hyperv:synic: split capability testing and setting
[qemu.git] / target / i386 / kvm.c
blob2e5b9f63eb4506fc203982c32803cd53559bcee8
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include "standard-headers/asm-x86/kvm_para.h"
23 #include "qemu-common.h"
24 #include "cpu.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/hw_accel.h"
27 #include "sysemu/kvm_int.h"
28 #include "kvm_i386.h"
29 #include "hyperv.h"
30 #include "hyperv-proto.h"
32 #include "exec/gdbstub.h"
33 #include "qemu/host-utils.h"
34 #include "qemu/config-file.h"
35 #include "qemu/error-report.h"
36 #include "hw/i386/pc.h"
37 #include "hw/i386/apic.h"
38 #include "hw/i386/apic_internal.h"
39 #include "hw/i386/apic-msidef.h"
40 #include "hw/i386/intel_iommu.h"
41 #include "hw/i386/x86-iommu.h"
43 #include "hw/pci/pci.h"
44 #include "hw/pci/msi.h"
45 #include "hw/pci/msix.h"
46 #include "migration/blocker.h"
47 #include "exec/memattrs.h"
48 #include "trace.h"
50 //#define DEBUG_KVM
52 #ifdef DEBUG_KVM
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55 #else
56 #define DPRINTF(fmt, ...) \
57 do { } while (0)
58 #endif
60 #define MSR_KVM_WALL_CLOCK 0x11
61 #define MSR_KVM_SYSTEM_TIME 0x12
63 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
64 * 255 kvm_msr_entry structs */
65 #define MSR_BUF_SIZE 4096
67 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
68 KVM_CAP_INFO(SET_TSS_ADDR),
69 KVM_CAP_INFO(EXT_CPUID),
70 KVM_CAP_INFO(MP_STATE),
71 KVM_CAP_LAST_INFO
74 static bool has_msr_star;
75 static bool has_msr_hsave_pa;
76 static bool has_msr_tsc_aux;
77 static bool has_msr_tsc_adjust;
78 static bool has_msr_tsc_deadline;
79 static bool has_msr_feature_control;
80 static bool has_msr_misc_enable;
81 static bool has_msr_smbase;
82 static bool has_msr_bndcfgs;
83 static int lm_capable_kernel;
84 static bool has_msr_hv_hypercall;
85 static bool has_msr_hv_crash;
86 static bool has_msr_hv_reset;
87 static bool has_msr_hv_vpindex;
88 static bool hv_vpindex_settable;
89 static bool has_msr_hv_runtime;
90 static bool has_msr_hv_synic;
91 static bool has_msr_hv_stimer;
92 static bool has_msr_hv_frequencies;
93 static bool has_msr_hv_reenlightenment;
94 static bool has_msr_xss;
95 static bool has_msr_spec_ctrl;
96 static bool has_msr_virt_ssbd;
97 static bool has_msr_smi_count;
99 static uint32_t has_architectural_pmu_version;
100 static uint32_t num_architectural_pmu_gp_counters;
101 static uint32_t num_architectural_pmu_fixed_counters;
103 static int has_xsave;
104 static int has_xcrs;
105 static int has_pit_state2;
107 static bool has_msr_mcg_ext_ctl;
109 static struct kvm_cpuid2 *cpuid_cache;
111 int kvm_has_pit_state2(void)
113 return has_pit_state2;
116 bool kvm_has_smm(void)
118 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
121 bool kvm_has_adjust_clock_stable(void)
123 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
125 return (ret == KVM_CLOCK_TSC_STABLE);
128 bool kvm_allows_irq0_override(void)
130 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
133 static bool kvm_x2apic_api_set_flags(uint64_t flags)
135 KVMState *s = KVM_STATE(current_machine->accelerator);
137 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
140 #define MEMORIZE(fn, _result) \
141 ({ \
142 static bool _memorized; \
144 if (_memorized) { \
145 return _result; \
147 _memorized = true; \
148 _result = fn; \
151 static bool has_x2apic_api;
153 bool kvm_has_x2apic_api(void)
155 return has_x2apic_api;
158 bool kvm_enable_x2apic(void)
160 return MEMORIZE(
161 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
162 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
163 has_x2apic_api);
166 bool kvm_hv_vpindex_settable(void)
168 return hv_vpindex_settable;
171 static int kvm_get_tsc(CPUState *cs)
173 X86CPU *cpu = X86_CPU(cs);
174 CPUX86State *env = &cpu->env;
175 struct {
176 struct kvm_msrs info;
177 struct kvm_msr_entry entries[1];
178 } msr_data;
179 int ret;
181 if (env->tsc_valid) {
182 return 0;
185 msr_data.info.nmsrs = 1;
186 msr_data.entries[0].index = MSR_IA32_TSC;
187 env->tsc_valid = !runstate_is_running();
189 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
190 if (ret < 0) {
191 return ret;
194 assert(ret == 1);
195 env->tsc = msr_data.entries[0].data;
196 return 0;
199 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
201 kvm_get_tsc(cpu);
204 void kvm_synchronize_all_tsc(void)
206 CPUState *cpu;
208 if (kvm_enabled()) {
209 CPU_FOREACH(cpu) {
210 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
215 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
217 struct kvm_cpuid2 *cpuid;
218 int r, size;
220 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
221 cpuid = g_malloc0(size);
222 cpuid->nent = max;
223 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
224 if (r == 0 && cpuid->nent >= max) {
225 r = -E2BIG;
227 if (r < 0) {
228 if (r == -E2BIG) {
229 g_free(cpuid);
230 return NULL;
231 } else {
232 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
233 strerror(-r));
234 exit(1);
237 return cpuid;
240 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
241 * for all entries.
243 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
245 struct kvm_cpuid2 *cpuid;
246 int max = 1;
248 if (cpuid_cache != NULL) {
249 return cpuid_cache;
251 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
252 max *= 2;
254 cpuid_cache = cpuid;
255 return cpuid;
258 static const struct kvm_para_features {
259 int cap;
260 int feature;
261 } para_features[] = {
262 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
263 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
264 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
265 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
268 static int get_para_features(KVMState *s)
270 int i, features = 0;
272 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
273 if (kvm_check_extension(s, para_features[i].cap)) {
274 features |= (1 << para_features[i].feature);
278 return features;
281 static bool host_tsx_blacklisted(void)
283 int family, model, stepping;\
284 char vendor[CPUID_VENDOR_SZ + 1];
286 host_vendor_fms(vendor, &family, &model, &stepping);
288 /* Check if we are running on a Haswell host known to have broken TSX */
289 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
290 (family == 6) &&
291 ((model == 63 && stepping < 4) ||
292 model == 60 || model == 69 || model == 70);
295 /* Returns the value for a specific register on the cpuid entry
297 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
299 uint32_t ret = 0;
300 switch (reg) {
301 case R_EAX:
302 ret = entry->eax;
303 break;
304 case R_EBX:
305 ret = entry->ebx;
306 break;
307 case R_ECX:
308 ret = entry->ecx;
309 break;
310 case R_EDX:
311 ret = entry->edx;
312 break;
314 return ret;
317 /* Find matching entry for function/index on kvm_cpuid2 struct
319 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
320 uint32_t function,
321 uint32_t index)
323 int i;
324 for (i = 0; i < cpuid->nent; ++i) {
325 if (cpuid->entries[i].function == function &&
326 cpuid->entries[i].index == index) {
327 return &cpuid->entries[i];
330 /* not found: */
331 return NULL;
334 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
335 uint32_t index, int reg)
337 struct kvm_cpuid2 *cpuid;
338 uint32_t ret = 0;
339 uint32_t cpuid_1_edx;
340 bool found = false;
342 cpuid = get_supported_cpuid(s);
344 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
345 if (entry) {
346 found = true;
347 ret = cpuid_entry_get_reg(entry, reg);
350 /* Fixups for the data returned by KVM, below */
352 if (function == 1 && reg == R_EDX) {
353 /* KVM before 2.6.30 misreports the following features */
354 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
355 } else if (function == 1 && reg == R_ECX) {
356 /* We can set the hypervisor flag, even if KVM does not return it on
357 * GET_SUPPORTED_CPUID
359 ret |= CPUID_EXT_HYPERVISOR;
360 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
361 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
362 * and the irqchip is in the kernel.
364 if (kvm_irqchip_in_kernel() &&
365 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
366 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
369 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
370 * without the in-kernel irqchip
372 if (!kvm_irqchip_in_kernel()) {
373 ret &= ~CPUID_EXT_X2APIC;
376 if (enable_cpu_pm) {
377 int disable_exits = kvm_check_extension(s,
378 KVM_CAP_X86_DISABLE_EXITS);
380 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
381 ret |= CPUID_EXT_MONITOR;
384 } else if (function == 6 && reg == R_EAX) {
385 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
386 } else if (function == 7 && index == 0 && reg == R_EBX) {
387 if (host_tsx_blacklisted()) {
388 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
390 } else if (function == 0x80000001 && reg == R_ECX) {
392 * It's safe to enable TOPOEXT even if it's not returned by
393 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
394 * us to keep CPU models including TOPOEXT runnable on older kernels.
396 ret |= CPUID_EXT3_TOPOEXT;
397 } else if (function == 0x80000001 && reg == R_EDX) {
398 /* On Intel, kvm returns cpuid according to the Intel spec,
399 * so add missing bits according to the AMD spec:
401 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
402 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
403 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
404 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
405 * be enabled without the in-kernel irqchip
407 if (!kvm_irqchip_in_kernel()) {
408 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
410 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
411 ret |= 1U << KVM_HINTS_REALTIME;
412 found = 1;
415 /* fallback for older kernels */
416 if ((function == KVM_CPUID_FEATURES) && !found) {
417 ret = get_para_features(s);
420 return ret;
423 typedef struct HWPoisonPage {
424 ram_addr_t ram_addr;
425 QLIST_ENTRY(HWPoisonPage) list;
426 } HWPoisonPage;
428 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
429 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
431 static void kvm_unpoison_all(void *param)
433 HWPoisonPage *page, *next_page;
435 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
436 QLIST_REMOVE(page, list);
437 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
438 g_free(page);
442 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
444 HWPoisonPage *page;
446 QLIST_FOREACH(page, &hwpoison_page_list, list) {
447 if (page->ram_addr == ram_addr) {
448 return;
451 page = g_new(HWPoisonPage, 1);
452 page->ram_addr = ram_addr;
453 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
456 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
457 int *max_banks)
459 int r;
461 r = kvm_check_extension(s, KVM_CAP_MCE);
462 if (r > 0) {
463 *max_banks = r;
464 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
466 return -ENOSYS;
469 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
471 CPUState *cs = CPU(cpu);
472 CPUX86State *env = &cpu->env;
473 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
474 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
475 uint64_t mcg_status = MCG_STATUS_MCIP;
476 int flags = 0;
478 if (code == BUS_MCEERR_AR) {
479 status |= MCI_STATUS_AR | 0x134;
480 mcg_status |= MCG_STATUS_EIPV;
481 } else {
482 status |= 0xc0;
483 mcg_status |= MCG_STATUS_RIPV;
486 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
487 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
488 * guest kernel back into env->mcg_ext_ctl.
490 cpu_synchronize_state(cs);
491 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
492 mcg_status |= MCG_STATUS_LMCE;
493 flags = 0;
496 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
497 (MCM_ADDR_PHYS << 6) | 0xc, flags);
500 static void hardware_memory_error(void)
502 fprintf(stderr, "Hardware memory error!\n");
503 exit(1);
506 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
508 X86CPU *cpu = X86_CPU(c);
509 CPUX86State *env = &cpu->env;
510 ram_addr_t ram_addr;
511 hwaddr paddr;
513 /* If we get an action required MCE, it has been injected by KVM
514 * while the VM was running. An action optional MCE instead should
515 * be coming from the main thread, which qemu_init_sigbus identifies
516 * as the "early kill" thread.
518 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
520 if ((env->mcg_cap & MCG_SER_P) && addr) {
521 ram_addr = qemu_ram_addr_from_host(addr);
522 if (ram_addr != RAM_ADDR_INVALID &&
523 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
524 kvm_hwpoison_page_add(ram_addr);
525 kvm_mce_inject(cpu, paddr, code);
526 return;
529 fprintf(stderr, "Hardware memory error for memory used by "
530 "QEMU itself instead of guest system!\n");
533 if (code == BUS_MCEERR_AR) {
534 hardware_memory_error();
537 /* Hope we are lucky for AO MCE */
540 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
542 CPUX86State *env = &cpu->env;
544 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
545 unsigned int bank, bank_num = env->mcg_cap & 0xff;
546 struct kvm_x86_mce mce;
548 env->exception_injected = -1;
551 * There must be at least one bank in use if an MCE is pending.
552 * Find it and use its values for the event injection.
554 for (bank = 0; bank < bank_num; bank++) {
555 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
556 break;
559 assert(bank < bank_num);
561 mce.bank = bank;
562 mce.status = env->mce_banks[bank * 4 + 1];
563 mce.mcg_status = env->mcg_status;
564 mce.addr = env->mce_banks[bank * 4 + 2];
565 mce.misc = env->mce_banks[bank * 4 + 3];
567 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
569 return 0;
572 static void cpu_update_state(void *opaque, int running, RunState state)
574 CPUX86State *env = opaque;
576 if (running) {
577 env->tsc_valid = false;
581 unsigned long kvm_arch_vcpu_id(CPUState *cs)
583 X86CPU *cpu = X86_CPU(cs);
584 return cpu->apic_id;
587 #ifndef KVM_CPUID_SIGNATURE_NEXT
588 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
589 #endif
591 static bool hyperv_hypercall_available(X86CPU *cpu)
593 return cpu->hyperv_vapic ||
594 (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
597 static bool hyperv_enabled(X86CPU *cpu)
599 CPUState *cs = CPU(cpu);
600 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
601 (hyperv_hypercall_available(cpu) ||
602 cpu->hyperv_time ||
603 cpu->hyperv_relaxed_timing ||
604 cpu->hyperv_crash ||
605 cpu->hyperv_reset ||
606 cpu->hyperv_vpindex ||
607 cpu->hyperv_runtime ||
608 cpu->hyperv_synic ||
609 cpu->hyperv_stimer ||
610 cpu->hyperv_reenlightenment ||
611 cpu->hyperv_tlbflush ||
612 cpu->hyperv_ipi);
615 static int kvm_arch_set_tsc_khz(CPUState *cs)
617 X86CPU *cpu = X86_CPU(cs);
618 CPUX86State *env = &cpu->env;
619 int r;
621 if (!env->tsc_khz) {
622 return 0;
625 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
626 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
627 -ENOTSUP;
628 if (r < 0) {
629 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
630 * TSC frequency doesn't match the one we want.
632 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
633 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
634 -ENOTSUP;
635 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
636 warn_report("TSC frequency mismatch between "
637 "VM (%" PRId64 " kHz) and host (%d kHz), "
638 "and TSC scaling unavailable",
639 env->tsc_khz, cur_freq);
640 return r;
644 return 0;
647 static bool tsc_is_stable_and_known(CPUX86State *env)
649 if (!env->tsc_khz) {
650 return false;
652 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
653 || env->user_tsc_khz;
656 static int hyperv_handle_properties(CPUState *cs)
658 X86CPU *cpu = X86_CPU(cs);
659 CPUX86State *env = &cpu->env;
661 if (cpu->hyperv_relaxed_timing) {
662 env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
664 if (cpu->hyperv_vapic) {
665 env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
666 env->features[FEAT_HYPERV_EAX] |= HV_APIC_ACCESS_AVAILABLE;
668 if (cpu->hyperv_time) {
669 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) <= 0) {
670 fprintf(stderr, "Hyper-V clocksources "
671 "(requested by 'hv-time' cpu flag) "
672 "are not supported by kernel\n");
673 return -ENOSYS;
675 env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
676 env->features[FEAT_HYPERV_EAX] |= HV_TIME_REF_COUNT_AVAILABLE;
677 env->features[FEAT_HYPERV_EAX] |= HV_REFERENCE_TSC_AVAILABLE;
679 if (cpu->hyperv_frequencies) {
680 if (!has_msr_hv_frequencies) {
681 fprintf(stderr, "Hyper-V frequency MSRs "
682 "(requested by 'hv-frequencies' cpu flag) "
683 "are not supported by kernel\n");
684 return -ENOSYS;
686 env->features[FEAT_HYPERV_EAX] |= HV_ACCESS_FREQUENCY_MSRS;
687 env->features[FEAT_HYPERV_EDX] |= HV_FREQUENCY_MSRS_AVAILABLE;
689 if (cpu->hyperv_crash) {
690 if (!has_msr_hv_crash) {
691 fprintf(stderr, "Hyper-V crash MSRs "
692 "(requested by 'hv-crash' cpu flag) "
693 "are not supported by kernel\n");
694 return -ENOSYS;
696 env->features[FEAT_HYPERV_EDX] |= HV_GUEST_CRASH_MSR_AVAILABLE;
698 if (cpu->hyperv_reenlightenment) {
699 if (!has_msr_hv_reenlightenment) {
700 fprintf(stderr,
701 "Hyper-V Reenlightenment MSRs "
702 "(requested by 'hv-reenlightenment' cpu flag) "
703 "are not supported by kernel\n");
704 return -ENOSYS;
706 env->features[FEAT_HYPERV_EAX] |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
708 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
709 if (cpu->hyperv_reset) {
710 if (!has_msr_hv_reset) {
711 fprintf(stderr, "Hyper-V reset MSR "
712 "(requested by 'hv-reset' cpu flag) "
713 "is not supported by kernel\n");
714 return -ENOSYS;
716 env->features[FEAT_HYPERV_EAX] |= HV_RESET_AVAILABLE;
718 if (cpu->hyperv_vpindex) {
719 if (!has_msr_hv_vpindex) {
720 fprintf(stderr, "Hyper-V VP_INDEX MSR "
721 "(requested by 'hv-vpindex' cpu flag) "
722 "is not supported by kernel\n");
723 return -ENOSYS;
725 env->features[FEAT_HYPERV_EAX] |= HV_VP_INDEX_AVAILABLE;
727 if (cpu->hyperv_runtime) {
728 if (!has_msr_hv_runtime) {
729 fprintf(stderr, "Hyper-V VP_RUNTIME MSR "
730 "(requested by 'hv-runtime' cpu flag) "
731 "is not supported by kernel\n");
732 return -ENOSYS;
734 env->features[FEAT_HYPERV_EAX] |= HV_VP_RUNTIME_AVAILABLE;
736 if (cpu->hyperv_synic) {
737 if (!has_msr_hv_synic ||
738 !kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_SYNIC)) {
739 fprintf(stderr, "Hyper-V SynIC (requested by 'hv-synic' cpu flag) "
740 "is not supported by kernel\n");
741 return -ENOSYS;
744 env->features[FEAT_HYPERV_EAX] |= HV_SYNIC_AVAILABLE;
746 if (cpu->hyperv_stimer) {
747 if (!has_msr_hv_stimer) {
748 fprintf(stderr, "Hyper-V timers aren't supported by kernel\n");
749 return -ENOSYS;
751 env->features[FEAT_HYPERV_EAX] |= HV_SYNTIMERS_AVAILABLE;
753 return 0;
756 static int hyperv_init_vcpu(X86CPU *cpu)
758 CPUState *cs = CPU(cpu);
759 int ret;
761 if (cpu->hyperv_vpindex && !hv_vpindex_settable) {
763 * the kernel doesn't support setting vp_index; assert that its value
764 * is in sync
766 struct {
767 struct kvm_msrs info;
768 struct kvm_msr_entry entries[1];
769 } msr_data = {
770 .info.nmsrs = 1,
771 .entries[0].index = HV_X64_MSR_VP_INDEX,
774 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
775 if (ret < 0) {
776 return ret;
778 assert(ret == 1);
780 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
781 error_report("kernel's vp_index != QEMU's vp_index");
782 return -ENXIO;
786 if (cpu->hyperv_synic) {
787 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_SYNIC, 0);
788 if (ret < 0) {
789 error_report("failed to turn on HyperV SynIC in KVM: %s",
790 strerror(-ret));
791 return ret;
795 return 0;
798 static Error *invtsc_mig_blocker;
800 #define KVM_MAX_CPUID_ENTRIES 100
802 int kvm_arch_init_vcpu(CPUState *cs)
804 struct {
805 struct kvm_cpuid2 cpuid;
806 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
807 } QEMU_PACKED cpuid_data;
808 X86CPU *cpu = X86_CPU(cs);
809 CPUX86State *env = &cpu->env;
810 uint32_t limit, i, j, cpuid_i;
811 uint32_t unused;
812 struct kvm_cpuid_entry2 *c;
813 uint32_t signature[3];
814 int kvm_base = KVM_CPUID_SIGNATURE;
815 int r;
816 Error *local_err = NULL;
818 memset(&cpuid_data, 0, sizeof(cpuid_data));
820 cpuid_i = 0;
822 r = kvm_arch_set_tsc_khz(cs);
823 if (r < 0) {
824 goto fail;
827 /* vcpu's TSC frequency is either specified by user, or following
828 * the value used by KVM if the former is not present. In the
829 * latter case, we query it from KVM and record in env->tsc_khz,
830 * so that vcpu's TSC frequency can be migrated later via this field.
832 if (!env->tsc_khz) {
833 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
834 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
835 -ENOTSUP;
836 if (r > 0) {
837 env->tsc_khz = r;
841 /* Paravirtualization CPUIDs */
842 if (hyperv_enabled(cpu)) {
843 c = &cpuid_data.entries[cpuid_i++];
844 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
845 if (!cpu->hyperv_vendor_id) {
846 memcpy(signature, "Microsoft Hv", 12);
847 } else {
848 size_t len = strlen(cpu->hyperv_vendor_id);
850 if (len > 12) {
851 error_report("hv-vendor-id truncated to 12 characters");
852 len = 12;
854 memset(signature, 0, 12);
855 memcpy(signature, cpu->hyperv_vendor_id, len);
857 c->eax = HV_CPUID_MIN;
858 c->ebx = signature[0];
859 c->ecx = signature[1];
860 c->edx = signature[2];
862 c = &cpuid_data.entries[cpuid_i++];
863 c->function = HV_CPUID_INTERFACE;
864 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
865 c->eax = signature[0];
866 c->ebx = 0;
867 c->ecx = 0;
868 c->edx = 0;
870 c = &cpuid_data.entries[cpuid_i++];
871 c->function = HV_CPUID_VERSION;
872 c->eax = 0x00001bbc;
873 c->ebx = 0x00060001;
875 c = &cpuid_data.entries[cpuid_i++];
876 c->function = HV_CPUID_FEATURES;
877 r = hyperv_handle_properties(cs);
878 if (r) {
879 return r;
881 c->eax = env->features[FEAT_HYPERV_EAX];
882 c->ebx = env->features[FEAT_HYPERV_EBX];
883 c->edx = env->features[FEAT_HYPERV_EDX];
885 c = &cpuid_data.entries[cpuid_i++];
886 c->function = HV_CPUID_ENLIGHTMENT_INFO;
887 if (cpu->hyperv_relaxed_timing) {
888 c->eax |= HV_RELAXED_TIMING_RECOMMENDED;
890 if (cpu->hyperv_vapic) {
891 c->eax |= HV_APIC_ACCESS_RECOMMENDED;
893 if (cpu->hyperv_tlbflush) {
894 if (kvm_check_extension(cs->kvm_state,
895 KVM_CAP_HYPERV_TLBFLUSH) <= 0) {
896 fprintf(stderr, "Hyper-V TLB flush support "
897 "(requested by 'hv-tlbflush' cpu flag) "
898 " is not supported by kernel\n");
899 return -ENOSYS;
901 c->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
902 c->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
904 if (cpu->hyperv_ipi) {
905 if (kvm_check_extension(cs->kvm_state,
906 KVM_CAP_HYPERV_SEND_IPI) <= 0) {
907 fprintf(stderr, "Hyper-V IPI send support "
908 "(requested by 'hv-ipi' cpu flag) "
909 " is not supported by kernel\n");
910 return -ENOSYS;
912 c->eax |= HV_CLUSTER_IPI_RECOMMENDED;
913 c->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
916 c->ebx = cpu->hyperv_spinlock_attempts;
918 c = &cpuid_data.entries[cpuid_i++];
919 c->function = HV_CPUID_IMPLEMENT_LIMITS;
921 c->eax = cpu->hv_max_vps;
922 c->ebx = 0x40;
924 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
925 has_msr_hv_hypercall = true;
928 if (cpu->expose_kvm) {
929 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
930 c = &cpuid_data.entries[cpuid_i++];
931 c->function = KVM_CPUID_SIGNATURE | kvm_base;
932 c->eax = KVM_CPUID_FEATURES | kvm_base;
933 c->ebx = signature[0];
934 c->ecx = signature[1];
935 c->edx = signature[2];
937 c = &cpuid_data.entries[cpuid_i++];
938 c->function = KVM_CPUID_FEATURES | kvm_base;
939 c->eax = env->features[FEAT_KVM];
940 c->edx = env->features[FEAT_KVM_HINTS];
943 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
945 for (i = 0; i <= limit; i++) {
946 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
947 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
948 abort();
950 c = &cpuid_data.entries[cpuid_i++];
952 switch (i) {
953 case 2: {
954 /* Keep reading function 2 till all the input is received */
955 int times;
957 c->function = i;
958 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
959 KVM_CPUID_FLAG_STATE_READ_NEXT;
960 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
961 times = c->eax & 0xff;
963 for (j = 1; j < times; ++j) {
964 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
965 fprintf(stderr, "cpuid_data is full, no space for "
966 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
967 abort();
969 c = &cpuid_data.entries[cpuid_i++];
970 c->function = i;
971 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
972 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
974 break;
976 case 4:
977 case 0xb:
978 case 0xd:
979 for (j = 0; ; j++) {
980 if (i == 0xd && j == 64) {
981 break;
983 c->function = i;
984 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
985 c->index = j;
986 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
988 if (i == 4 && c->eax == 0) {
989 break;
991 if (i == 0xb && !(c->ecx & 0xff00)) {
992 break;
994 if (i == 0xd && c->eax == 0) {
995 continue;
997 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
998 fprintf(stderr, "cpuid_data is full, no space for "
999 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1000 abort();
1002 c = &cpuid_data.entries[cpuid_i++];
1004 break;
1005 case 0x14: {
1006 uint32_t times;
1008 c->function = i;
1009 c->index = 0;
1010 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1011 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1012 times = c->eax;
1014 for (j = 1; j <= times; ++j) {
1015 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1016 fprintf(stderr, "cpuid_data is full, no space for "
1017 "cpuid(eax:0x14,ecx:0x%x)\n", j);
1018 abort();
1020 c = &cpuid_data.entries[cpuid_i++];
1021 c->function = i;
1022 c->index = j;
1023 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1024 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1026 break;
1028 default:
1029 c->function = i;
1030 c->flags = 0;
1031 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1032 break;
1036 if (limit >= 0x0a) {
1037 uint32_t eax, edx;
1039 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1041 has_architectural_pmu_version = eax & 0xff;
1042 if (has_architectural_pmu_version > 0) {
1043 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1045 /* Shouldn't be more than 32, since that's the number of bits
1046 * available in EBX to tell us _which_ counters are available.
1047 * Play it safe.
1049 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1050 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1053 if (has_architectural_pmu_version > 1) {
1054 num_architectural_pmu_fixed_counters = edx & 0x1f;
1056 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1057 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1063 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1065 for (i = 0x80000000; i <= limit; i++) {
1066 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1067 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1068 abort();
1070 c = &cpuid_data.entries[cpuid_i++];
1072 switch (i) {
1073 case 0x8000001d:
1074 /* Query for all AMD cache information leaves */
1075 for (j = 0; ; j++) {
1076 c->function = i;
1077 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1078 c->index = j;
1079 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1081 if (c->eax == 0) {
1082 break;
1084 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1085 fprintf(stderr, "cpuid_data is full, no space for "
1086 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1087 abort();
1089 c = &cpuid_data.entries[cpuid_i++];
1091 break;
1092 default:
1093 c->function = i;
1094 c->flags = 0;
1095 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1096 break;
1100 /* Call Centaur's CPUID instructions they are supported. */
1101 if (env->cpuid_xlevel2 > 0) {
1102 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1104 for (i = 0xC0000000; i <= limit; i++) {
1105 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1106 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1107 abort();
1109 c = &cpuid_data.entries[cpuid_i++];
1111 c->function = i;
1112 c->flags = 0;
1113 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1117 cpuid_data.cpuid.nent = cpuid_i;
1119 if (((env->cpuid_version >> 8)&0xF) >= 6
1120 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1121 (CPUID_MCE | CPUID_MCA)
1122 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1123 uint64_t mcg_cap, unsupported_caps;
1124 int banks;
1125 int ret;
1127 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1128 if (ret < 0) {
1129 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1130 return ret;
1133 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1134 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1135 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1136 return -ENOTSUP;
1139 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1140 if (unsupported_caps) {
1141 if (unsupported_caps & MCG_LMCE_P) {
1142 error_report("kvm: LMCE not supported");
1143 return -ENOTSUP;
1145 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1146 unsupported_caps);
1149 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1150 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1151 if (ret < 0) {
1152 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1153 return ret;
1157 qemu_add_vm_change_state_handler(cpu_update_state, env);
1159 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1160 if (c) {
1161 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1162 !!(c->ecx & CPUID_EXT_SMX);
1165 if (env->mcg_cap & MCG_LMCE_P) {
1166 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1169 if (!env->user_tsc_khz) {
1170 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1171 invtsc_mig_blocker == NULL) {
1172 /* for migration */
1173 error_setg(&invtsc_mig_blocker,
1174 "State blocked by non-migratable CPU device"
1175 " (invtsc flag)");
1176 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1177 if (local_err) {
1178 error_report_err(local_err);
1179 error_free(invtsc_mig_blocker);
1180 goto fail;
1182 /* for savevm */
1183 vmstate_x86_cpu.unmigratable = 1;
1187 if (cpu->vmware_cpuid_freq
1188 /* Guests depend on 0x40000000 to detect this feature, so only expose
1189 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1190 && cpu->expose_kvm
1191 && kvm_base == KVM_CPUID_SIGNATURE
1192 /* TSC clock must be stable and known for this feature. */
1193 && tsc_is_stable_and_known(env)) {
1195 c = &cpuid_data.entries[cpuid_i++];
1196 c->function = KVM_CPUID_SIGNATURE | 0x10;
1197 c->eax = env->tsc_khz;
1198 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1199 * APIC_BUS_CYCLE_NS */
1200 c->ebx = 1000000;
1201 c->ecx = c->edx = 0;
1203 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1204 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1207 cpuid_data.cpuid.nent = cpuid_i;
1209 cpuid_data.cpuid.padding = 0;
1210 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1211 if (r) {
1212 goto fail;
1215 if (has_xsave) {
1216 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1218 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1220 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1221 has_msr_tsc_aux = false;
1224 r = hyperv_init_vcpu(cpu);
1225 if (r) {
1226 goto fail;
1229 return 0;
1231 fail:
1232 migrate_del_blocker(invtsc_mig_blocker);
1233 return r;
1236 void kvm_arch_reset_vcpu(X86CPU *cpu)
1238 CPUX86State *env = &cpu->env;
1240 env->xcr0 = 1;
1241 if (kvm_irqchip_in_kernel()) {
1242 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1243 KVM_MP_STATE_UNINITIALIZED;
1244 } else {
1245 env->mp_state = KVM_MP_STATE_RUNNABLE;
1248 if (cpu->hyperv_synic) {
1249 int i;
1250 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1251 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1256 void kvm_arch_do_init_vcpu(X86CPU *cpu)
1258 CPUX86State *env = &cpu->env;
1260 /* APs get directly into wait-for-SIPI state. */
1261 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1262 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1266 static int kvm_get_supported_msrs(KVMState *s)
1268 static int kvm_supported_msrs;
1269 int ret = 0;
1271 /* first time */
1272 if (kvm_supported_msrs == 0) {
1273 struct kvm_msr_list msr_list, *kvm_msr_list;
1275 kvm_supported_msrs = -1;
1277 /* Obtain MSR list from KVM. These are the MSRs that we must
1278 * save/restore */
1279 msr_list.nmsrs = 0;
1280 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1281 if (ret < 0 && ret != -E2BIG) {
1282 return ret;
1284 /* Old kernel modules had a bug and could write beyond the provided
1285 memory. Allocate at least a safe amount of 1K. */
1286 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1287 msr_list.nmsrs *
1288 sizeof(msr_list.indices[0])));
1290 kvm_msr_list->nmsrs = msr_list.nmsrs;
1291 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1292 if (ret >= 0) {
1293 int i;
1295 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1296 switch (kvm_msr_list->indices[i]) {
1297 case MSR_STAR:
1298 has_msr_star = true;
1299 break;
1300 case MSR_VM_HSAVE_PA:
1301 has_msr_hsave_pa = true;
1302 break;
1303 case MSR_TSC_AUX:
1304 has_msr_tsc_aux = true;
1305 break;
1306 case MSR_TSC_ADJUST:
1307 has_msr_tsc_adjust = true;
1308 break;
1309 case MSR_IA32_TSCDEADLINE:
1310 has_msr_tsc_deadline = true;
1311 break;
1312 case MSR_IA32_SMBASE:
1313 has_msr_smbase = true;
1314 break;
1315 case MSR_SMI_COUNT:
1316 has_msr_smi_count = true;
1317 break;
1318 case MSR_IA32_MISC_ENABLE:
1319 has_msr_misc_enable = true;
1320 break;
1321 case MSR_IA32_BNDCFGS:
1322 has_msr_bndcfgs = true;
1323 break;
1324 case MSR_IA32_XSS:
1325 has_msr_xss = true;
1326 break;
1327 case HV_X64_MSR_CRASH_CTL:
1328 has_msr_hv_crash = true;
1329 break;
1330 case HV_X64_MSR_RESET:
1331 has_msr_hv_reset = true;
1332 break;
1333 case HV_X64_MSR_VP_INDEX:
1334 has_msr_hv_vpindex = true;
1335 break;
1336 case HV_X64_MSR_VP_RUNTIME:
1337 has_msr_hv_runtime = true;
1338 break;
1339 case HV_X64_MSR_SCONTROL:
1340 has_msr_hv_synic = true;
1341 break;
1342 case HV_X64_MSR_STIMER0_CONFIG:
1343 has_msr_hv_stimer = true;
1344 break;
1345 case HV_X64_MSR_TSC_FREQUENCY:
1346 has_msr_hv_frequencies = true;
1347 break;
1348 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1349 has_msr_hv_reenlightenment = true;
1350 break;
1351 case MSR_IA32_SPEC_CTRL:
1352 has_msr_spec_ctrl = true;
1353 break;
1354 case MSR_VIRT_SSBD:
1355 has_msr_virt_ssbd = true;
1356 break;
1361 g_free(kvm_msr_list);
1364 return ret;
1367 static Notifier smram_machine_done;
1368 static KVMMemoryListener smram_listener;
1369 static AddressSpace smram_address_space;
1370 static MemoryRegion smram_as_root;
1371 static MemoryRegion smram_as_mem;
1373 static void register_smram_listener(Notifier *n, void *unused)
1375 MemoryRegion *smram =
1376 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
1378 /* Outer container... */
1379 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
1380 memory_region_set_enabled(&smram_as_root, true);
1382 /* ... with two regions inside: normal system memory with low
1383 * priority, and...
1385 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
1386 get_system_memory(), 0, ~0ull);
1387 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
1388 memory_region_set_enabled(&smram_as_mem, true);
1390 if (smram) {
1391 /* ... SMRAM with higher priority */
1392 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
1393 memory_region_set_enabled(smram, true);
1396 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
1397 kvm_memory_listener_register(kvm_state, &smram_listener,
1398 &smram_address_space, 1);
1401 int kvm_arch_init(MachineState *ms, KVMState *s)
1403 uint64_t identity_base = 0xfffbc000;
1404 uint64_t shadow_mem;
1405 int ret;
1406 struct utsname utsname;
1408 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1409 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1410 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1412 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
1414 ret = kvm_get_supported_msrs(s);
1415 if (ret < 0) {
1416 return ret;
1419 uname(&utsname);
1420 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
1423 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1424 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1425 * Since these must be part of guest physical memory, we need to allocate
1426 * them, both by setting their start addresses in the kernel and by
1427 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1429 * Older KVM versions may not support setting the identity map base. In
1430 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1431 * size.
1433 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
1434 /* Allows up to 16M BIOSes. */
1435 identity_base = 0xfeffc000;
1437 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
1438 if (ret < 0) {
1439 return ret;
1443 /* Set TSS base one page after EPT identity map. */
1444 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
1445 if (ret < 0) {
1446 return ret;
1449 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1450 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
1451 if (ret < 0) {
1452 fprintf(stderr, "e820_add_entry() table is full\n");
1453 return ret;
1455 qemu_register_reset(kvm_unpoison_all, NULL);
1457 shadow_mem = machine_kvm_shadow_mem(ms);
1458 if (shadow_mem != -1) {
1459 shadow_mem /= 4096;
1460 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
1461 if (ret < 0) {
1462 return ret;
1466 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
1467 object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) &&
1468 pc_machine_is_smm_enabled(PC_MACHINE(ms))) {
1469 smram_machine_done.notify = register_smram_listener;
1470 qemu_add_machine_init_done_notifier(&smram_machine_done);
1473 if (enable_cpu_pm) {
1474 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
1475 int ret;
1477 /* Work around for kernel header with a typo. TODO: fix header and drop. */
1478 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
1479 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
1480 #endif
1481 if (disable_exits) {
1482 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
1483 KVM_X86_DISABLE_EXITS_HLT |
1484 KVM_X86_DISABLE_EXITS_PAUSE);
1487 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
1488 disable_exits);
1489 if (ret < 0) {
1490 error_report("kvm: guest stopping CPU not supported: %s",
1491 strerror(-ret));
1495 return 0;
1498 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1500 lhs->selector = rhs->selector;
1501 lhs->base = rhs->base;
1502 lhs->limit = rhs->limit;
1503 lhs->type = 3;
1504 lhs->present = 1;
1505 lhs->dpl = 3;
1506 lhs->db = 0;
1507 lhs->s = 1;
1508 lhs->l = 0;
1509 lhs->g = 0;
1510 lhs->avl = 0;
1511 lhs->unusable = 0;
1514 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1516 unsigned flags = rhs->flags;
1517 lhs->selector = rhs->selector;
1518 lhs->base = rhs->base;
1519 lhs->limit = rhs->limit;
1520 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
1521 lhs->present = (flags & DESC_P_MASK) != 0;
1522 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
1523 lhs->db = (flags >> DESC_B_SHIFT) & 1;
1524 lhs->s = (flags & DESC_S_MASK) != 0;
1525 lhs->l = (flags >> DESC_L_SHIFT) & 1;
1526 lhs->g = (flags & DESC_G_MASK) != 0;
1527 lhs->avl = (flags & DESC_AVL_MASK) != 0;
1528 lhs->unusable = !lhs->present;
1529 lhs->padding = 0;
1532 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
1534 lhs->selector = rhs->selector;
1535 lhs->base = rhs->base;
1536 lhs->limit = rhs->limit;
1537 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
1538 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
1539 (rhs->dpl << DESC_DPL_SHIFT) |
1540 (rhs->db << DESC_B_SHIFT) |
1541 (rhs->s * DESC_S_MASK) |
1542 (rhs->l << DESC_L_SHIFT) |
1543 (rhs->g * DESC_G_MASK) |
1544 (rhs->avl * DESC_AVL_MASK);
1547 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
1549 if (set) {
1550 *kvm_reg = *qemu_reg;
1551 } else {
1552 *qemu_reg = *kvm_reg;
1556 static int kvm_getput_regs(X86CPU *cpu, int set)
1558 CPUX86State *env = &cpu->env;
1559 struct kvm_regs regs;
1560 int ret = 0;
1562 if (!set) {
1563 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
1564 if (ret < 0) {
1565 return ret;
1569 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
1570 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
1571 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
1572 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
1573 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
1574 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
1575 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
1576 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
1577 #ifdef TARGET_X86_64
1578 kvm_getput_reg(&regs.r8, &env->regs[8], set);
1579 kvm_getput_reg(&regs.r9, &env->regs[9], set);
1580 kvm_getput_reg(&regs.r10, &env->regs[10], set);
1581 kvm_getput_reg(&regs.r11, &env->regs[11], set);
1582 kvm_getput_reg(&regs.r12, &env->regs[12], set);
1583 kvm_getput_reg(&regs.r13, &env->regs[13], set);
1584 kvm_getput_reg(&regs.r14, &env->regs[14], set);
1585 kvm_getput_reg(&regs.r15, &env->regs[15], set);
1586 #endif
1588 kvm_getput_reg(&regs.rflags, &env->eflags, set);
1589 kvm_getput_reg(&regs.rip, &env->eip, set);
1591 if (set) {
1592 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
1595 return ret;
1598 static int kvm_put_fpu(X86CPU *cpu)
1600 CPUX86State *env = &cpu->env;
1601 struct kvm_fpu fpu;
1602 int i;
1604 memset(&fpu, 0, sizeof fpu);
1605 fpu.fsw = env->fpus & ~(7 << 11);
1606 fpu.fsw |= (env->fpstt & 7) << 11;
1607 fpu.fcw = env->fpuc;
1608 fpu.last_opcode = env->fpop;
1609 fpu.last_ip = env->fpip;
1610 fpu.last_dp = env->fpdp;
1611 for (i = 0; i < 8; ++i) {
1612 fpu.ftwx |= (!env->fptags[i]) << i;
1614 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
1615 for (i = 0; i < CPU_NB_REGS; i++) {
1616 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
1617 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
1619 fpu.mxcsr = env->mxcsr;
1621 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
1624 #define XSAVE_FCW_FSW 0
1625 #define XSAVE_FTW_FOP 1
1626 #define XSAVE_CWD_RIP 2
1627 #define XSAVE_CWD_RDP 4
1628 #define XSAVE_MXCSR 6
1629 #define XSAVE_ST_SPACE 8
1630 #define XSAVE_XMM_SPACE 40
1631 #define XSAVE_XSTATE_BV 128
1632 #define XSAVE_YMMH_SPACE 144
1633 #define XSAVE_BNDREGS 240
1634 #define XSAVE_BNDCSR 256
1635 #define XSAVE_OPMASK 272
1636 #define XSAVE_ZMM_Hi256 288
1637 #define XSAVE_Hi16_ZMM 416
1638 #define XSAVE_PKRU 672
1640 #define XSAVE_BYTE_OFFSET(word_offset) \
1641 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
1643 #define ASSERT_OFFSET(word_offset, field) \
1644 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1645 offsetof(X86XSaveArea, field))
1647 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
1648 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
1649 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
1650 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
1651 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
1652 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
1653 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
1654 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
1655 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
1656 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
1657 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
1658 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
1659 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
1660 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
1661 ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
1663 static int kvm_put_xsave(X86CPU *cpu)
1665 CPUX86State *env = &cpu->env;
1666 X86XSaveArea *xsave = env->xsave_buf;
1668 if (!has_xsave) {
1669 return kvm_put_fpu(cpu);
1671 x86_cpu_xsave_all_areas(cpu, xsave);
1673 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
1676 static int kvm_put_xcrs(X86CPU *cpu)
1678 CPUX86State *env = &cpu->env;
1679 struct kvm_xcrs xcrs = {};
1681 if (!has_xcrs) {
1682 return 0;
1685 xcrs.nr_xcrs = 1;
1686 xcrs.flags = 0;
1687 xcrs.xcrs[0].xcr = 0;
1688 xcrs.xcrs[0].value = env->xcr0;
1689 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
1692 static int kvm_put_sregs(X86CPU *cpu)
1694 CPUX86State *env = &cpu->env;
1695 struct kvm_sregs sregs;
1697 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1698 if (env->interrupt_injected >= 0) {
1699 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1700 (uint64_t)1 << (env->interrupt_injected % 64);
1703 if ((env->eflags & VM_MASK)) {
1704 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1705 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1706 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1707 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1708 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1709 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1710 } else {
1711 set_seg(&sregs.cs, &env->segs[R_CS]);
1712 set_seg(&sregs.ds, &env->segs[R_DS]);
1713 set_seg(&sregs.es, &env->segs[R_ES]);
1714 set_seg(&sregs.fs, &env->segs[R_FS]);
1715 set_seg(&sregs.gs, &env->segs[R_GS]);
1716 set_seg(&sregs.ss, &env->segs[R_SS]);
1719 set_seg(&sregs.tr, &env->tr);
1720 set_seg(&sregs.ldt, &env->ldt);
1722 sregs.idt.limit = env->idt.limit;
1723 sregs.idt.base = env->idt.base;
1724 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1725 sregs.gdt.limit = env->gdt.limit;
1726 sregs.gdt.base = env->gdt.base;
1727 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1729 sregs.cr0 = env->cr[0];
1730 sregs.cr2 = env->cr[2];
1731 sregs.cr3 = env->cr[3];
1732 sregs.cr4 = env->cr[4];
1734 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1735 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
1737 sregs.efer = env->efer;
1739 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1742 static void kvm_msr_buf_reset(X86CPU *cpu)
1744 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
1747 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
1749 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
1750 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
1751 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
1753 assert((void *)(entry + 1) <= limit);
1755 entry->index = index;
1756 entry->reserved = 0;
1757 entry->data = value;
1758 msrs->nmsrs++;
1761 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
1763 kvm_msr_buf_reset(cpu);
1764 kvm_msr_entry_add(cpu, index, value);
1766 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
1769 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
1771 int ret;
1773 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
1774 assert(ret == 1);
1777 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1779 CPUX86State *env = &cpu->env;
1780 int ret;
1782 if (!has_msr_tsc_deadline) {
1783 return 0;
1786 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1787 if (ret < 0) {
1788 return ret;
1791 assert(ret == 1);
1792 return 0;
1796 * Provide a separate write service for the feature control MSR in order to
1797 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1798 * before writing any other state because forcibly leaving nested mode
1799 * invalidates the VCPU state.
1801 static int kvm_put_msr_feature_control(X86CPU *cpu)
1803 int ret;
1805 if (!has_msr_feature_control) {
1806 return 0;
1809 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
1810 cpu->env.msr_ia32_feature_control);
1811 if (ret < 0) {
1812 return ret;
1815 assert(ret == 1);
1816 return 0;
1819 static int kvm_put_msrs(X86CPU *cpu, int level)
1821 CPUX86State *env = &cpu->env;
1822 int i;
1823 int ret;
1825 kvm_msr_buf_reset(cpu);
1827 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1828 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1829 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1830 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
1831 if (has_msr_star) {
1832 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
1834 if (has_msr_hsave_pa) {
1835 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
1837 if (has_msr_tsc_aux) {
1838 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
1840 if (has_msr_tsc_adjust) {
1841 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
1843 if (has_msr_misc_enable) {
1844 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
1845 env->msr_ia32_misc_enable);
1847 if (has_msr_smbase) {
1848 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
1850 if (has_msr_smi_count) {
1851 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
1853 if (has_msr_bndcfgs) {
1854 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
1856 if (has_msr_xss) {
1857 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
1859 if (has_msr_spec_ctrl) {
1860 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
1862 if (has_msr_virt_ssbd) {
1863 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
1866 #ifdef TARGET_X86_64
1867 if (lm_capable_kernel) {
1868 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
1869 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
1870 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
1871 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
1873 #endif
1876 * The following MSRs have side effects on the guest or are too heavy
1877 * for normal writeback. Limit them to reset or full state updates.
1879 if (level >= KVM_PUT_RESET_STATE) {
1880 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
1881 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
1882 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1883 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
1884 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
1886 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
1887 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
1889 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
1890 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
1892 if (has_architectural_pmu_version > 0) {
1893 if (has_architectural_pmu_version > 1) {
1894 /* Stop the counter. */
1895 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1896 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
1899 /* Set the counter values. */
1900 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
1901 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
1902 env->msr_fixed_counters[i]);
1904 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
1905 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
1906 env->msr_gp_counters[i]);
1907 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
1908 env->msr_gp_evtsel[i]);
1910 if (has_architectural_pmu_version > 1) {
1911 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
1912 env->msr_global_status);
1913 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1914 env->msr_global_ovf_ctrl);
1916 /* Now start the PMU. */
1917 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
1918 env->msr_fixed_ctr_ctrl);
1919 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
1920 env->msr_global_ctrl);
1924 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
1925 * only sync them to KVM on the first cpu
1927 if (current_cpu == first_cpu) {
1928 if (has_msr_hv_hypercall) {
1929 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
1930 env->msr_hv_guest_os_id);
1931 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
1932 env->msr_hv_hypercall);
1934 if (cpu->hyperv_time) {
1935 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
1936 env->msr_hv_tsc);
1938 if (cpu->hyperv_reenlightenment) {
1939 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
1940 env->msr_hv_reenlightenment_control);
1941 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
1942 env->msr_hv_tsc_emulation_control);
1943 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
1944 env->msr_hv_tsc_emulation_status);
1947 if (cpu->hyperv_vapic) {
1948 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
1949 env->msr_hv_vapic);
1951 if (has_msr_hv_crash) {
1952 int j;
1954 for (j = 0; j < HV_CRASH_PARAMS; j++)
1955 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
1956 env->msr_hv_crash_params[j]);
1958 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
1960 if (has_msr_hv_runtime) {
1961 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
1963 if (cpu->hyperv_vpindex && hv_vpindex_settable) {
1964 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
1965 hyperv_vp_index(CPU(cpu)));
1967 if (cpu->hyperv_synic) {
1968 int j;
1970 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
1972 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
1973 env->msr_hv_synic_control);
1974 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
1975 env->msr_hv_synic_evt_page);
1976 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
1977 env->msr_hv_synic_msg_page);
1979 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
1980 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
1981 env->msr_hv_synic_sint[j]);
1984 if (has_msr_hv_stimer) {
1985 int j;
1987 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
1988 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
1989 env->msr_hv_stimer_config[j]);
1992 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
1993 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
1994 env->msr_hv_stimer_count[j]);
1997 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
1998 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2000 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2001 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2002 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2003 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2004 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2005 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2006 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2007 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2008 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2009 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2010 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2011 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
2012 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2013 /* The CPU GPs if we write to a bit above the physical limit of
2014 * the host CPU (and KVM emulates that)
2016 uint64_t mask = env->mtrr_var[i].mask;
2017 mask &= phys_mask;
2019 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2020 env->mtrr_var[i].base);
2021 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
2024 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2025 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2026 0x14, 1, R_EAX) & 0x7;
2028 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2029 env->msr_rtit_ctrl);
2030 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2031 env->msr_rtit_status);
2032 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2033 env->msr_rtit_output_base);
2034 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2035 env->msr_rtit_output_mask);
2036 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2037 env->msr_rtit_cr3_match);
2038 for (i = 0; i < addr_num; i++) {
2039 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2040 env->msr_rtit_addrs[i]);
2044 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2045 * kvm_put_msr_feature_control. */
2047 if (env->mcg_cap) {
2048 int i;
2050 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2051 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
2052 if (has_msr_mcg_ext_ctl) {
2053 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2055 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2056 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
2060 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2061 if (ret < 0) {
2062 return ret;
2065 if (ret < cpu->kvm_msr_buf->nmsrs) {
2066 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2067 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2068 (uint32_t)e->index, (uint64_t)e->data);
2071 assert(ret == cpu->kvm_msr_buf->nmsrs);
2072 return 0;
2076 static int kvm_get_fpu(X86CPU *cpu)
2078 CPUX86State *env = &cpu->env;
2079 struct kvm_fpu fpu;
2080 int i, ret;
2082 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
2083 if (ret < 0) {
2084 return ret;
2087 env->fpstt = (fpu.fsw >> 11) & 7;
2088 env->fpus = fpu.fsw;
2089 env->fpuc = fpu.fcw;
2090 env->fpop = fpu.last_opcode;
2091 env->fpip = fpu.last_ip;
2092 env->fpdp = fpu.last_dp;
2093 for (i = 0; i < 8; ++i) {
2094 env->fptags[i] = !((fpu.ftwx >> i) & 1);
2096 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
2097 for (i = 0; i < CPU_NB_REGS; i++) {
2098 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
2099 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
2101 env->mxcsr = fpu.mxcsr;
2103 return 0;
2106 static int kvm_get_xsave(X86CPU *cpu)
2108 CPUX86State *env = &cpu->env;
2109 X86XSaveArea *xsave = env->xsave_buf;
2110 int ret;
2112 if (!has_xsave) {
2113 return kvm_get_fpu(cpu);
2116 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
2117 if (ret < 0) {
2118 return ret;
2120 x86_cpu_xrstor_all_areas(cpu, xsave);
2122 return 0;
2125 static int kvm_get_xcrs(X86CPU *cpu)
2127 CPUX86State *env = &cpu->env;
2128 int i, ret;
2129 struct kvm_xcrs xcrs;
2131 if (!has_xcrs) {
2132 return 0;
2135 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
2136 if (ret < 0) {
2137 return ret;
2140 for (i = 0; i < xcrs.nr_xcrs; i++) {
2141 /* Only support xcr0 now */
2142 if (xcrs.xcrs[i].xcr == 0) {
2143 env->xcr0 = xcrs.xcrs[i].value;
2144 break;
2147 return 0;
2150 static int kvm_get_sregs(X86CPU *cpu)
2152 CPUX86State *env = &cpu->env;
2153 struct kvm_sregs sregs;
2154 int bit, i, ret;
2156 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
2157 if (ret < 0) {
2158 return ret;
2161 /* There can only be one pending IRQ set in the bitmap at a time, so try
2162 to find it and save its number instead (-1 for none). */
2163 env->interrupt_injected = -1;
2164 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
2165 if (sregs.interrupt_bitmap[i]) {
2166 bit = ctz64(sregs.interrupt_bitmap[i]);
2167 env->interrupt_injected = i * 64 + bit;
2168 break;
2172 get_seg(&env->segs[R_CS], &sregs.cs);
2173 get_seg(&env->segs[R_DS], &sregs.ds);
2174 get_seg(&env->segs[R_ES], &sregs.es);
2175 get_seg(&env->segs[R_FS], &sregs.fs);
2176 get_seg(&env->segs[R_GS], &sregs.gs);
2177 get_seg(&env->segs[R_SS], &sregs.ss);
2179 get_seg(&env->tr, &sregs.tr);
2180 get_seg(&env->ldt, &sregs.ldt);
2182 env->idt.limit = sregs.idt.limit;
2183 env->idt.base = sregs.idt.base;
2184 env->gdt.limit = sregs.gdt.limit;
2185 env->gdt.base = sregs.gdt.base;
2187 env->cr[0] = sregs.cr0;
2188 env->cr[2] = sregs.cr2;
2189 env->cr[3] = sregs.cr3;
2190 env->cr[4] = sregs.cr4;
2192 env->efer = sregs.efer;
2194 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
2195 x86_update_hflags(env);
2197 return 0;
2200 static int kvm_get_msrs(X86CPU *cpu)
2202 CPUX86State *env = &cpu->env;
2203 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
2204 int ret, i;
2205 uint64_t mtrr_top_bits;
2207 kvm_msr_buf_reset(cpu);
2209 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
2210 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
2211 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
2212 kvm_msr_entry_add(cpu, MSR_PAT, 0);
2213 if (has_msr_star) {
2214 kvm_msr_entry_add(cpu, MSR_STAR, 0);
2216 if (has_msr_hsave_pa) {
2217 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
2219 if (has_msr_tsc_aux) {
2220 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
2222 if (has_msr_tsc_adjust) {
2223 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
2225 if (has_msr_tsc_deadline) {
2226 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
2228 if (has_msr_misc_enable) {
2229 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
2231 if (has_msr_smbase) {
2232 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
2234 if (has_msr_smi_count) {
2235 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
2237 if (has_msr_feature_control) {
2238 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
2240 if (has_msr_bndcfgs) {
2241 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
2243 if (has_msr_xss) {
2244 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
2246 if (has_msr_spec_ctrl) {
2247 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
2249 if (has_msr_virt_ssbd) {
2250 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
2252 if (!env->tsc_valid) {
2253 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
2254 env->tsc_valid = !runstate_is_running();
2257 #ifdef TARGET_X86_64
2258 if (lm_capable_kernel) {
2259 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
2260 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
2261 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
2262 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
2264 #endif
2265 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
2266 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
2267 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2268 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
2270 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2271 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
2273 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2274 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
2276 if (has_architectural_pmu_version > 0) {
2277 if (has_architectural_pmu_version > 1) {
2278 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2279 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2280 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
2281 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
2283 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2284 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
2286 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2287 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
2288 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
2292 if (env->mcg_cap) {
2293 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
2294 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
2295 if (has_msr_mcg_ext_ctl) {
2296 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
2298 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2299 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
2303 if (has_msr_hv_hypercall) {
2304 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
2305 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
2307 if (cpu->hyperv_vapic) {
2308 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
2310 if (cpu->hyperv_time) {
2311 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
2313 if (cpu->hyperv_reenlightenment) {
2314 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
2315 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
2316 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
2318 if (has_msr_hv_crash) {
2319 int j;
2321 for (j = 0; j < HV_CRASH_PARAMS; j++) {
2322 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
2325 if (has_msr_hv_runtime) {
2326 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
2328 if (cpu->hyperv_synic) {
2329 uint32_t msr;
2331 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
2332 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
2333 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
2334 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
2335 kvm_msr_entry_add(cpu, msr, 0);
2338 if (has_msr_hv_stimer) {
2339 uint32_t msr;
2341 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
2342 msr++) {
2343 kvm_msr_entry_add(cpu, msr, 0);
2346 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2347 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
2348 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
2349 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
2350 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
2351 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
2352 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
2353 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
2354 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
2355 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
2356 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
2357 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
2358 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
2359 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2360 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
2361 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
2365 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2366 int addr_num =
2367 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
2369 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
2370 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
2371 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
2372 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
2373 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
2374 for (i = 0; i < addr_num; i++) {
2375 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
2379 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
2380 if (ret < 0) {
2381 return ret;
2384 if (ret < cpu->kvm_msr_buf->nmsrs) {
2385 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2386 error_report("error: failed to get MSR 0x%" PRIx32,
2387 (uint32_t)e->index);
2390 assert(ret == cpu->kvm_msr_buf->nmsrs);
2392 * MTRR masks: Each mask consists of 5 parts
2393 * a 10..0: must be zero
2394 * b 11 : valid bit
2395 * c n-1.12: actual mask bits
2396 * d 51..n: reserved must be zero
2397 * e 63.52: reserved must be zero
2399 * 'n' is the number of physical bits supported by the CPU and is
2400 * apparently always <= 52. We know our 'n' but don't know what
2401 * the destinations 'n' is; it might be smaller, in which case
2402 * it masks (c) on loading. It might be larger, in which case
2403 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
2404 * we're migrating to.
2407 if (cpu->fill_mtrr_mask) {
2408 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
2409 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
2410 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
2411 } else {
2412 mtrr_top_bits = 0;
2415 for (i = 0; i < ret; i++) {
2416 uint32_t index = msrs[i].index;
2417 switch (index) {
2418 case MSR_IA32_SYSENTER_CS:
2419 env->sysenter_cs = msrs[i].data;
2420 break;
2421 case MSR_IA32_SYSENTER_ESP:
2422 env->sysenter_esp = msrs[i].data;
2423 break;
2424 case MSR_IA32_SYSENTER_EIP:
2425 env->sysenter_eip = msrs[i].data;
2426 break;
2427 case MSR_PAT:
2428 env->pat = msrs[i].data;
2429 break;
2430 case MSR_STAR:
2431 env->star = msrs[i].data;
2432 break;
2433 #ifdef TARGET_X86_64
2434 case MSR_CSTAR:
2435 env->cstar = msrs[i].data;
2436 break;
2437 case MSR_KERNELGSBASE:
2438 env->kernelgsbase = msrs[i].data;
2439 break;
2440 case MSR_FMASK:
2441 env->fmask = msrs[i].data;
2442 break;
2443 case MSR_LSTAR:
2444 env->lstar = msrs[i].data;
2445 break;
2446 #endif
2447 case MSR_IA32_TSC:
2448 env->tsc = msrs[i].data;
2449 break;
2450 case MSR_TSC_AUX:
2451 env->tsc_aux = msrs[i].data;
2452 break;
2453 case MSR_TSC_ADJUST:
2454 env->tsc_adjust = msrs[i].data;
2455 break;
2456 case MSR_IA32_TSCDEADLINE:
2457 env->tsc_deadline = msrs[i].data;
2458 break;
2459 case MSR_VM_HSAVE_PA:
2460 env->vm_hsave = msrs[i].data;
2461 break;
2462 case MSR_KVM_SYSTEM_TIME:
2463 env->system_time_msr = msrs[i].data;
2464 break;
2465 case MSR_KVM_WALL_CLOCK:
2466 env->wall_clock_msr = msrs[i].data;
2467 break;
2468 case MSR_MCG_STATUS:
2469 env->mcg_status = msrs[i].data;
2470 break;
2471 case MSR_MCG_CTL:
2472 env->mcg_ctl = msrs[i].data;
2473 break;
2474 case MSR_MCG_EXT_CTL:
2475 env->mcg_ext_ctl = msrs[i].data;
2476 break;
2477 case MSR_IA32_MISC_ENABLE:
2478 env->msr_ia32_misc_enable = msrs[i].data;
2479 break;
2480 case MSR_IA32_SMBASE:
2481 env->smbase = msrs[i].data;
2482 break;
2483 case MSR_SMI_COUNT:
2484 env->msr_smi_count = msrs[i].data;
2485 break;
2486 case MSR_IA32_FEATURE_CONTROL:
2487 env->msr_ia32_feature_control = msrs[i].data;
2488 break;
2489 case MSR_IA32_BNDCFGS:
2490 env->msr_bndcfgs = msrs[i].data;
2491 break;
2492 case MSR_IA32_XSS:
2493 env->xss = msrs[i].data;
2494 break;
2495 default:
2496 if (msrs[i].index >= MSR_MC0_CTL &&
2497 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
2498 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
2500 break;
2501 case MSR_KVM_ASYNC_PF_EN:
2502 env->async_pf_en_msr = msrs[i].data;
2503 break;
2504 case MSR_KVM_PV_EOI_EN:
2505 env->pv_eoi_en_msr = msrs[i].data;
2506 break;
2507 case MSR_KVM_STEAL_TIME:
2508 env->steal_time_msr = msrs[i].data;
2509 break;
2510 case MSR_CORE_PERF_FIXED_CTR_CTRL:
2511 env->msr_fixed_ctr_ctrl = msrs[i].data;
2512 break;
2513 case MSR_CORE_PERF_GLOBAL_CTRL:
2514 env->msr_global_ctrl = msrs[i].data;
2515 break;
2516 case MSR_CORE_PERF_GLOBAL_STATUS:
2517 env->msr_global_status = msrs[i].data;
2518 break;
2519 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
2520 env->msr_global_ovf_ctrl = msrs[i].data;
2521 break;
2522 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
2523 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
2524 break;
2525 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
2526 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
2527 break;
2528 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
2529 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
2530 break;
2531 case HV_X64_MSR_HYPERCALL:
2532 env->msr_hv_hypercall = msrs[i].data;
2533 break;
2534 case HV_X64_MSR_GUEST_OS_ID:
2535 env->msr_hv_guest_os_id = msrs[i].data;
2536 break;
2537 case HV_X64_MSR_APIC_ASSIST_PAGE:
2538 env->msr_hv_vapic = msrs[i].data;
2539 break;
2540 case HV_X64_MSR_REFERENCE_TSC:
2541 env->msr_hv_tsc = msrs[i].data;
2542 break;
2543 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2544 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
2545 break;
2546 case HV_X64_MSR_VP_RUNTIME:
2547 env->msr_hv_runtime = msrs[i].data;
2548 break;
2549 case HV_X64_MSR_SCONTROL:
2550 env->msr_hv_synic_control = msrs[i].data;
2551 break;
2552 case HV_X64_MSR_SIEFP:
2553 env->msr_hv_synic_evt_page = msrs[i].data;
2554 break;
2555 case HV_X64_MSR_SIMP:
2556 env->msr_hv_synic_msg_page = msrs[i].data;
2557 break;
2558 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
2559 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
2560 break;
2561 case HV_X64_MSR_STIMER0_CONFIG:
2562 case HV_X64_MSR_STIMER1_CONFIG:
2563 case HV_X64_MSR_STIMER2_CONFIG:
2564 case HV_X64_MSR_STIMER3_CONFIG:
2565 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
2566 msrs[i].data;
2567 break;
2568 case HV_X64_MSR_STIMER0_COUNT:
2569 case HV_X64_MSR_STIMER1_COUNT:
2570 case HV_X64_MSR_STIMER2_COUNT:
2571 case HV_X64_MSR_STIMER3_COUNT:
2572 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
2573 msrs[i].data;
2574 break;
2575 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2576 env->msr_hv_reenlightenment_control = msrs[i].data;
2577 break;
2578 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2579 env->msr_hv_tsc_emulation_control = msrs[i].data;
2580 break;
2581 case HV_X64_MSR_TSC_EMULATION_STATUS:
2582 env->msr_hv_tsc_emulation_status = msrs[i].data;
2583 break;
2584 case MSR_MTRRdefType:
2585 env->mtrr_deftype = msrs[i].data;
2586 break;
2587 case MSR_MTRRfix64K_00000:
2588 env->mtrr_fixed[0] = msrs[i].data;
2589 break;
2590 case MSR_MTRRfix16K_80000:
2591 env->mtrr_fixed[1] = msrs[i].data;
2592 break;
2593 case MSR_MTRRfix16K_A0000:
2594 env->mtrr_fixed[2] = msrs[i].data;
2595 break;
2596 case MSR_MTRRfix4K_C0000:
2597 env->mtrr_fixed[3] = msrs[i].data;
2598 break;
2599 case MSR_MTRRfix4K_C8000:
2600 env->mtrr_fixed[4] = msrs[i].data;
2601 break;
2602 case MSR_MTRRfix4K_D0000:
2603 env->mtrr_fixed[5] = msrs[i].data;
2604 break;
2605 case MSR_MTRRfix4K_D8000:
2606 env->mtrr_fixed[6] = msrs[i].data;
2607 break;
2608 case MSR_MTRRfix4K_E0000:
2609 env->mtrr_fixed[7] = msrs[i].data;
2610 break;
2611 case MSR_MTRRfix4K_E8000:
2612 env->mtrr_fixed[8] = msrs[i].data;
2613 break;
2614 case MSR_MTRRfix4K_F0000:
2615 env->mtrr_fixed[9] = msrs[i].data;
2616 break;
2617 case MSR_MTRRfix4K_F8000:
2618 env->mtrr_fixed[10] = msrs[i].data;
2619 break;
2620 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
2621 if (index & 1) {
2622 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
2623 mtrr_top_bits;
2624 } else {
2625 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
2627 break;
2628 case MSR_IA32_SPEC_CTRL:
2629 env->spec_ctrl = msrs[i].data;
2630 break;
2631 case MSR_VIRT_SSBD:
2632 env->virt_ssbd = msrs[i].data;
2633 break;
2634 case MSR_IA32_RTIT_CTL:
2635 env->msr_rtit_ctrl = msrs[i].data;
2636 break;
2637 case MSR_IA32_RTIT_STATUS:
2638 env->msr_rtit_status = msrs[i].data;
2639 break;
2640 case MSR_IA32_RTIT_OUTPUT_BASE:
2641 env->msr_rtit_output_base = msrs[i].data;
2642 break;
2643 case MSR_IA32_RTIT_OUTPUT_MASK:
2644 env->msr_rtit_output_mask = msrs[i].data;
2645 break;
2646 case MSR_IA32_RTIT_CR3_MATCH:
2647 env->msr_rtit_cr3_match = msrs[i].data;
2648 break;
2649 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2650 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
2651 break;
2655 return 0;
2658 static int kvm_put_mp_state(X86CPU *cpu)
2660 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
2662 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2665 static int kvm_get_mp_state(X86CPU *cpu)
2667 CPUState *cs = CPU(cpu);
2668 CPUX86State *env = &cpu->env;
2669 struct kvm_mp_state mp_state;
2670 int ret;
2672 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
2673 if (ret < 0) {
2674 return ret;
2676 env->mp_state = mp_state.mp_state;
2677 if (kvm_irqchip_in_kernel()) {
2678 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
2680 return 0;
2683 static int kvm_get_apic(X86CPU *cpu)
2685 DeviceState *apic = cpu->apic_state;
2686 struct kvm_lapic_state kapic;
2687 int ret;
2689 if (apic && kvm_irqchip_in_kernel()) {
2690 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
2691 if (ret < 0) {
2692 return ret;
2695 kvm_get_apic_state(apic, &kapic);
2697 return 0;
2700 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
2702 CPUState *cs = CPU(cpu);
2703 CPUX86State *env = &cpu->env;
2704 struct kvm_vcpu_events events = {};
2706 if (!kvm_has_vcpu_events()) {
2707 return 0;
2710 events.exception.injected = (env->exception_injected >= 0);
2711 events.exception.nr = env->exception_injected;
2712 events.exception.has_error_code = env->has_error_code;
2713 events.exception.error_code = env->error_code;
2715 events.interrupt.injected = (env->interrupt_injected >= 0);
2716 events.interrupt.nr = env->interrupt_injected;
2717 events.interrupt.soft = env->soft_interrupt;
2719 events.nmi.injected = env->nmi_injected;
2720 events.nmi.pending = env->nmi_pending;
2721 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
2723 events.sipi_vector = env->sipi_vector;
2724 events.flags = 0;
2726 if (has_msr_smbase) {
2727 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
2728 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
2729 if (kvm_irqchip_in_kernel()) {
2730 /* As soon as these are moved to the kernel, remove them
2731 * from cs->interrupt_request.
2733 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
2734 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
2735 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
2736 } else {
2737 /* Keep these in cs->interrupt_request. */
2738 events.smi.pending = 0;
2739 events.smi.latched_init = 0;
2741 /* Stop SMI delivery on old machine types to avoid a reboot
2742 * on an inward migration of an old VM.
2744 if (!cpu->kvm_no_smi_migration) {
2745 events.flags |= KVM_VCPUEVENT_VALID_SMM;
2749 if (level >= KVM_PUT_RESET_STATE) {
2750 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
2751 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
2752 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
2756 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
2759 static int kvm_get_vcpu_events(X86CPU *cpu)
2761 CPUX86State *env = &cpu->env;
2762 struct kvm_vcpu_events events;
2763 int ret;
2765 if (!kvm_has_vcpu_events()) {
2766 return 0;
2769 memset(&events, 0, sizeof(events));
2770 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
2771 if (ret < 0) {
2772 return ret;
2774 env->exception_injected =
2775 events.exception.injected ? events.exception.nr : -1;
2776 env->has_error_code = events.exception.has_error_code;
2777 env->error_code = events.exception.error_code;
2779 env->interrupt_injected =
2780 events.interrupt.injected ? events.interrupt.nr : -1;
2781 env->soft_interrupt = events.interrupt.soft;
2783 env->nmi_injected = events.nmi.injected;
2784 env->nmi_pending = events.nmi.pending;
2785 if (events.nmi.masked) {
2786 env->hflags2 |= HF2_NMI_MASK;
2787 } else {
2788 env->hflags2 &= ~HF2_NMI_MASK;
2791 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
2792 if (events.smi.smm) {
2793 env->hflags |= HF_SMM_MASK;
2794 } else {
2795 env->hflags &= ~HF_SMM_MASK;
2797 if (events.smi.pending) {
2798 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2799 } else {
2800 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2802 if (events.smi.smm_inside_nmi) {
2803 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
2804 } else {
2805 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
2807 if (events.smi.latched_init) {
2808 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2809 } else {
2810 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2814 env->sipi_vector = events.sipi_vector;
2816 return 0;
2819 static int kvm_guest_debug_workarounds(X86CPU *cpu)
2821 CPUState *cs = CPU(cpu);
2822 CPUX86State *env = &cpu->env;
2823 int ret = 0;
2824 unsigned long reinject_trap = 0;
2826 if (!kvm_has_vcpu_events()) {
2827 if (env->exception_injected == 1) {
2828 reinject_trap = KVM_GUESTDBG_INJECT_DB;
2829 } else if (env->exception_injected == 3) {
2830 reinject_trap = KVM_GUESTDBG_INJECT_BP;
2832 env->exception_injected = -1;
2836 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2837 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2838 * by updating the debug state once again if single-stepping is on.
2839 * Another reason to call kvm_update_guest_debug here is a pending debug
2840 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2841 * reinject them via SET_GUEST_DEBUG.
2843 if (reinject_trap ||
2844 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
2845 ret = kvm_update_guest_debug(cs, reinject_trap);
2847 return ret;
2850 static int kvm_put_debugregs(X86CPU *cpu)
2852 CPUX86State *env = &cpu->env;
2853 struct kvm_debugregs dbgregs;
2854 int i;
2856 if (!kvm_has_debugregs()) {
2857 return 0;
2860 for (i = 0; i < 4; i++) {
2861 dbgregs.db[i] = env->dr[i];
2863 dbgregs.dr6 = env->dr[6];
2864 dbgregs.dr7 = env->dr[7];
2865 dbgregs.flags = 0;
2867 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
2870 static int kvm_get_debugregs(X86CPU *cpu)
2872 CPUX86State *env = &cpu->env;
2873 struct kvm_debugregs dbgregs;
2874 int i, ret;
2876 if (!kvm_has_debugregs()) {
2877 return 0;
2880 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
2881 if (ret < 0) {
2882 return ret;
2884 for (i = 0; i < 4; i++) {
2885 env->dr[i] = dbgregs.db[i];
2887 env->dr[4] = env->dr[6] = dbgregs.dr6;
2888 env->dr[5] = env->dr[7] = dbgregs.dr7;
2890 return 0;
2893 int kvm_arch_put_registers(CPUState *cpu, int level)
2895 X86CPU *x86_cpu = X86_CPU(cpu);
2896 int ret;
2898 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
2900 if (level >= KVM_PUT_RESET_STATE) {
2901 ret = kvm_put_msr_feature_control(x86_cpu);
2902 if (ret < 0) {
2903 return ret;
2907 if (level == KVM_PUT_FULL_STATE) {
2908 /* We don't check for kvm_arch_set_tsc_khz() errors here,
2909 * because TSC frequency mismatch shouldn't abort migration,
2910 * unless the user explicitly asked for a more strict TSC
2911 * setting (e.g. using an explicit "tsc-freq" option).
2913 kvm_arch_set_tsc_khz(cpu);
2916 ret = kvm_getput_regs(x86_cpu, 1);
2917 if (ret < 0) {
2918 return ret;
2920 ret = kvm_put_xsave(x86_cpu);
2921 if (ret < 0) {
2922 return ret;
2924 ret = kvm_put_xcrs(x86_cpu);
2925 if (ret < 0) {
2926 return ret;
2928 ret = kvm_put_sregs(x86_cpu);
2929 if (ret < 0) {
2930 return ret;
2932 /* must be before kvm_put_msrs */
2933 ret = kvm_inject_mce_oldstyle(x86_cpu);
2934 if (ret < 0) {
2935 return ret;
2937 ret = kvm_put_msrs(x86_cpu, level);
2938 if (ret < 0) {
2939 return ret;
2941 ret = kvm_put_vcpu_events(x86_cpu, level);
2942 if (ret < 0) {
2943 return ret;
2945 if (level >= KVM_PUT_RESET_STATE) {
2946 ret = kvm_put_mp_state(x86_cpu);
2947 if (ret < 0) {
2948 return ret;
2952 ret = kvm_put_tscdeadline_msr(x86_cpu);
2953 if (ret < 0) {
2954 return ret;
2956 ret = kvm_put_debugregs(x86_cpu);
2957 if (ret < 0) {
2958 return ret;
2960 /* must be last */
2961 ret = kvm_guest_debug_workarounds(x86_cpu);
2962 if (ret < 0) {
2963 return ret;
2965 return 0;
2968 int kvm_arch_get_registers(CPUState *cs)
2970 X86CPU *cpu = X86_CPU(cs);
2971 int ret;
2973 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
2975 ret = kvm_get_vcpu_events(cpu);
2976 if (ret < 0) {
2977 goto out;
2980 * KVM_GET_MPSTATE can modify CS and RIP, call it before
2981 * KVM_GET_REGS and KVM_GET_SREGS.
2983 ret = kvm_get_mp_state(cpu);
2984 if (ret < 0) {
2985 goto out;
2987 ret = kvm_getput_regs(cpu, 0);
2988 if (ret < 0) {
2989 goto out;
2991 ret = kvm_get_xsave(cpu);
2992 if (ret < 0) {
2993 goto out;
2995 ret = kvm_get_xcrs(cpu);
2996 if (ret < 0) {
2997 goto out;
2999 ret = kvm_get_sregs(cpu);
3000 if (ret < 0) {
3001 goto out;
3003 ret = kvm_get_msrs(cpu);
3004 if (ret < 0) {
3005 goto out;
3007 ret = kvm_get_apic(cpu);
3008 if (ret < 0) {
3009 goto out;
3011 ret = kvm_get_debugregs(cpu);
3012 if (ret < 0) {
3013 goto out;
3015 ret = 0;
3016 out:
3017 cpu_sync_bndcs_hflags(&cpu->env);
3018 return ret;
3021 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
3023 X86CPU *x86_cpu = X86_CPU(cpu);
3024 CPUX86State *env = &x86_cpu->env;
3025 int ret;
3027 /* Inject NMI */
3028 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
3029 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
3030 qemu_mutex_lock_iothread();
3031 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
3032 qemu_mutex_unlock_iothread();
3033 DPRINTF("injected NMI\n");
3034 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
3035 if (ret < 0) {
3036 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
3037 strerror(-ret));
3040 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
3041 qemu_mutex_lock_iothread();
3042 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
3043 qemu_mutex_unlock_iothread();
3044 DPRINTF("injected SMI\n");
3045 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
3046 if (ret < 0) {
3047 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
3048 strerror(-ret));
3053 if (!kvm_pic_in_kernel()) {
3054 qemu_mutex_lock_iothread();
3057 /* Force the VCPU out of its inner loop to process any INIT requests
3058 * or (for userspace APIC, but it is cheap to combine the checks here)
3059 * pending TPR access reports.
3061 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
3062 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
3063 !(env->hflags & HF_SMM_MASK)) {
3064 cpu->exit_request = 1;
3066 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
3067 cpu->exit_request = 1;
3071 if (!kvm_pic_in_kernel()) {
3072 /* Try to inject an interrupt if the guest can accept it */
3073 if (run->ready_for_interrupt_injection &&
3074 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
3075 (env->eflags & IF_MASK)) {
3076 int irq;
3078 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
3079 irq = cpu_get_pic_interrupt(env);
3080 if (irq >= 0) {
3081 struct kvm_interrupt intr;
3083 intr.irq = irq;
3084 DPRINTF("injected interrupt %d\n", irq);
3085 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
3086 if (ret < 0) {
3087 fprintf(stderr,
3088 "KVM: injection failed, interrupt lost (%s)\n",
3089 strerror(-ret));
3094 /* If we have an interrupt but the guest is not ready to receive an
3095 * interrupt, request an interrupt window exit. This will
3096 * cause a return to userspace as soon as the guest is ready to
3097 * receive interrupts. */
3098 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
3099 run->request_interrupt_window = 1;
3100 } else {
3101 run->request_interrupt_window = 0;
3104 DPRINTF("setting tpr\n");
3105 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
3107 qemu_mutex_unlock_iothread();
3111 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
3113 X86CPU *x86_cpu = X86_CPU(cpu);
3114 CPUX86State *env = &x86_cpu->env;
3116 if (run->flags & KVM_RUN_X86_SMM) {
3117 env->hflags |= HF_SMM_MASK;
3118 } else {
3119 env->hflags &= ~HF_SMM_MASK;
3121 if (run->if_flag) {
3122 env->eflags |= IF_MASK;
3123 } else {
3124 env->eflags &= ~IF_MASK;
3127 /* We need to protect the apic state against concurrent accesses from
3128 * different threads in case the userspace irqchip is used. */
3129 if (!kvm_irqchip_in_kernel()) {
3130 qemu_mutex_lock_iothread();
3132 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
3133 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
3134 if (!kvm_irqchip_in_kernel()) {
3135 qemu_mutex_unlock_iothread();
3137 return cpu_get_mem_attrs(env);
3140 int kvm_arch_process_async_events(CPUState *cs)
3142 X86CPU *cpu = X86_CPU(cs);
3143 CPUX86State *env = &cpu->env;
3145 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
3146 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
3147 assert(env->mcg_cap);
3149 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
3151 kvm_cpu_synchronize_state(cs);
3153 if (env->exception_injected == EXCP08_DBLE) {
3154 /* this means triple fault */
3155 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3156 cs->exit_request = 1;
3157 return 0;
3159 env->exception_injected = EXCP12_MCHK;
3160 env->has_error_code = 0;
3162 cs->halted = 0;
3163 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
3164 env->mp_state = KVM_MP_STATE_RUNNABLE;
3168 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
3169 !(env->hflags & HF_SMM_MASK)) {
3170 kvm_cpu_synchronize_state(cs);
3171 do_cpu_init(cpu);
3174 if (kvm_irqchip_in_kernel()) {
3175 return 0;
3178 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
3179 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
3180 apic_poll_irq(cpu->apic_state);
3182 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
3183 (env->eflags & IF_MASK)) ||
3184 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3185 cs->halted = 0;
3187 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
3188 kvm_cpu_synchronize_state(cs);
3189 do_cpu_sipi(cpu);
3191 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
3192 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
3193 kvm_cpu_synchronize_state(cs);
3194 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
3195 env->tpr_access_type);
3198 return cs->halted;
3201 static int kvm_handle_halt(X86CPU *cpu)
3203 CPUState *cs = CPU(cpu);
3204 CPUX86State *env = &cpu->env;
3206 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
3207 (env->eflags & IF_MASK)) &&
3208 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3209 cs->halted = 1;
3210 return EXCP_HLT;
3213 return 0;
3216 static int kvm_handle_tpr_access(X86CPU *cpu)
3218 CPUState *cs = CPU(cpu);
3219 struct kvm_run *run = cs->kvm_run;
3221 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
3222 run->tpr_access.is_write ? TPR_ACCESS_WRITE
3223 : TPR_ACCESS_READ);
3224 return 1;
3227 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3229 static const uint8_t int3 = 0xcc;
3231 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
3232 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
3233 return -EINVAL;
3235 return 0;
3238 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3240 uint8_t int3;
3242 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
3243 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
3244 return -EINVAL;
3246 return 0;
3249 static struct {
3250 target_ulong addr;
3251 int len;
3252 int type;
3253 } hw_breakpoint[4];
3255 static int nb_hw_breakpoint;
3257 static int find_hw_breakpoint(target_ulong addr, int len, int type)
3259 int n;
3261 for (n = 0; n < nb_hw_breakpoint; n++) {
3262 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
3263 (hw_breakpoint[n].len == len || len == -1)) {
3264 return n;
3267 return -1;
3270 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
3271 target_ulong len, int type)
3273 switch (type) {
3274 case GDB_BREAKPOINT_HW:
3275 len = 1;
3276 break;
3277 case GDB_WATCHPOINT_WRITE:
3278 case GDB_WATCHPOINT_ACCESS:
3279 switch (len) {
3280 case 1:
3281 break;
3282 case 2:
3283 case 4:
3284 case 8:
3285 if (addr & (len - 1)) {
3286 return -EINVAL;
3288 break;
3289 default:
3290 return -EINVAL;
3292 break;
3293 default:
3294 return -ENOSYS;
3297 if (nb_hw_breakpoint == 4) {
3298 return -ENOBUFS;
3300 if (find_hw_breakpoint(addr, len, type) >= 0) {
3301 return -EEXIST;
3303 hw_breakpoint[nb_hw_breakpoint].addr = addr;
3304 hw_breakpoint[nb_hw_breakpoint].len = len;
3305 hw_breakpoint[nb_hw_breakpoint].type = type;
3306 nb_hw_breakpoint++;
3308 return 0;
3311 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
3312 target_ulong len, int type)
3314 int n;
3316 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
3317 if (n < 0) {
3318 return -ENOENT;
3320 nb_hw_breakpoint--;
3321 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
3323 return 0;
3326 void kvm_arch_remove_all_hw_breakpoints(void)
3328 nb_hw_breakpoint = 0;
3331 static CPUWatchpoint hw_watchpoint;
3333 static int kvm_handle_debug(X86CPU *cpu,
3334 struct kvm_debug_exit_arch *arch_info)
3336 CPUState *cs = CPU(cpu);
3337 CPUX86State *env = &cpu->env;
3338 int ret = 0;
3339 int n;
3341 if (arch_info->exception == 1) {
3342 if (arch_info->dr6 & (1 << 14)) {
3343 if (cs->singlestep_enabled) {
3344 ret = EXCP_DEBUG;
3346 } else {
3347 for (n = 0; n < 4; n++) {
3348 if (arch_info->dr6 & (1 << n)) {
3349 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
3350 case 0x0:
3351 ret = EXCP_DEBUG;
3352 break;
3353 case 0x1:
3354 ret = EXCP_DEBUG;
3355 cs->watchpoint_hit = &hw_watchpoint;
3356 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3357 hw_watchpoint.flags = BP_MEM_WRITE;
3358 break;
3359 case 0x3:
3360 ret = EXCP_DEBUG;
3361 cs->watchpoint_hit = &hw_watchpoint;
3362 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3363 hw_watchpoint.flags = BP_MEM_ACCESS;
3364 break;
3369 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
3370 ret = EXCP_DEBUG;
3372 if (ret == 0) {
3373 cpu_synchronize_state(cs);
3374 assert(env->exception_injected == -1);
3376 /* pass to guest */
3377 env->exception_injected = arch_info->exception;
3378 env->has_error_code = 0;
3381 return ret;
3384 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
3386 const uint8_t type_code[] = {
3387 [GDB_BREAKPOINT_HW] = 0x0,
3388 [GDB_WATCHPOINT_WRITE] = 0x1,
3389 [GDB_WATCHPOINT_ACCESS] = 0x3
3391 const uint8_t len_code[] = {
3392 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3394 int n;
3396 if (kvm_sw_breakpoints_active(cpu)) {
3397 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
3399 if (nb_hw_breakpoint > 0) {
3400 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
3401 dbg->arch.debugreg[7] = 0x0600;
3402 for (n = 0; n < nb_hw_breakpoint; n++) {
3403 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
3404 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
3405 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
3406 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
3411 static bool host_supports_vmx(void)
3413 uint32_t ecx, unused;
3415 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
3416 return ecx & CPUID_EXT_VMX;
3419 #define VMX_INVALID_GUEST_STATE 0x80000021
3421 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
3423 X86CPU *cpu = X86_CPU(cs);
3424 uint64_t code;
3425 int ret;
3427 switch (run->exit_reason) {
3428 case KVM_EXIT_HLT:
3429 DPRINTF("handle_hlt\n");
3430 qemu_mutex_lock_iothread();
3431 ret = kvm_handle_halt(cpu);
3432 qemu_mutex_unlock_iothread();
3433 break;
3434 case KVM_EXIT_SET_TPR:
3435 ret = 0;
3436 break;
3437 case KVM_EXIT_TPR_ACCESS:
3438 qemu_mutex_lock_iothread();
3439 ret = kvm_handle_tpr_access(cpu);
3440 qemu_mutex_unlock_iothread();
3441 break;
3442 case KVM_EXIT_FAIL_ENTRY:
3443 code = run->fail_entry.hardware_entry_failure_reason;
3444 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
3445 code);
3446 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
3447 fprintf(stderr,
3448 "\nIf you're running a guest on an Intel machine without "
3449 "unrestricted mode\n"
3450 "support, the failure can be most likely due to the guest "
3451 "entering an invalid\n"
3452 "state for Intel VT. For example, the guest maybe running "
3453 "in big real mode\n"
3454 "which is not supported on less recent Intel processors."
3455 "\n\n");
3457 ret = -1;
3458 break;
3459 case KVM_EXIT_EXCEPTION:
3460 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
3461 run->ex.exception, run->ex.error_code);
3462 ret = -1;
3463 break;
3464 case KVM_EXIT_DEBUG:
3465 DPRINTF("kvm_exit_debug\n");
3466 qemu_mutex_lock_iothread();
3467 ret = kvm_handle_debug(cpu, &run->debug.arch);
3468 qemu_mutex_unlock_iothread();
3469 break;
3470 case KVM_EXIT_HYPERV:
3471 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
3472 break;
3473 case KVM_EXIT_IOAPIC_EOI:
3474 ioapic_eoi_broadcast(run->eoi.vector);
3475 ret = 0;
3476 break;
3477 default:
3478 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
3479 ret = -1;
3480 break;
3483 return ret;
3486 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
3488 X86CPU *cpu = X86_CPU(cs);
3489 CPUX86State *env = &cpu->env;
3491 kvm_cpu_synchronize_state(cs);
3492 return !(env->cr[0] & CR0_PE_MASK) ||
3493 ((env->segs[R_CS].selector & 3) != 3);
3496 void kvm_arch_init_irq_routing(KVMState *s)
3498 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
3499 /* If kernel can't do irq routing, interrupt source
3500 * override 0->2 cannot be set up as required by HPET.
3501 * So we have to disable it.
3503 no_hpet = 1;
3505 /* We know at this point that we're using the in-kernel
3506 * irqchip, so we can use irqfds, and on x86 we know
3507 * we can use msi via irqfd and GSI routing.
3509 kvm_msi_via_irqfd_allowed = true;
3510 kvm_gsi_routing_allowed = true;
3512 if (kvm_irqchip_is_split()) {
3513 int i;
3515 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3516 MSI routes for signaling interrupts to the local apics. */
3517 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
3518 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
3519 error_report("Could not enable split IRQ mode.");
3520 exit(1);
3526 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
3528 int ret;
3529 if (machine_kernel_irqchip_split(ms)) {
3530 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
3531 if (ret) {
3532 error_report("Could not enable split irqchip mode: %s",
3533 strerror(-ret));
3534 exit(1);
3535 } else {
3536 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3537 kvm_split_irqchip = true;
3538 return 1;
3540 } else {
3541 return 0;
3545 /* Classic KVM device assignment interface. Will remain x86 only. */
3546 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
3547 uint32_t flags, uint32_t *dev_id)
3549 struct kvm_assigned_pci_dev dev_data = {
3550 .segnr = dev_addr->domain,
3551 .busnr = dev_addr->bus,
3552 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
3553 .flags = flags,
3555 int ret;
3557 dev_data.assigned_dev_id =
3558 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
3560 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
3561 if (ret < 0) {
3562 return ret;
3565 *dev_id = dev_data.assigned_dev_id;
3567 return 0;
3570 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
3572 struct kvm_assigned_pci_dev dev_data = {
3573 .assigned_dev_id = dev_id,
3576 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
3579 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
3580 uint32_t irq_type, uint32_t guest_irq)
3582 struct kvm_assigned_irq assigned_irq = {
3583 .assigned_dev_id = dev_id,
3584 .guest_irq = guest_irq,
3585 .flags = irq_type,
3588 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
3589 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
3590 } else {
3591 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
3595 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
3596 uint32_t guest_irq)
3598 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
3599 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
3601 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
3604 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
3606 struct kvm_assigned_pci_dev dev_data = {
3607 .assigned_dev_id = dev_id,
3608 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
3611 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
3614 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
3615 uint32_t type)
3617 struct kvm_assigned_irq assigned_irq = {
3618 .assigned_dev_id = dev_id,
3619 .flags = type,
3622 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
3625 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
3627 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
3628 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
3631 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
3633 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
3634 KVM_DEV_IRQ_GUEST_MSI, virq);
3637 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
3639 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
3640 KVM_DEV_IRQ_HOST_MSI);
3643 bool kvm_device_msix_supported(KVMState *s)
3645 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3646 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3647 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
3650 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
3651 uint32_t nr_vectors)
3653 struct kvm_assigned_msix_nr msix_nr = {
3654 .assigned_dev_id = dev_id,
3655 .entry_nr = nr_vectors,
3658 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
3661 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
3662 int virq)
3664 struct kvm_assigned_msix_entry msix_entry = {
3665 .assigned_dev_id = dev_id,
3666 .gsi = virq,
3667 .entry = vector,
3670 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
3673 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
3675 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
3676 KVM_DEV_IRQ_GUEST_MSIX, 0);
3679 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
3681 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
3682 KVM_DEV_IRQ_HOST_MSIX);
3685 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
3686 uint64_t address, uint32_t data, PCIDevice *dev)
3688 X86IOMMUState *iommu = x86_iommu_get_default();
3690 if (iommu) {
3691 int ret;
3692 MSIMessage src, dst;
3693 X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
3695 if (!class->int_remap) {
3696 return 0;
3699 src.address = route->u.msi.address_hi;
3700 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
3701 src.address |= route->u.msi.address_lo;
3702 src.data = route->u.msi.data;
3704 ret = class->int_remap(iommu, &src, &dst, dev ? \
3705 pci_requester_id(dev) : \
3706 X86_IOMMU_SID_INVALID);
3707 if (ret) {
3708 trace_kvm_x86_fixup_msi_error(route->gsi);
3709 return 1;
3712 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
3713 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
3714 route->u.msi.data = dst.data;
3717 return 0;
3720 typedef struct MSIRouteEntry MSIRouteEntry;
3722 struct MSIRouteEntry {
3723 PCIDevice *dev; /* Device pointer */
3724 int vector; /* MSI/MSIX vector index */
3725 int virq; /* Virtual IRQ index */
3726 QLIST_ENTRY(MSIRouteEntry) list;
3729 /* List of used GSI routes */
3730 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
3731 QLIST_HEAD_INITIALIZER(msi_route_list);
3733 static void kvm_update_msi_routes_all(void *private, bool global,
3734 uint32_t index, uint32_t mask)
3736 int cnt = 0;
3737 MSIRouteEntry *entry;
3738 MSIMessage msg;
3739 PCIDevice *dev;
3741 /* TODO: explicit route update */
3742 QLIST_FOREACH(entry, &msi_route_list, list) {
3743 cnt++;
3744 dev = entry->dev;
3745 if (!msix_enabled(dev) && !msi_enabled(dev)) {
3746 continue;
3748 msg = pci_get_msi_message(dev, entry->vector);
3749 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
3751 kvm_irqchip_commit_routes(kvm_state);
3752 trace_kvm_x86_update_msi_routes(cnt);
3755 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
3756 int vector, PCIDevice *dev)
3758 static bool notify_list_inited = false;
3759 MSIRouteEntry *entry;
3761 if (!dev) {
3762 /* These are (possibly) IOAPIC routes only used for split
3763 * kernel irqchip mode, while what we are housekeeping are
3764 * PCI devices only. */
3765 return 0;
3768 entry = g_new0(MSIRouteEntry, 1);
3769 entry->dev = dev;
3770 entry->vector = vector;
3771 entry->virq = route->gsi;
3772 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
3774 trace_kvm_x86_add_msi_route(route->gsi);
3776 if (!notify_list_inited) {
3777 /* For the first time we do add route, add ourselves into
3778 * IOMMU's IEC notify list if needed. */
3779 X86IOMMUState *iommu = x86_iommu_get_default();
3780 if (iommu) {
3781 x86_iommu_iec_register_notifier(iommu,
3782 kvm_update_msi_routes_all,
3783 NULL);
3785 notify_list_inited = true;
3787 return 0;
3790 int kvm_arch_release_virq_post(int virq)
3792 MSIRouteEntry *entry, *next;
3793 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
3794 if (entry->virq == virq) {
3795 trace_kvm_x86_remove_msi_route(virq);
3796 QLIST_REMOVE(entry, list);
3797 g_free(entry);
3798 break;
3801 return 0;
3804 int kvm_arch_msi_data_to_gsi(uint32_t data)
3806 abort();