2 * AArch64 specific helpers
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/gdbstub.h"
23 #include "exec/helper-proto.h"
24 #include "qemu/host-utils.h"
26 #include "sysemu/sysemu.h"
27 #include "qemu/bitops.h"
28 #include "internals.h"
29 #include "qemu/crc32c.h"
30 #include "exec/exec-all.h"
31 #include "exec/cpu_ldst.h"
32 #include "qemu/int128.h"
34 #include <zlib.h> /* For crc32 */
36 /* C2.4.7 Multiply and divide */
37 /* special cases for 0 and LLONG_MIN are mandated by the standard */
38 uint64_t HELPER(udiv64
)(uint64_t num
, uint64_t den
)
46 int64_t HELPER(sdiv64
)(int64_t num
, int64_t den
)
51 if (num
== LLONG_MIN
&& den
== -1) {
57 uint64_t HELPER(rbit64
)(uint64_t x
)
62 /* Convert a softfloat float_relation_ (as returned by
63 * the float*_compare functions) to the correct ARM
66 static inline uint32_t float_rel_to_flags(int res
)
70 case float_relation_equal
:
71 flags
= PSTATE_Z
| PSTATE_C
;
73 case float_relation_less
:
76 case float_relation_greater
:
79 case float_relation_unordered
:
81 flags
= PSTATE_C
| PSTATE_V
;
87 uint64_t HELPER(vfp_cmps_a64
)(float32 x
, float32 y
, void *fp_status
)
89 return float_rel_to_flags(float32_compare_quiet(x
, y
, fp_status
));
92 uint64_t HELPER(vfp_cmpes_a64
)(float32 x
, float32 y
, void *fp_status
)
94 return float_rel_to_flags(float32_compare(x
, y
, fp_status
));
97 uint64_t HELPER(vfp_cmpd_a64
)(float64 x
, float64 y
, void *fp_status
)
99 return float_rel_to_flags(float64_compare_quiet(x
, y
, fp_status
));
102 uint64_t HELPER(vfp_cmped_a64
)(float64 x
, float64 y
, void *fp_status
)
104 return float_rel_to_flags(float64_compare(x
, y
, fp_status
));
107 float32
HELPER(vfp_mulxs
)(float32 a
, float32 b
, void *fpstp
)
109 float_status
*fpst
= fpstp
;
111 a
= float32_squash_input_denormal(a
, fpst
);
112 b
= float32_squash_input_denormal(b
, fpst
);
114 if ((float32_is_zero(a
) && float32_is_infinity(b
)) ||
115 (float32_is_infinity(a
) && float32_is_zero(b
))) {
116 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
117 return make_float32((1U << 30) |
118 ((float32_val(a
) ^ float32_val(b
)) & (1U << 31)));
120 return float32_mul(a
, b
, fpst
);
123 float64
HELPER(vfp_mulxd
)(float64 a
, float64 b
, void *fpstp
)
125 float_status
*fpst
= fpstp
;
127 a
= float64_squash_input_denormal(a
, fpst
);
128 b
= float64_squash_input_denormal(b
, fpst
);
130 if ((float64_is_zero(a
) && float64_is_infinity(b
)) ||
131 (float64_is_infinity(a
) && float64_is_zero(b
))) {
132 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
133 return make_float64((1ULL << 62) |
134 ((float64_val(a
) ^ float64_val(b
)) & (1ULL << 63)));
136 return float64_mul(a
, b
, fpst
);
139 uint64_t HELPER(simd_tbl
)(CPUARMState
*env
, uint64_t result
, uint64_t indices
,
140 uint32_t rn
, uint32_t numregs
)
142 /* Helper function for SIMD TBL and TBX. We have to do the table
143 * lookup part for the 64 bits worth of indices we're passed in.
144 * result is the initial results vector (either zeroes for TBL
145 * or some guest values for TBX), rn the register number where
146 * the table starts, and numregs the number of registers in the table.
147 * We return the results of the lookups.
151 for (shift
= 0; shift
< 64; shift
+= 8) {
152 int index
= extract64(indices
, shift
, 8);
153 if (index
< 16 * numregs
) {
154 /* Convert index (a byte offset into the virtual table
155 * which is a series of 128-bit vectors concatenated)
156 * into the correct vfp.regs[] element plus a bit offset
157 * into that element, bearing in mind that the table
158 * can wrap around from V31 to V0.
160 int elt
= (rn
* 2 + (index
>> 3)) % 64;
161 int bitidx
= (index
& 7) * 8;
162 uint64_t val
= extract64(env
->vfp
.regs
[elt
], bitidx
, 8);
164 result
= deposit64(result
, shift
, 8, val
);
170 /* 64bit/double versions of the neon float compare functions */
171 uint64_t HELPER(neon_ceq_f64
)(float64 a
, float64 b
, void *fpstp
)
173 float_status
*fpst
= fpstp
;
174 return -float64_eq_quiet(a
, b
, fpst
);
177 uint64_t HELPER(neon_cge_f64
)(float64 a
, float64 b
, void *fpstp
)
179 float_status
*fpst
= fpstp
;
180 return -float64_le(b
, a
, fpst
);
183 uint64_t HELPER(neon_cgt_f64
)(float64 a
, float64 b
, void *fpstp
)
185 float_status
*fpst
= fpstp
;
186 return -float64_lt(b
, a
, fpst
);
189 /* Reciprocal step and sqrt step. Note that unlike the A32/T32
190 * versions, these do a fully fused multiply-add or
191 * multiply-add-and-halve.
193 #define float32_two make_float32(0x40000000)
194 #define float32_three make_float32(0x40400000)
195 #define float32_one_point_five make_float32(0x3fc00000)
197 #define float64_two make_float64(0x4000000000000000ULL)
198 #define float64_three make_float64(0x4008000000000000ULL)
199 #define float64_one_point_five make_float64(0x3FF8000000000000ULL)
201 float32
HELPER(recpsf_f32
)(float32 a
, float32 b
, void *fpstp
)
203 float_status
*fpst
= fpstp
;
205 a
= float32_squash_input_denormal(a
, fpst
);
206 b
= float32_squash_input_denormal(b
, fpst
);
209 if ((float32_is_infinity(a
) && float32_is_zero(b
)) ||
210 (float32_is_infinity(b
) && float32_is_zero(a
))) {
213 return float32_muladd(a
, b
, float32_two
, 0, fpst
);
216 float64
HELPER(recpsf_f64
)(float64 a
, float64 b
, void *fpstp
)
218 float_status
*fpst
= fpstp
;
220 a
= float64_squash_input_denormal(a
, fpst
);
221 b
= float64_squash_input_denormal(b
, fpst
);
224 if ((float64_is_infinity(a
) && float64_is_zero(b
)) ||
225 (float64_is_infinity(b
) && float64_is_zero(a
))) {
228 return float64_muladd(a
, b
, float64_two
, 0, fpst
);
231 float32
HELPER(rsqrtsf_f32
)(float32 a
, float32 b
, void *fpstp
)
233 float_status
*fpst
= fpstp
;
235 a
= float32_squash_input_denormal(a
, fpst
);
236 b
= float32_squash_input_denormal(b
, fpst
);
239 if ((float32_is_infinity(a
) && float32_is_zero(b
)) ||
240 (float32_is_infinity(b
) && float32_is_zero(a
))) {
241 return float32_one_point_five
;
243 return float32_muladd(a
, b
, float32_three
, float_muladd_halve_result
, fpst
);
246 float64
HELPER(rsqrtsf_f64
)(float64 a
, float64 b
, void *fpstp
)
248 float_status
*fpst
= fpstp
;
250 a
= float64_squash_input_denormal(a
, fpst
);
251 b
= float64_squash_input_denormal(b
, fpst
);
254 if ((float64_is_infinity(a
) && float64_is_zero(b
)) ||
255 (float64_is_infinity(b
) && float64_is_zero(a
))) {
256 return float64_one_point_five
;
258 return float64_muladd(a
, b
, float64_three
, float_muladd_halve_result
, fpst
);
261 /* Pairwise long add: add pairs of adjacent elements into
262 * double-width elements in the result (eg _s8 is an 8x8->16 op)
264 uint64_t HELPER(neon_addlp_s8
)(uint64_t a
)
266 uint64_t nsignmask
= 0x0080008000800080ULL
;
267 uint64_t wsignmask
= 0x8000800080008000ULL
;
268 uint64_t elementmask
= 0x00ff00ff00ff00ffULL
;
270 uint64_t res
, signres
;
272 /* Extract odd elements, sign extend each to a 16 bit field */
273 tmp1
= a
& elementmask
;
276 tmp1
= (tmp1
- nsignmask
) ^ wsignmask
;
277 /* Ditto for the even elements */
278 tmp2
= (a
>> 8) & elementmask
;
281 tmp2
= (tmp2
- nsignmask
) ^ wsignmask
;
283 /* calculate the result by summing bits 0..14, 16..22, etc,
284 * and then adjusting the sign bits 15, 23, etc manually.
285 * This ensures the addition can't overflow the 16 bit field.
287 signres
= (tmp1
^ tmp2
) & wsignmask
;
288 res
= (tmp1
& ~wsignmask
) + (tmp2
& ~wsignmask
);
294 uint64_t HELPER(neon_addlp_u8
)(uint64_t a
)
298 tmp
= a
& 0x00ff00ff00ff00ffULL
;
299 tmp
+= (a
>> 8) & 0x00ff00ff00ff00ffULL
;
303 uint64_t HELPER(neon_addlp_s16
)(uint64_t a
)
305 int32_t reslo
, reshi
;
307 reslo
= (int32_t)(int16_t)a
+ (int32_t)(int16_t)(a
>> 16);
308 reshi
= (int32_t)(int16_t)(a
>> 32) + (int32_t)(int16_t)(a
>> 48);
310 return (uint32_t)reslo
| (((uint64_t)reshi
) << 32);
313 uint64_t HELPER(neon_addlp_u16
)(uint64_t a
)
317 tmp
= a
& 0x0000ffff0000ffffULL
;
318 tmp
+= (a
>> 16) & 0x0000ffff0000ffffULL
;
322 /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
323 float32
HELPER(frecpx_f32
)(float32 a
, void *fpstp
)
325 float_status
*fpst
= fpstp
;
326 uint32_t val32
, sbit
;
329 if (float32_is_any_nan(a
)) {
331 if (float32_is_signaling_nan(a
, fpst
)) {
332 float_raise(float_flag_invalid
, fpst
);
333 nan
= float32_maybe_silence_nan(a
, fpst
);
335 if (fpst
->default_nan_mode
) {
336 nan
= float32_default_nan(fpst
);
341 val32
= float32_val(a
);
342 sbit
= 0x80000000ULL
& val32
;
343 exp
= extract32(val32
, 23, 8);
346 return make_float32(sbit
| (0xfe << 23));
348 return make_float32(sbit
| (~exp
& 0xff) << 23);
352 float64
HELPER(frecpx_f64
)(float64 a
, void *fpstp
)
354 float_status
*fpst
= fpstp
;
355 uint64_t val64
, sbit
;
358 if (float64_is_any_nan(a
)) {
360 if (float64_is_signaling_nan(a
, fpst
)) {
361 float_raise(float_flag_invalid
, fpst
);
362 nan
= float64_maybe_silence_nan(a
, fpst
);
364 if (fpst
->default_nan_mode
) {
365 nan
= float64_default_nan(fpst
);
370 val64
= float64_val(a
);
371 sbit
= 0x8000000000000000ULL
& val64
;
372 exp
= extract64(float64_val(a
), 52, 11);
375 return make_float64(sbit
| (0x7feULL
<< 52));
377 return make_float64(sbit
| (~exp
& 0x7ffULL
) << 52);
381 float32
HELPER(fcvtx_f64_to_f32
)(float64 a
, CPUARMState
*env
)
383 /* Von Neumann rounding is implemented by using round-to-zero
384 * and then setting the LSB of the result if Inexact was raised.
387 float_status
*fpst
= &env
->vfp
.fp_status
;
388 float_status tstat
= *fpst
;
391 set_float_rounding_mode(float_round_to_zero
, &tstat
);
392 set_float_exception_flags(0, &tstat
);
393 r
= float64_to_float32(a
, &tstat
);
394 r
= float32_maybe_silence_nan(r
, &tstat
);
395 exflags
= get_float_exception_flags(&tstat
);
396 if (exflags
& float_flag_inexact
) {
397 r
= make_float32(float32_val(r
) | 1);
399 exflags
|= get_float_exception_flags(fpst
);
400 set_float_exception_flags(exflags
, fpst
);
404 /* 64-bit versions of the CRC helpers. Note that although the operation
405 * (and the prototypes of crc32c() and crc32() mean that only the bottom
406 * 32 bits of the accumulator and result are used, we pass and return
407 * uint64_t for convenience of the generated code. Unlike the 32-bit
408 * instruction set versions, val may genuinely have 64 bits of data in it.
409 * The upper bytes of val (above the number specified by 'bytes') must have
410 * been zeroed out by the caller.
412 uint64_t HELPER(crc32_64
)(uint64_t acc
, uint64_t val
, uint32_t bytes
)
418 /* zlib crc32 converts the accumulator and output to one's complement. */
419 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
422 uint64_t HELPER(crc32c_64
)(uint64_t acc
, uint64_t val
, uint32_t bytes
)
428 /* Linux crc32c converts the output to one's complement. */
429 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;
432 /* Returns 0 on success; 1 otherwise. */
433 uint64_t HELPER(paired_cmpxchg64_le
)(CPUARMState
*env
, uint64_t addr
,
434 uint64_t new_lo
, uint64_t new_hi
)
436 uintptr_t ra
= GETPC();
437 Int128 oldv
, cmpv
, newv
;
440 cmpv
= int128_make128(env
->exclusive_val
, env
->exclusive_high
);
441 newv
= int128_make128(new_lo
, new_hi
);
444 #ifndef CONFIG_ATOMIC128
445 cpu_loop_exit_atomic(ENV_GET_CPU(env
), ra
);
447 int mem_idx
= cpu_mmu_index(env
, false);
448 TCGMemOpIdx oi
= make_memop_idx(MO_LEQ
| MO_ALIGN_16
, mem_idx
);
449 oldv
= helper_atomic_cmpxchgo_le_mmu(env
, addr
, cmpv
, newv
, oi
, ra
);
450 success
= int128_eq(oldv
, cmpv
);
455 #ifdef CONFIG_USER_ONLY
456 /* ??? Enforce alignment. */
457 uint64_t *haddr
= g2h(addr
);
458 o0
= ldq_le_p(haddr
+ 0);
459 o1
= ldq_le_p(haddr
+ 1);
460 oldv
= int128_make128(o0
, o1
);
462 success
= int128_eq(oldv
, cmpv
);
464 stq_le_p(haddr
+ 0, int128_getlo(newv
));
465 stq_le_p(haddr
+ 1, int128_gethi(newv
));
468 int mem_idx
= cpu_mmu_index(env
, false);
469 TCGMemOpIdx oi0
= make_memop_idx(MO_LEQ
| MO_ALIGN_16
, mem_idx
);
470 TCGMemOpIdx oi1
= make_memop_idx(MO_LEQ
, mem_idx
);
472 o0
= helper_le_ldq_mmu(env
, addr
+ 0, oi0
, ra
);
473 o1
= helper_le_ldq_mmu(env
, addr
+ 8, oi1
, ra
);
474 oldv
= int128_make128(o0
, o1
);
476 success
= int128_eq(oldv
, cmpv
);
478 helper_le_stq_mmu(env
, addr
+ 0, int128_getlo(newv
), oi1
, ra
);
479 helper_le_stq_mmu(env
, addr
+ 8, int128_gethi(newv
), oi1
, ra
);
487 uint64_t HELPER(paired_cmpxchg64_be
)(CPUARMState
*env
, uint64_t addr
,
488 uint64_t new_lo
, uint64_t new_hi
)
490 uintptr_t ra
= GETPC();
491 Int128 oldv
, cmpv
, newv
;
494 cmpv
= int128_make128(env
->exclusive_val
, env
->exclusive_high
);
495 newv
= int128_make128(new_lo
, new_hi
);
498 #ifndef CONFIG_ATOMIC128
499 cpu_loop_exit_atomic(ENV_GET_CPU(env
), ra
);
501 int mem_idx
= cpu_mmu_index(env
, false);
502 TCGMemOpIdx oi
= make_memop_idx(MO_BEQ
| MO_ALIGN_16
, mem_idx
);
503 oldv
= helper_atomic_cmpxchgo_be_mmu(env
, addr
, cmpv
, newv
, oi
, ra
);
504 success
= int128_eq(oldv
, cmpv
);
509 #ifdef CONFIG_USER_ONLY
510 /* ??? Enforce alignment. */
511 uint64_t *haddr
= g2h(addr
);
512 o1
= ldq_be_p(haddr
+ 0);
513 o0
= ldq_be_p(haddr
+ 1);
514 oldv
= int128_make128(o0
, o1
);
516 success
= int128_eq(oldv
, cmpv
);
518 stq_be_p(haddr
+ 0, int128_gethi(newv
));
519 stq_be_p(haddr
+ 1, int128_getlo(newv
));
522 int mem_idx
= cpu_mmu_index(env
, false);
523 TCGMemOpIdx oi0
= make_memop_idx(MO_BEQ
| MO_ALIGN_16
, mem_idx
);
524 TCGMemOpIdx oi1
= make_memop_idx(MO_BEQ
, mem_idx
);
526 o1
= helper_be_ldq_mmu(env
, addr
+ 0, oi0
, ra
);
527 o0
= helper_be_ldq_mmu(env
, addr
+ 8, oi1
, ra
);
528 oldv
= int128_make128(o0
, o1
);
530 success
= int128_eq(oldv
, cmpv
);
532 helper_be_stq_mmu(env
, addr
+ 0, int128_gethi(newv
), oi1
, ra
);
533 helper_be_stq_mmu(env
, addr
+ 8, int128_getlo(newv
), oi1
, ra
);