (!vsmt_user) {
2512 error_append_hint(&local_err,
2513 "On PPC, a VM with %d threads/core"
2514 " on a host with %d threads/core"
2515 " requires the use of VSMT mode %d.\n",
2516 smp_threads, kvm_smt, spapr->vsmt);
2518 kvmppc_error_append_smt_possible_hint(&local_err);
2519 error_propagate(errp, local_err);
2523 /* else TCG: nothing to do currently */
2526 static void spapr_init_cpus(SpaprMachineState *spapr)
2528 MachineState *machine = MACHINE(spapr);
2529 MachineClass *mc = MACHINE_GET_CLASS(machine);
2530 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2531 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2532 const CPUArchIdList *possible_cpus;
2533 unsigned int smp_cpus = machine->smp.cpus;
2534 unsigned int smp_threads = machine->smp.threads;
2535 unsigned int max_cpus = machine->smp.max_cpus;
2536 int boot_cores_nr = smp_cpus / smp_threads;
2537 int i;
2539 possible_cpus = mc->possible_cpu_arch_ids(machine);
2540 if (mc->has_hotpluggable_cpus) {
2541 if (smp_cpus % smp_threads) {
2542 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2543 smp_cpus, smp_threads);
2544 exit(1);
2546 if (max_cpus % smp_threads) {
2547 error_report("max_cpus (%u) must be multiple of threads (%u)",
2548 max_cpus, smp_threads);
2549 exit(1);
2551 } else {
2552 if (max_cpus != smp_cpus) {
2553 error_report("This machine version does not support CPU hotplug");
2554 exit(1);
2556 boot_cores_nr = possible_cpus->len;
2559 if (smc->pre_2_10_has_unused_icps) {
2560 int i;
2562 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2563 /* Dummy entries get deregistered when real ICPState objects
2564 * are registered during CPU core hotplug.
2566 pre_2_10_vmstate_register_dummy_icp(i);
2570 for (i = 0; i < possible_cpus->len; i++) {
2571 int core_id = i * smp_threads;
2573 if (mc->has_hotpluggable_cpus) {
2574 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2575 spapr_vcpu_id(spapr, core_id));
2578 if (i < boot_cores_nr) {
2579 Object *core = object_new(type);
2580 int nr_threads = smp_threads;
2582 /* Handle the partially filled core for older machine types */
2583 if ((i + 1) * smp_threads >= smp_cpus) {
2584 nr_threads = smp_cpus - i * smp_threads;
2587 object_property_set_int(core, "nr-threads", nr_threads,
2588 &error_fatal);
2589 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2590 &error_fatal);
2591 qdev_realize(DEVICE(core), NULL, &error_fatal);
2593 object_unref(core);
2598 static PCIHostState *spapr_create_default_phb(void)
2600 DeviceState *dev;
2602 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2603 qdev_prop_set_uint32(dev, "index", 0);
2604 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2606 return PCI_HOST_BRIDGE(dev);
2609 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2611 MachineState *machine = MACHINE(spapr);
2612 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2613 hwaddr rma_size = machine->ram_size;
2614 hwaddr node0_size = spapr_node0_size(machine);
2616 /* RMA has to fit in the first NUMA node */
2617 rma_size = MIN(rma_size, node0_size);
2620 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2621 * never exceed that
2623 rma_size = MIN(rma_size, 1 * TiB);
2626 * Clamp the RMA size based on machine type. This is for
2627 * migration compatibility with older qemu versions, which limited
2628 * the RMA size for complicated and mostly bad reasons.
2630 if (smc->rma_limit) {
2631 rma_size = MIN(rma_size, smc->rma_limit);
2634 if (rma_size < MIN_RMA_SLOF) {
2635 error_setg(errp,
2636 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2637 "ldMiB guest RMA (Real Mode Area memory)",
2638 MIN_RMA_SLOF / MiB);
2639 return 0;
2642 return rma_size;
2645 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2647 MachineState *machine = MACHINE(spapr);
2648 int i;
2650 for (i = 0; i < machine->ram_slots; i++) {
2651 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2655 /* pSeries LPAR / sPAPR hardware init */
2656 static void spapr_machine_init(MachineState *machine)
2658 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2659 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2660 MachineClass *mc = MACHINE_GET_CLASS(machine);
2661 const char *bios_name = machine->firmware ?: FW_FILE_NAME;
2662 const char *kernel_filename = machine->kernel_filename;
2663 const char *initrd_filename = machine->initrd_filename;
2664 PCIHostState *phb;
2665 int i;
2666 MemoryRegion *sysmem = get_system_memory();
2667 long load_limit, fw_size;
2668 char *filename;
2669 Error *resize_hpt_err = NULL;
2671 msi_nonbroken = true;
2673 QLIST_INIT(&spapr->phbs);
2674 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2676 /* Determine capabilities to run with */
2677 spapr_caps_init(spapr);
2679 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2680 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2682 * If the user explicitly requested a mode we should either
2683 * supply it, or fail completely (which we do below). But if
2684 * it's not set explicitly, we reset our mode to something
2685 * that works
2687 if (resize_hpt_err) {
2688 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2689 error_free(resize_hpt_err);
2690 resize_hpt_err = NULL;
2691 } else {
2692 spapr->resize_hpt = smc->resize_hpt_default;
2696 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2698 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2700 * User requested HPT resize, but this host can't supply it. Bail out
2702 error_report_err(resize_hpt_err);
2703 exit(1);
2705 error_free(resize_hpt_err);
2707 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2709 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2710 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2713 * VSMT must be set in order to be able to compute VCPU ids, ie to
2714 * call spapr_max_server_number() or spapr_vcpu_id().
2716 spapr_set_vsmt_mode(spapr, &error_fatal);
2718 /* Set up Interrupt Controller before we create the VCPUs */
2719 spapr_irq_init(spapr, &error_fatal);
2721 /* Set up containers for ibm,client-architecture-support negotiated options
2723 spapr->ov5 = spapr_ovec_new();
2724 spapr->ov5_cas = spapr_ovec_new();
2726 if (smc->dr_lmb_enabled) {
2727 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2728 spapr_validate_node_memory(machine, &error_fatal);
2731 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2733 /* advertise support for dedicated HP event source to guests */
2734 if (spapr->use_hotplug_event_source) {
2735 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2738 /* advertise support for HPT resizing */
2739 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2740 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2743 /* advertise support for ibm,dyamic-memory-v2 */
2744 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2746 /* advertise XIVE on POWER9 machines */
2747 if (spapr->irq->xive) {
2748 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2751 /* init CPUs */
2752 spapr_init_cpus(spapr);
2755 * check we don't have a memory-less/cpu-less NUMA node
2756 * Firmware relies on the existing memory/cpu topology to provide the
2757 * NUMA topology to the kernel.
2758 * And the linux kernel needs to know the NUMA topology at start
2759 * to be able to hotplug CPUs later.
2761 if (machine->numa_state->num_nodes) {
2762 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2763 /* check for memory-less node */
2764 if (machine->numa_state->nodes[i].node_mem == 0) {
2765 CPUState *cs;
2766 int found = 0;
2767 /* check for cpu-less node */
2768 CPU_FOREACH(cs) {
2769 PowerPCCPU *cpu = POWERPC_CPU(cs);
2770 if (cpu->node_id == i) {
2771 found = 1;
2772 break;
2775 /* memory-less and cpu-less node */
2776 if (!found) {
2777 error_report(
2778 "Memory-less/cpu-less nodes are not supported (node %d)",
2780 exit(1);
2788 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2789 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2790 * called from vPHB reset handler so we initialize the counter here.
2791 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2792 * must be equally distant from any other node.
2793 * The final value of spapr->gpu_numa_id is going to be written to
2794 * max-associativity-domains in spapr_build_fdt().
2796 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2798 /* Init numa_assoc_array */
2799 spapr_numa_associativity_init(spapr, machine);
2801 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2802 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2803 spapr->max_compat_pvr)) {
2804 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2805 /* KVM and TCG always allow GTSE with radix... */
2806 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2808 /* ... but not with hash (currently). */
2810 if (kvm_enabled()) {
2811 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2812 kvmppc_enable_logical_ci_hcalls();
2813 kvmppc_enable_set_mode_hcall();
2815 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2816 kvmppc_enable_clear_ref_mod_hcalls();
2818 /* Enable H_PAGE_INIT */
2819 kvmppc_enable_h_page_init();
2822 /* map RAM */
2823 memory_region_add_subregion(sysmem, 0, machine->ram);
2825 /* always allocate the device memory information */
2826 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2828 /* initialize hotplug memory address space */
2829 if (machine->ram_size < machine->maxram_size) {
2830 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2832 * Limit the number of hotpluggable memory slots to half the number
2833 * slots that KVM supports, leaving the other half for PCI and other
2834 * devices. However ensure that number of slots doesn't drop below 32.
2836 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2837 SPAPR_MAX_RAM_SLOTS;
2839 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2840 max_memslots = SPAPR_MAX_RAM_SLOTS;
2842 if (machine->ram_slots > max_memslots) {
2843 error_report("Specified number of memory slots %"
2844 PRIu64" exceeds max supported %d",
2845 machine->ram_slots, max_memslots);
2846 exit(1);
2849 machine->device_memory->base = ROUND_UP(machine->ram_size,
2850 SPAPR_DEVICE_MEM_ALIGN);
2851 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2852 "device-memory", device_mem_size);
2853 memory_region_add_subregion(sysmem, machine->device_memory->base,
2854 &machine->device_memory->mr);
2857 if (smc->dr_lmb_enabled) {
2858 spapr_create_lmb_dr_connectors(spapr);
2861 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2862 /* Create the error string for live migration blocker */
2863 error_setg(&spapr->fwnmi_migration_blocker,
2864 "A machine check is being handled during migration. The handler"
2865 "may run and log hardware error on the destination");
2868 if (mc->nvdimm_supported) {
2869 spapr_create_nvdimm_dr_connectors(spapr);
2872 /* Set up RTAS event infrastructure */
2873 spapr_events_init(spapr);
2875 /* Set up the RTC RTAS interfaces */
2876 spapr_rtc_create(spapr);
2878 /* Set up VIO bus */
2879 spapr->vio_bus = spapr_vio_bus_init();
2881 for (i = 0; serial_hd(i); i++) {
2882 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2885 /* We always have at least the nvram device on VIO */
2886 spapr_create_nvram(spapr);
2889 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2890 * connectors (described in root DT node's "ibm,drc-types" property)
2891 * are pre-initialized here. additional child connectors (such as
2892 * connectors for a PHBs PCI slots) are added as needed during their
2893 * parent's realization.
2895 if (smc->dr_phb_enabled) {
2896 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2897 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2901 /* Set up PCI */
2902 spapr_pci_rtas_init();
2904 phb = spapr_create_default_phb();
2906 for (i = 0; i < nb_nics; i++) {
2907 NICInfo *nd = &nd_table[i];
2909 if (!nd->model) {
2910 nd->model = g_strdup("spapr-vlan");
2913 if (g_str_equal(nd->model, "spapr-vlan") ||
2914 g_str_equal(nd->model, "ibmveth")) {
2915 spapr_vlan_create(spapr->vio_bus, nd);
2916 } else {
2917 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2921 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2922 spapr_vscsi_create(spapr->vio_bus);
2925 /* Graphics */
2926 if (spapr_vga_init(phb->bus, &error_fatal)) {
2927 spapr->has_graphics = true;
2928 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2931 if (machine->usb) {
2932 if (smc->use_ohci_by_default) {
2933 pci_create_simple(phb->bus, -1, "pci-ohci");
2934 } else {
2935 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2938 if (spapr->has_graphics) {
2939 USBBus *usb_bus = usb_bus_find(-1);
2941 usb_create_simple(usb_bus, "usb-kbd");
2942 usb_create_simple(usb_bus, "usb-mouse");
2946 if (kernel_filename) {
2947 spapr->kernel_size = load_elf(kernel_filename, NULL,
2948 translate_kernel_address, spapr,
2949 NULL, NULL, NULL, NULL, 1,
2950 PPC_ELF_MACHINE, 0, 0);
2951 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2952 spapr->kernel_size = load_elf(kernel_filename, NULL,
2953 translate_kernel_address, spapr,
2954 NULL, NULL, NULL, NULL, 0,
2955 PPC_ELF_MACHINE, 0, 0);
2956 spapr->kernel_le = spapr->kernel_size > 0;
2958 if (spapr->kernel_size < 0) {
2959 error_report("error loading %s: %s", kernel_filename,
2960 load_elf_strerror(spapr->kernel_size));
2961 exit(1);
2964 /* load initrd */
2965 if (initrd_filename) {
2966 /* Try to locate the initrd in the gap between the kernel
2967 * and the firmware. Add a bit of space just in case
2969 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2970 + 0x1ffff) & ~0xffff;
2971 spapr->initrd_size = load_image_targphys(initrd_filename,
2972 spapr->initrd_base,
2973 load_limit
2974 - spapr->initrd_base);
2975 if (spapr->initrd_size < 0) {
2976 error_report("could not load initial ram disk '%s'",
2977 initrd_filename);
2978 exit(1);
2983 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2984 if (!filename) {
2985 error_report("Could not find LPAR firmware '%s'", bios_name);
2986 exit(1);
2988 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2989 if (fw_size <= 0) {
2990 error_report("Could not load LPAR firmware '%s'", filename);
2991 exit(1);
2993 g_free(filename);
2995 /* FIXME: Should register things through the MachineState's qdev
2996 * interface, this is a legacy from the sPAPREnvironment structure
2997 * which predated MachineState but had a similar function */
2998 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2999 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3000 &savevm_htab_handlers, spapr);
3002 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3004 qemu_register_boot_set(spapr_boot_set, spapr);
3007 * Nothing needs to be done to resume a suspended guest because
3008 * suspending does not change the machine state, so no need for
3009 * a ->wakeup method.
3011 qemu_register_wakeup_support();
3013 if (kvm_enabled()) {
3014 /* to stop and start vmclock */
3015 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3016 &spapr->tb);
3018 kvmppc_spapr_enable_inkernel_multitce();
3021 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3024 #define DEFAULT_KVM_TYPE "auto"
3025 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3028 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3029 * accomodate the 'HV' and 'PV' formats that exists in the
3030 * wild. The 'auto' mode is being introduced already as
3031 * lower-case, thus we don't need to bother checking for
3032 * "AUTO".
3034 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3035 return 0;
3038 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3039 return 1;
3042 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3043 return 2;
3046 error_report("Unknown kvm-type specified '%s'", vm_type);
3047 exit(1);
3051 * Implementation of an interface to adjust firmware path
3052 * for the bootindex property handling.
3054 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3055 DeviceState *dev)
3057 #define CAST(type, obj, name) \
3058 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3059 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3060 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3061 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3063 if (d) {
3064 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3065 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3066 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3068 if (spapr) {
3070 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3071 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3072 * 0x8000 | (target << 8) | (bus << 5) | lun
3073 * (see the "Logical unit addressing format" table in SAM5)
3075 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3076 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3077 (uint64_t)id << 48);
3078 } else if (virtio) {
3080 * We use SRP luns of the form 01000000 | (target << 8) | lun
3081 * in the top 32 bits of the 64-bit LUN
3082 * Note: the quote above is from SLOF and it is wrong,
3083 * the actual binding is:
3084 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3086 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3087 if (d->lun >= 256) {
3088 /* Use the LUN "flat space addressing method" */
3089 id |= 0x4000;
3091 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3092 (uint64_t)id << 32);
3093 } else if (usb) {
3095 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3096 * in the top 32 bits of the 64-bit LUN
3098 unsigned usb_port = atoi(usb->port->path);
3099 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3100 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3101 (uint64_t)id << 32);
3106 * SLOF probes the USB devices, and if it recognizes that the device is a
3107 * storage device, it changes its name to "storage" instead of "usb-host",
3108 * and additionally adds a child node for the SCSI LUN, so the correct
3109 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3111 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3112 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3113 if (usb_host_dev_is_scsi_storage(usbdev)) {
3114 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3118 if (phb) {
3119 /* Replace "pci" with "pci@800000020000000" */
3120 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3123 if (vsc) {
3124 /* Same logic as virtio above */
3125 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3126 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3129 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3130 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3131 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3132 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3135 return NULL;
3138 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3140 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3142 return g_strdup(spapr->kvm_type);
3145 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3147 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3149 g_free(spapr->kvm_type);
3150 spapr->kvm_type = g_strdup(value);
3153 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3155 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3157 return spapr->use_hotplug_event_source;
3160 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3161 Error **errp)
3163 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3165 spapr->use_hotplug_event_source = value;
3168 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3170 return true;
3173 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3175 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3177 switch (spapr->resize_hpt) {
3178 case SPAPR_RESIZE_HPT_DEFAULT:
3179 return g_strdup("default");
3180 case SPAPR_RESIZE_HPT_DISABLED:
3181 return g_strdup("disabled");
3182 case SPAPR_RESIZE_HPT_ENABLED:
3183 return g_strdup("enabled");
3184 case SPAPR_RESIZE_HPT_REQUIRED:
3185 return g_strdup("required");
3187 g_assert_not_reached();
3190 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3192 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3194 if (strcmp(value, "default") == 0) {
3195 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3196 } else if (strcmp(value, "disabled") == 0) {
3197 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3198 } else if (strcmp(value, "enabled") == 0) {
3199 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3200 } else if (strcmp(value, "required") == 0) {
3201 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3202 } else {
3203 error_setg(errp, "Bad value for \"resize-hpt\" property");
3207 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3209 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3211 if (spapr->irq == &spapr_irq_xics_legacy) {
3212 return g_strdup("legacy");
3213 } else if (spapr->irq == &spapr_irq_xics) {
3214 return g_strdup("xics");
3215 } else if (spapr->irq == &spapr_irq_xive) {
3216 return g_strdup("xive");
3217 } else if (spapr->irq == &spapr_irq_dual) {
3218 return g_strdup("dual");
3220 g_assert_not_reached();
3223 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3225 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3227 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3228 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3229 return;
3232 /* The legacy IRQ backend can not be set */
3233 if (strcmp(value, "xics") == 0) {
3234 spapr->irq = &spapr_irq_xics;
3235 } else if (strcmp(value, "xive") == 0) {
3236 spapr->irq = &spapr_irq_xive;
3237 } else if (strcmp(value, "dual") == 0) {
3238 spapr->irq = &spapr_irq_dual;
3239 } else {
3240 error_setg(errp, "Bad value for \"ic-mode\" property");
3244 static char *spapr_get_host_model(Object *obj, Error **errp)
3246 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3248 return g_strdup(spapr->host_model);
3251 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3253 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3255 g_free(spapr->host_model);
3256 spapr->host_model = g_strdup(value);
3259 static char *spapr_get_host_serial(Object *obj, Error **errp)
3261 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3263 return g_strdup(spapr->host_serial);
3266 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3268 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3270 g_free(spapr->host_serial);
3271 spapr->host_serial = g_strdup(value);
3274 static void spapr_instance_init(Object *obj)
3276 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3277 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3278 MachineState *ms = MACHINE(spapr);
3279 MachineClass *mc = MACHINE_GET_CLASS(ms);
3282 * NVDIMM support went live in 5.1 without considering that, in
3283 * other archs, the user needs to enable NVDIMM support with the
3284 * 'nvdimm' machine option and the default behavior is NVDIMM
3285 * support disabled. It is too late to roll back to the standard
3286 * behavior without breaking 5.1 guests.
3288 if (mc->nvdimm_supported) {
3289 ms->nvdimms_state->is_enabled = true;
3292 spapr->htab_fd = -1;
3293 spapr->use_hotplug_event_source = true;
3294 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3295 object_property_add_str(obj, "kvm-type",
3296 spapr_get_kvm_type, spapr_set_kvm_type);
3297 object_property_set_description(obj, "kvm-type",
3298 "Specifies the KVM virtualization mode (auto,"
3299 " hv, pr). Defaults to 'auto'. This mode will use"
3300 " any available KVM module loaded in the host,"
3301 " where kvm_hv takes precedence if both kvm_hv and"
3302 " kvm_pr are loaded.");
3303 object_property_add_bool(obj, "modern-hotplug-events",
3304 spapr_get_modern_hotplug_events,
3305 spapr_set_modern_hotplug_events);
3306 object_property_set_description(obj, "modern-hotplug-events",
3307 "Use dedicated hotplug event mechanism in"
3308 " place of standard EPOW events when possible"
3309 " (required for memory hot-unplug support)");
3310 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3311 "Maximum permitted CPU compatibility mode");
3313 object_property_add_str(obj, "resize-hpt",
3314 spapr_get_resize_hpt, spapr_set_resize_hpt);
3315 object_property_set_description(obj, "resize-hpt",
3316 "Resizing of the Hash Page Table (enabled, disabled, required)");
3317 object_property_add_uint32_ptr(obj, "vsmt",
3318 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3319 object_property_set_description(obj, "vsmt",
3320 "Virtual SMT: KVM behaves as if this were"
3321 " the host's SMT mode");
3323 object_property_add_bool(obj, "vfio-no-msix-emulation",
3324 spapr_get_msix_emulation, NULL);
3326 object_property_add_uint64_ptr(obj, "kernel-addr",
3327 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3328 object_property_set_description(obj, "kernel-addr",
3329 stringify(KERNEL_LOAD_ADDR)
3330 " for -kernel is the default");
3331 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3332 /* The machine class defines the default interrupt controller mode */
3333 spapr->irq = smc->irq;
3334 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3335 spapr_set_ic_mode);
3336 object_property_set_description(obj, "ic-mode",
3337 "Specifies the interrupt controller mode (xics, xive, dual)");
3339 object_property_add_str(obj, "host-model",
3340 spapr_get_host_model, spapr_set_host_model);
3341 object_property_set_description(obj, "host-model",
3342 "Host model to advertise in guest device tree");
3343 object_property_add_str(obj, "host-serial",
3344 spapr_get_host_serial, spapr_set_host_serial);
3345 object_property_set_description(obj, "host-serial",
3346 "Host serial number to advertise in guest device tree");
3349 static void spapr_machine_finalizefn(Object *obj)
3351 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3353 g_free(spapr->kvm_type);
3356 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3358 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3359 PowerPCCPU *cpu = POWERPC_CPU(cs);
3360 CPUPPCState *env = &cpu->env;
3362 cpu_synchronize_state(cs);
3363 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3364 if (spapr->fwnmi_system_reset_addr != -1) {
3365 uint64_t rtas_addr, addr;
3367 /* get rtas addr from fdt */
3368 rtas_addr = spapr_get_rtas_addr();
3369 if (!rtas_addr) {
3370 qemu_system_guest_panicked(NULL);
3371 return;
3374 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3375 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3376 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3377 env->gpr[3] = addr;
3379 ppc_cpu_do_system_reset(cs);
3380 if (spapr->fwnmi_system_reset_addr != -1) {
3381 env->nip = spapr->fwnmi_system_reset_addr;
3385 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3387 CPUState *cs;
3389 CPU_FOREACH(cs) {
3390 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3394 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3395 void *fdt, int *fdt_start_offset, Error **errp)
3397 uint64_t addr;
3398 uint32_t node;
3400 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3401 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3402 &error_abort);
3403 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3404 SPAPR_MEMORY_BLOCK_SIZE);
3405 return 0;
3408 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3409 bool dedicated_hp_event_source)
3411 SpaprDrc *drc;
3412 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3413 int i;
3414 uint64_t addr = addr_start;
3415 bool hotplugged = spapr_drc_hotplugged(dev);
3417 for (i = 0; i < nr_lmbs; i++) {
3418 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3419 addr / SPAPR_MEMORY_BLOCK_SIZE);
3420 g_assert(drc);
3423 * memory_device_get_free_addr() provided a range of free addresses
3424 * that doesn't overlap with any existing mapping at pre-plug. The
3425 * corresponding LMB DRCs are thus assumed to be all attachable.
3427 spapr_drc_attach(drc, dev);
3428 if (!hotplugged) {
3429 spapr_drc_reset(drc);
3431 addr += SPAPR_MEMORY_BLOCK_SIZE;
3433 /* send hotplug notification to the
3434 * guest only in case of hotplugged memory
3436 if (hotplugged) {
3437 if (dedicated_hp_event_source) {
3438 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3439 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3440 g_assert(drc);
3441 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3442 nr_lmbs,
3443 spapr_drc_index(drc));
3444 } else {
3445 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3446 nr_lmbs);
3451 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3453 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3454 PCDIMMDevice *dimm = PC_DIMM(dev);
3455 uint64_t size, addr;
3456 int64_t slot;
3457 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3459 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3461 pc_dimm_plug(dimm, MACHINE(ms));
3463 if (!is_nvdimm) {
3464 addr = object_property_get_uint(OBJECT(dimm),
3465 PC_DIMM_ADDR_PROP, &error_abort);
3466 spapr_add_lmbs(dev, addr, size,
3467 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3468 } else {
3469 slot = object_property_get_int(OBJECT(dimm),
3470 PC_DIMM_SLOT_PROP, &error_abort);
3471 /* We should have valid slot number at this point */
3472 g_assert(slot >= 0);
3473 spapr_add_nvdimm(dev, slot);
3477 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3478 Error **errp)
3480 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3481 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3482 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3483 PCDIMMDevice *dimm = PC_DIMM(dev);
3484 Error *local_err = NULL;
3485 uint64_t size;
3486 Object *memdev;
3487 hwaddr pagesize;
3489 if (!smc->dr_lmb_enabled) {
3490 error_setg(errp, "Memory hotplug not supported for this machine");
3491 return;
3494 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3495 if (local_err) {
3496 error_propagate(errp, local_err);
3497 return;
3500 if (is_nvdimm) {
3501 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3502 return;
3504 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3505 error_setg(errp, "Hotplugged memory size must be a multiple of "
3506 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3507 return;
3510 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3511 &error_abort);
3512 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3513 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3514 return;
3517 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3520 struct SpaprDimmState {
3521 PCDIMMDevice *dimm;
3522 uint32_t nr_lmbs;
3523 QTAILQ_ENTRY(SpaprDimmState) next;
3526 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3527 PCDIMMDevice *dimm)
3529 SpaprDimmState *dimm_state = NULL;
3531 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3532 if (dimm_state->dimm == dimm) {
3533 break;
3536 return dimm_state;
3539 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3540 uint32_t nr_lmbs,
3541 PCDIMMDevice *dimm)
3543 SpaprDimmState *ds = NULL;
3546 * If this request is for a DIMM whose removal had failed earlier
3547 * (due to guest's refusal to remove the LMBs), we would have this
3548 * dimm already in the pending_dimm_unplugs list. In that
3549 * case don't add again.
3551 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3552 if (!ds) {
3553 ds = g_malloc0(sizeof(SpaprDimmState));
3554 ds->nr_lmbs = nr_lmbs;
3555 ds->dimm = dimm;
3556 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3558 return ds;
3561 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3562 SpaprDimmState *dimm_state)
3564 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3565 g_free(dimm_state);
3568 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3569 PCDIMMDevice *dimm)
3571 SpaprDrc *drc;
3572 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3573 &error_abort);
3574 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3575 uint32_t avail_lmbs = 0;
3576 uint64_t addr_start, addr;
3577 int i;
3579 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3580 &error_abort);
3582 addr = addr_start;
3583 for (i = 0; i < nr_lmbs; i++) {
3584 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3585 addr / SPAPR_MEMORY_BLOCK_SIZE);
3586 g_assert(drc);
3587 if (drc->dev) {
3588 avail_lmbs++;
3590 addr += SPAPR_MEMORY_BLOCK_SIZE;
3593 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3596 /* Callback to be called during DRC release. */
3597 void spapr_lmb_release(DeviceState *dev)
3599 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3600 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3601 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3603 /* This information will get lost if a migration occurs
3604 * during the unplug process. In this case recover it. */
3605 if (ds == NULL) {
3606 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3607 g_assert(ds);
3608 /* The DRC being examined by the caller at least must be counted */
3609 g_assert(ds->nr_lmbs);
3612 if (--ds->nr_lmbs) {
3613 return;
3617 * Now that all the LMBs have been removed by the guest, call the
3618 * unplug handler chain. This can never fail.
3620 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3621 object_unparent(OBJECT(dev));
3624 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3626 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3627 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3629 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3630 qdev_unrealize(dev);
3631 spapr_pending_dimm_unplugs_remove(spapr, ds);
3634 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3635 DeviceState *dev, Error **errp)
3637 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3638 PCDIMMDevice *dimm = PC_DIMM(dev);
3639 uint32_t nr_lmbs;
3640 uint64_t size, addr_start, addr;
3641 int i;
3642 SpaprDrc *drc;
3644 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3645 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3646 return;
3649 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3650 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3652 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3653 &error_abort);
3656 * An existing pending dimm state for this DIMM means that there is an
3657 * unplug operation in progress, waiting for the spapr_lmb_release
3658 * callback to complete the job (BQL can't cover that far). In this case,
3659 * bail out to avoid detaching DRCs that were already released.
3661 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3662 error_setg(errp, "Memory unplug already in progress for device %s",
3663 dev->id);
3664 return;
3667 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3669 addr = addr_start;
3670 for (i = 0; i < nr_lmbs; i++) {
3671 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3672 addr / SPAPR_MEMORY_BLOCK_SIZE);
3673 g_assert(drc);
3675 spapr_drc_detach(drc);
3676 addr += SPAPR_MEMORY_BLOCK_SIZE;
3679 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3680 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3681 g_assert(drc);
3682 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3683 nr_lmbs, spapr_drc_index(drc));
3686 /* Callback to be called during DRC release. */
3687 void spapr_core_release(DeviceState *dev)
3689 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3691 /* Call the unplug handler chain. This can never fail. */
3692 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3693 object_unparent(OBJECT(dev));
3696 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3698 MachineState *ms = MACHINE(hotplug_dev);
3699 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3700 CPUCore *cc = CPU_CORE(dev);
3701 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3703 if (smc->pre_2_10_has_unused_icps) {
3704 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3705 int i;
3707 for (i = 0; i < cc->nr_threads; i++) {
3708 CPUState *cs = CPU(sc->threads[i]);
3710 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3714 assert(core_slot);
3715 core_slot->cpu = NULL;
3716 qdev_unrealize(dev);
3719 static
3720 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3721 Error **errp)
3723 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3724 int index;
3725 SpaprDrc *drc;
3726 CPUCore *cc = CPU_CORE(dev);
3728 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3729 error_setg(errp, "Unable to find CPU core with core-id: %d",
3730 cc->core_id);
3731 return;
3733 if (index == 0) {
3734 error_setg(errp, "Boot CPU core may not be unplugged");
3735 return;
3738 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3739 spapr_vcpu_id(spapr, cc->core_id));
3740 g_assert(drc);
3742 if (!spapr_drc_unplug_requested(drc)) {
3743 spapr_drc_detach(drc);
3744 spapr_hotplug_req_remove_by_index(drc);
3748 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3749 void *fdt, int *fdt_start_offset, Error **errp)
3751 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3752 CPUState *cs = CPU(core->threads[0]);
3753 PowerPCCPU *cpu = POWERPC_CPU(cs);
3754 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3755 int id = spapr_get_vcpu_id(cpu);
3756 char *nodename;
3757 int offset;
3759 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3760 offset = fdt_add_subnode(fdt, 0, nodename);
3761 g_free(nodename);
3763 spapr_dt_cpu(cs, fdt, offset, spapr);
3765 *fdt_start_offset = offset;
3766 return 0;
3769 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3771 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3772 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3773 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3774 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3775 CPUCore *cc = CPU_CORE(dev);
3776 CPUState *cs;
3777 SpaprDrc *drc;
3778 CPUArchId *core_slot;
3779 int index;
3780 bool hotplugged = spapr_drc_hotplugged(dev);
3781 int i;
3783 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3784 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3786 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3787 spapr_vcpu_id(spapr, cc->core_id));
3789 g_assert(drc || !mc->has_hotpluggable_cpus);
3791 if (drc) {
3793 * spapr_core_pre_plug() already buys us this is a brand new
3794 * core being plugged into a free slot. Nothing should already
3795 * be attached to the corresponding DRC.
3797 spapr_drc_attach(drc, dev);
3799 if (hotplugged) {
3801 * Send hotplug notification interrupt to the guest only
3802 * in case of hotplugged CPUs.
3804 spapr_hotplug_req_add_by_index(drc);
3805 } else {
3806 spapr_drc_reset(drc);
3810 core_slot->cpu = OBJECT(dev);
3813 * Set compatibility mode to match the boot CPU, which was either set
3814 * by the machine reset code or by CAS. This really shouldn't fail at
3815 * this point.
3817 if (hotplugged) {
3818 for (i = 0; i < cc->nr_threads; i++) {
3819 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3820 &error_abort);
3824 if (smc->pre_2_10_has_unused_icps) {
3825 for (i = 0; i < cc->nr_threads; i++) {
3826 cs = CPU(core->threads[i]);
3827 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3832 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3833 Error **errp)
3835 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3836 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3837 CPUCore *cc = CPU_CORE(dev);
3838 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3839 const char *type = object_get_typename(OBJECT(dev));
3840 CPUArchId *core_slot;
3841 int index;
3842 unsigned int smp_threads = machine->smp.threads;
3844 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3845 error_setg(errp, "CPU hotplug not supported for this machine");
3846 return;
3849 if (strcmp(base_core_type, type)) {
3850 error_setg(errp, "CPU core type should be %s", base_core_type);
3851 return;
3854 if (cc->core_id % smp_threads) {
3855 error_setg(errp, "invalid core id %d", cc->core_id);
3856 return;
3860 * In general we should have homogeneous threads-per-core, but old
3861 * (pre hotplug support) machine types allow the last core to have
3862 * reduced threads as a compatibility hack for when we allowed
3863 * total vcpus not a multiple of threads-per-core.
3865 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3866 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3867 smp_threads);
3868 return;
3871 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3872 if (!core_slot) {
3873 error_setg(errp, "core id %d out of range", cc->core_id);
3874 return;
3877 if (core_slot->cpu) {
3878 error_setg(errp, "core %d already populated", cc->core_id);
3879 return;
3882 numa_cpu_pre_plug(core_slot, dev, errp);
3885 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3886 void *fdt, int *fdt_start_offset, Error **errp)
3888 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3889 int intc_phandle;
3891 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3892 if (intc_phandle <= 0) {
3893 return -1;
3896 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3897 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3898 return -1;
3901 /* generally SLOF creates these, for hotplug it's up to QEMU */
3902 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3904 return 0;
3907 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3908 Error **errp)
3910 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3911 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3912 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3913 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3914 SpaprDrc *drc;
3916 if (dev->hotplugged && !smc->dr_phb_enabled) {
3917 error_setg(errp, "PHB hotplug not supported for this machine");
3918 return false;
3921 if (sphb->index == (uint32_t)-1) {
3922 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3923 return false;
3926 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3927 if (drc && drc->dev) {
3928 error_setg(errp, "PHB %d already attached", sphb->index);
3929 return false;
3933 * This will check that sphb->index doesn't exceed the maximum number of
3934 * PHBs for the current machine type.
3936 return
3937 smc->phb_placement(spapr, sphb->index,
3938 &sphb->buid, &sphb->io_win_addr,
3939 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3940 windows_supported, sphb->dma_liobn,
3941 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3942 errp);
3945 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3947 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3948 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3949 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3950 SpaprDrc *drc;
3951 bool hotplugged = spapr_drc_hotplugged(dev);
3953 if (!smc->dr_phb_enabled) {
3954 return;
3957 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3958 /* hotplug hooks should check it's enabled before getting this far */
3959 assert(drc);
3961 /* spapr_phb_pre_plug() already checked the DRC is attachable */
3962 spapr_drc_attach(drc, dev);
3964 if (hotplugged) {
3965 spapr_hotplug_req_add_by_index(drc);
3966 } else {
3967 spapr_drc_reset(drc);
3971 void spapr_phb_release(DeviceState *dev)
3973 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3975 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3976 object_unparent(OBJECT(dev));
3979 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3981 qdev_unrealize(dev);
3984 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3985 DeviceState *dev, Error **errp)
3987 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3988 SpaprDrc *drc;
3990 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3991 assert(drc);
3993 if (!spapr_drc_unplug_requested(drc)) {
3994 spapr_drc_detach(drc);
3995 spapr_hotplug_req_remove_by_index(drc);
3999 static
4000 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4001 Error **errp)
4003 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4005 if (spapr->tpm_proxy != NULL) {
4006 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4007 return false;
4010 return true;
4013 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4015 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4016 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4018 /* Already checked in spapr_tpm_proxy_pre_plug() */
4019 g_assert(spapr->tpm_proxy == NULL);
4021 spapr->tpm_proxy = tpm_proxy;
4024 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4026 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4028 qdev_unrealize(dev);
4029 object_unparent(OBJECT(dev));
4030 spapr->tpm_proxy = NULL;
4033 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4034 DeviceState *dev, Error **errp)
4036 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4037 spapr_memory_plug(hotplug_dev, dev);
4038 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4039 spapr_core_plug(hotplug_dev, dev);
4040 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4041 spapr_phb_plug(hotplug_dev, dev);
4042 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4043 spapr_tpm_proxy_plug(hotplug_dev, dev);
4047 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4048 DeviceState *dev, Error **errp)
4050 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4051 spapr_memory_unplug(hotplug_dev, dev);
4052 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4053 spapr_core_unplug(hotplug_dev, dev);
4054 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4055 spapr_phb_unplug(hotplug_dev, dev);
4056 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4057 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4061 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4062 DeviceState *dev, Error **errp)
4064 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4065 MachineClass *mc = MACHINE_GET_CLASS(sms);
4066 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4068 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4069 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4070 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4071 } else {
4072 /* NOTE: this means there is a window after guest reset, prior to
4073 * CAS negotiation, where unplug requests will fail due to the
4074 * capability not being detected yet. This is a bit different than
4075 * the case with PCI unplug, where the events will be queued and
4076 * eventually handled by the guest after boot
4078 error_setg(errp, "Memory hot unplug not supported for this guest");
4080 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4081 if (!mc->has_hotpluggable_cpus) {
4082 error_setg(errp, "CPU hot unplug not supported on this machine");
4083 return;
4085 spapr_core_unplug_request(hotplug_dev, dev, errp);
4086 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4087 if (!smc->dr_phb_enabled) {
4088 error_setg(errp, "PHB hot unplug not supported on this machine");
4089 return;
4091 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4092 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4093 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4097 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4098 DeviceState *dev, Error **errp)
4100 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4101 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4102 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4103 spapr_core_pre_plug(hotplug_dev, dev, errp);
4104 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4105 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4106 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4107 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4111 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4112 DeviceState *dev)
4114 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4115 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4116 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4117 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4118 return HOTPLUG_HANDLER(machine);
4120 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4121 PCIDevice *pcidev = PCI_DEVICE(dev);
4122 PCIBus *root = pci_device_root_bus(pcidev);
4123 SpaprPhbState *phb =
4124 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4125 TYPE_SPAPR_PCI_HOST_BRIDGE);
4127 if (phb) {
4128 return HOTPLUG_HANDLER(phb);
4131 return NULL;
4134 static CpuInstanceProperties
4135 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4137 CPUArchId *core_slot;
4138 MachineClass *mc = MACHINE_GET_CLASS(machine);
4140 /* make sure possible_cpu are intialized */
4141 mc->possible_cpu_arch_ids(machine);
4142 /* get CPU core slot containing thread that matches cpu_index */
4143 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4144 assert(core_slot);
4145 return core_slot->props;
4148 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4150 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4153 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4155 int i;
4156 unsigned int smp_threads = machine->smp.threads;
4157 unsigned int smp_cpus = machine->smp.cpus;
4158 const char *core_type;
4159 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4160 MachineClass *mc = MACHINE_GET_CLASS(machine);
4162 if (!mc->has_hotpluggable_cpus) {
4163 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4165 if (machine->possible_cpus) {
4166 assert(machine->possible_cpus->len == spapr_max_cores);
4167 return machine->possible_cpus;
4170 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4171 if (!core_type) {
4172 error_report("Unable to find sPAPR CPU Core definition");
4173 exit(1);
4176 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4177 sizeof(CPUArchId) * spapr_max_cores);
4178 machine->possible_cpus->len = spapr_max_cores;
4179 for (i = 0; i < machine->possible_cpus->len; i++) {
4180 int core_id = i * smp_threads;
4182 machine->possible_cpus->cpus[i].type = core_type;
4183 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4184 machine->possible_cpus->cpus[i].arch_id = core_id;
4185 machine->possible_cpus->cpus[i].props.has_core_id = true;
4186 machine->possible_cpus->cpus[i].props.core_id = core_id;
4188 return machine->possible_cpus;
4191 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4192 uint64_t *buid, hwaddr *pio,
4193 hwaddr *mmio32, hwaddr *mmio64,
4194 unsigned n_dma, uint32_t *liobns,
4195 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4198 * New-style PHB window placement.
4200 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4201 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4202 * windows.
4204 * Some guest kernels can't work with MMIO windows above 1<<46
4205 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4207 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4208 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4209 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4210 * 1TiB 64-bit MMIO windows for each PHB.
4212 const uint64_t base_buid = 0x800000020000000ULL;
4213 int i;
4215 /* Sanity check natural alignments */
4216 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4217 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4218 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4219 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4220 /* Sanity check bounds */
4221 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4222 SPAPR_PCI_MEM32_WIN_SIZE);
4223 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4224 SPAPR_PCI_MEM64_WIN_SIZE);
4226 if (index >= SPAPR_MAX_PHBS) {
4227 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4228 SPAPR_MAX_PHBS - 1);
4229 return false;
4232 *buid = base_buid + index;
4233 for (i = 0; i < n_dma; ++i) {
4234 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4237 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4238 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4239 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4241 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4242 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4243 return true;
4246 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4248 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4250 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4253 static void spapr_ics_resend(XICSFabric *dev)
4255 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4257 ics_resend(spapr->ics);
4260 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4262 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4264 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4267 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4268 Monitor *mon)
4270 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4272 spapr_irq_print_info(spapr, mon);
4273 monitor_printf(mon, "irqchip: %s\n",
4274 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4278 * This is a XIVE only operation
4280 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4281 uint8_t nvt_blk, uint32_t nvt_idx,
4282 bool cam_ignore, uint8_t priority,
4283 uint32_t logic_serv, XiveTCTXMatch *match)
4285 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4286 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4287 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4288 int count;
4290 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4291 priority, logic_serv, match);
4292 if (count < 0) {
4293 return count;
4297 * When we implement the save and restore of the thread interrupt
4298 * contexts in the enter/exit CPU handlers of the machine and the
4299 * escalations in QEMU, we should be able to handle non dispatched
4300 * vCPUs.
4302 * Until this is done, the sPAPR machine should find at least one
4303 * matching context always.
4305 if (count == 0) {
4306 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4307 nvt_blk, nvt_idx);
4310 return count;
4313 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4315 return cpu->vcpu_id;
4318 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4320 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4321 MachineState *ms = MACHINE(spapr);
4322 int vcpu_id;
4324 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4326 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4327 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4328 error_append_hint(errp, "Adjust the number of cpus to %d "
4329 "or try to raise the number of threads per core\n",
4330 vcpu_id * ms->smp.threads / spapr->vsmt);
4331 return false;
4334 cpu->vcpu_id = vcpu_id;
4335 return true;
4338 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4340 CPUState *cs;
4342 CPU_FOREACH(cs) {
4343 PowerPCCPU *cpu = POWERPC_CPU(cs);
4345 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4346 return cpu;
4350 return NULL;
4353 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4355 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4357 /* These are only called by TCG, KVM maintains dispatch state */
4359 spapr_cpu->prod = false;
4360 if (spapr_cpu->vpa_addr) {
4361 CPUState *cs = CPU(cpu);
4362 uint32_t dispatch;
4364 dispatch = ldl_be_phys(cs->as,
4365 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4366 dispatch++;
4367 if ((dispatch & 1) != 0) {
4368 qemu_log_mask(LOG_GUEST_ERROR,
4369 "VPA: incorrect dispatch counter value for "
4370 "dispatched partition %u, correcting.\n", dispatch);
4371 dispatch++;
4373 stl_be_phys(cs->as,
4374 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4378 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4380 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4382 if (spapr_cpu->vpa_addr) {
4383 CPUState *cs = CPU(cpu);
4384 uint32_t dispatch;
4386 dispatch = ldl_be_phys(cs->as,
4387 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4388 dispatch++;
4389 if ((dispatch & 1) != 1) {
4390 qemu_log_mask(LOG_GUEST_ERROR,
4391 "VPA: incorrect dispatch counter value for "
4392 "preempted partition %u, correcting.\n", dispatch);
4393 dispatch++;
4395 stl_be_phys(cs->as,
4396 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4400 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4402 MachineClass *mc = MACHINE_CLASS(oc);
4403 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4404 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4405 NMIClass *nc = NMI_CLASS(oc);
4406 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4407 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4408 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4409 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4410 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4412 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4413 mc->ignore_boot_device_suffixes = true;
4416 * We set up the default / latest behaviour here. The class_init
4417 * functions for the specific versioned machine types can override
4418 * these details for backwards compatibility
4420 mc->init = spapr_machine_init;
4421 mc->reset = spapr_machine_reset;
4422 mc->block_default_type = IF_SCSI;
4423 mc->max_cpus = 1024;
4424 mc->no_parallel = 1;
4425 mc->default_boot_order = "";
4426 mc->default_ram_size = 512 * MiB;
4427 mc->default_ram_id = "ppc_spapr.ram";
4428 mc->default_display = "std";
4429 mc->kvm_type = spapr_kvm_type;
4430 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4431 mc->pci_allow_0_address = true;
4432 assert(!mc->get_hotplug_handler);
4433 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4434 hc->pre_plug = spapr_machine_device_pre_plug;
4435 hc->plug = spapr_machine_device_plug;
4436 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4437 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4438 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4439 hc->unplug_request = spapr_machine_device_unplug_request;
4440 hc->unplug = spapr_machine_device_unplug;
4442 smc->dr_lmb_enabled = true;
4443 smc->update_dt_enabled = true;
4444 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4445 mc->has_hotpluggable_cpus = true;
4446 mc->nvdimm_supported = true;
4447 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4448 fwc->get_dev_path = spapr_get_fw_dev_path;
4449 nc->nmi_monitor_handler = spapr_nmi;
4450 smc->phb_placement = spapr_phb_placement;
4451 vhc->hypercall = emulate_spapr_hypercall;
4452 vhc->hpt_mask = spapr_hpt_mask;
4453 vhc->map_hptes = spapr_map_hptes;
4454 vhc->unmap_hptes = spapr_unmap_hptes;
4455 vhc->hpte_set_c = spapr_hpte_set_c;
4456 vhc->hpte_set_r = spapr_hpte_set_r;
4457 vhc->get_pate = spapr_get_pate;
4458 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4459 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4460 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4461 xic->ics_get = spapr_ics_get;
4462 xic->ics_resend = spapr_ics_resend;
4463 xic->icp_get = spapr_icp_get;
4464 ispc->print_info = spapr_pic_print_info;
4465 /* Force NUMA node memory size to be a multiple of
4466 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4467 * in which LMBs are represented and hot-added
4469 mc->numa_mem_align_shift = 28;
4470 mc->auto_enable_numa = true;
4472 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4473 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4474 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4475 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4476 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4477 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4478 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4479 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4480 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4481 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4482 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4483 spapr_caps_add_properties(smc);
4484 smc->irq = &spapr_irq_dual;
4485 smc->dr_phb_enabled = true;
4486 smc->linux_pci_probe = true;
4487 smc->smp_threads_vsmt = true;
4488 smc->nr_xirqs = SPAPR_NR_XIRQS;
4489 xfc->match_nvt = spapr_match_nvt;
4492 static const TypeInfo spapr_machine_info = {
4493 .name = TYPE_SPAPR_MACHINE,
4494 .parent = TYPE_MACHINE,
4495 .abstract = true,
4496 .instance_size = sizeof(SpaprMachineState),
4497 .instance_init = spapr_instance_init,
4498 .instance_finalize = spapr_machine_finalizefn,
4499 .class_size = sizeof(SpaprMachineClass),
4500 .class_init = spapr_machine_class_init,
4501 .interfaces = (InterfaceInfo[]) {
4502 { TYPE_FW_PATH_PROVIDER },
4503 { TYPE_NMI },
4504 { TYPE_HOTPLUG_HANDLER },
4505 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4506 { TYPE_XICS_FABRIC },
4507 { TYPE_INTERRUPT_STATS_PROVIDER },
4508 { TYPE_XIVE_FABRIC },
4513 static void spapr_machine_latest_class_options(MachineClass *mc)
4515 mc->alias = "pseries";
4516 mc->is_default = true;
4519 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4520 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4521 void *data) \
4523 MachineClass *mc = MACHINE_CLASS(oc); \
4524 spapr_machine_##suffix##_class_options(mc); \
4525 if (latest) { \
4526 spapr_machine_latest_class_options(mc); \
4529 static const TypeInfo spapr_machine_##suffix##_info = { \
4530 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4531 .parent = TYPE_SPAPR_MACHINE, \
4532 .class_init = spapr_machine_##suffix##_class_init, \
4533 }; \
4534 static void spapr_machine_register_##suffix(void) \
4536 type_register(&spapr_machine_##suffix##_info); \
4538 type_init(spapr_machine_register_##suffix)
4541 * pseries-6.0
4543 static void spapr_machine_6_0_class_options(MachineClass *mc)
4545 /* Defaults for the latest behaviour inherited from the base class */
4548 DEFINE_SPAPR_MACHINE(6_0, "6.0", true);
4551 * pseries-5.2
4553 static void spapr_machine_5_2_class_options(MachineClass *mc)
4555 spapr_machine_6_0_class_options(mc);
4556 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4559 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4562 * pseries-5.1
4564 static void spapr_machine_5_1_class_options(MachineClass *mc)
4566 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4568 spapr_machine_5_2_class_options(mc);
4569 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4570 smc->pre_5_2_numa_associativity = true;
4573 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4576 * pseries-5.0
4578 static void spapr_machine_5_0_class_options(MachineClass *mc)
4580 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4581 static GlobalProperty compat[] = {
4582 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4585 spapr_machine_5_1_class_options(mc);
4586 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4587 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4588 mc->numa_mem_supported = true;
4589 smc->pre_5_1_assoc_refpoints = true;
4592 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4595 * pseries-4.2
4597 static void spapr_machine_4_2_class_options(MachineClass *mc)
4599 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4601 spapr_machine_5_0_class_options(mc);
4602 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4603 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4604 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4605 smc->rma_limit = 16 * GiB;
4606 mc->nvdimm_supported = false;
4609 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4612 * pseries-4.1
4614 static void spapr_machine_4_1_class_options(MachineClass *mc)
4616 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4617 static GlobalProperty compat[] = {
4618 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4619 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4622 spapr_machine_4_2_class_options(mc);
4623 smc->linux_pci_probe = false;
4624 smc->smp_threads_vsmt = false;
4625 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4626 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4629 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4632 * pseries-4.0
4634 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4635 uint64_t *buid, hwaddr *pio,
4636 hwaddr *mmio32, hwaddr *mmio64,
4637 unsigned n_dma, uint32_t *liobns,
4638 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4640 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4641 liobns, nv2gpa, nv2atsd, errp)) {
4642 return false;
4645 *nv2gpa = 0;
4646 *nv2atsd = 0;
4647 return true;
4649 static void spapr_machine_4_0_class_options(MachineClass *mc)
4651 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4653 spapr_machine_4_1_class_options(mc);
4654 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4655 smc->phb_placement = phb_placement_4_0;
4656 smc->irq = &spapr_irq_xics;
4657 smc->pre_4_1_migration = true;
4660 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4663 * pseries-3.1
4665 static void spapr_machine_3_1_class_options(MachineClass *mc)
4667 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4669 spapr_machine_4_0_class_options(mc);
4670 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4672 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4673 smc->update_dt_enabled = false;
4674 smc->dr_phb_enabled = false;
4675 smc->broken_host_serial_model = true;
4676 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4677 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4678 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4679 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4682 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4685 * pseries-3.0
4688 static void spapr_machine_3_0_class_options(MachineClass *mc)
4690 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4692 spapr_machine_3_1_class_options(mc);
4693 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4695 smc->legacy_irq_allocation = true;
4696 smc->nr_xirqs = 0x400;
4697 smc->irq = &spapr_irq_xics_legacy;
4700 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4703 * pseries-2.12
4705 static void spapr_machine_2_12_class_options(MachineClass *mc)
4707 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4708 static GlobalProperty compat[] = {
4709 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4710 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4713 spapr_machine_3_0_class_options(mc);
4714 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4715 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4717 /* We depend on kvm_enabled() to choose a default value for the
4718 * hpt-max-page-size capability. Of course we can't do it here
4719 * because this is too early and the HW accelerator isn't initialzed
4720 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4722 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4725 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4727 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4729 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4731 spapr_machine_2_12_class_options(mc);
4732 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4733 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4734 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4737 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4740 * pseries-2.11
4743 static void spapr_machine_2_11_class_options(MachineClass *mc)
4745 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4747 spapr_machine_2_12_class_options(mc);
4748 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4749 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4752 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4755 * pseries-2.10
4758 static void spapr_machine_2_10_class_options(MachineClass *mc)
4760 spapr_machine_2_11_class_options(mc);
4761 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4764 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4767 * pseries-2.9
4770 static void spapr_machine_2_9_class_options(MachineClass *mc)
4772 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4773 static GlobalProperty compat[] = {
4774 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4777 spapr_machine_2_10_class_options(mc);
4778 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4779 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4780 smc->pre_2_10_has_unused_icps = true;
4781 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4784 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4787 * pseries-2.8
4790 static void spapr_machine_2_8_class_options(MachineClass *mc)
4792 static GlobalProperty compat[] = {
4793 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4796 spapr_machine_2_9_class_options(mc);
4797 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4798 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4799 mc->numa_mem_align_shift = 23;
4802 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4805 * pseries-2.7
4808 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4809 uint64_t *buid, hwaddr *pio,
4810 hwaddr *mmio32, hwaddr *mmio64,
4811 unsigned n_dma, uint32_t *liobns,
4812 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4814 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4815 const uint64_t base_buid = 0x800000020000000ULL;
4816 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4817 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4818 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4819 const uint32_t max_index = 255;
4820 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4822 uint64_t ram_top = MACHINE(spapr)->ram_size;
4823 hwaddr phb0_base, phb_base;
4824 int i;
4826 /* Do we have device memory? */
4827 if (MACHINE(spapr)->maxram_size > ram_top) {
4828 /* Can't just use maxram_size, because there may be an
4829 * alignment gap between normal and device memory regions
4831 ram_top = MACHINE(spapr)->device_memory->base +
4832 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4835 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4837 if (index > max_index) {
4838 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4839 max_index);
4840 return false;
4843 *buid = base_buid + index;
4844 for (i = 0; i < n_dma; ++i) {
4845 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4848 phb_base = phb0_base + index * phb_spacing;
4849 *pio = phb_base + pio_offset;
4850 *mmio32 = phb_base + mmio_offset;
4852 * We don't set the 64-bit MMIO window, relying on the PHB's
4853 * fallback behaviour of automatically splitting a large "32-bit"
4854 * window into contiguous 32-bit and 64-bit windows
4857 *nv2gpa = 0;
4858 *nv2atsd = 0;
4859 return true;
4862 static void spapr_machine_2_7_class_options(MachineClass *mc)
4864 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4865 static GlobalProperty compat[] = {
4866 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4867 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4868 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4869 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4872 spapr_machine_2_8_class_options(mc);
4873 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4874 mc->default_machine_opts = "modern-hotplug-events=off";
4875 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4876 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4877 smc->phb_placement = phb_placement_2_7;
4880 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4883 * pseries-2.6
4886 static void spapr_machine_2_6_class_options(MachineClass *mc)
4888 static GlobalProperty compat[] = {
4889 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4892 spapr_machine_2_7_class_options(mc);
4893 mc->has_hotpluggable_cpus = false;
4894 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4895 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4898 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4901 * pseries-2.5
4904 static void spapr_machine_2_5_class_options(MachineClass *mc)
4906 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4907 static GlobalProperty compat[] = {
4908 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4911 spapr_machine_2_6_class_options(mc);
4912 smc->use_ohci_by_default = true;
4913 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4914 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4917 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4920 * pseries-2.4
4923 static void spapr_machine_2_4_class_options(MachineClass *mc)
4925 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4927 spapr_machine_2_5_class_options(mc);
4928 smc->dr_lmb_enabled = false;
4929 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4932 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4935 * pseries-2.3
4938 static void spapr_machine_2_3_class_options(MachineClass *mc)
4940 static GlobalProperty compat[] = {
4941 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4943 spapr_machine_2_4_class_options(mc);
4944 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4945 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4947 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4950 * pseries-2.2
4953 static void spapr_machine_2_2_class_options(MachineClass *mc)
4955 static GlobalProperty compat[] = {
4956 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4959 spapr_machine_2_3_class_options(mc);
4960 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4961 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4962 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4964 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4967 * pseries-2.1
4970 static void spapr_machine_2_1_class_options(MachineClass *mc)
4972 spapr_machine_2_2_class_options(mc);
4973 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4975 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4977 static void spapr_machine_register_types(void)
4979 type_register_static(&spapr_machine_info);
4982 type_init(spapr_machine_register_types)