1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
6 #include "qemu/error-report.h"
8 #include "exec/exec-all.h"
9 #include "helper_regs.h"
10 #include "hw/ppc/spapr.h"
11 #include "mmu-hash64.h"
12 #include "cpu-models.h"
15 #include "hw/ppc/spapr_ovec.h"
16 #include "mmu-book3s-v3.h"
17 #include "hw/mem/memory-device.h"
19 struct LPCRSyncState
{
24 static void do_lpcr_sync(CPUState
*cs
, run_on_cpu_data arg
)
26 struct LPCRSyncState
*s
= arg
.host_ptr
;
27 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
28 CPUPPCState
*env
= &cpu
->env
;
31 cpu_synchronize_state(cs
);
32 lpcr
= env
->spr
[SPR_LPCR
];
35 ppc_store_lpcr(cpu
, lpcr
);
38 static void set_all_lpcrs(target_ulong value
, target_ulong mask
)
41 struct LPCRSyncState s
= {
46 run_on_cpu(cs
, do_lpcr_sync
, RUN_ON_CPU_HOST_PTR(&s
));
50 static bool has_spr(PowerPCCPU
*cpu
, int spr
)
52 /* We can test whether the SPR is defined by checking for a valid name */
53 return cpu
->env
.spr_cb
[spr
].name
!= NULL
;
56 static inline bool valid_ptex(PowerPCCPU
*cpu
, target_ulong ptex
)
59 * hash value/pteg group index is normalized by HPT mask
61 if (((ptex
& ~7ULL) / HPTES_PER_GROUP
) & ~ppc_hash64_hpt_mask(cpu
)) {
67 static bool is_ram_address(sPAPRMachineState
*spapr
, hwaddr addr
)
69 MachineState
*machine
= MACHINE(spapr
);
70 DeviceMemoryState
*dms
= machine
->device_memory
;
72 if (addr
< machine
->ram_size
) {
75 if ((addr
>= dms
->base
)
76 && ((addr
- dms
->base
) < memory_region_size(&dms
->mr
))) {
83 static target_ulong
h_enter(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
84 target_ulong opcode
, target_ulong
*args
)
86 target_ulong flags
= args
[0];
87 target_ulong ptex
= args
[1];
88 target_ulong pteh
= args
[2];
89 target_ulong ptel
= args
[3];
93 const ppc_hash_pte64_t
*hptes
;
95 apshift
= ppc_hash64_hpte_page_shift_noslb(cpu
, pteh
, ptel
);
97 /* Bad page size encoding */
101 raddr
= (ptel
& HPTE64_R_RPN
) & ~((1ULL << apshift
) - 1);
103 if (is_ram_address(spapr
, raddr
)) {
104 /* Regular RAM - should have WIMG=0010 */
105 if ((ptel
& HPTE64_R_WIMG
) != HPTE64_R_M
) {
109 target_ulong wimg_flags
;
110 /* Looks like an IO address */
111 /* FIXME: What WIMG combinations could be sensible for IO?
112 * For now we allow WIMG=010x, but are there others? */
113 /* FIXME: Should we check against registered IO addresses? */
114 wimg_flags
= (ptel
& (HPTE64_R_W
| HPTE64_R_I
| HPTE64_R_M
));
116 if (wimg_flags
!= HPTE64_R_I
&&
117 wimg_flags
!= (HPTE64_R_I
| HPTE64_R_M
)) {
124 if (!valid_ptex(cpu
, ptex
)) {
131 if (likely((flags
& H_EXACT
) == 0)) {
132 hptes
= ppc_hash64_map_hptes(cpu
, ptex
, HPTES_PER_GROUP
);
133 for (slot
= 0; slot
< 8; slot
++) {
134 if (!(ppc_hash64_hpte0(cpu
, hptes
, slot
) & HPTE64_V_VALID
)) {
138 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, HPTES_PER_GROUP
);
143 hptes
= ppc_hash64_map_hptes(cpu
, ptex
+ slot
, 1);
144 if (ppc_hash64_hpte0(cpu
, hptes
, 0) & HPTE64_V_VALID
) {
145 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
+ slot
, 1);
148 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, 1);
151 ppc_hash64_store_hpte(cpu
, ptex
+ slot
, pteh
| HPTE64_V_HPTE_DIRTY
, ptel
);
153 args
[0] = ptex
+ slot
;
159 REMOVE_NOT_FOUND
= 1,
164 static RemoveResult
remove_hpte(PowerPCCPU
*cpu
, target_ulong ptex
,
167 target_ulong
*vp
, target_ulong
*rp
)
169 const ppc_hash_pte64_t
*hptes
;
172 if (!valid_ptex(cpu
, ptex
)) {
176 hptes
= ppc_hash64_map_hptes(cpu
, ptex
, 1);
177 v
= ppc_hash64_hpte0(cpu
, hptes
, 0);
178 r
= ppc_hash64_hpte1(cpu
, hptes
, 0);
179 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, 1);
181 if ((v
& HPTE64_V_VALID
) == 0 ||
182 ((flags
& H_AVPN
) && (v
& ~0x7fULL
) != avpn
) ||
183 ((flags
& H_ANDCOND
) && (v
& avpn
) != 0)) {
184 return REMOVE_NOT_FOUND
;
188 ppc_hash64_store_hpte(cpu
, ptex
, HPTE64_V_HPTE_DIRTY
, 0);
189 ppc_hash64_tlb_flush_hpte(cpu
, ptex
, v
, r
);
190 return REMOVE_SUCCESS
;
193 static target_ulong
h_remove(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
194 target_ulong opcode
, target_ulong
*args
)
196 CPUPPCState
*env
= &cpu
->env
;
197 target_ulong flags
= args
[0];
198 target_ulong ptex
= args
[1];
199 target_ulong avpn
= args
[2];
202 ret
= remove_hpte(cpu
, ptex
, avpn
, flags
,
207 check_tlb_flush(env
, true);
210 case REMOVE_NOT_FOUND
:
220 g_assert_not_reached();
223 #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL
224 #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL
225 #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL
226 #define H_BULK_REMOVE_END 0xc000000000000000ULL
227 #define H_BULK_REMOVE_CODE 0x3000000000000000ULL
228 #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL
229 #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL
230 #define H_BULK_REMOVE_PARM 0x2000000000000000ULL
231 #define H_BULK_REMOVE_HW 0x3000000000000000ULL
232 #define H_BULK_REMOVE_RC 0x0c00000000000000ULL
233 #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL
234 #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL
235 #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL
236 #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL
237 #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL
239 #define H_BULK_REMOVE_MAX_BATCH 4
241 static target_ulong
h_bulk_remove(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
242 target_ulong opcode
, target_ulong
*args
)
244 CPUPPCState
*env
= &cpu
->env
;
246 target_ulong rc
= H_SUCCESS
;
248 for (i
= 0; i
< H_BULK_REMOVE_MAX_BATCH
; i
++) {
249 target_ulong
*tsh
= &args
[i
*2];
250 target_ulong tsl
= args
[i
*2 + 1];
251 target_ulong v
, r
, ret
;
253 if ((*tsh
& H_BULK_REMOVE_TYPE
) == H_BULK_REMOVE_END
) {
255 } else if ((*tsh
& H_BULK_REMOVE_TYPE
) != H_BULK_REMOVE_REQUEST
) {
259 *tsh
&= H_BULK_REMOVE_PTEX
| H_BULK_REMOVE_FLAGS
;
260 *tsh
|= H_BULK_REMOVE_RESPONSE
;
262 if ((*tsh
& H_BULK_REMOVE_ANDCOND
) && (*tsh
& H_BULK_REMOVE_AVPN
)) {
263 *tsh
|= H_BULK_REMOVE_PARM
;
267 ret
= remove_hpte(cpu
, *tsh
& H_BULK_REMOVE_PTEX
, tsl
,
268 (*tsh
& H_BULK_REMOVE_FLAGS
) >> 26,
275 *tsh
|= (r
& (HPTE64_R_C
| HPTE64_R_R
)) << 43;
288 check_tlb_flush(env
, true);
293 static target_ulong
h_protect(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
294 target_ulong opcode
, target_ulong
*args
)
296 CPUPPCState
*env
= &cpu
->env
;
297 target_ulong flags
= args
[0];
298 target_ulong ptex
= args
[1];
299 target_ulong avpn
= args
[2];
300 const ppc_hash_pte64_t
*hptes
;
303 if (!valid_ptex(cpu
, ptex
)) {
307 hptes
= ppc_hash64_map_hptes(cpu
, ptex
, 1);
308 v
= ppc_hash64_hpte0(cpu
, hptes
, 0);
309 r
= ppc_hash64_hpte1(cpu
, hptes
, 0);
310 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, 1);
312 if ((v
& HPTE64_V_VALID
) == 0 ||
313 ((flags
& H_AVPN
) && (v
& ~0x7fULL
) != avpn
)) {
317 r
&= ~(HPTE64_R_PP0
| HPTE64_R_PP
| HPTE64_R_N
|
318 HPTE64_R_KEY_HI
| HPTE64_R_KEY_LO
);
319 r
|= (flags
<< 55) & HPTE64_R_PP0
;
320 r
|= (flags
<< 48) & HPTE64_R_KEY_HI
;
321 r
|= flags
& (HPTE64_R_PP
| HPTE64_R_N
| HPTE64_R_KEY_LO
);
322 ppc_hash64_store_hpte(cpu
, ptex
,
323 (v
& ~HPTE64_V_VALID
) | HPTE64_V_HPTE_DIRTY
, 0);
324 ppc_hash64_tlb_flush_hpte(cpu
, ptex
, v
, r
);
326 check_tlb_flush(env
, true);
327 /* Don't need a memory barrier, due to qemu's global lock */
328 ppc_hash64_store_hpte(cpu
, ptex
, v
| HPTE64_V_HPTE_DIRTY
, r
);
332 static target_ulong
h_read(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
333 target_ulong opcode
, target_ulong
*args
)
335 target_ulong flags
= args
[0];
336 target_ulong ptex
= args
[1];
338 int i
, ridx
, n_entries
= 1;
340 if (!valid_ptex(cpu
, ptex
)) {
344 if (flags
& H_READ_4
) {
345 /* Clear the two low order bits */
350 hpte
= spapr
->htab
+ (ptex
* HASH_PTE_SIZE_64
);
352 for (i
= 0, ridx
= 0; i
< n_entries
; i
++) {
353 args
[ridx
++] = ldq_p(hpte
);
354 args
[ridx
++] = ldq_p(hpte
+ (HASH_PTE_SIZE_64
/2));
355 hpte
+= HASH_PTE_SIZE_64
;
361 struct sPAPRPendingHPT
{
362 /* These fields are read-only after initialization */
366 /* These fields are protected by the BQL */
369 /* These fields are private to the preparation thread if
370 * !complete, otherwise protected by the BQL */
375 static void free_pending_hpt(sPAPRPendingHPT
*pending
)
378 qemu_vfree(pending
->hpt
);
384 static void *hpt_prepare_thread(void *opaque
)
386 sPAPRPendingHPT
*pending
= opaque
;
387 size_t size
= 1ULL << pending
->shift
;
389 pending
->hpt
= qemu_memalign(size
, size
);
391 memset(pending
->hpt
, 0, size
);
392 pending
->ret
= H_SUCCESS
;
394 pending
->ret
= H_NO_MEM
;
397 qemu_mutex_lock_iothread();
399 if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt
== pending
) {
401 pending
->complete
= true;
403 /* We've been cancelled, clean ourselves up */
404 free_pending_hpt(pending
);
407 qemu_mutex_unlock_iothread();
411 /* Must be called with BQL held */
412 static void cancel_hpt_prepare(sPAPRMachineState
*spapr
)
414 sPAPRPendingHPT
*pending
= spapr
->pending_hpt
;
416 /* Let the thread know it's cancelled */
417 spapr
->pending_hpt
= NULL
;
424 if (!pending
->complete
) {
425 /* thread will clean itself up */
429 free_pending_hpt(pending
);
432 /* Convert a return code from the KVM ioctl()s implementing resize HPT
433 * into a PAPR hypercall return code */
434 static target_ulong
resize_hpt_convert_rc(int ret
)
437 return H_LONG_BUSY_ORDER_100_SEC
;
438 } else if (ret
>= 10000) {
439 return H_LONG_BUSY_ORDER_10_SEC
;
440 } else if (ret
>= 1000) {
441 return H_LONG_BUSY_ORDER_1_SEC
;
442 } else if (ret
>= 100) {
443 return H_LONG_BUSY_ORDER_100_MSEC
;
444 } else if (ret
>= 10) {
445 return H_LONG_BUSY_ORDER_10_MSEC
;
446 } else if (ret
> 0) {
447 return H_LONG_BUSY_ORDER_1_MSEC
;
470 static target_ulong
h_resize_hpt_prepare(PowerPCCPU
*cpu
,
471 sPAPRMachineState
*spapr
,
475 target_ulong flags
= args
[0];
477 sPAPRPendingHPT
*pending
= spapr
->pending_hpt
;
478 uint64_t current_ram_size
;
481 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
485 if (!spapr
->htab_shift
) {
486 /* Radix guest, no HPT */
487 return H_NOT_AVAILABLE
;
490 trace_spapr_h_resize_hpt_prepare(flags
, shift
);
496 if (shift
&& ((shift
< 18) || (shift
> 46))) {
500 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
502 /* We only allow the guest to allocate an HPT one order above what
503 * we'd normally give them (to stop a small guest claiming a huge
504 * chunk of resources in the HPT */
505 if (shift
> (spapr_hpt_shift_for_ramsize(current_ram_size
) + 1)) {
509 rc
= kvmppc_resize_hpt_prepare(cpu
, flags
, shift
);
511 return resize_hpt_convert_rc(rc
);
515 /* something already in progress */
516 if (pending
->shift
== shift
) {
517 /* and it's suitable */
518 if (pending
->complete
) {
521 return H_LONG_BUSY_ORDER_100_MSEC
;
525 /* not suitable, cancel and replace */
526 cancel_hpt_prepare(spapr
);
534 /* start new prepare */
536 pending
= g_new0(sPAPRPendingHPT
, 1);
537 pending
->shift
= shift
;
538 pending
->ret
= H_HARDWARE
;
540 qemu_thread_create(&pending
->thread
, "sPAPR HPT prepare",
541 hpt_prepare_thread
, pending
, QEMU_THREAD_DETACHED
);
543 spapr
->pending_hpt
= pending
;
545 /* In theory we could estimate the time more accurately based on
546 * the new size, but there's not much point */
547 return H_LONG_BUSY_ORDER_100_MSEC
;
550 static uint64_t new_hpte_load0(void *htab
, uint64_t pteg
, int slot
)
552 uint8_t *addr
= htab
;
554 addr
+= pteg
* HASH_PTEG_SIZE_64
;
555 addr
+= slot
* HASH_PTE_SIZE_64
;
559 static void new_hpte_store(void *htab
, uint64_t pteg
, int slot
,
560 uint64_t pte0
, uint64_t pte1
)
562 uint8_t *addr
= htab
;
564 addr
+= pteg
* HASH_PTEG_SIZE_64
;
565 addr
+= slot
* HASH_PTE_SIZE_64
;
568 stq_p(addr
+ HASH_PTE_SIZE_64
/ 2, pte1
);
571 static int rehash_hpte(PowerPCCPU
*cpu
,
572 const ppc_hash_pte64_t
*hptes
,
573 void *old_hpt
, uint64_t oldsize
,
574 void *new_hpt
, uint64_t newsize
,
575 uint64_t pteg
, int slot
)
577 uint64_t old_hash_mask
= (oldsize
>> 7) - 1;
578 uint64_t new_hash_mask
= (newsize
>> 7) - 1;
579 target_ulong pte0
= ppc_hash64_hpte0(cpu
, hptes
, slot
);
582 unsigned base_pg_shift
;
583 uint64_t hash
, new_pteg
, replace_pte0
;
585 if (!(pte0
& HPTE64_V_VALID
) || !(pte0
& HPTE64_V_BOLTED
)) {
589 pte1
= ppc_hash64_hpte1(cpu
, hptes
, slot
);
591 base_pg_shift
= ppc_hash64_hpte_page_shift_noslb(cpu
, pte0
, pte1
);
592 assert(base_pg_shift
); /* H_ENTER shouldn't allow a bad encoding */
593 avpn
= HPTE64_V_AVPN_VAL(pte0
) & ~(((1ULL << base_pg_shift
) - 1) >> 23);
595 if (pte0
& HPTE64_V_SECONDARY
) {
599 if ((pte0
& HPTE64_V_SSIZE
) == HPTE64_V_SSIZE_256M
) {
600 uint64_t offset
, vsid
;
602 /* We only have 28 - 23 bits of offset in avpn */
603 offset
= (avpn
& 0x1f) << 23;
605 /* We can find more bits from the pteg value */
606 if (base_pg_shift
< 23) {
607 offset
|= ((vsid
^ pteg
) & old_hash_mask
) << base_pg_shift
;
610 hash
= vsid
^ (offset
>> base_pg_shift
);
611 } else if ((pte0
& HPTE64_V_SSIZE
) == HPTE64_V_SSIZE_1T
) {
612 uint64_t offset
, vsid
;
614 /* We only have 40 - 23 bits of seg_off in avpn */
615 offset
= (avpn
& 0x1ffff) << 23;
617 if (base_pg_shift
< 23) {
618 offset
|= ((vsid
^ (vsid
<< 25) ^ pteg
) & old_hash_mask
)
622 hash
= vsid
^ (vsid
<< 25) ^ (offset
>> base_pg_shift
);
624 error_report("rehash_pte: Bad segment size in HPTE");
628 new_pteg
= hash
& new_hash_mask
;
629 if (pte0
& HPTE64_V_SECONDARY
) {
630 assert(~pteg
== (hash
& old_hash_mask
));
631 new_pteg
= ~new_pteg
;
633 assert(pteg
== (hash
& old_hash_mask
));
635 assert((oldsize
!= newsize
) || (pteg
== new_pteg
));
636 replace_pte0
= new_hpte_load0(new_hpt
, new_pteg
, slot
);
638 * Strictly speaking, we don't need all these tests, since we only
639 * ever rehash bolted HPTEs. We might in future handle non-bolted
640 * HPTEs, though so make the logic correct for those cases as
643 if (replace_pte0
& HPTE64_V_VALID
) {
644 assert(newsize
< oldsize
);
645 if (replace_pte0
& HPTE64_V_BOLTED
) {
646 if (pte0
& HPTE64_V_BOLTED
) {
647 /* Bolted collision, nothing we can do */
650 /* Discard this hpte */
656 new_hpte_store(new_hpt
, new_pteg
, slot
, pte0
, pte1
);
660 static int rehash_hpt(PowerPCCPU
*cpu
,
661 void *old_hpt
, uint64_t oldsize
,
662 void *new_hpt
, uint64_t newsize
)
664 uint64_t n_ptegs
= oldsize
>> 7;
669 for (pteg
= 0; pteg
< n_ptegs
; pteg
++) {
670 hwaddr ptex
= pteg
* HPTES_PER_GROUP
;
671 const ppc_hash_pte64_t
*hptes
672 = ppc_hash64_map_hptes(cpu
, ptex
, HPTES_PER_GROUP
);
678 for (slot
= 0; slot
< HPTES_PER_GROUP
; slot
++) {
679 rc
= rehash_hpte(cpu
, hptes
, old_hpt
, oldsize
, new_hpt
, newsize
,
681 if (rc
!= H_SUCCESS
) {
682 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, HPTES_PER_GROUP
);
686 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, HPTES_PER_GROUP
);
692 static void do_push_sregs_to_kvm_pr(CPUState
*cs
, run_on_cpu_data data
)
696 cpu_synchronize_state(cs
);
698 ret
= kvmppc_put_books_sregs(POWERPC_CPU(cs
));
700 error_report("failed to push sregs to KVM: %s", strerror(-ret
));
705 static void push_sregs_to_kvm_pr(sPAPRMachineState
*spapr
)
710 * This is a hack for the benefit of KVM PR - it abuses the SDR1
711 * slot in kvm_sregs to communicate the userspace address of the
714 if (!kvm_enabled() || !spapr
->htab
) {
719 run_on_cpu(cs
, do_push_sregs_to_kvm_pr
, RUN_ON_CPU_NULL
);
723 static target_ulong
h_resize_hpt_commit(PowerPCCPU
*cpu
,
724 sPAPRMachineState
*spapr
,
728 target_ulong flags
= args
[0];
729 target_ulong shift
= args
[1];
730 sPAPRPendingHPT
*pending
= spapr
->pending_hpt
;
734 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
738 if (!spapr
->htab_shift
) {
739 /* Radix guest, no HPT */
740 return H_NOT_AVAILABLE
;
743 trace_spapr_h_resize_hpt_commit(flags
, shift
);
745 rc
= kvmppc_resize_hpt_commit(cpu
, flags
, shift
);
747 rc
= resize_hpt_convert_rc(rc
);
748 if (rc
== H_SUCCESS
) {
749 /* Need to set the new htab_shift in the machine state */
750 spapr
->htab_shift
= shift
;
759 if (!pending
|| (pending
->shift
!= shift
)) {
760 /* no matching prepare */
764 if (!pending
->complete
) {
765 /* prepare has not completed */
769 /* Shouldn't have got past PREPARE without an HPT */
770 g_assert(spapr
->htab_shift
);
772 newsize
= 1ULL << pending
->shift
;
773 rc
= rehash_hpt(cpu
, spapr
->htab
, HTAB_SIZE(spapr
),
774 pending
->hpt
, newsize
);
775 if (rc
== H_SUCCESS
) {
776 qemu_vfree(spapr
->htab
);
777 spapr
->htab
= pending
->hpt
;
778 spapr
->htab_shift
= pending
->shift
;
780 push_sregs_to_kvm_pr(spapr
);
782 pending
->hpt
= NULL
; /* so it's not free()d */
786 spapr
->pending_hpt
= NULL
;
787 free_pending_hpt(pending
);
792 static target_ulong
h_set_sprg0(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
793 target_ulong opcode
, target_ulong
*args
)
795 cpu_synchronize_state(CPU(cpu
));
796 cpu
->env
.spr
[SPR_SPRG0
] = args
[0];
801 static target_ulong
h_set_dabr(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
802 target_ulong opcode
, target_ulong
*args
)
804 if (!has_spr(cpu
, SPR_DABR
)) {
805 return H_HARDWARE
; /* DABR register not available */
807 cpu_synchronize_state(CPU(cpu
));
809 if (has_spr(cpu
, SPR_DABRX
)) {
810 cpu
->env
.spr
[SPR_DABRX
] = 0x3; /* Use Problem and Privileged state */
811 } else if (!(args
[0] & 0x4)) { /* Breakpoint Translation set? */
812 return H_RESERVED_DABR
;
815 cpu
->env
.spr
[SPR_DABR
] = args
[0];
819 static target_ulong
h_set_xdabr(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
820 target_ulong opcode
, target_ulong
*args
)
822 target_ulong dabrx
= args
[1];
824 if (!has_spr(cpu
, SPR_DABR
) || !has_spr(cpu
, SPR_DABRX
)) {
828 if ((dabrx
& ~0xfULL
) != 0 || (dabrx
& H_DABRX_HYPERVISOR
) != 0
829 || (dabrx
& (H_DABRX_KERNEL
| H_DABRX_USER
)) == 0) {
833 cpu_synchronize_state(CPU(cpu
));
834 cpu
->env
.spr
[SPR_DABRX
] = dabrx
;
835 cpu
->env
.spr
[SPR_DABR
] = args
[0];
840 static target_ulong
h_page_init(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
841 target_ulong opcode
, target_ulong
*args
)
843 target_ulong flags
= args
[0];
844 hwaddr dst
= args
[1];
845 hwaddr src
= args
[2];
846 hwaddr len
= TARGET_PAGE_SIZE
;
847 uint8_t *pdst
, *psrc
;
848 target_long ret
= H_SUCCESS
;
850 if (flags
& ~(H_ICACHE_SYNCHRONIZE
| H_ICACHE_INVALIDATE
851 | H_COPY_PAGE
| H_ZERO_PAGE
)) {
852 qemu_log_mask(LOG_UNIMP
, "h_page_init: Bad flags (" TARGET_FMT_lx
"\n",
857 /* Map-in destination */
858 if (!is_ram_address(spapr
, dst
) || (dst
& ~TARGET_PAGE_MASK
) != 0) {
861 pdst
= cpu_physical_memory_map(dst
, &len
, 1);
862 if (!pdst
|| len
!= TARGET_PAGE_SIZE
) {
866 if (flags
& H_COPY_PAGE
) {
867 /* Map-in source, copy to destination, and unmap source again */
868 if (!is_ram_address(spapr
, src
) || (src
& ~TARGET_PAGE_MASK
) != 0) {
872 psrc
= cpu_physical_memory_map(src
, &len
, 0);
873 if (!psrc
|| len
!= TARGET_PAGE_SIZE
) {
877 memcpy(pdst
, psrc
, len
);
878 cpu_physical_memory_unmap(psrc
, len
, 0, len
);
879 } else if (flags
& H_ZERO_PAGE
) {
880 memset(pdst
, 0, len
); /* Just clear the destination page */
883 if (kvm_enabled() && (flags
& H_ICACHE_SYNCHRONIZE
) != 0) {
884 kvmppc_dcbst_range(cpu
, pdst
, len
);
886 if (flags
& (H_ICACHE_SYNCHRONIZE
| H_ICACHE_INVALIDATE
)) {
888 kvmppc_icbi_range(cpu
, pdst
, len
);
895 cpu_physical_memory_unmap(pdst
, TARGET_PAGE_SIZE
, 1, len
);
899 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
900 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
901 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
902 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
903 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
904 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
906 #define VPA_MIN_SIZE 640
907 #define VPA_SIZE_OFFSET 0x4
908 #define VPA_SHARED_PROC_OFFSET 0x9
909 #define VPA_SHARED_PROC_VAL 0x2
911 static target_ulong
register_vpa(CPUPPCState
*env
, target_ulong vpa
)
913 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
918 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
922 if (vpa
% env
->dcache_line_size
) {
925 /* FIXME: bounds check the address */
927 size
= lduw_be_phys(cs
->as
, vpa
+ 0x4);
929 if (size
< VPA_MIN_SIZE
) {
933 /* VPA is not allowed to cross a page boundary */
934 if ((vpa
/ 4096) != ((vpa
+ size
- 1) / 4096)) {
940 tmp
= ldub_phys(cs
->as
, env
->vpa_addr
+ VPA_SHARED_PROC_OFFSET
);
941 tmp
|= VPA_SHARED_PROC_VAL
;
942 stb_phys(cs
->as
, env
->vpa_addr
+ VPA_SHARED_PROC_OFFSET
, tmp
);
947 static target_ulong
deregister_vpa(CPUPPCState
*env
, target_ulong vpa
)
949 if (env
->slb_shadow_addr
) {
961 static target_ulong
register_slb_shadow(CPUPPCState
*env
, target_ulong addr
)
963 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
967 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
971 size
= ldl_be_phys(cs
->as
, addr
+ 0x4);
976 if ((addr
/ 4096) != ((addr
+ size
- 1) / 4096)) {
980 if (!env
->vpa_addr
) {
984 env
->slb_shadow_addr
= addr
;
985 env
->slb_shadow_size
= size
;
990 static target_ulong
deregister_slb_shadow(CPUPPCState
*env
, target_ulong addr
)
992 env
->slb_shadow_addr
= 0;
993 env
->slb_shadow_size
= 0;
997 static target_ulong
register_dtl(CPUPPCState
*env
, target_ulong addr
)
999 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
1003 hcall_dprintf("Can't cope with DTL at logical 0\n");
1007 size
= ldl_be_phys(cs
->as
, addr
+ 0x4);
1013 if (!env
->vpa_addr
) {
1017 env
->dtl_addr
= addr
;
1018 env
->dtl_size
= size
;
1023 static target_ulong
deregister_dtl(CPUPPCState
*env
, target_ulong addr
)
1031 static target_ulong
h_register_vpa(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1032 target_ulong opcode
, target_ulong
*args
)
1034 target_ulong flags
= args
[0];
1035 target_ulong procno
= args
[1];
1036 target_ulong vpa
= args
[2];
1037 target_ulong ret
= H_PARAMETER
;
1041 tcpu
= spapr_find_cpu(procno
);
1048 case FLAGS_REGISTER_VPA
:
1049 ret
= register_vpa(tenv
, vpa
);
1052 case FLAGS_DEREGISTER_VPA
:
1053 ret
= deregister_vpa(tenv
, vpa
);
1056 case FLAGS_REGISTER_SLBSHADOW
:
1057 ret
= register_slb_shadow(tenv
, vpa
);
1060 case FLAGS_DEREGISTER_SLBSHADOW
:
1061 ret
= deregister_slb_shadow(tenv
, vpa
);
1064 case FLAGS_REGISTER_DTL
:
1065 ret
= register_dtl(tenv
, vpa
);
1068 case FLAGS_DEREGISTER_DTL
:
1069 ret
= deregister_dtl(tenv
, vpa
);
1076 static target_ulong
h_cede(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1077 target_ulong opcode
, target_ulong
*args
)
1079 CPUPPCState
*env
= &cpu
->env
;
1080 CPUState
*cs
= CPU(cpu
);
1082 env
->msr
|= (1ULL << MSR_EE
);
1083 hreg_compute_hflags(env
);
1084 if (!cpu_has_work(cs
)) {
1086 cs
->exception_index
= EXCP_HLT
;
1087 cs
->exit_request
= 1;
1092 static target_ulong
h_rtas(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1093 target_ulong opcode
, target_ulong
*args
)
1095 target_ulong rtas_r3
= args
[0];
1096 uint32_t token
= rtas_ld(rtas_r3
, 0);
1097 uint32_t nargs
= rtas_ld(rtas_r3
, 1);
1098 uint32_t nret
= rtas_ld(rtas_r3
, 2);
1100 return spapr_rtas_call(cpu
, spapr
, token
, nargs
, rtas_r3
+ 12,
1101 nret
, rtas_r3
+ 12 + 4*nargs
);
1104 static target_ulong
h_logical_load(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1105 target_ulong opcode
, target_ulong
*args
)
1107 CPUState
*cs
= CPU(cpu
);
1108 target_ulong size
= args
[0];
1109 target_ulong addr
= args
[1];
1113 args
[0] = ldub_phys(cs
->as
, addr
);
1116 args
[0] = lduw_phys(cs
->as
, addr
);
1119 args
[0] = ldl_phys(cs
->as
, addr
);
1122 args
[0] = ldq_phys(cs
->as
, addr
);
1128 static target_ulong
h_logical_store(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1129 target_ulong opcode
, target_ulong
*args
)
1131 CPUState
*cs
= CPU(cpu
);
1133 target_ulong size
= args
[0];
1134 target_ulong addr
= args
[1];
1135 target_ulong val
= args
[2];
1139 stb_phys(cs
->as
, addr
, val
);
1142 stw_phys(cs
->as
, addr
, val
);
1145 stl_phys(cs
->as
, addr
, val
);
1148 stq_phys(cs
->as
, addr
, val
);
1154 static target_ulong
h_logical_memop(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1155 target_ulong opcode
, target_ulong
*args
)
1157 CPUState
*cs
= CPU(cpu
);
1159 target_ulong dst
= args
[0]; /* Destination address */
1160 target_ulong src
= args
[1]; /* Source address */
1161 target_ulong esize
= args
[2]; /* Element size (0=1,1=2,2=4,3=8) */
1162 target_ulong count
= args
[3]; /* Element count */
1163 target_ulong op
= args
[4]; /* 0 = copy, 1 = invert */
1165 unsigned int mask
= (1 << esize
) - 1;
1166 int step
= 1 << esize
;
1168 if (count
> 0x80000000) {
1172 if ((dst
& mask
) || (src
& mask
) || (op
> 1)) {
1176 if (dst
>= src
&& dst
< (src
+ (count
<< esize
))) {
1177 dst
= dst
+ ((count
- 1) << esize
);
1178 src
= src
+ ((count
- 1) << esize
);
1185 tmp
= ldub_phys(cs
->as
, src
);
1188 tmp
= lduw_phys(cs
->as
, src
);
1191 tmp
= ldl_phys(cs
->as
, src
);
1194 tmp
= ldq_phys(cs
->as
, src
);
1204 stb_phys(cs
->as
, dst
, tmp
);
1207 stw_phys(cs
->as
, dst
, tmp
);
1210 stl_phys(cs
->as
, dst
, tmp
);
1213 stq_phys(cs
->as
, dst
, tmp
);
1223 static target_ulong
h_logical_icbi(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1224 target_ulong opcode
, target_ulong
*args
)
1226 /* Nothing to do on emulation, KVM will trap this in the kernel */
1230 static target_ulong
h_logical_dcbf(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1231 target_ulong opcode
, target_ulong
*args
)
1233 /* Nothing to do on emulation, KVM will trap this in the kernel */
1237 static target_ulong
h_set_mode_resource_le(PowerPCCPU
*cpu
,
1238 target_ulong mflags
,
1239 target_ulong value1
,
1240 target_ulong value2
)
1250 case H_SET_MODE_ENDIAN_BIG
:
1251 set_all_lpcrs(0, LPCR_ILE
);
1252 spapr_pci_switch_vga(true);
1255 case H_SET_MODE_ENDIAN_LITTLE
:
1256 set_all_lpcrs(LPCR_ILE
, LPCR_ILE
);
1257 spapr_pci_switch_vga(false);
1261 return H_UNSUPPORTED_FLAG
;
1264 static target_ulong
h_set_mode_resource_addr_trans_mode(PowerPCCPU
*cpu
,
1265 target_ulong mflags
,
1266 target_ulong value1
,
1267 target_ulong value2
)
1269 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
1271 if (!(pcc
->insns_flags2
& PPC2_ISA207S
)) {
1281 if (mflags
== AIL_RESERVED
) {
1282 return H_UNSUPPORTED_FLAG
;
1285 set_all_lpcrs(mflags
<< LPCR_AIL_SHIFT
, LPCR_AIL
);
1290 static target_ulong
h_set_mode(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1291 target_ulong opcode
, target_ulong
*args
)
1293 target_ulong resource
= args
[1];
1294 target_ulong ret
= H_P2
;
1297 case H_SET_MODE_RESOURCE_LE
:
1298 ret
= h_set_mode_resource_le(cpu
, args
[0], args
[2], args
[3]);
1300 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE
:
1301 ret
= h_set_mode_resource_addr_trans_mode(cpu
, args
[0],
1309 static target_ulong
h_clean_slb(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1310 target_ulong opcode
, target_ulong
*args
)
1312 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx
"%s\n",
1313 opcode
, " (H_CLEAN_SLB)");
1317 static target_ulong
h_invalidate_pid(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1318 target_ulong opcode
, target_ulong
*args
)
1320 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx
"%s\n",
1321 opcode
, " (H_INVALIDATE_PID)");
1325 static void spapr_check_setup_free_hpt(sPAPRMachineState
*spapr
,
1326 uint64_t patbe_old
, uint64_t patbe_new
)
1329 * We have 4 Options:
1330 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1331 * HASH->RADIX : Free HPT
1332 * RADIX->HASH : Allocate HPT
1333 * NOTHING->HASH : Allocate HPT
1334 * Note: NOTHING implies the case where we said the guest could choose
1335 * later and so assumed radix and now it's called H_REG_PROC_TBL
1338 if ((patbe_old
& PATBE1_GR
) == (patbe_new
& PATBE1_GR
)) {
1339 /* We assume RADIX, so this catches all the "Do Nothing" cases */
1340 } else if (!(patbe_old
& PATBE1_GR
)) {
1341 /* HASH->RADIX : Free HPT */
1342 spapr_free_hpt(spapr
);
1343 } else if (!(patbe_new
& PATBE1_GR
)) {
1344 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1345 spapr_setup_hpt_and_vrma(spapr
);
1350 #define FLAGS_MASK 0x01FULL
1351 #define FLAG_MODIFY 0x10
1352 #define FLAG_REGISTER 0x08
1353 #define FLAG_RADIX 0x04
1354 #define FLAG_HASH_PROC_TBL 0x02
1355 #define FLAG_GTSE 0x01
1357 static target_ulong
h_register_process_table(PowerPCCPU
*cpu
,
1358 sPAPRMachineState
*spapr
,
1359 target_ulong opcode
,
1362 target_ulong flags
= args
[0];
1363 target_ulong proc_tbl
= args
[1];
1364 target_ulong page_size
= args
[2];
1365 target_ulong table_size
= args
[3];
1368 if (flags
& ~FLAGS_MASK
) { /* Check no reserved bits are set */
1371 if (flags
& FLAG_MODIFY
) {
1372 if (flags
& FLAG_REGISTER
) {
1373 if (flags
& FLAG_RADIX
) { /* Register new RADIX process table */
1374 if (proc_tbl
& 0xfff || proc_tbl
>> 60) {
1376 } else if (page_size
) {
1378 } else if (table_size
> 24) {
1381 cproc
= PATBE1_GR
| proc_tbl
| table_size
;
1382 } else { /* Register new HPT process table */
1383 if (flags
& FLAG_HASH_PROC_TBL
) { /* Hash with Segment Tables */
1384 /* TODO - Not Supported */
1385 /* Technically caused by flag bits => H_PARAMETER */
1387 } else { /* Hash with SLB */
1388 if (proc_tbl
>> 38) {
1390 } else if (page_size
& ~0x7) {
1392 } else if (table_size
> 24) {
1396 cproc
= (proc_tbl
<< 25) | page_size
<< 5 | table_size
;
1399 } else { /* Deregister current process table */
1400 /* Set to benign value: (current GR) | 0. This allows
1401 * deregistration in KVM to succeed even if the radix bit in flags
1402 * doesn't match the radix bit in the old PATB. */
1403 cproc
= spapr
->patb_entry
& PATBE1_GR
;
1405 } else { /* Maintain current registration */
1406 if (!(flags
& FLAG_RADIX
) != !(spapr
->patb_entry
& PATBE1_GR
)) {
1407 /* Technically caused by flag bits => H_PARAMETER */
1408 return H_PARAMETER
; /* Existing Process Table Mismatch */
1410 cproc
= spapr
->patb_entry
;
1413 /* Check if we need to setup OR free the hpt */
1414 spapr_check_setup_free_hpt(spapr
, spapr
->patb_entry
, cproc
);
1416 spapr
->patb_entry
= cproc
; /* Save new process table */
1418 /* Update the UPRT and GTSE bits in the LPCR for all cpus */
1419 set_all_lpcrs(((flags
& (FLAG_RADIX
| FLAG_HASH_PROC_TBL
)) ? LPCR_UPRT
: 0) |
1420 ((flags
& FLAG_GTSE
) ? LPCR_GTSE
: 0),
1421 LPCR_UPRT
| LPCR_GTSE
);
1423 if (kvm_enabled()) {
1424 return kvmppc_configure_v3_mmu(cpu
, flags
& FLAG_RADIX
,
1425 flags
& FLAG_GTSE
, cproc
);
1430 #define H_SIGNAL_SYS_RESET_ALL -1
1431 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
1433 static target_ulong
h_signal_sys_reset(PowerPCCPU
*cpu
,
1434 sPAPRMachineState
*spapr
,
1435 target_ulong opcode
, target_ulong
*args
)
1437 target_long target
= args
[0];
1442 if (target
< H_SIGNAL_SYS_RESET_ALLBUTSELF
) {
1447 PowerPCCPU
*c
= POWERPC_CPU(cs
);
1449 if (target
== H_SIGNAL_SYS_RESET_ALLBUTSELF
) {
1454 run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
1460 cs
= CPU(spapr_find_cpu(target
));
1462 run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
1469 static uint32_t cas_check_pvr(sPAPRMachineState
*spapr
, PowerPCCPU
*cpu
,
1470 target_ulong
*addr
, bool *raw_mode_supported
,
1473 bool explicit_match
= false; /* Matched the CPU's real PVR */
1474 uint32_t max_compat
= spapr
->max_compat_pvr
;
1475 uint32_t best_compat
= 0;
1479 * We scan the supplied table of PVRs looking for two things
1480 * 1. Is our real CPU PVR in the list?
1481 * 2. What's the "best" listed logical PVR
1483 for (i
= 0; i
< 512; ++i
) {
1484 uint32_t pvr
, pvr_mask
;
1486 pvr_mask
= ldl_be_phys(&address_space_memory
, *addr
);
1487 pvr
= ldl_be_phys(&address_space_memory
, *addr
+ 4);
1490 if (~pvr_mask
& pvr
) {
1491 break; /* Terminator record */
1494 if ((cpu
->env
.spr
[SPR_PVR
] & pvr_mask
) == (pvr
& pvr_mask
)) {
1495 explicit_match
= true;
1497 if (ppc_check_compat(cpu
, pvr
, best_compat
, max_compat
)) {
1503 if ((best_compat
== 0) && (!explicit_match
|| max_compat
)) {
1504 /* We couldn't find a suitable compatibility mode, and either
1505 * the guest doesn't support "raw" mode for this CPU, or raw
1506 * mode is disabled because a maximum compat mode is set */
1507 error_setg(errp
, "Couldn't negotiate a suitable PVR during CAS");
1511 *raw_mode_supported
= explicit_match
;
1513 /* Parsing finished */
1514 trace_spapr_cas_pvr(cpu
->compat_pvr
, explicit_match
, best_compat
);
1519 static target_ulong
h_client_architecture_support(PowerPCCPU
*cpu
,
1520 sPAPRMachineState
*spapr
,
1521 target_ulong opcode
,
1524 /* Working address in data buffer */
1525 target_ulong addr
= ppc64_phys_to_real(args
[0]);
1526 target_ulong ov_table
;
1528 sPAPROptionVector
*ov1_guest
, *ov5_guest
, *ov5_cas_old
, *ov5_updates
;
1530 Error
*local_err
= NULL
;
1531 bool raw_mode_supported
= false;
1533 cas_pvr
= cas_check_pvr(spapr
, cpu
, &addr
, &raw_mode_supported
, &local_err
);
1535 error_report_err(local_err
);
1540 if (cpu
->compat_pvr
!= cas_pvr
) {
1541 ppc_set_compat_all(cas_pvr
, &local_err
);
1543 /* We fail to set compat mode (likely because running with KVM PR),
1544 * but maybe we can fallback to raw mode if the guest supports it.
1546 if (!raw_mode_supported
) {
1547 error_report_err(local_err
);
1554 /* For the future use: here @ov_table points to the first option vector */
1557 ov1_guest
= spapr_ovec_parse_vector(ov_table
, 1);
1558 ov5_guest
= spapr_ovec_parse_vector(ov_table
, 5);
1559 if (spapr_ovec_test(ov5_guest
, OV5_MMU_BOTH
)) {
1560 error_report("guest requested hash and radix MMU, which is invalid.");
1563 /* The radix/hash bit in byte 24 requires special handling: */
1564 guest_radix
= spapr_ovec_test(ov5_guest
, OV5_MMU_RADIX_300
);
1565 spapr_ovec_clear(ov5_guest
, OV5_MMU_RADIX_300
);
1568 * HPT resizing is a bit of a special case, because when enabled
1569 * we assume an HPT guest will support it until it says it
1570 * doesn't, instead of assuming it won't support it until it says
1571 * it does. Strictly speaking that approach could break for
1572 * guests which don't make a CAS call, but those are so old we
1573 * don't care about them. Without that assumption we'd have to
1574 * make at least a temporary allocation of an HPT sized for max
1575 * memory, which could be impossibly difficult under KVM HV if
1578 if (!guest_radix
&& !spapr_ovec_test(ov5_guest
, OV5_HPT_RESIZE
)) {
1579 int maxshift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1581 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_REQUIRED
) {
1583 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1587 if (spapr
->htab_shift
< maxshift
) {
1588 /* Guest doesn't know about HPT resizing, so we
1589 * pre-emptively resize for the maximum permitted RAM. At
1590 * the point this is called, nothing should have been
1591 * entered into the existing HPT */
1592 spapr_reallocate_hpt(spapr
, maxshift
, &error_fatal
);
1593 push_sregs_to_kvm_pr(spapr
);
1597 /* NOTE: there are actually a number of ov5 bits where input from the
1598 * guest is always zero, and the platform/QEMU enables them independently
1599 * of guest input. To model these properly we'd want some sort of mask,
1600 * but since they only currently apply to memory migration as defined
1601 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1602 * to worry about this for now.
1604 ov5_cas_old
= spapr_ovec_clone(spapr
->ov5_cas
);
1606 /* also clear the radix/hash bit from the current ov5_cas bits to
1607 * be in sync with the newly ov5 bits. Else the radix bit will be
1608 * seen as being removed and this will generate a reset loop
1610 spapr_ovec_clear(ov5_cas_old
, OV5_MMU_RADIX_300
);
1612 /* full range of negotiated ov5 capabilities */
1613 spapr_ovec_intersect(spapr
->ov5_cas
, spapr
->ov5
, ov5_guest
);
1614 spapr_ovec_cleanup(ov5_guest
);
1615 /* capabilities that have been added since CAS-generated guest reset.
1616 * if capabilities have since been removed, generate another reset
1618 ov5_updates
= spapr_ovec_new();
1619 spapr
->cas_reboot
= spapr_ovec_diff(ov5_updates
,
1620 ov5_cas_old
, spapr
->ov5_cas
);
1621 /* Now that processing is finished, set the radix/hash bit for the
1622 * guest if it requested a valid mode; otherwise terminate the boot. */
1624 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1625 error_report("Guest requested unavailable MMU mode (radix).");
1628 spapr_ovec_set(spapr
->ov5_cas
, OV5_MMU_RADIX_300
);
1630 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1631 && !kvmppc_has_cap_mmu_hash_v3()) {
1632 error_report("Guest requested unavailable MMU mode (hash).");
1636 spapr
->cas_legacy_guest_workaround
= !spapr_ovec_test(ov1_guest
,
1638 if (!spapr
->cas_reboot
) {
1639 /* If spapr_machine_reset() did not set up a HPT but one is necessary
1640 * (because the guest isn't going to use radix) then set it up here. */
1641 if ((spapr
->patb_entry
& PATBE1_GR
) && !guest_radix
) {
1642 /* legacy hash or new hash: */
1643 spapr_setup_hpt_and_vrma(spapr
);
1646 (spapr_h_cas_compose_response(spapr
, args
[1], args
[2],
1649 spapr_ovec_cleanup(ov5_updates
);
1651 if (spapr
->cas_reboot
) {
1652 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
1658 static target_ulong
h_get_cpu_characteristics(PowerPCCPU
*cpu
,
1659 sPAPRMachineState
*spapr
,
1660 target_ulong opcode
,
1663 uint64_t characteristics
= H_CPU_CHAR_HON_BRANCH_HINTS
&
1664 ~H_CPU_CHAR_THR_RECONF_TRIG
;
1665 uint64_t behaviour
= H_CPU_BEHAV_FAVOUR_SECURITY
;
1666 uint8_t safe_cache
= spapr_get_cap(spapr
, SPAPR_CAP_CFPC
);
1667 uint8_t safe_bounds_check
= spapr_get_cap(spapr
, SPAPR_CAP_SBBC
);
1668 uint8_t safe_indirect_branch
= spapr_get_cap(spapr
, SPAPR_CAP_IBS
);
1670 switch (safe_cache
) {
1671 case SPAPR_CAP_WORKAROUND
:
1672 characteristics
|= H_CPU_CHAR_L1D_FLUSH_ORI30
;
1673 characteristics
|= H_CPU_CHAR_L1D_FLUSH_TRIG2
;
1674 characteristics
|= H_CPU_CHAR_L1D_THREAD_PRIV
;
1675 behaviour
|= H_CPU_BEHAV_L1D_FLUSH_PR
;
1677 case SPAPR_CAP_FIXED
:
1679 default: /* broken */
1680 assert(safe_cache
== SPAPR_CAP_BROKEN
);
1681 behaviour
|= H_CPU_BEHAV_L1D_FLUSH_PR
;
1685 switch (safe_bounds_check
) {
1686 case SPAPR_CAP_WORKAROUND
:
1687 characteristics
|= H_CPU_CHAR_SPEC_BAR_ORI31
;
1688 behaviour
|= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR
;
1690 case SPAPR_CAP_FIXED
:
1692 default: /* broken */
1693 assert(safe_bounds_check
== SPAPR_CAP_BROKEN
);
1694 behaviour
|= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR
;
1698 switch (safe_indirect_branch
) {
1699 case SPAPR_CAP_FIXED_CCD
:
1700 characteristics
|= H_CPU_CHAR_CACHE_COUNT_DIS
;
1702 case SPAPR_CAP_FIXED_IBS
:
1703 characteristics
|= H_CPU_CHAR_BCCTRL_SERIALISED
;
1705 default: /* broken */
1706 assert(safe_indirect_branch
== SPAPR_CAP_BROKEN
);
1710 args
[0] = characteristics
;
1711 args
[1] = behaviour
;
1716 static spapr_hcall_fn papr_hypercall_table
[(MAX_HCALL_OPCODE
/ 4) + 1];
1717 static spapr_hcall_fn kvmppc_hypercall_table
[KVMPPC_HCALL_MAX
- KVMPPC_HCALL_BASE
+ 1];
1719 void spapr_register_hypercall(target_ulong opcode
, spapr_hcall_fn fn
)
1721 spapr_hcall_fn
*slot
;
1723 if (opcode
<= MAX_HCALL_OPCODE
) {
1724 assert((opcode
& 0x3) == 0);
1726 slot
= &papr_hypercall_table
[opcode
/ 4];
1728 assert((opcode
>= KVMPPC_HCALL_BASE
) && (opcode
<= KVMPPC_HCALL_MAX
));
1730 slot
= &kvmppc_hypercall_table
[opcode
- KVMPPC_HCALL_BASE
];
1737 target_ulong
spapr_hypercall(PowerPCCPU
*cpu
, target_ulong opcode
,
1740 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
1742 if ((opcode
<= MAX_HCALL_OPCODE
)
1743 && ((opcode
& 0x3) == 0)) {
1744 spapr_hcall_fn fn
= papr_hypercall_table
[opcode
/ 4];
1747 return fn(cpu
, spapr
, opcode
, args
);
1749 } else if ((opcode
>= KVMPPC_HCALL_BASE
) &&
1750 (opcode
<= KVMPPC_HCALL_MAX
)) {
1751 spapr_hcall_fn fn
= kvmppc_hypercall_table
[opcode
- KVMPPC_HCALL_BASE
];
1754 return fn(cpu
, spapr
, opcode
, args
);
1758 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx
"\n",
1763 static void hypercall_register_types(void)
1766 spapr_register_hypercall(H_ENTER
, h_enter
);
1767 spapr_register_hypercall(H_REMOVE
, h_remove
);
1768 spapr_register_hypercall(H_PROTECT
, h_protect
);
1769 spapr_register_hypercall(H_READ
, h_read
);
1772 spapr_register_hypercall(H_BULK_REMOVE
, h_bulk_remove
);
1774 /* hcall-hpt-resize */
1775 spapr_register_hypercall(H_RESIZE_HPT_PREPARE
, h_resize_hpt_prepare
);
1776 spapr_register_hypercall(H_RESIZE_HPT_COMMIT
, h_resize_hpt_commit
);
1779 spapr_register_hypercall(H_REGISTER_VPA
, h_register_vpa
);
1780 spapr_register_hypercall(H_CEDE
, h_cede
);
1781 spapr_register_hypercall(H_SIGNAL_SYS_RESET
, h_signal_sys_reset
);
1783 /* processor register resource access h-calls */
1784 spapr_register_hypercall(H_SET_SPRG0
, h_set_sprg0
);
1785 spapr_register_hypercall(H_SET_DABR
, h_set_dabr
);
1786 spapr_register_hypercall(H_SET_XDABR
, h_set_xdabr
);
1787 spapr_register_hypercall(H_PAGE_INIT
, h_page_init
);
1788 spapr_register_hypercall(H_SET_MODE
, h_set_mode
);
1790 /* In Memory Table MMU h-calls */
1791 spapr_register_hypercall(H_CLEAN_SLB
, h_clean_slb
);
1792 spapr_register_hypercall(H_INVALIDATE_PID
, h_invalidate_pid
);
1793 spapr_register_hypercall(H_REGISTER_PROC_TBL
, h_register_process_table
);
1795 /* hcall-get-cpu-characteristics */
1796 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS
,
1797 h_get_cpu_characteristics
);
1799 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1800 * here between the "CI" and the "CACHE" variants, they will use whatever
1801 * mapping attributes qemu is using. When using KVM, the kernel will
1802 * enforce the attributes more strongly
1804 spapr_register_hypercall(H_LOGICAL_CI_LOAD
, h_logical_load
);
1805 spapr_register_hypercall(H_LOGICAL_CI_STORE
, h_logical_store
);
1806 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD
, h_logical_load
);
1807 spapr_register_hypercall(H_LOGICAL_CACHE_STORE
, h_logical_store
);
1808 spapr_register_hypercall(H_LOGICAL_ICBI
, h_logical_icbi
);
1809 spapr_register_hypercall(H_LOGICAL_DCBF
, h_logical_dcbf
);
1810 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP
, h_logical_memop
);
1812 /* qemu/KVM-PPC specific hcalls */
1813 spapr_register_hypercall(KVMPPC_H_RTAS
, h_rtas
);
1815 /* ibm,client-architecture-support support */
1816 spapr_register_hypercall(KVMPPC_H_CAS
, h_client_architecture_support
);
1819 type_init(hypercall_register_types
)