migration: Add counts of updating the dirty bitmap
[qemu.git] / arch_init.c
blobc02bce65f691dc7dcca81062a034441e4c4f752c
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qemu/error-report.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52 #include "exec/ram_addr.h"
53 #include "hw/acpi/acpi.h"
54 #include "qemu/host-utils.h"
56 #ifdef DEBUG_ARCH_INIT
57 #define DPRINTF(fmt, ...) \
58 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
59 #else
60 #define DPRINTF(fmt, ...) \
61 do { } while (0)
62 #endif
64 #ifdef TARGET_SPARC
65 int graphic_width = 1024;
66 int graphic_height = 768;
67 int graphic_depth = 8;
68 #else
69 int graphic_width = 800;
70 int graphic_height = 600;
71 int graphic_depth = 32;
72 #endif
75 #if defined(TARGET_ALPHA)
76 #define QEMU_ARCH QEMU_ARCH_ALPHA
77 #elif defined(TARGET_ARM)
78 #define QEMU_ARCH QEMU_ARCH_ARM
79 #elif defined(TARGET_CRIS)
80 #define QEMU_ARCH QEMU_ARCH_CRIS
81 #elif defined(TARGET_I386)
82 #define QEMU_ARCH QEMU_ARCH_I386
83 #elif defined(TARGET_M68K)
84 #define QEMU_ARCH QEMU_ARCH_M68K
85 #elif defined(TARGET_LM32)
86 #define QEMU_ARCH QEMU_ARCH_LM32
87 #elif defined(TARGET_MICROBLAZE)
88 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
89 #elif defined(TARGET_MIPS)
90 #define QEMU_ARCH QEMU_ARCH_MIPS
91 #elif defined(TARGET_MOXIE)
92 #define QEMU_ARCH QEMU_ARCH_MOXIE
93 #elif defined(TARGET_OPENRISC)
94 #define QEMU_ARCH QEMU_ARCH_OPENRISC
95 #elif defined(TARGET_PPC)
96 #define QEMU_ARCH QEMU_ARCH_PPC
97 #elif defined(TARGET_S390X)
98 #define QEMU_ARCH QEMU_ARCH_S390X
99 #elif defined(TARGET_SH4)
100 #define QEMU_ARCH QEMU_ARCH_SH4
101 #elif defined(TARGET_SPARC)
102 #define QEMU_ARCH QEMU_ARCH_SPARC
103 #elif defined(TARGET_XTENSA)
104 #define QEMU_ARCH QEMU_ARCH_XTENSA
105 #elif defined(TARGET_UNICORE32)
106 #define QEMU_ARCH QEMU_ARCH_UNICORE32
107 #endif
109 const uint32_t arch_type = QEMU_ARCH;
110 static bool mig_throttle_on;
111 static int dirty_rate_high_cnt;
112 static void check_guest_throttling(void);
114 static uint64_t bitmap_sync_count;
116 /***********************************************************/
117 /* ram save/restore */
119 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
120 #define RAM_SAVE_FLAG_COMPRESS 0x02
121 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
122 #define RAM_SAVE_FLAG_PAGE 0x08
123 #define RAM_SAVE_FLAG_EOS 0x10
124 #define RAM_SAVE_FLAG_CONTINUE 0x20
125 #define RAM_SAVE_FLAG_XBZRLE 0x40
126 /* 0x80 is reserved in migration.h start with 0x100 next */
128 static struct defconfig_file {
129 const char *filename;
130 /* Indicates it is an user config file (disabled by -no-user-config) */
131 bool userconfig;
132 } default_config_files[] = {
133 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
134 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
135 { NULL }, /* end of list */
138 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
140 int qemu_read_default_config_files(bool userconfig)
142 int ret;
143 struct defconfig_file *f;
145 for (f = default_config_files; f->filename; f++) {
146 if (!userconfig && f->userconfig) {
147 continue;
149 ret = qemu_read_config_file(f->filename);
150 if (ret < 0 && ret != -ENOENT) {
151 return ret;
155 return 0;
158 static inline bool is_zero_range(uint8_t *p, uint64_t size)
160 return buffer_find_nonzero_offset(p, size) == size;
163 /* struct contains XBZRLE cache and a static page
164 used by the compression */
165 static struct {
166 /* buffer used for XBZRLE encoding */
167 uint8_t *encoded_buf;
168 /* buffer for storing page content */
169 uint8_t *current_buf;
170 /* Cache for XBZRLE, Protected by lock. */
171 PageCache *cache;
172 QemuMutex lock;
173 } XBZRLE;
175 /* buffer used for XBZRLE decoding */
176 static uint8_t *xbzrle_decoded_buf;
178 static void XBZRLE_cache_lock(void)
180 if (migrate_use_xbzrle())
181 qemu_mutex_lock(&XBZRLE.lock);
184 static void XBZRLE_cache_unlock(void)
186 if (migrate_use_xbzrle())
187 qemu_mutex_unlock(&XBZRLE.lock);
191 * called from qmp_migrate_set_cache_size in main thread, possibly while
192 * a migration is in progress.
193 * A running migration maybe using the cache and might finish during this
194 * call, hence changes to the cache are protected by XBZRLE.lock().
196 int64_t xbzrle_cache_resize(int64_t new_size)
198 PageCache *new_cache;
199 int64_t ret;
201 if (new_size < TARGET_PAGE_SIZE) {
202 return -1;
205 XBZRLE_cache_lock();
207 if (XBZRLE.cache != NULL) {
208 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
209 goto out_new_size;
211 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
212 TARGET_PAGE_SIZE);
213 if (!new_cache) {
214 error_report("Error creating cache");
215 ret = -1;
216 goto out;
219 cache_fini(XBZRLE.cache);
220 XBZRLE.cache = new_cache;
223 out_new_size:
224 ret = pow2floor(new_size);
225 out:
226 XBZRLE_cache_unlock();
227 return ret;
230 /* accounting for migration statistics */
231 typedef struct AccountingInfo {
232 uint64_t dup_pages;
233 uint64_t skipped_pages;
234 uint64_t norm_pages;
235 uint64_t iterations;
236 uint64_t xbzrle_bytes;
237 uint64_t xbzrle_pages;
238 uint64_t xbzrle_cache_miss;
239 uint64_t xbzrle_overflows;
240 } AccountingInfo;
242 static AccountingInfo acct_info;
244 static void acct_clear(void)
246 memset(&acct_info, 0, sizeof(acct_info));
249 uint64_t dup_mig_bytes_transferred(void)
251 return acct_info.dup_pages * TARGET_PAGE_SIZE;
254 uint64_t dup_mig_pages_transferred(void)
256 return acct_info.dup_pages;
259 uint64_t skipped_mig_bytes_transferred(void)
261 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
264 uint64_t skipped_mig_pages_transferred(void)
266 return acct_info.skipped_pages;
269 uint64_t norm_mig_bytes_transferred(void)
271 return acct_info.norm_pages * TARGET_PAGE_SIZE;
274 uint64_t norm_mig_pages_transferred(void)
276 return acct_info.norm_pages;
279 uint64_t xbzrle_mig_bytes_transferred(void)
281 return acct_info.xbzrle_bytes;
284 uint64_t xbzrle_mig_pages_transferred(void)
286 return acct_info.xbzrle_pages;
289 uint64_t xbzrle_mig_pages_cache_miss(void)
291 return acct_info.xbzrle_cache_miss;
294 uint64_t xbzrle_mig_pages_overflow(void)
296 return acct_info.xbzrle_overflows;
299 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
300 int cont, int flag)
302 size_t size;
304 qemu_put_be64(f, offset | cont | flag);
305 size = 8;
307 if (!cont) {
308 qemu_put_byte(f, strlen(block->idstr));
309 qemu_put_buffer(f, (uint8_t *)block->idstr,
310 strlen(block->idstr));
311 size += 1 + strlen(block->idstr);
313 return size;
316 /* This is the last block that we have visited serching for dirty pages
318 static RAMBlock *last_seen_block;
319 /* This is the last block from where we have sent data */
320 static RAMBlock *last_sent_block;
321 static ram_addr_t last_offset;
322 static unsigned long *migration_bitmap;
323 static uint64_t migration_dirty_pages;
324 static uint32_t last_version;
325 static bool ram_bulk_stage;
327 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
328 * The important thing is that a stale (not-yet-0'd) page be replaced
329 * by the new data.
330 * As a bonus, if the page wasn't in the cache it gets added so that
331 * when a small write is made into the 0'd page it gets XBZRLE sent
333 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
335 if (ram_bulk_stage || !migrate_use_xbzrle()) {
336 return;
339 /* We don't care if this fails to allocate a new cache page
340 * as long as it updated an old one */
341 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE);
344 #define ENCODING_FLAG_XBZRLE 0x1
346 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
347 ram_addr_t current_addr, RAMBlock *block,
348 ram_addr_t offset, int cont, bool last_stage)
350 int encoded_len = 0, bytes_sent = -1;
351 uint8_t *prev_cached_page;
353 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
354 acct_info.xbzrle_cache_miss++;
355 if (!last_stage) {
356 if (cache_insert(XBZRLE.cache, current_addr, *current_data) == -1) {
357 return -1;
358 } else {
359 /* update *current_data when the page has been
360 inserted into cache */
361 *current_data = get_cached_data(XBZRLE.cache, current_addr);
364 return -1;
367 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
369 /* save current buffer into memory */
370 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
372 /* XBZRLE encoding (if there is no overflow) */
373 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
374 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
375 TARGET_PAGE_SIZE);
376 if (encoded_len == 0) {
377 DPRINTF("Skipping unmodified page\n");
378 return 0;
379 } else if (encoded_len == -1) {
380 DPRINTF("Overflow\n");
381 acct_info.xbzrle_overflows++;
382 /* update data in the cache */
383 if (!last_stage) {
384 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
385 *current_data = prev_cached_page;
387 return -1;
390 /* we need to update the data in the cache, in order to get the same data */
391 if (!last_stage) {
392 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
395 /* Send XBZRLE based compressed page */
396 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
397 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
398 qemu_put_be16(f, encoded_len);
399 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
400 bytes_sent += encoded_len + 1 + 2;
401 acct_info.xbzrle_pages++;
402 acct_info.xbzrle_bytes += bytes_sent;
404 return bytes_sent;
407 static inline
408 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
409 ram_addr_t start)
411 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
412 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
413 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
414 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
416 unsigned long next;
418 if (ram_bulk_stage && nr > base) {
419 next = nr + 1;
420 } else {
421 next = find_next_bit(migration_bitmap, size, nr);
424 if (next < size) {
425 clear_bit(next, migration_bitmap);
426 migration_dirty_pages--;
428 return (next - base) << TARGET_PAGE_BITS;
431 static inline bool migration_bitmap_set_dirty(ram_addr_t addr)
433 bool ret;
434 int nr = addr >> TARGET_PAGE_BITS;
436 ret = test_and_set_bit(nr, migration_bitmap);
438 if (!ret) {
439 migration_dirty_pages++;
441 return ret;
444 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
446 ram_addr_t addr;
447 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
449 /* start address is aligned at the start of a word? */
450 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
451 int k;
452 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
453 unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
455 for (k = page; k < page + nr; k++) {
456 if (src[k]) {
457 unsigned long new_dirty;
458 new_dirty = ~migration_bitmap[k];
459 migration_bitmap[k] |= src[k];
460 new_dirty &= src[k];
461 migration_dirty_pages += ctpopl(new_dirty);
462 src[k] = 0;
465 } else {
466 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
467 if (cpu_physical_memory_get_dirty(start + addr,
468 TARGET_PAGE_SIZE,
469 DIRTY_MEMORY_MIGRATION)) {
470 cpu_physical_memory_reset_dirty(start + addr,
471 TARGET_PAGE_SIZE,
472 DIRTY_MEMORY_MIGRATION);
473 migration_bitmap_set_dirty(start + addr);
480 /* Needs iothread lock! */
482 static void migration_bitmap_sync(void)
484 RAMBlock *block;
485 uint64_t num_dirty_pages_init = migration_dirty_pages;
486 MigrationState *s = migrate_get_current();
487 static int64_t start_time;
488 static int64_t bytes_xfer_prev;
489 static int64_t num_dirty_pages_period;
490 int64_t end_time;
491 int64_t bytes_xfer_now;
493 bitmap_sync_count++;
495 if (!bytes_xfer_prev) {
496 bytes_xfer_prev = ram_bytes_transferred();
499 if (!start_time) {
500 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
503 trace_migration_bitmap_sync_start();
504 address_space_sync_dirty_bitmap(&address_space_memory);
506 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
507 migration_bitmap_sync_range(block->mr->ram_addr, block->length);
509 trace_migration_bitmap_sync_end(migration_dirty_pages
510 - num_dirty_pages_init);
511 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
512 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
514 /* more than 1 second = 1000 millisecons */
515 if (end_time > start_time + 1000) {
516 if (migrate_auto_converge()) {
517 /* The following detection logic can be refined later. For now:
518 Check to see if the dirtied bytes is 50% more than the approx.
519 amount of bytes that just got transferred since the last time we
520 were in this routine. If that happens >N times (for now N==4)
521 we turn on the throttle down logic */
522 bytes_xfer_now = ram_bytes_transferred();
523 if (s->dirty_pages_rate &&
524 (num_dirty_pages_period * TARGET_PAGE_SIZE >
525 (bytes_xfer_now - bytes_xfer_prev)/2) &&
526 (dirty_rate_high_cnt++ > 4)) {
527 trace_migration_throttle();
528 mig_throttle_on = true;
529 dirty_rate_high_cnt = 0;
531 bytes_xfer_prev = bytes_xfer_now;
532 } else {
533 mig_throttle_on = false;
535 s->dirty_pages_rate = num_dirty_pages_period * 1000
536 / (end_time - start_time);
537 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
538 start_time = end_time;
539 num_dirty_pages_period = 0;
544 * ram_save_block: Writes a page of memory to the stream f
546 * Returns: The number of bytes written.
547 * 0 means no dirty pages
550 static int ram_save_block(QEMUFile *f, bool last_stage)
552 RAMBlock *block = last_seen_block;
553 ram_addr_t offset = last_offset;
554 bool complete_round = false;
555 int bytes_sent = 0;
556 MemoryRegion *mr;
557 ram_addr_t current_addr;
559 if (!block)
560 block = QTAILQ_FIRST(&ram_list.blocks);
562 while (true) {
563 mr = block->mr;
564 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
565 if (complete_round && block == last_seen_block &&
566 offset >= last_offset) {
567 break;
569 if (offset >= block->length) {
570 offset = 0;
571 block = QTAILQ_NEXT(block, next);
572 if (!block) {
573 block = QTAILQ_FIRST(&ram_list.blocks);
574 complete_round = true;
575 ram_bulk_stage = false;
577 } else {
578 int ret;
579 uint8_t *p;
580 bool send_async = true;
581 int cont = (block == last_sent_block) ?
582 RAM_SAVE_FLAG_CONTINUE : 0;
584 p = memory_region_get_ram_ptr(mr) + offset;
586 /* In doubt sent page as normal */
587 bytes_sent = -1;
588 ret = ram_control_save_page(f, block->offset,
589 offset, TARGET_PAGE_SIZE, &bytes_sent);
591 XBZRLE_cache_lock();
593 current_addr = block->offset + offset;
594 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
595 if (ret != RAM_SAVE_CONTROL_DELAYED) {
596 if (bytes_sent > 0) {
597 acct_info.norm_pages++;
598 } else if (bytes_sent == 0) {
599 acct_info.dup_pages++;
602 } else if (is_zero_range(p, TARGET_PAGE_SIZE)) {
603 acct_info.dup_pages++;
604 bytes_sent = save_block_hdr(f, block, offset, cont,
605 RAM_SAVE_FLAG_COMPRESS);
606 qemu_put_byte(f, 0);
607 bytes_sent++;
608 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
609 * page would be stale
611 xbzrle_cache_zero_page(current_addr);
612 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
613 bytes_sent = save_xbzrle_page(f, &p, current_addr, block,
614 offset, cont, last_stage);
615 if (!last_stage) {
616 /* Can't send this cached data async, since the cache page
617 * might get updated before it gets to the wire
619 send_async = false;
623 /* XBZRLE overflow or normal page */
624 if (bytes_sent == -1) {
625 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
626 if (send_async) {
627 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
628 } else {
629 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
631 bytes_sent += TARGET_PAGE_SIZE;
632 acct_info.norm_pages++;
635 XBZRLE_cache_unlock();
636 /* if page is unmodified, continue to the next */
637 if (bytes_sent > 0) {
638 last_sent_block = block;
639 break;
643 last_seen_block = block;
644 last_offset = offset;
646 return bytes_sent;
649 static uint64_t bytes_transferred;
651 void acct_update_position(QEMUFile *f, size_t size, bool zero)
653 uint64_t pages = size / TARGET_PAGE_SIZE;
654 if (zero) {
655 acct_info.dup_pages += pages;
656 } else {
657 acct_info.norm_pages += pages;
658 bytes_transferred += size;
659 qemu_update_position(f, size);
663 static ram_addr_t ram_save_remaining(void)
665 return migration_dirty_pages;
668 uint64_t ram_bytes_remaining(void)
670 return ram_save_remaining() * TARGET_PAGE_SIZE;
673 uint64_t ram_bytes_transferred(void)
675 return bytes_transferred;
678 uint64_t ram_bytes_total(void)
680 RAMBlock *block;
681 uint64_t total = 0;
683 QTAILQ_FOREACH(block, &ram_list.blocks, next)
684 total += block->length;
686 return total;
689 void free_xbzrle_decoded_buf(void)
691 g_free(xbzrle_decoded_buf);
692 xbzrle_decoded_buf = NULL;
695 static void migration_end(void)
697 if (migration_bitmap) {
698 memory_global_dirty_log_stop();
699 g_free(migration_bitmap);
700 migration_bitmap = NULL;
703 XBZRLE_cache_lock();
704 if (XBZRLE.cache) {
705 cache_fini(XBZRLE.cache);
706 g_free(XBZRLE.cache);
707 g_free(XBZRLE.encoded_buf);
708 g_free(XBZRLE.current_buf);
709 XBZRLE.cache = NULL;
710 XBZRLE.encoded_buf = NULL;
711 XBZRLE.current_buf = NULL;
713 XBZRLE_cache_unlock();
716 static void ram_migration_cancel(void *opaque)
718 migration_end();
721 static void reset_ram_globals(void)
723 last_seen_block = NULL;
724 last_sent_block = NULL;
725 last_offset = 0;
726 last_version = ram_list.version;
727 ram_bulk_stage = true;
730 #define MAX_WAIT 50 /* ms, half buffered_file limit */
732 static int ram_save_setup(QEMUFile *f, void *opaque)
734 RAMBlock *block;
735 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
737 mig_throttle_on = false;
738 dirty_rate_high_cnt = 0;
739 bitmap_sync_count = 0;
741 if (migrate_use_xbzrle()) {
742 XBZRLE_cache_lock();
743 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
744 TARGET_PAGE_SIZE,
745 TARGET_PAGE_SIZE);
746 if (!XBZRLE.cache) {
747 XBZRLE_cache_unlock();
748 error_report("Error creating cache");
749 return -1;
751 XBZRLE_cache_unlock();
753 /* We prefer not to abort if there is no memory */
754 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
755 if (!XBZRLE.encoded_buf) {
756 error_report("Error allocating encoded_buf");
757 return -1;
760 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
761 if (!XBZRLE.current_buf) {
762 error_report("Error allocating current_buf");
763 g_free(XBZRLE.encoded_buf);
764 XBZRLE.encoded_buf = NULL;
765 return -1;
768 acct_clear();
771 qemu_mutex_lock_iothread();
772 qemu_mutex_lock_ramlist();
773 bytes_transferred = 0;
774 reset_ram_globals();
776 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
777 migration_bitmap = bitmap_new(ram_bitmap_pages);
778 bitmap_set(migration_bitmap, 0, ram_bitmap_pages);
781 * Count the total number of pages used by ram blocks not including any
782 * gaps due to alignment or unplugs.
784 migration_dirty_pages = 0;
785 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
786 uint64_t block_pages;
788 block_pages = block->length >> TARGET_PAGE_BITS;
789 migration_dirty_pages += block_pages;
792 memory_global_dirty_log_start();
793 migration_bitmap_sync();
794 qemu_mutex_unlock_iothread();
796 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
798 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
799 qemu_put_byte(f, strlen(block->idstr));
800 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
801 qemu_put_be64(f, block->length);
804 qemu_mutex_unlock_ramlist();
806 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
807 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
809 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
811 return 0;
814 static int ram_save_iterate(QEMUFile *f, void *opaque)
816 int ret;
817 int i;
818 int64_t t0;
819 int total_sent = 0;
821 qemu_mutex_lock_ramlist();
823 if (ram_list.version != last_version) {
824 reset_ram_globals();
827 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
829 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
830 i = 0;
831 while ((ret = qemu_file_rate_limit(f)) == 0) {
832 int bytes_sent;
834 bytes_sent = ram_save_block(f, false);
835 /* no more blocks to sent */
836 if (bytes_sent == 0) {
837 break;
839 total_sent += bytes_sent;
840 acct_info.iterations++;
841 check_guest_throttling();
842 /* we want to check in the 1st loop, just in case it was the 1st time
843 and we had to sync the dirty bitmap.
844 qemu_get_clock_ns() is a bit expensive, so we only check each some
845 iterations
847 if ((i & 63) == 0) {
848 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
849 if (t1 > MAX_WAIT) {
850 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
851 t1, i);
852 break;
855 i++;
858 qemu_mutex_unlock_ramlist();
861 * Must occur before EOS (or any QEMUFile operation)
862 * because of RDMA protocol.
864 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
866 bytes_transferred += total_sent;
869 * Do not count these 8 bytes into total_sent, so that we can
870 * return 0 if no page had been dirtied.
872 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
873 bytes_transferred += 8;
875 ret = qemu_file_get_error(f);
876 if (ret < 0) {
877 return ret;
880 return total_sent;
883 static int ram_save_complete(QEMUFile *f, void *opaque)
885 qemu_mutex_lock_ramlist();
886 migration_bitmap_sync();
888 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
890 /* try transferring iterative blocks of memory */
892 /* flush all remaining blocks regardless of rate limiting */
893 while (true) {
894 int bytes_sent;
896 bytes_sent = ram_save_block(f, true);
897 /* no more blocks to sent */
898 if (bytes_sent == 0) {
899 break;
901 bytes_transferred += bytes_sent;
904 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
905 migration_end();
907 qemu_mutex_unlock_ramlist();
908 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
910 return 0;
913 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
915 uint64_t remaining_size;
917 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
919 if (remaining_size < max_size) {
920 qemu_mutex_lock_iothread();
921 migration_bitmap_sync();
922 qemu_mutex_unlock_iothread();
923 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
925 return remaining_size;
928 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
930 int ret, rc = 0;
931 unsigned int xh_len;
932 int xh_flags;
934 if (!xbzrle_decoded_buf) {
935 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
938 /* extract RLE header */
939 xh_flags = qemu_get_byte(f);
940 xh_len = qemu_get_be16(f);
942 if (xh_flags != ENCODING_FLAG_XBZRLE) {
943 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
944 return -1;
947 if (xh_len > TARGET_PAGE_SIZE) {
948 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
949 return -1;
951 /* load data and decode */
952 qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
954 /* decode RLE */
955 ret = xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
956 TARGET_PAGE_SIZE);
957 if (ret == -1) {
958 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
959 rc = -1;
960 } else if (ret > TARGET_PAGE_SIZE) {
961 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
962 ret, TARGET_PAGE_SIZE);
963 abort();
966 return rc;
969 static inline void *host_from_stream_offset(QEMUFile *f,
970 ram_addr_t offset,
971 int flags)
973 static RAMBlock *block = NULL;
974 char id[256];
975 uint8_t len;
977 if (flags & RAM_SAVE_FLAG_CONTINUE) {
978 if (!block) {
979 fprintf(stderr, "Ack, bad migration stream!\n");
980 return NULL;
983 return memory_region_get_ram_ptr(block->mr) + offset;
986 len = qemu_get_byte(f);
987 qemu_get_buffer(f, (uint8_t *)id, len);
988 id[len] = 0;
990 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
991 if (!strncmp(id, block->idstr, sizeof(id)))
992 return memory_region_get_ram_ptr(block->mr) + offset;
995 fprintf(stderr, "Can't find block %s!\n", id);
996 return NULL;
1000 * If a page (or a whole RDMA chunk) has been
1001 * determined to be zero, then zap it.
1003 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
1005 if (ch != 0 || !is_zero_range(host, size)) {
1006 memset(host, ch, size);
1010 static int ram_load(QEMUFile *f, void *opaque, int version_id)
1012 ram_addr_t addr;
1013 int flags, ret = 0;
1014 int error;
1015 static uint64_t seq_iter;
1017 seq_iter++;
1019 if (version_id != 4) {
1020 return -EINVAL;
1023 do {
1024 addr = qemu_get_be64(f);
1026 flags = addr & ~TARGET_PAGE_MASK;
1027 addr &= TARGET_PAGE_MASK;
1029 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
1030 /* Synchronize RAM block list */
1031 char id[256];
1032 ram_addr_t length;
1033 ram_addr_t total_ram_bytes = addr;
1035 while (total_ram_bytes) {
1036 RAMBlock *block;
1037 uint8_t len;
1039 len = qemu_get_byte(f);
1040 qemu_get_buffer(f, (uint8_t *)id, len);
1041 id[len] = 0;
1042 length = qemu_get_be64(f);
1044 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1045 if (!strncmp(id, block->idstr, sizeof(id))) {
1046 if (block->length != length) {
1047 fprintf(stderr,
1048 "Length mismatch: %s: " RAM_ADDR_FMT
1049 " in != " RAM_ADDR_FMT "\n", id, length,
1050 block->length);
1051 ret = -EINVAL;
1052 goto done;
1054 break;
1058 if (!block) {
1059 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
1060 "accept migration\n", id);
1061 ret = -EINVAL;
1062 goto done;
1065 total_ram_bytes -= length;
1069 if (flags & RAM_SAVE_FLAG_COMPRESS) {
1070 void *host;
1071 uint8_t ch;
1073 host = host_from_stream_offset(f, addr, flags);
1074 if (!host) {
1075 return -EINVAL;
1078 ch = qemu_get_byte(f);
1079 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
1080 } else if (flags & RAM_SAVE_FLAG_PAGE) {
1081 void *host;
1083 host = host_from_stream_offset(f, addr, flags);
1084 if (!host) {
1085 return -EINVAL;
1088 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
1089 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
1090 void *host = host_from_stream_offset(f, addr, flags);
1091 if (!host) {
1092 return -EINVAL;
1095 if (load_xbzrle(f, addr, host) < 0) {
1096 ret = -EINVAL;
1097 goto done;
1099 } else if (flags & RAM_SAVE_FLAG_HOOK) {
1100 ram_control_load_hook(f, flags);
1102 error = qemu_file_get_error(f);
1103 if (error) {
1104 ret = error;
1105 goto done;
1107 } while (!(flags & RAM_SAVE_FLAG_EOS));
1109 done:
1110 DPRINTF("Completed load of VM with exit code %d seq iteration "
1111 "%" PRIu64 "\n", ret, seq_iter);
1112 return ret;
1115 static SaveVMHandlers savevm_ram_handlers = {
1116 .save_live_setup = ram_save_setup,
1117 .save_live_iterate = ram_save_iterate,
1118 .save_live_complete = ram_save_complete,
1119 .save_live_pending = ram_save_pending,
1120 .load_state = ram_load,
1121 .cancel = ram_migration_cancel,
1124 void ram_mig_init(void)
1126 qemu_mutex_init(&XBZRLE.lock);
1127 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
1130 struct soundhw {
1131 const char *name;
1132 const char *descr;
1133 int enabled;
1134 int isa;
1135 union {
1136 int (*init_isa) (ISABus *bus);
1137 int (*init_pci) (PCIBus *bus);
1138 } init;
1141 static struct soundhw soundhw[9];
1142 static int soundhw_count;
1144 void isa_register_soundhw(const char *name, const char *descr,
1145 int (*init_isa)(ISABus *bus))
1147 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1148 soundhw[soundhw_count].name = name;
1149 soundhw[soundhw_count].descr = descr;
1150 soundhw[soundhw_count].isa = 1;
1151 soundhw[soundhw_count].init.init_isa = init_isa;
1152 soundhw_count++;
1155 void pci_register_soundhw(const char *name, const char *descr,
1156 int (*init_pci)(PCIBus *bus))
1158 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1159 soundhw[soundhw_count].name = name;
1160 soundhw[soundhw_count].descr = descr;
1161 soundhw[soundhw_count].isa = 0;
1162 soundhw[soundhw_count].init.init_pci = init_pci;
1163 soundhw_count++;
1166 void select_soundhw(const char *optarg)
1168 struct soundhw *c;
1170 if (is_help_option(optarg)) {
1171 show_valid_cards:
1173 if (soundhw_count) {
1174 printf("Valid sound card names (comma separated):\n");
1175 for (c = soundhw; c->name; ++c) {
1176 printf ("%-11s %s\n", c->name, c->descr);
1178 printf("\n-soundhw all will enable all of the above\n");
1179 } else {
1180 printf("Machine has no user-selectable audio hardware "
1181 "(it may or may not have always-present audio hardware).\n");
1183 exit(!is_help_option(optarg));
1185 else {
1186 size_t l;
1187 const char *p;
1188 char *e;
1189 int bad_card = 0;
1191 if (!strcmp(optarg, "all")) {
1192 for (c = soundhw; c->name; ++c) {
1193 c->enabled = 1;
1195 return;
1198 p = optarg;
1199 while (*p) {
1200 e = strchr(p, ',');
1201 l = !e ? strlen(p) : (size_t) (e - p);
1203 for (c = soundhw; c->name; ++c) {
1204 if (!strncmp(c->name, p, l) && !c->name[l]) {
1205 c->enabled = 1;
1206 break;
1210 if (!c->name) {
1211 if (l > 80) {
1212 fprintf(stderr,
1213 "Unknown sound card name (too big to show)\n");
1215 else {
1216 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1217 (int) l, p);
1219 bad_card = 1;
1221 p += l + (e != NULL);
1224 if (bad_card) {
1225 goto show_valid_cards;
1230 void audio_init(void)
1232 struct soundhw *c;
1233 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1234 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1236 for (c = soundhw; c->name; ++c) {
1237 if (c->enabled) {
1238 if (c->isa) {
1239 if (!isa_bus) {
1240 fprintf(stderr, "ISA bus not available for %s\n", c->name);
1241 exit(1);
1243 c->init.init_isa(isa_bus);
1244 } else {
1245 if (!pci_bus) {
1246 fprintf(stderr, "PCI bus not available for %s\n", c->name);
1247 exit(1);
1249 c->init.init_pci(pci_bus);
1255 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1257 int ret;
1259 if (strlen(str) != 36) {
1260 return -1;
1263 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1264 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1265 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1266 &uuid[15]);
1268 if (ret != 16) {
1269 return -1;
1271 return 0;
1274 void do_acpitable_option(const QemuOpts *opts)
1276 #ifdef TARGET_I386
1277 Error *err = NULL;
1279 acpi_table_add(opts, &err);
1280 if (err) {
1281 error_report("Wrong acpi table provided: %s",
1282 error_get_pretty(err));
1283 error_free(err);
1284 exit(1);
1286 #endif
1289 void do_smbios_option(QemuOpts *opts)
1291 #ifdef TARGET_I386
1292 smbios_entry_add(opts);
1293 #endif
1296 void cpudef_init(void)
1298 #if defined(cpudef_setup)
1299 cpudef_setup(); /* parse cpu definitions in target config file */
1300 #endif
1303 int tcg_available(void)
1305 return 1;
1308 int kvm_available(void)
1310 #ifdef CONFIG_KVM
1311 return 1;
1312 #else
1313 return 0;
1314 #endif
1317 int xen_available(void)
1319 #ifdef CONFIG_XEN
1320 return 1;
1321 #else
1322 return 0;
1323 #endif
1327 TargetInfo *qmp_query_target(Error **errp)
1329 TargetInfo *info = g_malloc0(sizeof(*info));
1331 info->arch = g_strdup(TARGET_NAME);
1333 return info;
1336 /* Stub function that's gets run on the vcpu when its brought out of the
1337 VM to run inside qemu via async_run_on_cpu()*/
1338 static void mig_sleep_cpu(void *opq)
1340 qemu_mutex_unlock_iothread();
1341 g_usleep(30*1000);
1342 qemu_mutex_lock_iothread();
1345 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1346 much time in the VM. The migration thread will try to catchup.
1347 Workload will experience a performance drop.
1349 static void mig_throttle_guest_down(void)
1351 CPUState *cpu;
1353 qemu_mutex_lock_iothread();
1354 CPU_FOREACH(cpu) {
1355 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1357 qemu_mutex_unlock_iothread();
1360 static void check_guest_throttling(void)
1362 static int64_t t0;
1363 int64_t t1;
1365 if (!mig_throttle_on) {
1366 return;
1369 if (!t0) {
1370 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1371 return;
1374 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1376 /* If it has been more than 40 ms since the last time the guest
1377 * was throttled then do it again.
1379 if (40 < (t1-t0)/1000000) {
1380 mig_throttle_guest_down();
1381 t0 = t1;